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FLUCTUATIONS OF TASEP AND LPP WITH GENERAL
INITIAL DATA

BY IVAN CORWIN∗,†,‡,§,1, ZHIPENG LIU¶,2 AND DONG WANG‖,3

Columbia University∗, Clay Mathematics Institute†, Institute Henri Poincaré‡,
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We prove Airy process variational formulas for the one-point probability
distribution of (discrete time parallel update) TASEP with general initial data,
as well as last passage percolation from a general down-right lattice path to
a point. We also consider variants of last passage percolation with inhomo-
geneous parameter geometric weights and provide variational formulas of a
similar nature. This proves one aspect of the conjectural description of the
renormalization fixed point of the Kardar–Parisi–Zhang universality class.
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1. Introduction. The totally asymmetric simple exclusion process (TASEP)
is a prototypical interacting particle system, or (via integration) random growth
process. The theory of hydrodynamics describes the law of large numbers for
the evolution of the system’s particle density, or height function. In particular, if
h(x; t) represents the height function, then εh(ε−1x; ε−1t) converges (as ε → 0)
as a space–time process to the deterministic solution to a Hamilton Jacobi equa-
tion with explicit (model dependent) flux (see, e.g., [26]). The solution, of course,
depends on the initial data and in particular on the limit (as ε → 0) of εh0(ε

−1x).
It is possible to consider initial data h0,ε which depends on ε so that εh0,ε(ε

−1x)

has a limit.
The aim of the present paper is to describe, in a similar spirit, how fluctuations

around the law of large numbers evolve. In particular, define

hε(x; t) = c1ε
bh

(
c2ε

−1x; c3ε
−zt

) − h̄ε(x; t).(1)

Then it is conjectured in [18] that if we take

b = 1/2 and z = 3/2,(2)

then for c1, c2, c3 that are model dependent constants (chosen in terms of micro-
scopic dynamics via the KPZ scaling theory [27, 33, 34]) and suitable centering
h̄ε(x; t) (coming from the hydrodynamic theory), the space–time process hε(·; ·)
will have a universal limit h(·; ·) which is independent of the underlying model.
The class of all models which satisfy this is called the Kardar–Parisi–Zhang uni-
versality class, and this limiting object is called the fixed point of this universality
class.

Much of the description and almost all of the universality of this fixed point
remains a matter of conjecture. One of the main conjectures provided in [18] (see
also the review [32]) about this fixed point is that its solution can be described
via a variational problem (in the spirit of the Lax–Oleinik formula for the inviscid
Burgers equation) involving a four-parameter random field called the space–time
Airy sheet. A corollary of this conjectural description is that if the initial profile
hε(·;0) converges (as a spatial process) to some function h0(·), then we have the
following distributional equality, valid for any fixed x:

P
(
h(x;1) ≥ −r

) = P

(
max
y∈R

(
A(y) − (x − y)2 − h0(y)

) ≤ r
)
.(3)
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Here, A(·) is the Airy process (Section 2.6) and by scaling properties of h, this
implies a similar conjecture for general t .

The main contribution of the present paper is a proof of this conjectured vari-
ational description for the limiting one-point distribution of discrete time parallel
update TASEP.

Fix q ∈ (0,1). Then the TASEP height function hTASEP(x; t) is a continuous
function which is composed of slope ±1 increments between each integer x and
x + 1. The height function evolves so that independently, each ∨ (a −1 followed
by +1 slope increment) present in the height function at integer time t becomes a
∧ (a +1 followed by −1 slope increment) at time t +1 with probability 1−q . (See
Section 2.3 for more on this process.) Define hε,TASEP(x; t) in the manner of (1),
choose b, z as in (2) and fix the constants and take a particular h̄ε(x; t)

c1 = q−1/6(1 + √
q)−1/3, c2 = 2q−1/6(1 + √

q)2/3,
(4)

c3 = 2(1 − √
q)−1, h̄ε(x; t) = 2q−1/6(1 + √

q)−1/3t.

Theorem 2.7 shows that if hε,TASEP(·;0) converges in distribution (as a spa-
tial process) to some function h0(·) then [assuming certain growth hypotheses on
hε,TASEP(x;0) as x gets large]

lim
ε→0

P
(
hε,TASEP(x;1) ≥ −r

) = P

(
max
y∈R

(
A(y) − (x − y)2 − h0(y)

) ≤ r
)
.

Let us sketch where this result comes from (and how it is proved). Since the
limiting result is phrased in terms of a variational problem, it is natural to look
for a finite ε variational problem. This is facilitated through the connection be-
tween discrete time parallel update TASEP and the geometric random weight
last passage percolation (LPP) model. Recalling the description of the TASEP,
for each ∨ whose bottom point is at position (i, j), we can associated a random
variable w∗(i, j) which records the number of time steps until the ∨ becomes
a ∧. These w∗(i, j) are i.i.d. and geometrically distributed with parameter 1 − q

so that P(w∗ = k) = (1 − q)qk−1 for k ∈ {1,2, . . .}. Let G(x,y)(h
TASEP(·;0)) de-

note the first time t such that hTASEP(x; t) > y. The growth dynamics imply that
G(x,y)(h

TASEP(·;0)) satisfies a simple recursion

G(x,y)

(
hTASEP(·;0)

)
(5)

= max
(
G(x−1,y−1)

(
hTASEP(·;0)

)
,G(x+1,y−1)

(
hTASEP(·;0)

)) + w∗(x, y).

Iterating this recursion yields the discrete variational formula

G(x,y)

(
hTASEP(·;0)

) = max
π

∑
(i,j)∈π

w∗(i, j),(6)

where π is any path starting at (x, y) and proceeding by slope ±1 (↙ or ↘)
increments of length

√
2 downward until it hits hTASEP(·;0). The sum over (i, j) ∈

π is only over those integer vertices in π . This is illustrated in Figure 1.
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FIG. 1. The discrete variational problem (last passage percolation) for TASEP.

Instead of restricting π to end at any point of hTASEP, one can consider the max-
imal sum over paths which end at (s,0), s ∈ Z. Johansson [25] proved (see Propo-
sition 2.3 below) that under the b = 1/2, z = 3/2 type scaling (i.e., up to constants
replacing s 
→ ε−1s, x 
→ ε−1x, y 
→ ε−3/2y and scaling the appropriately cen-
tered G by ε1/2) the s-indexed point-to-point last passage percolation converges
as a process in s to the Airy process A(·) minus a parabola. However, along rays
from (x, y), the fluctuations of the last passage time enjoy slow decorrelation (see
Theorem 2.15). Thus, as the endpoint of π varies along hTASEP(·;0), the fluctua-
tions remain Airy, up to a deterministic shift depending on hTASEP(·;0). It remains
to show that the maximizer of the discrete variational problem converges to that
of the limiting problem (i.e., that the resulting variational problem stays localized
as ε goes to zero). This requires certain growth conditions on hTASEP(·;0) and
is achieved via a combination of large/moderate deviation bounds on TASEP and
a utilization of Theorem 2.16 which contains some regularity estimates coming
from the Gibbs’ property of the associated multilayer PNG line ensemble (Sec-
tion 6).

In a similar manner, we prove variational one-point distribution formulas for
point to general curve LPP as well as LPP in which some of the weights have been
perturbed. As a corollary of the TASEP and LPP results, we provide variational
formulas for a number of known one-point distributions, such as arise in TASEP
with combinations of wedge, flat and Brownian-type initial data.

Organization of the paper. Section 2 introduces the models (LPP and TASEP)
as well as the main results (Theorems 2.6, 2.7 and 2.10) about them. The proofs
of these theorems are applications of Theorem 2.15 on the uniform slow decorre-
lation and Theorem 2.16 on the Gibbs’ property, and they are given in Section 3.
Proofs of Corollaries 2.8 and 2.11 are given in Section 4. The technical results,
Theorems 2.15 and 2.16, are proved in Sections 5 and 6, respectively. Finally, the
Appendix gives the proof of Lemma 2.2.
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2. Models and main results.

2.1. Point-to-curve LPP. Associate to each site (i, j) ∈ Z
2 an independent ge-

ometrically distributed random variable w(i, j) with parameter 1 − q , such that

P
(
w(i, j) = k

) = (1 − q)qk, k = 0,1,2, . . . .(7)

The point-to-point last passage time between two lattice points (x, y) and
(x ′, y′) is denoted by G(x′,y′)(x, y) and defined by

G(x′,y′)(x, y) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
π

{ ∑
(i,j)∈π

w(i, j)|π ∈ (x, y) ↗ (
x′, y′)},

if x ≤ x′ and y ≤ y′,
−∞, otherwise,

(8)

where π stands for an up-right lattice path such that π = (π0 = (x, y),π1, π2, . . . ,

πx′+y′−x−y = (x′, y′)) and πk+1 − πk ∈ {(1,0), (0,1)}. More generally, if (x ′, y′)
is a lattice point, and (x, y) is on a line segment between two neighboring lattice
points, then define

G(x′,y′)(x, y) := the linear interpolation between
(9) {

G(x′,y′)
(
x, [y]) and G(x′,y′)

(
x, [y] + 1

)
, if x ∈ Z,

G(x′,y′)
([x], y)

and G(x′,y′)
([x] + 1, y

)
, if y ∈ Z.

If (x, y) and (x′, y′) are lattice points, we define the short-handed notation for the
reversed last passage time as

Ǧ(x′,y′)(x, y) = G(x,y)

(
x′, y′) and

(10)
Ǧ(x, y) := Ǧ(0,0)(x, y) = G(x,y)(0,0).

We also define Ǧ(x′,y′)(x, y) by linear interpolation if (x, y) is on a line seg-
ment between two neighboring lattice points, analogous to (9). We will consider a
more general point-to-curve last passage time, denoted by G(x′,y′)(L) in this pa-
per. Let (x′, y′) be a lattice point and L be a down-right lattice path in R

2 with
L = L(s) = {(x(s), y(s))|s ∈ I }, for some interval I ⊂ R. Here, a down-right lat-
tice path means a (possibly infinite) directed path composed of down ↓ or right →
oriented line segments which connect neighboring lattice points. Define

G(x′,y′)(L) = sup
s∈I

{
G(x′,y′)

(
x(s), y(s)

)}
.(11)

Although s is a continuous parameter, it suffices to take the supremum among a
discrete set of point-to-point last passage times.

As preliminaries for our work, let us recall some important results about the
asymptotic behavior of the point-to-point and point-to-curve last passage time.
Focusing first on point-to-point last passage percolation, we state the law of large



FLUCTUATIONS OF TASEP AND LPP WITH GENERAL INITIAL DATA 2035

numbers, large/moderate deviations and the fluctuation limit theorems in the fol-
lowing proposition. Note that due to the symmetry of the lattice, we state our
results in terms of Ǧ(x, y).

PROPOSITION 2.1. Fix γ ∈ (0,∞), then:

(a) (Johansson [24])

lim
N→∞

1

N
Ǧ(γN,N) = a0(γ ) almost surely,

(12)

where a0(γ ) = (γ + 1)q + 2
√

γ q

1 − q
.

(b) (Baik–Deift–McLaughlin–Miller–Zhou [3]). There exist a (large) constant
M > 0 and a (small) constant δ > 0 such that for large N , uniformly for all M ≤
x ≤ δN1/3, there exists c > 0 such that

P
(
Ǧ(γN,N) ≤ a0(γ )N − xN1/3) ≤ e−cx3

.(13)

(c) (Johansson [24])

lim
N→∞P

(
Ǧ(γN,N) − a0(γ )N

b0(γ )N1/3 ≤ x

)
= FGUE(x),(14)

where

b0(γ ) = q1/6γ −1/6

1 − q
(
√

q + √
γ )2/3(1 + √

γ q)2/3,(15)

and FGUE(x) is the GUE Tracy–Widom distribution for the limiting fluctuation of
the largest eigenvalue in the Gaussian unitary ensemble (GUE); see Section 2.6.

In this paper, we need a counterpart of (13), which is stated below, and proved
in the Appendix.

LEMMA 2.2. Let γ ∈ (0,∞). There exist a (large) constant M > 0 and a
(small) constant δ > 0 such that for large N , uniformly for all M ≤ x ≤ δN1/3,
there exists c > 0 such that

P
(
Ǧ(γN,N) ≥ a0(γ )N + xN1/3)

< e−cx.(16)

Let us define a few constants that will be used throughout this paper:

a0 = a0(1) = 2
√

q

1 − √
q

, b0 = b0(1) = q1/6(1 + √
q)1/3

1 − √
q

,

(17)

c0 = (1 + √
q)2/3

q1/6 , d0 = (1 + √
q)1/3

2q1/3 ,
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FIG. 2. The shapes of L and Ľ.

as well as

a∗
0 = a∗

0(1) = 2

1 − √
q

= a0 + 2, d∗
0 = q1/6(1 + √

q)1/3

2
.(18)

Define the limit shape curve (see Figure 2)

Ľ :=
{
(x, y) ∈ (0,∞) × (0,∞)

∣∣∣ya0

(
x

y

)
= a0

}

=
{(

r(θ) cos θ, r(θ) sin θ
)∣∣∣θ ∈

(
0,

π

2

)
and(19)

r(θ) = 2(1 + √
q)

(cos θ + sin θ)
√

q + 2
√

cos θ sin θ

}
,

and

L := {
(x, y)|(1 − y,1 − x) ∈ Ľ

}
.(20)

Note that
a0

limx→0 a0(x)
= 2 + 2q−1/2 and 1 − a0

limx→0 a0(x)
= −1 − 2q−1/2,(21)

so Ľ (L, resp.) is between (2 + 2q−1/2,0) and (0,2 + 2q−1/2) [(−1 − 2q−1/2,1)

and (1,−1 − 2q−1/2), resp.]. Then by Proposition 2.1(a), we have that if (x, y) ∈
Ľ, then with high probability, Ǧ([xN ], [yN ]) = a0N + o(N), or equivalently, if
(x, y) ∈ L, then G(N,N)([xN ], [yN ]) = a0N + o(N). In other words, these limit
shapes reflect the law of large numbers under scaling by N for those locations
whose last passage time divided by N is asymptotically a0.

The following result shows how the Airy process A(s) (see Section 2.6) arises in
describing the spatial fluctuations of point-to-curve LPP. We define the saw-tooth
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curve L0 that is approximately a antidiagonal straight line

L0 = {(−l0(s) + s,−l0(s) − s
)|s ∈ R

}
,

(22)

where l0(s) =
{

k − s, if s ∈ [
k, k + 1

2

]
,

s − k − 1, if s ∈ [
k + 1

2 , k + 1
]
.

PROPOSITION 2.3 (Johansson [25]). Define the stochastic process

HN(s) := 1

b0N1/3

(
Ǧ

(
N + l0(

c0N
2/3s

) + sc0N
2/3,

(23)
N + l0(

c0N
2/3s

) − sc0N
2/3) − a0N

)
,

where a0,b0, c0 are defined in (17). Then on any interval [−M,M], we have the
weak convergence (as measures on C([−M,M],R)) as N → ∞ of

HN(s) ⇒ A(s) − s2.(24)

The definition and some properties of the Airy process are provided in Sec-
tion 2.6. This functional limit theorem for the fluctuations of all G(N,N)(−l0(s) +
s,−l0(s) − s) with s = O(N2/3), together with a tightness argument for large s,
yields the following.

