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FROM TRANSIENCE TO RECURRENCE
WITH POISSON TREE FROGS
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University of Washington∗ and University of Southern California†

Consider the following interacting particle system on the d-ary tree,
known as the frog model: Initially, one particle is awake at the root and i.i.d.
Poisson many particles are sleeping at every other vertex. Particles that are
awake perform simple random walks, awakening any sleeping particles they
encounter. We prove that there is a phase transition between transience and
recurrence as the initial density of particles increases, and we give the order
of the transition up to a logarithmic factor.

1. Introduction. We study a system of branching random walks known as the
frog model, and we discover a phase transition as the initial state becomes more
saturated with particles. Similar phase transitions have been observed in related
models, including activated random walk [9, 25], reinforced random walk [17],
killed branching random walk [1] and the contact process [18].

The frog model starts with a single particle awake at the root of a graph and
sleeping particles at the other vertices. The initial configuration of sleeping parti-
cles can be deterministic or random. Particles that are awake perform independent
simple random walks in discrete time. When a vertex with sleeping particles is first
visited, all of the particles at the site wake up and each begins its own walk. The
name “frog model” was coined in 1996 by Rick Durrett; we continue the zoomor-
phism and refer to the particles as frogs. As with other interacting particle systems,
the frog model is often motivated as a model for the spread of a rumor or infection
(see [3], e.g.). It and its variants have also found interest as models of combustion
[7, 22, 23], generally with particles moving in continuous time.

We call a realization of the frog model recurrent if the root is visited infinitely
often by frogs and transient if not. Even if each individual frog is transient, the
aggregate of visits to the root can still be infinite. For this reason, the transience or
recurrence of the frog model gives a measurement of its growth, and the question
of transience or recurrence for the frog model on a given graph is one of the most
fundamental ones.
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The first ever published result on the frog model is that it is recurrent on Z
d with

one sleeping frog per site for all d [26]. In fact, the frog model on Z
d is recurrent

for any i.i.d. initial configuration of sleeping frogs [5]. It is natural to wonder if
a sparser configuration changes the behavior. [20] exhibits a threshold at which a
frog model with Bernoulli(α‖x‖−2) frogs at each x ∈ Z

d switches from transience
to recurrence. A similar phenomenon occurs when the walks have a bias in one
direction: [14] finds that on Z, the model is recurrent if and only if the number of
sleeping frogs per site has infinite logarithmic moment. Recently, this result was
partially extended to Z

d in [10] and worked out in finer detail in [15].
Let Td denote the full infinite d-ary tree, in which the root has degree d and

all other vertices degree d + 1. The question of transience or recurrence on Td is
especially subtle. On one hand, the number of sleeping frogs grows exponentially
with the distance from the root. On the other hand, each frog that wakes up has a
drift away from the root; its probability of visiting the root shrinks exponentially
as the starting vertex of the frog moves outward. The question of whether Td is
transient for the one-per-site model is posed in [4] and again in [21] and [14].
Surprisingly, the answer depends on the degree of the tree. In [16], we prove that
the one-per-site frog model is recurrent on the binary tree and transient on d-ary
trees with d ≥ 5.

We conjecture that the one-per-site frog model is recurrent for d = 3 and tran-
sient for d = 4. While we would like to pin this down and complete the picture
of transience and recurrence for the one-per-site frog model on trees, we believe
that the most interesting aspect of this work is that the frog model on trees is tee-
tering on the edge between recurrence and transience. The point of this paper is
to demonstrate this more precisely. We consider the frog model on Td with i.i.d.
Poi(μ) sleeping frogs at each site. Our result is a phase transition between recur-
rence and transience as μ varies.

THEOREM 1. Consider the frog model on a d-ary tree with Poi(μ) sleeping
frogs per site. For all d ≥ 2, there exists a critical value μc(d) > 0 such that the
model is recurrent a.s. if μ > μc(d) and transient a.s. if μ < μc(d). The critical
value satisfies

Cd < μc(d) < C′d logd

for some constants C and C ′.