PROPOSITION 2.4 (Johansson [25]). As N → ∞, the point-to-curve last pas-
sage time from (N,N) to L0 satisfies

lim
N→∞P

(
G(N,N)(L

0) − a0N

b0N1/3 ≤ x

)
= P

(
max
s∈R

(
A(s) − s2) ≤ x

)
.(25)

2.2. Main result on fluctuations in point-to-curve LPP. Our main result, The-
orem 2.6, provides a similar variational characterization as Johansson’s result
(Proposition 2.4) for point-to-curve LPP with a general class of the down-right
lattice paths. Before stating our theorem, we specify the class of down-right lattice
paths which we will consider.

We will consider the point-to-curve LPP where the point is (N,N) (or more
generally (N + [σc0N

2/3],N − [σc0N
2/3]) for some σ ) and the curve is a down-

right lattice path LN . As suggested by the subscript N , we will allow the curve
to vary with N . However, to have a meaningful result, LN must satisfy two main
properties. The first part of the hypothesis we impose is that under the scaling in
which a window (which we call the central part) around (0,0), of size O(N2/3)

in the antidiagonal direction and O(N1/3) in the diagonal direction, becomes of
unit order, LN should converge to a function which we will denote by �(·). In fact,
we will start with �(·) specified and define LN based on it. We will allow some
variation from �(s) which is denoted by lN (s), but will assume that in the window
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|lN (s)| is bounded by a sequence mN which goes to zero. The second part of the
hypothesis ensures that outside the central part, LN should be sufficiently bounded
away from the limit-shape L. The purpose of this is to ensure that the maximizing
path localizes in the central part. In fact, in order to ensure this localization we
also assume that �(s) does not grow any faster than c1s

2 for some c1 < 1. This is
because the limit shape of L defined in (20) looks (with the scaling parameters we
are using) like s2 in the vicinity of the origin. [We also assume this for |�(s)| for
technical reasons; see Remark 2.]

We name the below hypothesis Hyp(C, c1, c2, c3, a∞, b∞, {mN }) owing to its
dependence on certain parameters and functions. Owing to a coupling between
LPP and TASEP, we also make use of a slightly modified hypotheses which we
name Hyp∗(C, c1, c2, c3, a∞, b∞, {mN }) and describe near the end of the follow-
ing definition.

DEFINITION 2.5. Consider constants

C > 0, c1 ∈ (0,1), c2 ∈ (0,1/3),
(26)

c3 ∈ (−1 − 2q−1/2,0
)
, a∞ ∈ {−∞} ∪R, b∞ ∈ {+∞} ∪R,

and a sequence {mN }N≥1 ⊂ R+ converging to zero as N goes to infinity.
From (19), (20) and Figure 2 it is clear that the horizontal line y = 1, the vertical
line x = 1 and the curve L enclose a region, which we denote by D̃. Given c3,
define the region D as the main part of D̃ with the two sharp corners cut off
(Figure 3):

D = D̃ \ {
(x, y)|x < c3 or y < c3

}
.(27)

The lower bound on c3 of −1−2q−1/2 is shown in (21) and Figure 3 to correspond
with the corner of D. Given c2, for a down-right lattice path define its central

FIG. 3. Regions D (shaded) and D̃ (D together with the two corners enclosed by gray lines) and
an example of N−1LN .
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part as

Lcentral = {
(x, y) ∈ L||x − y| < 2c0N

2/3+c2
}
.(28)

We say that a continuous function � : R → R and a sequence of down-right lat-
tice paths LN satisfy Hyp(C, c1, c2, c3, a∞, b∞, {mN }) if the following properties
hold:

1. The function �(s) satisfies the bound for s ∈ R that∣∣�(s)∣∣ < C + c1s
2.(29)

2. There is a sequence of intervals IN = (aN, bN) ⊂ (−Nc2,Nc2) converging
to (a∞, b∞) such that

Lcentral
N = {(

sc0N
2/3 − (

�(s) + lN (s)
)
d0N

1/3,
(30)

−sc0N
2/3 − (

�(s) + lN (s)
)
d0N

1/3)|s ∈ IN

}
,

where lN (s) : IN → R is some continuous function with maxs∈IN
|lN (s)| ≤ mN ,

and limN→∞ mN = 0, and d0 is defined in (17).
3. The noncentral part of LN satisfies{

(x, y)|(Nx,Ny) ∈ LN \ Lcentral
N

} ∩ (
(−∞,1] × (−∞,1]) ⊆ D,(31)

as depicted in Figure 3, and

dist
((

LN \ Lcentral
N

) ∩ (
(−∞,N ] × (−∞,N ]),{

(x, y)
∣∣∣( x

N
,

y

N

)
∈ L

})
(32)

> N1/3+2c2,

where the distance is Euclidean. We have no requirement of LN outside of the
region (−∞,N ] × (−∞,N ], because

G(N,N)(LN) = G(N,N)

(
LN ∩ (−∞,N ] × (−∞,N ]).(33)

Let us also define a second (quite similar) hypothesis. Assume C,c1, c2, a∞,

b∞, {mN } are as above and replace c3 ∈ (−1−2q−1/2,0) by c∗
3 ∈ (−1−2q1/2,0).

We say that � and the sequence L∗
N satisfy Hyp∗(C, c1, c2, c

∗
3, a∞, b∞, {mN }) if

they satisfy the above properties, with a0,d0,L,D replaced by a∗
0,d∗

0,L∗,D∗. The
first two starred terms a∗

0,d∗
0 are given in Definition (18), whereas L∗ is define

in (43) and D∗ is defined as follows. The horizontal line y = 1, the vertical line
x = 1 and the curve L∗ enclose a region D̃∗. Given c∗

3, define the region

D∗ = D̃∗ \ {
(x, y)|x < c∗

3 or y < c∗
3
}
.(34)

We are interested in the limiting fluctuations of G(N,N)(LN). The result which
we now state describes that in terms of a variational problem involving the function
�(·) related to LN through the above hypothesis. We actually state our result with
an extra parameter σ ∈ R which corresponds to shifting the point (N,N) along an
antidiagonal line.
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THEOREM 2.6. Fix constants C,c1, c2, c3, a∞, b∞, a sequence {mN }N≥1 as
in Definition 2.5, and σ ∈ R. Then for all ε > 0 there exists N0 such that for all
continuous functions � : R → R and sequences of down-right lattice paths LN

satisfying Hyp(C, c1, c2, c3, a∞, b∞, {mN }), and for all N > N0 and x ∈R,∣∣∣∣P
(

G(N+[σc0N
2/3],N−[σc0N

2/3])(LN) − a0N

b0N1/3 ≤ x

)
(35)

− P

(
max

s∈(a∞,b∞)

(
A(s) − (s − σ)2 + �(s)

) ≤ x
)∣∣∣∣ < ε.

REMARK 1. First, note that maxs∈(a∞,b∞)(A(s) − (s − σ)2 + �(s)) is a well-
defined random variable; see Corollary 2.14. Second, observe that Theorem 2.6
(as well as the subsequently stated results of Theorems 2.7 and 2.10) are stated
in terms of a deterministic down-right lattice path/initial condition/boundary data.
Here, in the statement of the theorem, and later in the proof, we show that the
lower bound of convergence rate is independent of the particular form of �(s)

and LN so long as they satisfy the hypothesis. (The bound of rate, however, does
depend on the parameters of the hypothesis.) This independence will be used later
to deal with the case of random �(s), say, distributed as the path of random walk.
Let us briefly see how this works. Assume that �(s) is random and that for all
ε > 0 there exist constants C ∈ R and c1 ∈ (0,1) such that with probability at least
1 − ε, |�(s)| < C + c1s

2 for all s. Then Theorem 2.6 holds for such a random
�(s). Instead of coupling all initial data LN to a single (possibly random) �(s), it is
also possible to consider LN which satisfy all of the conditions of Hypothesis 2.5,
except that (30) is replaced by

Lcentral
N = {(

sc0N
2/3 − (

�N(s) + lN (s)
)
d0N

1/3,
(36)

−sc0N
2/3 − (

�N(s) + lN (s)
)
d0N

1/3)|s ∈ IN

}
,

where �N(s) converges as a spatial process to some (possibly random) �(s) satis-
fying the aforementioned bounds.

REMARK 2. It is essential that �(s) is bounded above quadratically for the
right-hand side of (35) to make sense, but the lower bound of �(s) is unimpor-
tant there. Actually, we assume the lower bound of �(s) in (29) only for technical
reasons in, for example, (105).

Theorem 2.6 is proved in Section 3.1. There are two main ingredients in the
proof. The first ingredient is to show that the end of the longest path localizes to
those (x, y) in the vicinity of (0,0) so that x +y =O(N1/3) and x −y = O(N2/3).
This is achieved using moderate deviation bounds along with certain regularity
results in Theorem 2.16 which follow from the Gibbs’ property associated with
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this model. Having localized our consideration, the second ingredient is to show
that the theorem holds when LN is restricted to a region around (0,0) of length
O(N2/3). This is achieved by the uniform slow decorrelation property of the LPP
model; see Theorem 2.15.

2.3. TASEP with general initial data. For the analysis of the TASEP model,
we introduce a slightly different LPP model where the i.i.d. random variables
w∗(i, j) associated to each site are geometrically distributed on Z>0

w∗(i, j) ∼ w(i, j) + 1, such that
(37)

P
(
w∗(i, j) = k

) = (1 − q)qk−1, k = 1,2, . . . .

We similarly define the point-to-point LPP G∗
(x′,y′)(x, y), point-to-curve LPP

G∗
(x′,y′)(L) and the reversed LPP Ǧ∗

(x′,y′)(x, y) by (9), (11) and (10) with the
weights changed from w(i, j) to w∗(i, j). They have simple relations to the LPPs
G∗

(x′,y′)(x, y), G∗
(x′,y′)(L) and Ǧ∗

(x′,y′)(x, y) defined there, for example, if one of
(x, y) and (x′, y′) is a lattice point,

G∗
(x′,y′)(x, y) = G(x′,y′)(x, y) + x′ + y′ − x − y + 1.(38)

The TASEP model considered in our paper is that with discrete time and parallel
updating dynamics [9], and is defined as follows. Let infinitely many particles be
initially at time t = 0 placed on the integer lattice Z such that no lattice site is
occupied by more than one particle, and there are infinitely many particles to the
left of 0. At each integer time, the particles decide whether to jump to the right
neighboring site simultaneously. For any particle x at time t , if its right neighboring
site x(t) + 1 is occupied then it does not move and x(t + 1) = x(t); otherwise, it
jumps to the right neighboring site (x(t + 1) = x(t)+ 1) with probability 1 − q , or
does not move (x(t + 1) = x(t)) with probability q .

At any time t ≥ 0, we represent the positions of the particles by the height func-
tion h(·; t) : R → R. We let h(0; t) = 2Nt where Nt is the number of particles
that have jumped from site −1 to site 0 during the time interval [0, t). For any
integer k, we define h(k; t) inductively from h(0; t) by h(k + 1; t) − h(k; t) = ±1
where the sign is positive (negative, resp.) if the site k is vacant (occupied, resp.)
by a particle at time t . At last, for noninteger s, we define h(s; t) by the linear
interpolation between h([s]; t) and h([s] + 1; t). See Figure 4 for an example.
Also noting that h(s; t) = h(s; [t]) for all t ∈ R+, we have that h(s; t) is deter-
mined by the values of h(k;n) where k,n ∈ Z. Another observation is that the
value of h(k; t) is an integer that has the same parity of k. In the Introduction,
we provided an alternative description for the dynamics of TASEP acting on the
height function by changing ∨ to ∧ according to geometrically distributed waiting
times.
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FIG. 4. The height function h(s; t) at the initial time t = 0. If at time t = 1, one particle jumps
from −3 to −2, then h(s;1) is changed into the dashed shape. The polygonal chain L representing
the initial state of the model is shown on the right.

To analyze the dynamics of the TASEP model, or equivalently, the dynamics of
the height function h(s; t), we introduce the polygonal chain

L =
{(

s

2
+ 1

2
h(s;0),− s

2
+ 1

2
h(s;0)

)∣∣∣s ∈ [K1,K2]
}
,(39)

to represent the initial configuration of the model, as shown in Figure 4, where K1
is the position of the leftmost unoccupied site at t = 0 if it exists, or −∞ otherwise,
and K2 is one plus the position of the rightmost occupied site at t = 0 if it exists,
or +∞ otherwise.

As described in the Introduction, the TASEP model can be coupled to the LPP
model with weights w∗(i, j) defined in (37) (see also [15, 24], e.g.). The relation
between the distribution of h(j ; t) and the LPP is given by

P
(
h(j ; t) > k

) = P
(
G∗

((k+j)/2,(k−j)/2)(L) ≤ t
)
,(40)

for any j, k ∈ Z with the same parity. Here, L is the polygonal chain defined
in (39). This coupling follows by defining the TASEP height function at time t

as the rotated envelop of all points which has last passage time less than or equal
to t . The weights correspond with the probabilities of particle movement.

2.4. Main result on TASEP with general initial data. Now we consider the
TASEP model with general initial condition. Since the TASEP model is mapped
to the LPP model with weight function given in (37), the result for the TASEP
is analogous to that of the LPP model stated in Section 2.2. Below we set up the
notation for the LPP model with weight (37), give technical conditions in terms of
LPP and then present the result in terms of the TASEP model.

Analogous to Proposition 2.1(a), we have

lim
N→∞

1

N
Ǧ∗(γN,N) = a∗

0(γ ) almost surely,
(41)

where a∗
0(γ ) = a0(γ ) + γ + 1 = γ + 1 + 2

√
γ q

1 − q
.
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Likewise analogous to Ľ and L defined in (19) and (20) [and recalling a∗
0 = a∗

0(1)

from (18)], we define

Ľ∗ :=
{
(x, y) ∈ (0,∞) × (0,∞)

∣∣∣ya∗
0

(
x

y

)
= a∗

0

}

=
{(

r(θ) cos θ, r(θ) sin θ
)∣∣∣θ ∈

(
0,

π

2

)
and(42)

r(θ) = 2(1 + √
q)

(cos θ + sin θ) + 2
√

cos θ sin θq

}
,

and

L∗ := {
(x, y)|(1 − y,1 − x) ∈ Ľ∗}

.(43)

By Theorem 2.1(a), (b), we have that if (x, y) ∈ Ľ∗, Ǧ∗(xN,yN) = a∗
0N + o(N),

and equivalently if (x, y) ∈ L∗, G∗
(N,N)(xN,yN) = a∗

0N + o(N), with high prob-
ability.

THEOREM 2.7. Fix constants C,c1, c2, c
∗
3, a∞, b∞, a sequence {mN }N≥1 as

in Definition 2.5, and σ ∈ R. We will consider down-right lattice paths L∗
N defined

by the initial condition of a TASEP model, that is, for each index N , we consider
the TASEP model represented by a height function hN(s; t), and then let L∗

N be
the polygonal chain L that is defined by hN(s;0) in (39). Then for all ε > 0 there
exists N0 such that for all continuous functions � :R →R and sequences of down-
right lattice paths L∗

N satisfying Hyp∗(C, c1, c2, c
∗
3, a∞, b∞, {mN }), and for all

N > N0 and x ∈ R,∣∣∣∣P
(

hN(2σc0N
2/3;a∗

0N) − 2N

2d∗
0N

1/3 > −x

)
(44)

− P

(
max

s∈(a∞,b∞)

(
A(s) − (s − σ)2 + �(s)

)
< x

)∣∣∣∣ < ε.

This result is proved in Section 3.2 as a straightforward consequence of Theo-
rem 2.6.

REMARK 3. Though the above result is stated for TASEP, the hypothesis is
for the associated last passage percolation model. Let us unfold what this means
in terms of the TASEP height function initial data. The height function initial data
is given by the function s 
→ hN(s;0). The first part of the hypothesis regards the
limiting behavior of the central part of this function. In other words, the function
s 
→ N−1/3hN(N2/3s;0) should have a limit [related to the function �(s) which is
assumed not to grow too quickly with |s|]. Outside of a large window around the
origin, this scaled height function initial data should not go to −∞ too quickly (or
else it may influence the later time behavior around the origin). The second part of
the hypothesis describes a growth condition which ensures this.
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Below we list several typical initial conditions of TASEP, and their initial
height functions. We characterize the initial height function h(s;0) only at integer-
valued s. Note that all the initial conditions are N -independent. Theorem 2.7 cov-
ers more general, N -dependent initial conditions, for example, periodic initial con-
ditions with period O(N2/3).

• (Step initial condition). Initially all negative sites are occupied and all nonnega-
tive sites are empty, that is,

hstep(s;0) = |s|.(45)

• (Flat initial condition). Initially all even sites are occupied and all odd sites are
empty, that is,

hflat(s;0) =
{

0, if s = 0,±2,±4, . . . ,

−1, if s = ±1,±3, . . . .
(46)

• (Brownian/Bernoulli initial condition). Initially all sites are independently oc-
cupied with probability 1/2 and empty with probability 1/2, that is,

hBern(s;0) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if s = 0,
s−1∑
i=0

wi, if s = 1,2, . . . ,

−
−1∑

i=−s

wi, if s = −1,−2, . . . ,

(47)

and wi are i.i.d. Bernoulli random variables such that P(wi = 1) = 1/2 and
P(wi = −1) = 1/2.

• (Wedge-flat initial condition). Initially all negative sites and all even sites are
occupied, but all positive odd sites are empty, that is,

hstep/flat(s;0) =
{

hflat(s;0), if s ≥ 0,

hstep(s;0), if s < 0.
(48)

• (Wedge–Bernoulli initial condition). Initially all negative sites are occupied, and
all nonnegative sites are independently occupied with probability 1/2 and empty
with probability 1/2, that is,

hstep/Bern(s;0) =
{

hBern(s;0), if s ≥ 0,

hstep(s;0), if s < 0.
(49)

• (Flat-Bernoulli initial condition). Initially, all even negative sites are occupied,
all odd negative sites are empty and all nonnegative sites are independently oc-
cupied with probability 1/2 and empty with probability 1/2, that is,

hflat/Bern(s;0) =
{

hBern(s;0), if s ≥ 0,

hflat(s;0), if s < 0.
(50)
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As consequences of Theorem 2.7, we can prove variational formulas for one-
point distributions of TASEP started from initial data as in (46), (47) (48), (49)
and (50). To state the results in a uniform way, we denote the two-sided Brownian
motion B(s) by

B(s) =
{ B+(s), if s ≥ 0,

B−(−s), if s ≤ 0,
(51)

where B+(s) and B−(s) are independent standard Brownian motions starting at 0.

COROLLARY 2.8. Let σ be a real constant and h(s; t) be the height function
of the TASEP.

(a) With the flat initial condition (46),

lim
N→∞P

(
hflat(2σc0N

2/3;a∗
0N) − 2N

2d∗
0N

1/3 > −x

)
= P

(
max
s∈R

(
A(s) − s2)

< x
)
.(52)

(b) With the Bernoulli initial condition (47),

lim
N→∞P

(
hBern(2σc0N

2/3;a∗
0N) − 2N

2d∗
0N

1/3 > −x

)
(53)

= P

(
max
s∈R

(
A(s) − (s − σ)2 + √

2q−1/4B(s)
)
< x

)
.

(c) With the Wedge-flat initial condition (48),

lim
N→∞P

(
hstep/flat(2σc0N

2/3;a∗
0N) − 2N

2d∗
0N

1/3 > −x

)
(54)

= P

(
max
s≤σ

(
A(s) − s2)

< x
)
.

(d) With the Wedge–Bernoulli initial condition (49),

lim
N→∞P

(
hstep/Bern(2σc0N

2/3;a∗
0N) − 2N

2d∗
0N

1/3 > −x

)
(55)

= P

(
max
s≥0

(
A(s) − (s − σ)2 + √

2q−1/4B(s)
)
< x

)
.

(e) With the flat-Bernoulli condition (50),

lim
N→∞P

(
hflat/Bern(2σc0N

2/3;a∗
0N) − 2N

2d∗
0N

1/3 > −x

)
(56)

= P

(
max
s∈R

(
A(s) − (s − σ)2 + √

2q−1/4χs≥0B(s)
)
< x

)
.
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REMARK 4. The result for the flat initial condition (46) is obtained in [25] and
is given, in an equivalent form, in Proposition 2.4 in the case that σ = 0. Since the
flat initial condition is translational invariant, the result holds for general σ . The
step initial condition is singular in the sense that K1 = K2 = 0 in (39) and hence
aN = bN = 0 and the interval (a∞, b∞) degenerates a point {0}. The result, which
is stated in Proposition 2.1(c), actually is used in the proof of Theorem 2.7 (and
Theorem 2.6), so we do not list it as a corollary.

REMARK 5. For discrete time parallel update TASEP, Bernoulli initial data
is not stationary in time. The stationary measure is not a product measure. This
explains why besides in the limiting case when q = 1, there is no known (simple)
formula in the literature of the right-hand side of (53).

Comparing the results in Corollary 2.8 with the asymptotics of h(s; t) obtained
in continuous TASEP models (see [2, 4, 10, 11] for details) that corresponds to the
q → 1− limit of the discrete TASEP model considered in this paper, one expects
the following results:

P

(
max
t∈R

(
A(s) − (s − σ)2)

< x
)

= P
(
21/3A1

(
2−2/3σ

)
< x

)
,(57)

P

(
max
t∈R

(
A(s) − (s − σ)2 + √

2B(s)
)
< x

)
= P

(
Astat(σ ) < x

)
,(58)

P

(
max
s≥0

(
A(s) − (s − σ)2)

< x
)

= P
(
A2→1(σ ) < x + σ 2χσ<0

)
,(59)

P

(
max
s≥0

(
A(s) − (s − σ)2 + √

2B(s)
)
< x

)
(60)

= P
(
ABM→2(−σ) < x + σ 2)

,

P

(
max
s∈R

(
A(s) − (s − σ)2 + √

2χs≥0B(s)
)
< x

)
(61)

= P
(
A2→1,1,0(−σ) < x + σ 2χσ>0

)
.

(It may be possible to prove these continuous analogs in a similar manner as done
here, but we do not pursue this presently, see Remark 6.)

Below are explanations of notation:

• In (57), A1 stands for the Airy process with flat initial data, defined in [33] and
[8], formulas (1.4) and (1.5). The A1 process is stationary, and its 1-dimensional
distribution is [20]

P
(
A1(σ ) < x

) = FGOE(2x),(62)

where FGOE is the GOE Tracy–Widom distribution [35].
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• In (58), Astat stands for the Airy process with stationary initial data, defined
in [4], and we follow the notation in [30], Section 1.11, and [32], Section 1.2.
The 1-dimensional distribution of Astat(σ ) appears also in literature as (see [4],
Remark 1.3, and [21], Appendix A)

P
(
Astat(σ ) < x

) = Fσ (x) = H

(
x + σ 2; σ

2
,−σ

2

)
,(63)

where Fσ (x) is defined in [21], formula (1.20), and H(x;w+,w−) is defined
in [5], Definition 3.

• In (59), the transition process A2→1 interpolating the A2 and A1 processes is in-
troduced in [10], Definition 2.1 (see also [31], formula (1.7), where the notation
for the right-hand side of (59) is G2→1

σ (x + σ 2χσ<0)).
• In (60), the transition process ABM→2 interpolating the Brownian motion and

A2 process is introduced in [23], formula (3.6), see also [14], Definition 2.13.
The 1-dimensional distribution of ABM→2(σ ) was conjectured in [28] and
proved in [7] to be

P
(
ABM→2(σ ) < x

) = F1(x;σ),(64)

where the distribution function F1 is introduced in [2], Definition 1.3.
• In formula (61), The transition process A2→1,1,0 interpolating the Brownian

motion and the A1 process is introduced in [11], Definition 18. It is defined
from the TASEP with one slow particle, and it is related to the TASEP with
flat-Bernoulli initial condition via Burke’s theorem, as explained in [11].

Among formulas (57), (58), (59), (60) and (61), (57) is proved in [25], and then
proved in a direct way in [17]. Formula (59) is proved in [31]. Formulas (58), (60)
and (61) are conjectured in [32], Section 1.4. Note that in [32], Section 1.4, the
notation A1→BM and A2→BM are described but not precisely defined. From the
context, we figure out that

A2→BM(σ ) = ABM→2(−σ) − σ 2χσ>0,
(65)

A1→BM(σ ) = A2→1,1,0(−σ) − σ 2χσ>0.

Formulas (58) and (60) are special cases of Corollary 2.12(c) with w+ = −w− = σ
2

and (a) with k = 1 in Section 2.5. And our argument in this paper is a strong
support to the conjectural formula (61).

REMARK 6. The method in our study of the discrete time TASEP, if applied
on the continuous time TASEP, that is, the q → 1− limit of the discrete time one,
yields the counterparts of (53), (54), (55) and (56) with q = 1, and then the formu-
las (57), (58), (59), (60) and (61) are derived directly. The only technical obstacle in
the application of our method in the continuous time TASEP is that the counterpart
of Proposition 2.4, where the discrete geometric distribution of w(i, j) is replaced
by the continuous exponential distribution is not available in literature. We remark
that the counterpart of Proposition 2.4 can also be proved by the method in [25].
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2.5. LPP with inhomogeneous parameter geometric weight distributions. In
this subsection, we consider the point-to-point LPP on a Z

2 lattice where the
weights on sites are in independent geometric distribution, but with nonidentical
parameters. The strategy is to express the point-to-point LPP with respect to these
weights by point-to-curve LPP with respect to homogeneous weight as considered
in Section 2.1.

Let L be the vertical path (depending on N which we suppress)

L := {
(0, y)|y ∈ DN

}
where DN is an interval on R.(66)

We are most interested in the case that DN = R. But the LPP G(N,N)(L) is not
well defined in this case, since G(N,N)(0, y) → +∞ almost surely as y → −∞.
We consider a modified LPP

G
fN

(N,N)(L) = max
y∈DN

(
G(N,N)(0, y) − fN(y)

)
,(67)

where fN : DN → R is a function where DN , the domain of fN , is an interval.
This modified LPP G

fN

(N,N)(L) is well defined for DN = R if fN(x) → +∞ fast
enough as x → −∞.

By Proposition 2.1, for y = cN where c is in a compact subset of (−∞,1),
if fN(y) = a0(1 − y/N)N , then G(N,N)(0, y) = o(N) with high probability. So
if fN(y) is close to a0N = a0(1)N for y around 0, and otherwise greater than
a0(1 − y/N)N for all y < N , then G

fN

(N,N)(L) is o(N) and the value of y such
that G(N,N)(0, y) − fN(y) attains its maximum is in the vicinity of 0 with high
probability. To make the idea above precise, we state a technical hypothesis for fN

analogous to the hypotheses of Definition 2.5.
Before stating the technical hypotheses, we consider another similar question

regarding putting a function on the �-shaped path

L̃ = {
(0, y)|y ≥ 0

} ∪ {
(x,0)|x ≥ 0

}
.(68)

The random variable G(N,N)(L̃) is well defined and equivalent to the point-to-
point last passage time G(N,N)(0,0). If, for DN = [−N,N], f̃N : DN → R is a
continuous function such that f̃N (x) increases suitably fast as |x| increases, then
the modified LPP

G
f̃N

(N,N)(L̃)
(69)

= max
(
max
y≥0

(
G(N,N)(0, y) − f̃N (y)

)
,max

x≥0

(
G(N,N)(x,0) − f̃N (−x)

))

has a nontrivial limit like we observed for G
fN

(N,N)(L). The function f̃N is serving
as a boundary condition for the last passage problem on the positive coordinate
axes. We turn now to the hypotheses needed to state a fluctuation theorem regard-
ing these modified LPP problems.
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DEFINITION 2.9. Consider constants

C > 0, c1 ∈ (0,1), c2 ∈ (0,1/3), c3 > 0,
(70)

a∞ ∈ {−∞} ∪R, b∞ ∈ {+∞} ∪R,

and a sequence {mN }N≥1 ⊂ R+ converging to zero as N goes to infinity.
We say that a continuous function � : R → R and a sequence of functions

fN : DN → R satisfy Hyp|(C, c1, c2, c3, a∞, b∞, {mN }) if the following proper-
ties hold:

1. The function �(s) satisfies the bound for s ∈ R that

�(s) < C + c1s
2.(71)

2. There is a sequence of intervals IN = (aN, bN) ⊂ (−Nc2,Nc2) converging
to (a∞, b∞) such that

fN

(
2sc0N

2/3) = a0N − sa0c0N
2/3 − (

�(s) + lN (s)
)
d0N

1/3,(72)

where lN (s) : IN → R is some continuous function with maxs∈IN
|lN (s)| ≤ mN

and limN→∞ mN = 0, and a0,d0 are defined in (17).
3. For all y ∈ DN such that yN1/3/(2c0) ∈ (−∞,N1/3/(2c0)] \ IN , fN(yN)

satisfies the inequality

fN(yN)

N
> max

(
a0 − a0y

2
− c1d0

(
y

2c0

)2

, a0(1 − y) + c3|y|
)
.(73)

Let us also define a second hypothesis. Assume C,c1, c2, c3, a∞, b∞, {mN } are
as above and that DN = [−N,N]. We say that � and the sequence f̃N : DN → R

satisfy Hyp�(C, c1, c2, c3, a∞, b∞, {mN }) if the above conditions hold with (72)
replaced by

f̃N

(
2sc0N

2/3) = a0N − |s|a0c0N
2/3 − (

�(s) + lN (s)
)
d0N

1/3,(74)

and (73) replaced by

f̃N (yN)

N
> max

(
a0N − a0|y|

2
− c1d0

(
y

2c0

)2

, a0
(
1 − |y|) + c3|y|

)
.(75)

THEOREM 2.10. Fix constants C,c1, c2, c3, a∞, b∞, a sequence {mN }N≥1
as in Definition 2.9. Then for all ε > 0 there exists N0 such that for all contin-
uous functions � : R → R and sequences of functions fN : DN → R satisfying
Hyp|(C, c1, c2, c3, a∞, b∞, {mN }), and for all N > N0 and x ∈ R,∣∣∣∣P

(G
fN

(N,N)(L)

b0N1/3 < x

)
− P

(
max

s∈(a∞,b∞)

(
A(s) − s2 + �(s)

)
< x

)∣∣∣∣ < ε.(76)

With DN = [−N,N], the sequence fN replaced by f̃N , the hypothesis Hyp|(C, c1,

c2, c3, a∞, b∞, {mN }) replaced by Hyp�(C, c1, c2, c3, a∞, b∞, {mN }), and the

LPP problem G
fN

(N,N)(L) replaced by G
f̃N

(N,N)(L̃) the above limiting result likewise
holds true.
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As applications of Theorem 2.10 (or adaption of its, see Remark 7), we have the
following results for point-to-point LPP with inhomogeneous parameter geomet-
ric weight distributions. The weight parameters we will consider differ from the
homogeneous ones considered in Section 2.1 in only finitely many columns and/or
rows. So we use the same notation Ǧ(N,N) which is defined in (10) and (8), but
the weights on some of the lattice points are defined differently. To state the fol-
lowing corollaries, we denote by A(1) and A(2) two independent Airy processes
that are the A described in Section 2.6, and denote by B1, . . . ,Bk independent
two-sided Brownian motions that are the B defined in (51).

COROLLARY 2.11. In the Z
2 lattice, we consider the point-to-point LPP

Ǧ(N,N), and denote

G̃N = Ǧ(N,N) − a0N

b0N1/3 ,(77)

where a0 and b0 are defined in (17).

(a) Suppose the weights w(i, j) are independent and geometrically distributed
with parameter αi,j such that αi,j = 1 − q if i /∈ {0,1, . . . , k − 1} and

αi−1,j = 1 − √
q

(
1 − 2wi

d0N1/3

)
if i = 1, . . . , k,(78)

where k ∈ Z+ and w1, . . . ,wk ∈ R are constants. Then

lim
N→∞P(G̃N ≤ x) = P

(
max

0=s0≤s1≤···≤sk

(
A(sk) + √

2
k∑

i=1

(
Bi (si) − Bi (si−1)

)
(79)

− 4
k∑

i=1

wi(si − si−1) − s2
k

)
≤ x

)
.

(b) Suppose the weight w(0,0) is fixed to be 0, the weights w(i, j) are inde-
pendent and geometrically distributed with parameter αi,j if i, j are not both 0,
such that αi,j = 1 − q if i, j are both nonzero, and

αi,j =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − √
q

(
1 − 2w+

d0N1/3

)
, if i ≥ 1 and j = 0,

1 − √
q

(
1 − 2w−

d0N1/3

)
, if i = 0 and j ≥ 1,

(80)

where w+,w− ∈ R are constants. Then

lim
N→∞P(G̃N ≤ x)

(81)
= P

(
max
s∈R

(
A(s) + √

2B(s) + 4(w+1s<0 − w−1s>0)s − s2) ≤ x
)
.
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(c) Suppose the weight w(i, j) are independent and geometrically distributed
with parameter αi,j such that αi,j = 1 − q if j ≤ [αN ] or j > [αN ] + k, and

αi,j = 1 − √
q

(
1 − 2wj−[αN]

d0N1/3

)
if j = [αN ] + 1, . . . , [αN ] + k,(82)

where α ∈ (0,1), k ∈ Z+ and w1, . . . ,wk ∈ R are constants. Then

lim
N→∞P(G̃N ≤ x)

= P

(
max

s0≤s1≤···≤sk

(
α1/3A(1)(α−2/3s0

) + √
2

k∑
i=1

(
Bi (si) − Bi (si−1)

)
(83)

+ (1 − α)1/3A(2)((1 − β)−2/3sk
)

− 4
k∑

i=1

wi(si − si−1) − s2
0

α
− s2

k

1 − α

)
≤ x

)
.

REMARK 7. Parts (a) and (b) of Corollary 2.11 are direct consequences of the
first and second parts of Theorem 2.10. Part (c) does not follow this theorem in
a straightforward way, although the proof of the theorem can be adapted to prove
part (c).

The limits on the left-hand sides of (79), (81) and (83) have been analyzed
previously in [5], [2] and [1], and the results were given in other forms by Fredholm
determinants. Utilizing these earlier results, we arrive at the following expressions
for these statistics.

COROLLARY 2.12. For all x ∈ R:

(a) for all parameters w1, . . . ,wk ∈ R,

P

(
max

0=s0≤s1≤···≤sk

(
A(sk) + √

2
k∑

i=1

(
Bi (si) − Bi (si−1)

)
(84)

− 4
k∑

i=1

wi(si − si−1) − s2
k

)
≤ x

)
= F

spiked
k (x;2w1, . . . ,2wk),

(b) for all parameters α ∈ (0,1) and w1, . . . ,wk ∈ R,

P

(
max

s0≤s1≤···≤sk

(
α1/3A(1)(α−2/3s0

) + √
2

k∑
i=1

(
Bi (si) − Bi (si−1)

)

+ (1 − α)1/3A(2)((1 − β)−2/3sk
)

(85)
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− 4
k∑

i=1

wi(si − si−1) − s2
0

α
− s2

k

1 − α

)
≤ x

)

= F
spiked
k (x;2w1, . . . ,2wk),

(c) for all parameters w+,w− ∈ R,

P

(
max
s∈R

(
A(s) + √

2B(s) + 4(w+1s<0 − w−1s>0)s − s2) ≤ x
)

(86)
= H(x;w+,w−),

where F
spiked
k (x;w1, . . . ,wn) is the distribution introduced in [2], formula (54),

and [1], Corollary 1.3, and H(x;w+,w−) is the distribution function introduced
in [5].

2.6. The airy process. The Airy process A(·) [29] [sometimes also denoted as
A2(·) and called the Airy2 process, in contrast to the Airy1 process A1 considered
in (57)] is an important process appearing in the Kardar–Parisi–Zhang universality
class; see, for example, [13]. Its properties have been intensively studied; see, for
example, [25], [16], [32].

The Airy process A(·) is defined through its finite-dimensional distributions
which are given by a Fredholm determinant formula. For x0, . . . , xn ∈ R and t0 <

· · · < tn in R,

P
(
A(t0) ≤ x0, . . . ,A(tn) ≤ xn

) = det
(
I − f1/2Kextf

1/2)
L2({t0,...,tn}×R),(87)

where we have counting measure on {t0, . . . , tn} and Lebesgue measure on R, f is
defined on {t0, . . . , tn} × R by f(tj , x) = 1x∈(xj ,∞), and the extended Airy kernel
[29] is defined by

Kext
(
t, ξ ; t ′, ξ ′) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞
0

dλe−λ(t−t ′) Ai(ξ + λ)Ai
(
ξ ′ + λ

)
, if t ≥ t ′,

−
∫ 0

−∞
dλe−λ(t−t ′) Ai(ξ + λ)Ai

(
ξ ′ + λ

)
, if t < t ′,

where Ai(·) is the Airy function. It is readily seen that the Airy process is sta-
tionary. The one point distribution of A is the FGUE distribution (i.e., the GUE
Tracy–Widom distribution [35]).

Since our main results appear as variational problems involving the Airy pro-
cess, it is important to know that these problems are well-posed with finite answers.
It was proved in [29], Theorem 4.3, and [25], Theorem 1.2, that there exists a mea-
sure on C(R,R) (continuous functions from R →R endowed with the topology of
uniform convergence on compact subsets) whose finite-dimensional distributions
coincide with those of the Airy process (i.e., there exists a continuous version of
the Airy process). Further properties of the Airy process were demonstrated in
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[16]. We summarize those properties which we will appeal to. Part (a) of Proposi-
tion 2.13 is a special case of [16], Proposition 4.1 (our A(t) is their A1(t)), while
part (b) is a generalization of [16], Proposition 4.4, where the parameter c is taken
as 1, and the proof can be used for our generalized case with little modification.

PROPOSITION 2.13. (a) (Local Brownian absolute continuity) For any s, t ∈
R, t > 0, the measure on functions from [0, t] → R given by A(· + s) − A(s) is
absolutely continuous with respect to Brownian motion of diffusion parameter 2.

(b) For all positive constants α and c such that α < c, there exist ε > 0 and
C(α, c) > 0 such that for all t ≥ C(α, c) > 0 and x ≥ −αt2,

P

(
sup

s /∈[−t,t]
(
A(s) − cs2)

> x
)

≤ e−ε(ct2+x)3/2
.(88)

One direct consequence of Proposition 2.13 is the well-definedness of the limit
distributions in Theorems 2.6, 2.7 and 2.10.

COROLLARY 2.14. Let � : R → R be a continuous function that satisfies
(29) and (a∞, b∞) be an interval such that −∞ ≤ a∞ < b∞ ≤ +∞. Then
maxs∈(a∞,b∞)(A(s) − (s − σ)2 + �(s)) is a well-defined random variable.

The definition of the Airy process given by (87) is not well adapted to studying
variational problems (as it only deals with finite-dimensional distributions). Let us
note that [17], Theorem 2, provides a concise Fredholm determinant formula for
P(A(s) ≤ g(s) for s ∈ [a, b]), for any interval [a, b] and any g ∈ H 1([a, b]) (i.e.,
both g and its derivative are in L2([a, b])). As we do not utilize this formula, we
do not restate it here.

2.7. Main technical tools. The main technical tools in this paper are results
stemming from the uniform slow decorrelation property that allows us to gener-
alize Proposition 2.3 by Johansson, and the Gibbs’ property of a multilayer line
ensemble extension of the LPP model. As this Gibbs’ property will require some
explanation, we delay a discussion of it until Section 6.

Recall the stochastic process HN(s) defined in (23). We define more generally

H̃N(s) = 1

b0N1/3

(
Ǧ

(
N + �N(s)Nα + sc0N

2/3,

(89)
N + �N(s)Nα − sc0N

2/3) − a0
(
N + �N(s)Nα))

,

where α ∈ [0,1) is a parameter and �N(s) is a sequence of continuous functions
such that the curve L = (�N(s)Nα + sc0N

2/3, �N(s)Nα − sc0N
2/3), (s ∈ R) is a

down-right lattice path.
If α = 0 and �N(s) = l0(s(c0N

2/3) where l0(s) is defined in (22), then H̃ (s) is
equal to HN(s) (up to an overall additive difference of �N(s)/(b0N

1/3)) defined
in (23).
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THEOREM 2.15. Let H̃N(s) be defined in (89) with α ∈ (0,1) and �N(t) con-
tinuous on [−M,M] and maxs∈[−M,M] |�N(s)| < C for all large enough N . Then
H̃N(s) − HN(s) converges in probability to 0 in C([−M,M],R), that is, given
ε, δ > 0, there is an integer N0 that depends only on M , α and C such that

P

(
max

s∈[−M,M]
∣∣HN(s) − H̃N(s)

∣∣ ≥ δ
)

< ε(90)

if N > N0.

The slow decorrelation property is a common feature in many models in the
KPZ universality, including the LPP model, and equivalently the TASEP model,
considered in this paper. As a pointwise property, it is studied first in [19] and then
comprehensively in [15]. Let M → 0+, then we have the result that as N → ∞,
N−1/3(Ǧ(N,N) − a0N) is equal to N−1/3(Ǧ(N + �N(0)Nα,N + �N(0)Nα) −
a0(N + �N(0)Nα)) in probability. This is a special case of the slow decorrelation
result obtained in [15], where the characteristic line is the π/4 radial line. Theo-
rem 2.15 generalizes the pointwise slow decorrelation to be uniform on an interval.

Theorem 2.15 gives control of H̃N(s) in any fixed interval [−M,M]. Outside
this fixed interval we need the following lemma to control the point-to-curve LPPs
by point-to-point LPPs as shown in Figure 5. The lemma is a special consequence
of the Gibbs’ property (see Section 6), but it suffices for our paper.

LEMMA 2.16. Suppose N > 0, K1 < K2 < K3 are integers between −N

and N , and M1,M2,M3 are real numbers such that (K1,M1), (K2,M2), (K3,M3)

FIG. 5. The points (N + K1,N − K1), (N + K2,N − K2) and (N + K3,N − K3) are on the
same diagonal down-right lattice path. The left-hand side of (92) is the LPP between the point
(0,0) and the down-right lattice path between (N + K1,N − K1) and (N + K1 − c(K2 − K1),

N − K1 + c(K2 − K1)), shown in solid.
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are collinear, that is,

M1 − M2

K1 − K2
= M2 − M3

K2 − K3
.(91)

Let c ∈ (0,1) be a constant and let l0(s) be defined in (22). Then

P

(
max

K1≤s≤K2−c(K2−K1)
Ǧ

(
N + l0(s) + s,N + l0(s) − s

) ≥ M0

)

≤ (2 + εmin(c(K2−K1),K3−K2))P
(
Ǧ(N + K2,N − K2) ≥ M2

)
(92)

+ P
(
Ǧ(N + K3,N − K3) ≤ M3

)
,

where for all t > 0, εt is a positive constant such that εt → 0 as t → ∞.

3. Proof of Theorems 2.6, 2.7 and 2.10. In this section, we give the detail
of the proof of Theorem 2.6 in Section 3.1, and show briefly that Theorem 2.7
can be proved by the same method as Theorem 2.6 in Section 3.2. The proof of
Theorem 2.10, [as well as the proof of Corollary 2.11(b)] is by the same method
with some adaptations, and we discuss them in Section 3.3.

3.1. Proof of Theorem 2.6. By the translational invariance of the lattice, we
can shift the point (N + [σc0N

2/3],N − [σc0N
2/3]) into (N,N), and thus if we

can prove Theorem 2.6 in the special case that σ = 0, the general case is proved by
shifting the lattice. This is because the above shift applied to LN does not change
the fact that it satisfies the hypotheses. Therefore, we only prove the σ = 0 case of
Theorem 2.6 for notational simplicity.

Recall Hyp(C, c1, c2, c3, a∞, b∞, {mN }) given in Definition 2.5. Without loss
of generality, we let the interval IN defined there be [−Nc2,Nc2]. By (33), we only
need to consider the curve (LN ∩ (−∞,N) × (−∞,N)). We divide it into parts
Lmicro

N (M), L
meso,L
N (M), L

meso,R
N (M), and Lmacro

N , where the first three depend on
a constant M > 0, such that, recalling that Lcentral

N defined in (30),

Lmicro
N (M) = {

(x, y) ∈ Lcentral
N ||x − y| ≤ 2Mc0N

2/3}
,(93)

L
meso,L
N (M) = {

(x, y) ∈ Lcentral
N \ Lmicro

N (M)|x < 0
}
,(94)

L
meso,R
N (M) = {

(x, y) ∈ Lcentral
N \ Lmicro

N (M)|x > 0
}
,(95)

Lmacro
N = (

LN ∩ (−∞,N) × (−∞,N)
) \ Lcentral

N .(96)

In Section 3.1.1, we show that for any fixed M > 0 and ε > 0,∣∣∣∣P
(

G(N,N)(L
micro
N (M)) − a0N

d0N1/3 ≤ x

)
(97)

− P

(
max

s∈[−M,M]A(s) − s2 + �(s) ≤ x
)∣∣∣∣ < ε
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for all N large enough, independent of the particular formula of �(s). In Sec-
tion 3.1.2, we show that for any fixed ε > 0, there is an M such that for all N

large enough, independent of the particular formula of �(s),

P

(
G(N,N)(L

meso,∗
N (M)) − a0N

d0N1/3 > x

)
< ε, for ∗ = L or R,(98)

and for any fixed ε > 0, for all N large enough, independent of the particular
formula of �(s),

P

(
G(N,N)(L

macro
N ) − a0N

d0N1/3 > x

)
< ε.(99)

Thus, by the three inequalities (97), (98) and (99), and the limit identity

lim
M→∞P

(
max

s∈[−M,M]
(
A(s) − s2 + �(s)

)
< x

)
(100)

= P

(
max
s∈R

(
A(s) − s2 + �(s)

)
< x

)
that is a consequence of Proposition 2.13(b), we prove inequality (35) of Theo-
rem 2.6.

3.1.1. Microscopic estimate. In this subsection, we prove that inequality (97)
holds for large enough N , where M > 0 and ε > 0 is a constant.

Since HN(s) [recall from (23)], as a stochastic process in s ∈ [−M,M], con-
verges weakly to A(s) − s2 and lN (s) uniformly converges to 0, we have that for
any ε > 0 there is a δ > 0 such that for large enough N independent of �(s)

P

(
max

s∈[−M,M]
(
HN(s) + (

�(s) + lN (s)
)) ≤ x + δ

2

)
(101)

< P

(
max

s∈[−M,M]
(
A(s) − s2 + �(s)

) ≤ x + δ
)

+ ε

3
,

P

(
max

s∈[−M,M]
(
A(s) − s2 + �(s)

) ≤ x − δ
)

− ε

3
(102)

< P

(
max

s∈[−M,M]
(
HN(s) + (

�(s) + lN (s)
)) ≤ x − δ

2

)
.

By Proposition 2.13(a), the Airy process is locally Brownian, so if δ is small
enough, then

P

(
max

s∈[−M,M]
(
A(s) − s2 + �(s)

) ≤ x + δ
)

(103)
− P

(
max

s∈[−M,M]
(
A(s) − s2 + �(s)

) ≤ x
)

<
ε

3
,

P

(
max

s∈[−M,M]
(
A(s) − s2 + �(s)

) ≤ x
)

(104)
− P

(
max

s∈[−M,M]
(
A(s) − s2 + �(s)

) ≤ x − δ
)

<
ε

3
.
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The uniform slow decorrelation of LPP given in Theorem 2.15 implies that

P

(
max

s∈[−M,M]
∣∣H̃N(s) − HN(s)

∣∣ >
δ

2

)
<

ε

3
(105)

for large enough N . Here H̃N(s) is defined as in (89) with �N(s) = �(s) + lN (s)

and α = 1/3. This bound relies on the fact that maxs |�N(s)| is bounded.
The inequalities above yield that

P

(
G(N,N)(L

micro
N (M)) − a0N

d0N1/3 ≤ x

)

= P

(
max

s∈[−M,M]
(
H̃N(s) + (

�(s) + lN (s)
)) ≤ x

)

< P

(
max

s∈[−M,M]
(
HN(s) + (

�(s) + lN (s)
)) ≤ x + δ

2

)
+ ε

3
(106)

< P

(
max

s∈[−M,M]
(
A(s) − s2 + �(s)

) ≤ x + δ
)

+ 2ε

3

< P

(
max

s∈[−M,M]
(
A(s) − s2 + �(s)

) ≤ x
)

+ ε.

Thus, one direction of inequality (97) follows, and the proof of the other direc-
tion of (97) is similar. Finally, note that the above inequalities only relied on the
boundedness of maxs |�(s)| and not on the particular form of �(s). This implies
that the choice of N0 for which the theorem holds can be made uniformly over all
�(s) satisfying the hypotheses.

3.1.2. Macroscopic and mesoscopic estimates.

Macroscopic estimate. Inequality (99) is a direct consequence of Lemma 2.2.
From (31), it follows that for (x, y) ∈ Lmacro

N , (N−1x,N−1y) ∈ D. Also recall that
LN satisfies the relation (32). Thus, by Lemma 2.2, we have that for all N large
enough,

P

(
G(N,N)(x, y) − a0N

d0N1/3 > x

)
< e−cN2c2

,(107)

where c > 0 depends on c3 in (32) but not the shape of Lmacro
N . Note that there are

fewer than 4(1 + q−1/2)2N2 lattice points (i.e., with integer coordinates) whose
image under the scaling transform (x, y) → (N−1x,N−1y) lies in D. Thus, we
can pick (xi, yi) on Lmacro where i = 1, . . . , [4(1 + q−1/2)2N2], such that for all
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(x, y) ∈ Lmacro, G(N,N)(x, y) is equal to at least one G(N,N)(xi, yi). Thus,

P

(
G(N,N)(L

macro
N ) − a0N

d0N1/3 > x

)

<

[4(1+q−1/2)2N2]∑
i=1

P

(
G(N,N)(xi, yi) − a0N

d0N1/3 > x

)
(108)

< 4
(
1 + q−1/2)2

N2e−cN2c2
,

and we obtain inequality (99) if N is large enough.

Mesoscopic estimate. By the symmetry of the lattice model, we only need to
prove inequality (98) with ∗ = R.

Before giving the proof, we remark that the simple approach in the macroscopic
estimate fails in this case, since summing up all the point-to-point LPP between
(N,N) and lattice points on L

meso,R
N (M) gives a too large upper bound of the

point-to-curve LPP G(N,N)(L
meso,R
N ). Before giving the technical proof, we ex-

plain the idea. We divide L
meso,R
N into segments according to the intervals I (k)

in (112). Then on each segment, we estimate the point-to-curve LPP [actually
the upper bound P(k) defined in (114)] by the point-to-point LPPs between (0,0)

and the two points in (118b) and (118c). We estimate the point-to-point LPPs by
Lemma 2.2, and the relation between point-to-point LPPs and the point-to-curve
LPP is established by Lemma 2.16.

Recall that L
meso,R
N (M) ⊆ Lcentral

N is defined in (30) by a continuous function
�(s) + lN (s) for s ∈ [M,Nc2], where �(s) is bounded below by C + c1s

2 and
lN (s) converges uniformly to 0 as N → ∞. By inequality (29), we have that

�(s) < c′
1s

2 for all s ∈ [
M̃,Nc2

]
,

(109)
where c′

1 ∈ (c1,1) and M̃ =
√

C/
(
c′

1 − c1
)
.

Taking

c′′
1 ∈

(
1,

2

1 + c′
1

)
,(110)

since x is a constant, it suffices to prove the inequality

P
(
G(N,N)

(
L

meso,R
N (M)

)
> a0N − c′

1
(
c′′

1
)2

M2d0N
1/3)

< ε(111)

for all M > M̃ and large enough N .
For all k = 0,1,2, . . . we denote

c(k) = (
c′′

1
)k

, Ck = c′
1
(
c(k)M

)2 and the interval
(112)

I (k) = [
c(k − 1)M, c(k)M

]
,
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and define the down-right lattice paths

L(k) = {(
sc0N

2/3 − l0
(
sc0N

2/3) − [
Ckd0N

1/3]
,

(113)
−sc0N

2/3 − l0
(
sc0N

2/3) − [
Ckd0N

1/3])|s ∈ I (k)
}
.

Since on each I (k), �(s) < Ck as long as �(s) is defined, and c′
1(c

′′
1)2M2 < Ck for

all k, it is clear that if we denote

P(k) = P
((

G(N,N)

(
L(k)

) ≥ a0N − Ckd0N
1/3))

,(114)

then as N is large enough,

P
(
G(N,N)

(
L

meso,R
N (M)

)
> a0N − c′

1
(
c′′

1
)2

M2d0N
1/3)

≤ P

(
max

1≤k≤[logNc2/ log c1]
(
G(N,N)

(
L(k)

) ≥ a0N − Ckd0N
1/3))

(115)

≤
[logNc2/ log c1]∑

k=1

P(k).

To estimate P(k), we note that by the choice of c′′
1 in (110), there exist

δ1, δ2, δ3, δ4 > 0 such that δ2 < δ3 and the points(
1, c′

1

(
c′′

1

)2)
,

(
c′′

1 + δ1, (1 − δ3)
(
c′′

1 + δ1
)2)

,
(116) (

c′′
1 + δ2, (1 + δ4)

(
c′′

1 + δ2
)2)

are collinear. Then by a simple affine transformation, the points(
N + c(k − 1)Mc0N

2/3,a0N − Ckd0N
1/3)

,(
N + (

c(k) + δ1c(k − 1)
)
Mc0N

2/3,

a0N − (1 − δ3)
(
1 + δ2/c

′′
1
)2

Ckd0N
1/3)

,(117) (
N + (

c(k) + δ2c(k − 1)
)
Mc0N

2/3,

a0N − (1 + δ4)
(
1 + δ2/c

′′
1
)2

Ckd0N
1/3)

are collinear, as well as the three points(
N + [

c(k − 1)Mc0N
2/3]

,a0N − Ckd0N
1/3)

,(118a) (
N + [(

c(k) + δ1c(k − 1)
)
Mc0N

2/3]
,

(118b)
a0N − (1 − δ3,N,k)

(+δ1/c
′′
2
)2

Ckd0N
1/3)

,(
N + [(

c(k) + δ2c(k − 1)
)
Mc0N

2/3]
,

(118c)
a0N − (1 + δ4)

(
c(k) + δ2

)2
M2 d0N

1/3)
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collinear, where δ3,N,k → δ3 as N → ∞ uniformly in k. We only need that for N

large enough

δ3,N,k >
δ3

2
.(119)

Then by using the symmetry of the lattice and applying Lemma 2.16, we have

P(k) ≤ P

( [c(k)Mc0N
2/3+1]

max
s=[c(k−1)Mc0N

2/3]
Ǧ

(
N + [

Ckd0N
1/3] + s,

N + [
Ckd0N

1/3] − s
) ≥ a0N − c′

1
(
c(k)M

)2d0N
1/3

)
≤ (2 + εmin(δ1,δ2−δ1)·c(k−1)Mc0N

2/3)P
(
Ǧ

(
N + [

Ckd0N
1/3]

+ [(
c(k) + δ1c(k − 1)

)
Mc0N

2/3]
,

N + [
Ckd0N

1/3] + [(
c(k) + δ1c(k − 1)

)
Mc0N

2/3])
(120)

≥ a0N − (1 − δ3,N,k)
(
1 + δ1/c

′′
2
)2

Ckd0N
1/3)

+ P
(
Ǧ

(
N + [

Ckd0N
1/3] + [(

c(k) + δ2c(k − 1)
)
Mc0N

2/3]
,

N + [
Ckd0N

1/3] + [(
c(k) + δ2c(k − 1)

)
Mc0N

2/3])
≤ a0N − (1 + δ4)

(
c(k) + δ2/c

′′
2
)2

Ckd0N
1/3)

,

where the term εmin(δ1,δ2−δ1)·c(k−1)Mc0N
2/3 is defined in Lemma 2.16 and vanishes

as N → ∞. An application of Lemma 2.2, shows that

P(k) < e−Mk(121)

for large enough M . Thus, (111) is proved by taking the sum of P(k) in (115).

3.2. Proof of Theorem 2.7. By the relation (40), we have that under the as-
sumption that 2d∗

0N
1/3x and 2σc0N

2/3 are integers with the same parity,

P

(
hN(2σc0N

2/3;a∗
0N) − 2N

2d∗
0N

1/3 > −x

)
(122)

= P
(
G∗

(N+σc0N
2/3−d∗

0N1/3x,N−σc0N
2/3−d∗

0N1/3x)

(
L∗

N

) ≤ [
a∗

0N
])

.

The above equation implies that the result of Theorem 2.7 amounts to computing
the N → ∞ limit of

P
(
G∗

(N+σc0N
2/3−d∗

0N1/3x,N−σc0N
2/3−d∗

0N1/3x)

(
L∗

N

) ≤ [
a∗

0N
])

.(123)

This readily follows from the relation between G and G∗ as well as Theorem 2.6.
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3.3. Proof of Theorem 2.10. For the proof of the first part of Theorem 2.10,
we assume DN =R without loss of generality. We express

G
fN

(N,N)(L) = max
(
G

fN,micro
(N,N) (L),G

fN,meso
(N,N) (L),G

fN,macro
(N,N) (L)

)
,(124)

where

G
fN,∗
(N,N)(L) = max

y∈I∗

(
G(N,N)(0, y) − fN(y)

)
,

(125)
∗ = micro,meso or macro,

and, letting M > 0,

I∗ =
⎧⎪⎨
⎪⎩

[−M2c0N
2/3,M2c0N

2/3]
, for ∗ = micro,[−2c0N

2/3+c2,2c0N
2/3+c2

] \ Imicro, for ∗ = meso,

(−∞,N ] \ (Imicro ∪ Imeso), for ∗ = macro.

(126)

Similar to the proof of Theorem 2.6 in Section 3.1, we show that for any fixed M

and ε > 0, there exists N0 such that for all N > N0,∣∣∣∣P
(G

fN,micro
(N,N) (L) − a0N

b0N1/3 ≤ x

)
(127)

− P

(
max

s∈[−M,M]
(
A(s) − s2 + �(s)

) ≤ x
)∣∣∣∣ < ε.

Here, and in what follows, the choice of N0 can be seen to only depend on the
parameters C,c1, c2, c3, a∞, b∞ in Hyp|(C, c1, c2, c3, a∞, b∞, {mN }) and not on
the particular form of fN . Then we show that for any fixed ε > 0, for all N > N0,

P

(G
fN,meso
(N,N) (L) − a0N

b0N1/3 > x

)
< ε,(128)

and at last show that for any fixed ε > 0, for all N > N0,

P

(G
fN,macro
(N,N) (L) − a0N

b0N1/3 > x

)
< ε.(129)

Thus, we have proved Theorem 2.10.
We turn now to prove (127). Recall the relation between fN and �(s) + lN (s)

defined in (72) of Hyp|(C, c1, c2, c3, a∞, b∞, {mN }). If follows that

P

(G
fN,micro
(N,N) (L) − a0N

b0N1/3 ≤ x

)
(130)

= P

(
max

s∈[−M,M]
(
H̃N(s) + �(s) + lN (s)

) ≤ x
)
,

where H̃N(s) is defined in (89), with α = 2/3 and �N(s) = c0s. Note that here
�N(s) defines the shape of the straight line L, so it is a linear function. Unlike
�N(s) in (105), where �N(s) = �(s) + lN (s), here �(s) + lN (s) defines fN but
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not the shape of L or the function �N(s). Then using the convergence results in
Theorem 2.15 and Proposition 2.3, we arrive at (127) by an argument similar to
that of Section 3.1.1.

To prove (128), we use a simple inequality that for any lattice points (x0, y0),
(x, y) and (x′, y′) such that x0 ≥ x ≥ x′ and y0 ≥ y ≥ y′, we have

G(x0,y0)(x, y) ≤ G(x0,y0)

(
x′, y′) − G(x,y)

(
x′, y′).(131)

Now we take (x0, y0) = (N,N), (x, y) = (0, s) where the integer s ∈ Imeso and
corresponding to (x, y), with the same s,

(
x′, y′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(
−[

Mc0N
2/3] − s

2
,−[

Mc0N
2/3] + s

2

)
,

if s is even,(
−[

Mc0N
2/3] − s − 1

2
,−[

Mc0N
2/3] + s + 1

2

)
,

if s is odd.

(132)

It is easy to see that if we prove that if M is large enough, then for all large
enough N ,

P

(
max

s∈Z and s∈Imeso
G(N,N)

(
x′, y′) ≥ a0N + a0Mc0N

2/3 + xb0N
1/3

)
<

ε

2
,(133)

and uniformly for all s ∈ Z∩ Imeso, if N is large enough,

P

(
G(x,y)

(
x′, y′) ≤ a0Mc0N

2/3 − fN

(
s

2c0N2/3

))
<

ε

2

1

4c0N2/3+c2
,(134)

then (128) is proved.
The inequality (133) is analogous to (111) and can be proved by the arguments

used in Section 3.1.2. The inequality (134) is a direct consequence of Proposi-
tion 2.1(b). Then the proof of Theorem 2.10 is complete.

To prove (129), we estimate the probability that the point-to-point LPP
P(G(N,N)(0, s)−f (N) > b0N

1/3x) by Lemma 2.2 for all s ∈ Z∩ Imacro, and then
sum up all these probabilities as an upper bound of the left-hand side of (129). The
argument is similar to the proof of (99) and the detail is omitted.

The proof of the second part of Theorem 2.10 is similar. We divide the �-shaped
path L̃ defined in (68) into the “micro,” “meso” and “macro” parts according to the
distance to the corner (0,0), and use the three methods to estimate the point-to-
curve LPP between (N,N) to them, as above. We omit the details.

4. Proofs of Corollaries 2.8 and 2.11.

4.1. Proof of Corollary 2.11(a) and (b). Parts (a) and (b) of Corollary 2.11 are
direct consequences of the first and second parts of Theorem 2.10, respectively.
We only give detail of the proof of part (a), since that of part (b) is similar.
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Define the random function f (x) on the domain D = [0,∞) by

f (x) = −Ǧ(k − 1, x),(135)

where the weight on the lattice is assumed to be inhomogeneous and the weights
w(i, j) with i = 1, . . . , k are specified by (78). Then the point-to-point LPP
Ǧ(N,N) is expressed as

Ǧ(N,N) = max
x∈[0,N]G(N,N)(k, x) − f (x).(136)

We see that the Ǧ(N,N) on the lattice with inhomogeneous weights has the same
distribution as G

f
(N−k,N)(L), where the notation is the same as in Theorem 2.10.

As N → ∞, we have [G̃ is defined in (77)]

lim
N→∞P(G̃N ≤ x) = lim

N→∞P

(G
f
(N,N)(L) − a0N

b0N1/3 ≤ x

)
.(137)

Although the random function f (x) is not in the form of fN(x) in (72), the differ-
ence is only a constant term. We write for any N

f
(
2sc0N

2/3) = −sa0c0N
2/3 − �N(s)d0N

1/3.(138)

For any ε > 0, by choosing the constant C properly, the inequality

�N(s) < C + 1
2s2(139)

is satisfied with probability at least 1 − ε. This is because k is fixed and �N(s)

behaves like the maximum of a k-particle Dyson–Brownian motion which can
easily be bounded by quadratic growth in time. So by Theorem 2.10, given any
ε > 0, for large enough N∣∣∣∣P

(G
f
(N,N)(L) − a0N

b0N1/3 ≤ x

)
− P

(
max

s∈(0,∞)

(
A(s) − s2 + �N(s)

) ≤ x
)∣∣∣∣ < ε.(140)

Furthermore, it is not hard to see that the random function �N(s) converges weakly
to

max
0=s0≤s1≤···≤sk=s

√
2

k∑
i=1

(
Bi (si) − Bi (si−1)

) − 4
k∑

i=1

wi(si − si−1) − s2
k(141)

on any compact interval. At last, the weak convergence of l(N)(s), together with
the estimate (139) and Proposition 2.13(b), implies that

lim
N→∞P

(
max

s∈(0,∞)

(
A(s) − s2 + �N(s)

) ≤ x
)

= P

(
max

0=s0≤s1≤···≤sk≤M

(
A(sk) + √

2
k∑

i=1

(
Bi (si) − Bi (si−1)

)
(142)

− 4
k∑

i=1

wi(si − si−1) − s2
k

)
≤ x

)
.
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Combining (137), (140) and (142), we prove Corollary 2.11(a).

4.2. Proof of Corollary 2.11(c). Let the weights w(i, j) be defined as in
Corollary 2.11(c). Define the stochastic processes B1,N , . . . ,Bk,N as

Bi,N(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

b0N1/3

(
G([αN]+i,[αN])

([αN ] + i, αN + 2c0N
2/3s

)
− a0c0N

2/3s
)
, if s ≥ 0,

1

b0N1/3

(−Ǧ([αN]+i,[αN])
([αN ] + i, αN + 2c0N

2/3s
)

− a0c0N
2/3s

)
, if s < 0.

(143)

Then we have the weak convergence

Bi,N(s) ⇒ √
2Bi (s) + 4wis(144)

on any compact interval as N → ∞, where B1(s), . . . ,Bk(s) are independent two-
sided Brownian motions.

Next, define the stochastic processes

A
(1)
N (s) = 1

b0N1/3

(
Ǧ

([αN ], [αN ] − 2c0N
2/3s

) − a0
(
αN − c0N

2/3s
))

,(145)

A
(2)
N (s) = 1

b0N1/3

(
G(N,N)

([αN ] + k + 1, [αN ] + 2c0N
2/3s

)
(146)

− a0
(
αN − c0N

2/3s
))

.

By Theorem 2.15 and Proposition 2.3, we have the weak convergence that on any
interval [−M,M] as N → ∞

A
(1)
N (s) ⇒ α1/3A(1)(α−2/3s

) − s2

α
,

(147)

A
(2)
N (s) ⇒ (1 − α)1/3A(2)((1 − α)−2/3s

) − s2

1 − α
,

where A(1)(s) and A(2)(s) are two independent Airy processes.
We denote the three regions of Rk+1

R1(M) = {
(s0, s1, . . . , sk)| − M ≤ s0 ≤ s1 ≤ · · · ≤ sk ≤ M

}
,

R2(M) = {
(s0, s1, . . . , sk)|s0 ≤ s1 ≤ · · · ≤ sk ≤ M and s0 < −M

}
,(148)

R2(M) = {
(s0, s1, . . . , sk)| − M ≤ s0 ≤ s1 ≤ · · · ≤ sk and sk > M

}
,

and write

Ǧ(N,N) − a0N

b0N1/3 = max
(
G

(1)
N (M),G

(2)
N (M),G

(3)
N (M)

)
,(149)
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where for i = 1,2,3,

G
(i)
N (M) = 1

b0N1/3 max
(s0,...,sk)∈Ri(M)

(
Ǧ

([αN ], [αN ] + [
2c0N

2/3s0
])

+
k∑

i=1

Ǧ([αN]+i,[2c0N
2/3si−1])

([αN ] + i,
[
2c0N

2/3si
])

+ G(N,N)

([αN ] + k + 1,
[
2c0N

2/3sk
]) − a0N

)
(150)

= max
(s0,...,sk)∈Ri(M)

(
A

(1)
N

( [2c0N
2/3s0]

2c0N2/3

)
+ A

(2)
N

( [2c0N
2/3sk]

2c0N2/3

)

+
k∑

i=1

(
B̃i,N

( [2c0N
2/3si]

2c0N2/3

)
− B̃i,N

( [2c0N
2/3si−1] − 1

2c0N2/3

)))
.

It is a direct consequence of the convergence results (144) and (147) that for any
M > 0

lim
N→∞P

(
G

(1)
N (M) ≤ x

)

= P

(
max−M≤s0≤s1≤···≤sk≤M

(
α1/3A(1)(α−2/3s0

)
(151)

+ √
2

k∑
i=1

(
Bi (si) − Bi (si−1)

) + (1 − α)1/3A(2)((1 − β)−2/3sk
)

− 4
k∑

i=1

wi(si − si−1) − s2
0

α
− s2

k

1 − α

)
≤ x

)
.

To estimate G
(2)
N (M), we recall the hypothesis Hyp|(C, c1, c2, c3, a∞, b∞,

{mN }) in Definition 2.9 for Theorem 2.10, and define analogously the function
[cf. (73) with c1 = 1/2 and c3 = 1/100]

LN(x) = N max
(

a0 − a0x/N

2
− 1

2
d0

(
x/N

2c0

)2

,

(152)

a0

(
1 − x

N

)
+ 1

100

∣∣∣∣ x

N

∣∣∣∣
)
.

For a constant K (to be chosen suitably large in what follows) also define the
function [cf. (29) with C = K and c1 = 1/2]

�max
N (s) = max

(
K + s2

2
,

1

d0N1/3

(
a0N − sa0c0N

2/3 − LN

(
2sc0N

2/3)))
.(153)
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Then we have P(G
(2)
N (M) ≥ x) ≤ P1 + P2 + P3 + P4 + P5, where

P1 = P

(
max

s0<−M
A

(1)
N

( [2c0N
2/3s0]

2c0N2/3

)
≥ −α1/3�max

N

(
α−2/3s0

))
,(154)

P2 = P

(
max

sk∈R\(−M,M)
A

(2)
N

( [2c0N
2/3sk]

2c0N2/3

)
(155)

≥ −(1 − α)1/3�max
N

(
(1 − α)−2/3sk

))
,

P3 = P

(
max

sk∈[−M,M]A
(2)
N

( [2c0N
2/3sk]

2c0N2/3

)
≥ K

)
,(156)

P4 = P

(
max

s0≤···≤sk
s0<−M,

sk∈[−M,M]

k∑
i=1

(
B̃i,N

( [2c0N
2/3si]

2c0N2/3

)

(157)

− B̃i,N

( [2c0N
2/3si−1] − 1

2c0N2/3

))
≥ α1/3�max

N

(
α−2/3s0

) − K + x

)
,

P5 = P

(
max

s0≤···≤sk
s0<−M,

|sk |∈[M,(1−α)N/(2c0N
2/3)]

k∑
i=1

(
B̃i,N

( [2c0N
2/3si]

2c0N2/3

)

− B̃i,N

( [2c0N
2/3si−1] − 1

2c0N2/3

))
(158)

≥ α1/3�max
N

(
α−2/3s0

) + (1 − α)1/3�max
N

(
(1 − α)−2/3sk

) + x

)
.

Now we assume ε > 0 is a small constant. As in the proof of Theorem 2.10, we
have that if M is large enough, then for all large enough N ,

P1 < ε, P2 < ε.(159)

By the property of the Airy process in Lemma 2.13 and the convergence (147)
of A

(2)
N to the Airy process, we have that for all M > 0 there exists an K > 0

depending on ε such that the inequality

P3 < ε(160)

holds. In fact, since we have just argued that P2 < ε for M large enough, it follows
that once M is large enough, K can be chosen independent of M (in fact the same
K can then be used for M small as well by obvious containment of sets). By a
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standard argument for random walks, we find that if K depends on ε as in (160)
but not M , and M is large enough, then for all N large enough,

P4 < ε and P5 < ε.(161)

Hence, we conclude that if M is large enough, then for all N large enough,

P
(
G

(2)
N (M) ≥ x

)
< 5ε.(162)

By a parallel argument, we have that if M is large enough, then for all N large
enough,

P
(
G

(3)
N (M) ≥ x

)
< 5ε.(163)

Finally, by (151), (162) and (163), together with Proposition 2.1(b),

lim
M→∞P

(
max−M≤s0≤s1≤···≤sk≤M

(
α1/3A(1)(α−2/3s0

)

+ √
2

k∑
i=1

Bi (si) − Bi (si−1) + (1 − α)1/3A(2)((1 − β)−2/3sk
)

− 4
k∑

i=1

wi(si − si−1) − s2
0

α
− s2

k

1 − α

)
≤ x

)

(164)

= P

(
max−∞≤s0≤s1≤···≤sk≤∞

(
α1/3A(1)(α−2/3s0

)

+ √
2

k∑
i=1

(
Bi (si) − Bi (si−1)

) + (1 − α)1/3A(2)((1 − β)−2/3sk
)

− 4
k∑

i=1

wi(si − si−1) − s2
0

α
− s2

k

1 − α

)
≤ x

)
,

we prove part (c) of Corollary 2.11.

4.3. Proof of Corollary 2.8. Since all the five parts of the corollary are similar,
we only prove part (e) as the proofs of the other four parts are analogous or easier.

The random function hflat/Bern in (50) defines a random polygonal chain
Lflat/Bern by (39), we define a function �N(s) associated to it by the relation

Lflat/Bern = {(
sc0N

2/3 − �N(s)d∗
0N

1/3,−sc0N
2/3 − �N(s)d∗

0N
1/3)|s ∈ R

}
.(165)

Then �N(s) is a continuous function such that it is deterministic for s < 0 and
random for s > 0. It is clear that for s > 0, �N(s) is mapped to the path of a simple
symmetric random walk, such that(

2d∗
0N

1/3�N

(
k

2c0N2/3

)
, k = 1,2, . . .

)
∼

(
k∑

i=1

Xi, k = 1,2, . . .

)
,(166)
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where Xi are in i.i.d. distribution with P(Xi = −1) = P(Xi = 1) = 1/2.
Now we consider Hyp∗(C, c1, c2, c

∗
3, a∞, b∞, {mN }) defined in Definition 2.5

and let c1 = 1/2, c2 = 1/6, c∗
3 = −1/100, a∞ = −∞, b∞ = +∞, mN = 0.

We claim that for any ε > 0, there is a large enough constant Cε such that if
we let C = Cε , then if N is large enough, with probability greater than 1 − ε,
Hyp∗(C, c1, c2, c

∗
3, a∞, b∞, {mN }) is satisfied by �(s) = �N(s), lN (s) = 0, and

L∗
N = Lflat/Bern. To check it, we note that for s ≤ 0, �N(s) is a deterministic func-

tion whose value is close to 0, and on the “flat” part of Lflat/Bern, that is, where the
x-coordinate is negative, Lflat/Bern is a deterministic saw-tooth curve. It is clear
that �N(s) for s ≤ 0 satisfy inequality (29), and the “flat” part of Lflat/Bern satis-
fies (31) and (32). On the other hand, �N(s) for s > 0 is defined by the simple
symmetric random walk in (166). It is well known that the path of a simple sym-
metric random walk is bounded by a parabola with probability close to 1 provided
that the parabola is high enough. Thus, if C = Cε is large enough, with probability
> 1 − ε/2, �N(s) < C + c1s

2 for all N large enough and then (29) holds. Since
Lflat/Bern is also defined by the simple symmetric random walk, similarly (31)
and (32) are satisfied with probability 1 − ε/2 if N is large enough. Thus, we
prove the claim.

By Theorem 2.7, we have that if the coefficients C,c1, c2, c
∗
3 are chosen as

above, then for large enough N∣∣∣∣P
(

hflat/Bern(2σc0N
2/3;a∗

0N) − 2N

2d∗
0N

1/3 > −x

)
(167)

− P

(
max
s∈R A(s) − (s − σ)2 + �N(s) < x

)∣∣∣∣ < ε,

where A(s) is an Airy process.
It is clear that as N → ∞, on (−∞,0], �N(s) uniformly converges to the con-

stant function 0. On the other hand, for positive s, by the correspondence (166)
and Donsker’s theorem, �N(s) weakly converges to

√
2q−1/4B(s), where B(s) is

a standard Brownian motion and the constant factor is the ratio
√

2q−1/4 =
√

2c0N2/3

2d∗
0N

1/3 ,(168)

where c0 is defined in (17) and d∗
0 is defined in (18). By an argument like that

between (140) and (142) in the proof of Corollary 2.11(a), we prove part (e) of
Corollary 2.8.

5. Proof of Theorem 2.15. Let C′
N = [(C + 1)Nα]/Nα which depends on N

and lies in the interval [C,C + 1]. Define

HN,±(s) := 1

b0N1/3

(
Ǧ

(
N ± 2C′

NNα + sc0N
2/3,

(169)
N ± 2C′

NNα − sc0N
2/3) − a0

(
N ± 2C′

NNα))



FLUCTUATIONS OF TASEP AND LPP WITH GENERAL INITIAL DATA 2069

for all s ∈ [−M,M]. It is a direct to check that

HN,±(s) = (
1 + 2C′

NNα−1)−1/3
HN±2C′

NNα

(
s + O

(
Nα−1))

,(170)

where the term O(Nα−1) is independent of s.
We first prove the following claim.

CLAIM 5.1. For any given ε, δ > 0, there exists a constant N1 which only
depends on M,α and C such that

P

(
max

s∈[−M,M]
∣∣HN,±(s) − HN(s)

∣∣ ≥ δ

2

)
<

ε

2
(171)

for all N > N1.

To see this, we first note that HN(s) is tight (see [25], Lemma 5.3), that is, there
exist constants δ′ > 0 and N ′

1 > 0 which only depend on M,ε and δ such that

P

(
max

|s1|,|s2|≤M,|s1−s2|≤δ′
∣∣HN(s1) − HN(s2)

∣∣ ≥ δ

6

)
<

ε

6
(172)

for all N ≥ N ′
1.

The relation (170) implies that HN,±(s) are also tight. Therefore, there exist
constants δ′′ > 0 and N ′′

1 > 0 which only depend on M,ε and δ such that

P

(
max

|s1|,|s2|≤M,|s1−s2|≤δ′′
∣∣HN,±(s1) − HN,±(s2)

∣∣ ≥ δ

6

)
<

ε

6
(173)

for all N ≥ N ′′
1 .

Now we fix δ′ and δ′′, and denote tj = j · min{δ′, δ′′} for all integers j such
that −M ≤ tj ≤ M . By the slow decorrelation of LPP (see [15], Theorem 2.1), we
know that there exists some constant N ′′′

1 which depends on C,ε, δ, δ′ and δ′′ such
that

P

(
max

−M≤|j |·min{δ′,δ′′}≤M

∣∣HN,±(tj ) − HN(tj )
∣∣ ≥ δ

6

)
<

ε

6
(174)

for all N ≥ N ′′′
1 .

Note that for all s ∈ [−M,M], there exists some j such that |tj − s| ≤
min{δ′, δ′′}, and that∣∣HN,±(s) − HN(s)

∣∣ ≤ ∣∣HN,±(tj ) − HN(tj )
∣∣ + ∣∣HN,±(s) − HN,±(tj )

∣∣
(175)

+ ∣∣HN(s) − HN(tj )
∣∣.

Together with (172), (173) and (174), we obtain Claim 5.1.
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Now we prove Theorem 2.15. Note that for s ∈ [−M,M] such that sc0N
2/3 ∈ Z

we have

Ǧ
(
N + 2C′

NNα + sc0N
2/3,N + 2C′

NNα − sc0N
2/3)

− Ǧ
(
N + lN (s)Nα + sc0N

2/3,N + lN (s)Nα − sc0N
2/3)

(176)
≥ G(N+2C′

NNα+sc0N
2/3,N+2C′

NNα−sc0N
2/3)

(
N + lN (s)Nα + sc0N

2/3,

N + lN (s)Nα − sc0N
2/3)

which has the same distribution as Ǧ((2C′
N − lN (s))Nα, (2C′

N − lN (s))Nα). If
α > 1/3, by applying Proposition 2.1(b) we obtain the following estimate:

P

(
HN,+(s) − H̃N(s) ≤ −δ

2

)
≤ e−c′N1−α

(177)

for all N ≥ N ′
2, where c′ and N ′

2 are positive parameters independent of s. If α ≤
1/3, we have

P

(
HN,+(s) − H̃N(s) ≤ −δ

2

)
(178)

≤ P

(
HN,+(s) − H̃N(s) ≤ −δ

2
N(3α−2)/6

)
.

By applying Proposition 2.1(b) again, we obtain

P

(
HN,+(s) − H̃N(s) ≤ −δ

2
N(3α−2)/6

)
≤ e−c′′Nα/2

,(179)

for all N ≥ N ′′
2 , where c′′ and N ′′

2 are positive parameters independent of s. There-
fore, we still have the estimate (178) with c′ and N ′

2 replaced by c′′ and N ′′
2 . By

combining the above two cases, we have

P

(
max

s∈[−M,M],sc0N
2/3∈Z

(
H̃N(s) − HN,+(s)

) ≥ δ

2

)
(180)

≤ ∑
s∈[−M,M],sc0N

2/3∈Z
e−c′′′Nmin{1−α,α/2}

for all N ≥ N ′′′
2 = max{N ′

2,N
′′
2 }, where c′′′ = min{c′, c′′}. Note that the above es-

timate includes all the lattice points on the path {(N + sc0N
2/3,N − sc0N

2/3)|s ∈
[−M,M]}. Similarly, one can obtain an analogous estimate including all the lat-
tice points on the path {(lN(s)Nα + sc0N

2/3, lN(s)Nα − sc0N
2/3)|s ∈ [−M,M]}.

Moreover, the right-hand side of the estimate tends to zero as N → ∞ since there
are only o(N) terms in the summation. As a result, there exists an integer N2 which
depends on M,C,ε and δ such that

P

(
max

s∈[−M,M],
lattice points

(
H̃N(s) − HN,+(s)

) ≥ δ

2

)
<

ε

2
(181)
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for all N ≥ N2, where the maximum is taken over all the s ∈ [−M,M] such that
(sc0N

2/3,−sc0N
2/3) or (lN(s)Nα + sc0N

2/3, lN(s)Nα − sc0N
2/3) is a lattice

point. One can remove this restriction by using the definition of HN and HN,+,
and replacing the value of Ǧ at an arbitrary point by the interpolation of that on
two nearby lattice points. Therefore, there exists an integer N2 which depends on
M,C,ε such that

P

(
max

s∈[−M,M]
(
H̃N(s) − HN,+(s)

) ≥ δ

2

)
<

ε

2
(182)

for all N ≥ N2.
By combing this estimate and Claim 5.1, we immediately have

P

(
max

s∈[−M,M]
(
H̃N(s) − HN(s)

) ≥ δ
)

≤ P

(
max

s∈[−M,M]
(
H̃N(s) − HN,+(s)

) ≥ δ

2

)
(183)

+ P

(
max

s∈[−M,M]
(
HN,+(s) − HN(s)

) ≥ δ

2

)
< ε

for all N ≥ max{N1,N2}.
Similarly, there exists an integer N3 which depends on M,C,ε and δ such that

P

(
max

s∈[−M,M]
(
HN,−(s) − H̃N(s)

)
>

δ

2

)
<

ε

2
(184)

for all N ≥ N3. By combing this estimate and Claim 5.1, we have

P

(
max

s∈[−M,M]
(
HN(s) − H̃N(s)

) ≥ δ
)

≤ P

(
max

s∈[−M,M]
(
HN(s) − HN,−(s)

) ≥ δ

2

)
(185)

+ P

(
max

s∈[−M,M]
(
HN,−(s) − H̃N(s)

) ≥ δ

2

)
< ε

for all N ≥ max{N1,N2}. Theorem 2.15 follows immediately by taking N0 =
max{N1,N2,N3}.

6. Gibbs’ property of multilayer discrete PNG and proof of Lemma 2.16.
The goal of this section is to prove Lemma 2.16. The proof relies on the corre-
spondence between the LPP model and the multilayer discrete polynuclear growth
(PNG) model. The essential ingredient of the proof is the Gibbs’ property of the
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multilayer discrete PNG model, analogous to the Gibbs’ property of the nonin-
tersecting Brownian motions studied in [16]. We describe the multilayer discrete
PNG model and its relation to LPP, following closely to the presentation in [25], to
facilitate the proof. Then we prove Lemma 2.16 based on technical results in Lem-
mas 6.2 and 6.3. The strategy of our proof is similar to that of [16], Lemma 5.1.

Let I be an interval and h(t) a function defined on I that satisfies

h(t) = h
([t]) ∈ Z and

h(2m) ≥ h(2m − ε), h(2m + 1) ≤ h(2m + 1 − ε),(186)

for m ∈ Z∩ I,

then we say that h(t) is a PNG trajectory line on I . If two PNG trajectory lines
h(t) and g(t) on the same interval I satisfy

lim sup
t→t0

g(t0) < lim inf
t→t0

h(t0) for all t0 ∈ I,(187)

we say that h(·) > g(·) on I .
Fix a parameter N ∈ Z+ and a constant ε ∈ (0,1). The multilayer discrete PNG

model is defined by an ensemble of infinitely many strictly ordered PNG trajectory
lines h0, h1, . . . on [−2N,2N ]. We say h0, h1, . . . form an N -permissible config-
uration if they satisfy the initial and terminal conditions

hi(−2N + 1 − ε) = −i, hi(2N − 1 + ε) = −i, i = 0,1,2, . . . ,(188)

and also satisfy the inequalities hi(·) > hi+1(·) on [−2N,2N ] for all i = 0,1, . . . .

One example of such a configuration is given in Figure 6. Note that necessarily,
for i ≥ N , hi(·) ≡ −i on [−2N,2N ].

We define a weight w for a PNG trajectory line h on an interval I = [a, b] as

w(h) =
[b]∏

k=[a]+1

p
(∣∣h(k) − h(k − ε)

∣∣) where p(k) =
√

1 − q(
√

q)k,(189)

FIG. 6. An example of multilayer discrete PNG with N = 4.
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and define the weight for an N -permissible configuration of PNG trajectory lines
(h0, h1, . . .)

w(h0, h1, . . .) =
N−1∏
k=0

w(hi),(190)

where I = [−2N + 1 − ε,2N − 1 + ε] in the formula of w(hi). This product is
restricted to k ≤ N − 1 since all other lines are constant as observed earlier. The
normalization

√
1 − q is chosen such that∑

allN-permissible configurations

w(h0, h1, . . .) = 1.(191)

That this is the case can be shown from [25], Claim 3.10 and Proposition 3.11. This
implies that the weight (190) defines a probability on the set of all N -permissible
configurations.

Furthermore, [25], Proposition 3.11, implies that for any N , the joint distribu-
tion of Ǧ(N +k,N −k) for k = −N,−N +1, . . . ,N , as defined in (10) is the same
as the joint distribution of h0(2k) for k = −N,−N +1, . . . ,N , if (h0(t), h1(t) . . .)

is a random N -permissible configuration with probability given in (190). Then the
point-to-curve LPP in Lemma 2.16 is expressed as [25], Proposition 3.11

max
K1≤s≤K2−c(K2−K1)

G
(
N + l0(s) + s,N + l0(s) − s

)
= max

K1≤k≤K2−c(K2−K1)
G(N + k,N − k)

(192)
d= max

K1≤k≤K2−c(K2−K1)
h0(2k)

= max
t∈[K1,K2−c(K2−K1)]

h0(t).

The proof of Lemma 2.16 relies on the Gibbs’ property of the probability space of
permissible 2N -tuples, in particular the Gibbs’ property as follows.

LEMMA 6.1. Consider t1 < t2, with t1, t2 ∈ (−2N + 1 − ε,2N − 1 + ε) and
consider h̃(·) = (h̃0(·), h̃1(·), . . .) distributed according to the multilayer discrete
PNG model. Then the law of h̃0 restricted to the interval [t1, t2] is distributed
according to the PNG trajectory of a single line h(·) on the interval [t1, t2] condi-
tioned on h(t1) = h̃0(t1), h(t2) = h̃0(t2), and h(·) > h̃1(·) on the entire interval.

PROOF. This lemma is a direct consequence of the formulas (189) and (190)
that define the probability distribution of PNG trajectory lines and N -permissible
configurations. �

We need two more lemmas. The first is a monotone coupling result.
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LEMMA 6.2. Let t1 < t2 < t3 ∈ R, a1, a2, a3 ∈ Z and h̃(t) be a fixed PNG
trajectory line on [t1, t3] such that h̃(t1) < a1, h̃(t3) < a3. Suppose h(t) is a ran-
dom variable in the space of PNG trajectory lines H := {h(t) on [t1, t3]|h(t1) =
a1, h(t3) = a3, and h(·) > h̃(·)} where the probability is given by the weight w(h)

as in (189) up to a normalization constant, and suppose g(t) is a random variable
in the space of PNG trajectory lines G := {g(t) on [t1, t3]|g(t1) = a1, g(t3) = a3}
where the probability is also given by the weight w(g) as in (189) up to a normal-
ization constant. Then it follows that

P
(
h(t2) ≥ a2

) ≥ P
(
g(t2) ≥ a2

)
.(193)

SKETCH OF PROOF. In the proof of [16], Lemma 2.6, the result of this lemma
is shown to hold if the PNG trajectory line is replaced by the trajectory of a
standard random walk. The same method, namely the coupling of Monte-Carlo
Markov chains, works in our situation.

We consider a continuous-time Markov chain dynamic on the countable sets H

and G. Without loss of generality, we assume that t1 and t3 are even integers. To
distinguish the time variable of the Markov chain dynamic and the variables of h(t)

and g(t), we denote the Markov time as τ , and write the random PNG trajectory
lines as hτ (t) and gτ (t), respectively. The time 0 configuration of h0(t) is chosen
arbitrarily in H and we let g0(t) = h0(t). The dynamics of the Markov chain are
as follows. For each integer t0 ∈ {t1 +1, t1 +2, . . . , t3 −1}, there is an independent
exponential clock which rings at rate 1. For each τ > 0, let r(τ ) be i.i.d. random
variables with geometric distribution such that P(r(τ ) = k) = (1 − q)qk for k =
0,1,2, . . . . When the clock labeled by t0 rings, the random PNG trajectory line
hτ (t) remains the same for t /∈ [t0, t0 +1), and changes the value on [t0, t0 +1) into
(1) max(hτ (t0 − 1), hτ (t0 + 1)) + r(τ ) if t0 is even, or (2) min(hτ (t0 − 1), hτ (t0 +
1)) − r(τ ) if t0 is odd. Likewise, according to the same clock, the random PNG
trajectory line gτ (t) remains the same for t /∈ [t0, t0 + 1) and changes the value
on [t0, t0 + 1) into (1) max(gτ (t0 − 1), gτ (t0 + 1)) + r(τ ) if t0 is even, or (2a)
min(gτ (t0 − 1), gτ (t0 + 1)) − r(τ ) if t0 is odd and min(gτ (t0 − 1), gτ (t0 + 1)) −
r(τ ) > max(h̃(t0 − 1), h̃(t0 + 1)), or (2b) remains the same otherwise.

Then we observe that for any τ > 0, hτ (t) ≥ gτ (t) for all t ∈ [t1, t3]. Another
fact is that the marginal distributions of these time dynamics converge to the invari-
ant measures for this Markov chain, which are given by the weight function (189)
on the state spaces G and H , respectively. This can be confirmed by checking that
the multilayer PNG model measure is the unique invariant measure under these
irreducible, aperiodic Markov dynamics. �

LEMMA 6.3. Let t1 < t2 < t3 ∈ R, a1, a3 ∈ Z and a2 ∈ R such that (t1, a1),
(t2, a2), (t3, a3) are collinear, that is,

a2 − a1

t2 − t1
= a3 − a2

t3 − t2
.(194)
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Let g(t) be a random variable in the space of PNG trajectory lines with fixed ends
G := {g(t) on [t1, t3]|g(t1) = a1, g(t3) = a3} where the probability is given by the
weight w(g) as in (189) up to a normalization constant. Then

P
(
g(t2) ≥ a2

) ≥ 1
2 − δmin(t2−t1,t3−t2),(195)

where for any t > 0, δt > 0 is a decreasing function in t and δt → 0 as t → ∞.

PROOF. Without loss of generality, we assume that t1 = a1 = 0 and then a2 =
(t2/t3)a3. We also assume in the proof that t1, t2, t3 are even integers. Consider the
i.i.d. discrete random variables X1,X2, . . . with support Z and distribution

P(X1 = k) = 1 − √
q

1 + √
q

(
√

q)|k|, k = 0,±1,±2, . . . ,(196)

and define Sn = ∑n
k=1 Xk . Then the distribution of g(t2) is the same as the distri-

bution of St2/2 under the condition that St3/2 = a3. We take a change of measure,
and define another sequence of i.i.d. discrete random variables X′

1,X
′
2, . . . with

support Z− a3/t3 and distribution

P

(
X′

1 = k − a3

t3

)
(197)

= (1 − p
√

q)(1 − √
q/p)

1 − q
×

{
(p

√
q)k, if k ≥ 0,

(
√

q/p)k, if k < 0,

where p is the real number in (
√

q,
√

q−1) that satisfies

(p2 − 1)
√

q

(1 − p
√

q)(p − √
q)

= a3

t3
.(198)

Then if we define S′
n = ∑n

i=1 X′
i , the distribution of g(t2) − a2 is the distribution

of S′
t2/2 under the condition that S′

t3/2 = 0. Explicit computation shows that the
mean of X′

1 is zero and the variance of X′
1 is bounded below by a positive con-

stant independent of a3/t3. Thus, the random walk with increment X′
k conditioned

with S′
t3/2 = 0 converges weakly to a Brownian motion as t3/2 → ∞, and the con-

vergence is uniform in a3/t3. Since for a Brownian bridge from 0 to 0, at any
time between the initial and the terminal times, the probability that the position of
particle is positive equals 1/2, we have that the probability that g(t2) − a2 is pos-
itive converges to 1/2 as the total steps of the random walk t3/2 → ∞ and both
t2/2 → ∞ and (t3 − t2)/2 → ∞. Since the convergence of the conditioned random
walk to a Brownian bridge is uniform in a3/t3, the convergence of P(g(t2) − a2)

to 1/2 is also uniform in a3/t3. We thus prove the lemma. �

Now we can prove Lemma 2.16. By (192), the lemma is transformed into a
property of multilayer discrete PNG model with parameter N . We denote K ′

2 =
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K2 − c(K2 −K1), and let (h0(·), h1(·), . . .) be a multilayer PNG model distributed
ensemble of lines with probability defined by (190). Then we have

P

(
max

K1≤k≤K ′
2

h0(2k) ≥ M1

)

≤ P
(
h0(2K3) < M3

) + P

(
max

K1≤k≤K ′
2

h0(2k) ≥ M1 and h0(2K3) ≥ M3

)
(199)

≤ P
(
h0(2K3) < M3

) + ∑
K1≤K≤K ′

2

∞∑
M ′

1=M1

∞∑
M ′

3=M3

P

(
max

K1≤k<K
h0(2k) < M1,

h0(2K) = M ′
1 and h0(2K3) = M ′

3

)
.

By Lemmas 6.1 and 6.2, we have the inequality for the conditional probability

P

(
h0(2K2) ≥ M2

∣∣ max
K1≤k<K

h0(2k) < M1, h0(2K) = M ′
1 and h0(2K3) = M ′

3

)
(200)

≤ P
(
g(2K2) ≥ M2

)
,

where g(t) is a random variable in the space of PNG trajectory lines with fixed
ends G := {g(t) on [2K,2K3]|g(2K) = M ′

1, g(2K3) = M ′
3} and the probability is

given by the weight w(g) as in (189) up to a normalization constant.
Denote

M ′
2 = K3 − K2

K3 − K
M ′

1 + K2 − K

K3 − K
M ′

3,(201)

such that (K,M ′
1), (K2,M

′
2), (K3,M

′
3) are collinear. It is clear that M ′

2 ≥ M2, and
then by Lemma 6.3

P
(
g(2K2) ≥ M2

) ≥ P
(
g(2K2) ≥ M ′

2
)

> 1
2 − δmin(K2−K,K3−K2)(202)

> 1
2 − δmin(c(K2−K1),K3−K2),

where δt is the same as in Lemma 6.3.
Thus, by (200) and (202),

P

(
max

K1≤k<K
h0(2k) < M1, h0(2K) = M ′

1 and h0(2K3) = M ′
3

)

<
1

1/2 − δmin(c(K2−K1),K3−K2)

P

(
h0(2K2) ≥ M2,(203)

max
K1≤k<K

h0(2k) < M1, h0(2K) = M ′
1 and h0(2K3) = M ′

3

)
,
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and then

∑
K1≤K≤K ′

2

∞∑
M ′

1=M1

∞∑
M ′

3=M3

P

(
max

K1≤k<K
h0(2k) < M1,

h0(2K) = M ′
1 and h0(2K3) = M ′

3

)

<
1

1/2 − δmin(c(K2−K1),K3−K2)

∑
K1≤K≤K ′

2

∞∑
M ′

1=M1

∞∑
M ′

3=M3

P

(
h0(2K2) ≥ M2,(204)

max
K1≤k<K

h0(2k) < M1, h0(2K) = M ′
1 and h0(2K3) = M ′

3

)

≤ 1

1/2 − δmin(c(K2−K1),K3−K2)

P
(
h0(2K2) ≥ M2

)
.

Substitute (204) into (199) and use the correspondence (192), we obtain the proof
of Lemma 2.16 with the εt there determined by 2 + εt = (1

2 − δt )
−1 where δt is

that in Lemma 6.3.

APPENDIX: PROOF OF LEMMA 2.2

In this appendix we prove the following estimate of G([γN ],N).

LEMMA A.1. For any fixed γ0 > 1, there exist some constants L > 0 and
δ > 0 such that

P
(
G

([γN ],N) ≥ a0(γ )N + sb0(γ )N1/3) ≤ e−cs3/2
,(205)

for large N and all γ ∈ [γ −1
0 , γ0], s ∈ [L,δN2/3]. Here, a0(γ ) and b0(γ ) are

defined in (12) and (15), c > 0 is a constant which only depends on γ0,L and δ.

PROOF. The following formula for the distribution of G(M,N) was known
[6]:

P
(
G(M,N) ≤ n

) = (1 − q)MNDn(φ),(206)

where φ(z) := (1 + √
qz)M(1 +

√
q

z
)N , and Dn(φ) is the nth Toeplitz determinant

with symbol φ:

Dn(φ) := det
(∫

|z|=1
z−j+kφ(z)

dz

2πiz

)n−1

j,k=0
.(207)

Note that one can take n → ∞ in (206) and obtain

D∞(φ) := lim
n→∞Dn(φ) = (1 − q)−MN.(208)
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Now we apply the Geronimo–Case–Borodin–Okounkov formula [12, 22] and
obtain

P
(
G(M,N) ≤ n

) = D∞(φ)−1Dn(φ) = det(1 − Kn),(209)

where Kn is an operator on l2{n,n + 1, . . .} with kernel

Kn(i, j) =
∞∑

k=1

U(i, k)V (k, j).(210)

Here,

U(i, k) :=
∫
|z|=1

(
1 −

√
q

z

)N

(1 − √
qz)−Mz−i−k dz

2πiz
,

(211)

V (k, j) :=
∫
|z|=1

(
1 −

√
q

z

)−N

(1 − √
qz)Mzj+k dz

2πiz
.

Now we consider the asymptotics of det(1 − Kn) when M = [γN ], n =
a0(γ )N + sb0(γ )N1/3 and N → ∞. Here γ ∈ [γ −1

0 , γ0] and s ∈ [L,δN2/3] for
some parameters L > 0 and δ > 0.

Let

z0 := 1 + √
γ q√

γ + √
q

.(212)

Note that if we replace the kernels U and V by the following Ũ and Ṽ , the deter-
minant det(1 − Kn) does not change

Ũ (i, k) :=
(

1 −
√

q

z0

)−N

(1 − √
qz0)

Mzi+k
0 U(i, k),

(213)

Ṽ (k, j) := V (k, j)

(
1 −

√
q

z0

)N

(1 − √
qz0)

−Mz
−j−k
0 .

Write i = a0(γ )N + xb0(γ )N1/3, j = a0(γ )N + yb0(γ )N1/3 and k =
ub0(γ )N1/3, where x, y ≥ s, and u ≥ 0. Then we have

Ũ (i, k) = eNf (z0)
∫
|z|=1

e(−Nf (z)+N1/3φ(z)) dz

2πiz
,(214)

where

f (z) = − log
(

1 −
√

q

z

)
+ γ log(1 − √

qz) + a0(γ ) log z,(215)

and φ(z) = −(x + u)b0(γ ) log(z/z0).
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Note that

f ′(z) = −
√

q

1 − q
· ((

√
γ + √

q)z − (1 + √
γ q))2

z(z − √
q)(1 − √

qz)
.(216)

Therefore, near z0, we have the following expansions:

f (z) = f (z0) − q1/2(
√

q + √
γ )5

3γ 1/2(1 − q)3(1 + √
qγ )

(z − z0)
3 + O

(|z − z0|4)
,(217)

and

φ(z) = −(x + u)

(
q1/6(

√
q + √

γ )5/3

γ 1/6(1 − q)(1 + √
γ q)1/3 (z − z0) + O

(|z − z0|2))
.(218)

We deform the contour such that it intersects a small neighborhood of z0. For
all z on the contour but outside the above neighborhood of z0, �(f (z) − f (z0)) ≥
c and �φ(z) ≤ −c(x + u) for some positive constant c. Thus, by changing the
variables near z0 one can obtain

Ũ (i, k) = O
(
e−cε3N )

+ b0(γ )−1N−1/3
∫ 2εN1/3eiπ/3

2εN1/3e−iπ/3
e1/3ξ3−(x+u)ξ dξ

2πi

(
1 + O

(
N−1/3))

(219)

= O
(
e−cε3N ) + b0(γ )−1N−1/3 Ai(x + u)

(
1 + O

(
N−1/3))

,

where c, ε > 0 are constants which only depend on L (the lower bound of x + u).
Similarly, we have

Ṽ (k, j) = O
(
e−cε3N ) + b0(γ )−1N−1/3 Ai(y + u)

(
1 + O

(
N−1/3))

.(220)

Hence,

b0(γ )N1/3Kn(i, j)

= O
(
e−cε3N ) + O

(
N1/3e−cε3N ) ∫ ∞

0
Ai(y + u)du

(221)
+ O

(
N1/3e−cε3N ) ∫ ∞

0
Ai(x + u)du

+
∫ ∞

0
Ai(x + u)Ai(y + u)du

(
1 + O

(
N−1/3))

.

Note that x, y ≥ s ≥ L. By using the asymptotics of the Airy function, we im-
mediately obtain∣∣b0(γ )N1/3Kn(i, j)

∣∣ ≤ e−c′(min{x3/2,c′′N}+min{y3/2,c′′N})(222)

for large enough N,L, where c′, c′′ > 0 are both independent of x, y, γ .
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Therefore, |Tr(Kl
n)| ≤ e−c′ls3/2

, l = 1,2, . . . , for large enough N,L, and s ∈
[L,δN2/3], provided δ3/2 ≤ c′′. This estimate implies the following:∣∣∣∣ ∑

ki∈{n,n+1,...},i=1,...,l

1

l! det
(
Kn(ki, kj )

)l
i,j=1

∣∣∣∣ ≤ e−c′ls3/2
.(223)

Hence,

P
(
G

([γN ],N) ≥ a0(γ )N + sb0(γ )N1/3) = 1 − det(1 − Kn)
(224)

≤
∞∑
l=1

e−c′ls3/2

and the lemma follows. �
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