PROOF. By a straightforward coupling, the probability of recurrence is mono-
tone in μ. By [16], Theorem 4, the probability of recurrence is either 0 or 1. The
theorem is then an immediate consequence of Propositions 6 and 15, where we
prove recurrence and transience, respectively. �

Contrast our result with the frog model on Z
d , which is recurrent for any i.i.d.

configuration of sleeping frogs [5]. To show the existence of the recurrence phase,
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we consider a restricted process that lets us take advantage of the recursive struc-
ture of Td . We then use a bootstrapping argument, showing that the number of
returns to the root is stochastically larger and larger at each step. We establish the
transience phase essentially by dominating the model with a branching random
walk, using a similar argument as in [16]. As in that paper, the most difficult part
is recurrence. Our result is an advance in that we are able to show recurrence on any
d-ary tree with enough sleeping frogs. In [16], we prove recurrence only for d = 2,
and the proof does not apply to a general choice of d; even extending it to d = 3
seems difficult. The argument here relies on having Poisson many sleeping frogs
at each site, however, and thus neither result implies the other. A more detailed
comparison between the recurrence proofs in the two papers is in Section 2.4.

Further questions. A nice general survey on the frog model can be found in
[21]. Here, we pose four questions specifically related to the frog model on trees.

The question most directly related to our paper is to better estimate the critical
value μc(d). We are interested in both the asymptotic behavior and precise values
for small d .

OPEN QUESTION 2. What is the correct order of μc(d) as d → ∞? Also,
what is the value of μc(d) for small d?

We suspect that μc(d) = �(d). As for the second question, the best bounds we
can prove for d = 2 are 0.125 ≤ μc(2) ≤ 1.13 (see Section 2.4).

As a start at considering the frog model on less regular graphs, we would like
to know if the analogue of our result holds on Galton–Watson trees.

OPEN QUESTION 3. Consider a frog model with Poi(μ) frogs at each site of
an infinite Galton–Watson tree. As μ varies, does a phase transition occur between
transience and recurrence?

We are also interested in the relationship between the frog model and the degree
distribution of the tree.

OPEN QUESTION 4. Does the recurrence of the frog model on a Galton–
Watson tree depend on the entire degree distribution or just the maximal degree?
Concretely, consider a one-per-site frog model on a Galton–Watson tree where
each vertex has probability p of having two children and probability 1 −p of hav-
ing five children. [16], Theorem 1 implies that this is recurrent when p = 1 and
transient when p = 0. Is it recurrent for any p < 1?

This dependence on the maximal degree of the tree alone is seen in the contact
process (see [18] and [19], Proposition 2.5).
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Our next question comes from Itai Benjamini and concerns the frog model on
finite trees. Define the cover time to be the expected time for every frog to wake
up in a one-per-site frog model on the full d-ary tree with height n. We call this
the cover time since it is equivalent to the time when every site is visited. A naive
bound on the cover time is O(n2dn), the expected time for a single random walk
to visit every site, as shown in [2]. We have an unpublished proof improving this
to O(n5(d/

√
2)n), but we suspect the correct value is polynomial.

OPEN QUESTION 5. Is the cover time for the one-per-site frog model on a
d-ary tree of height n polynomial in n?

Possibly the cover time on finite trees relates to the recurrence and transience
properties on the corresponding infinite tree. For instance, it would be exciting
to see that the cover time is polynomial in the height of the tree for d = 2 but
exponential for higher d . This would be reminiscent of the contact process, which
behaves similarly on finite lattices and trees as on their infinite counterparts [8,
11–13].

2. Recurrence. We start with a sketch. Let ν′ be the law of the number of
visits to the root in the frog model with Poi(μ) frogs at each site. To get some
regularity, we restrict the motion of awakened frogs to the nonbacktracking com-
ponent of their ranges. Call this the nonbacktracking frog model (more details are
in Section 2.1) and let ν be the law of the number of visits to the root in this model.
A coupling argument in Proposition 7 confirms the intuition that

ν � ν′.(1)

Here, � denotes stochastic dominance, that is ν([x,∞)) ≤ ν′([x,∞)) for all x.
In Section 2.2, we define an operator A under which the image of ν has an

interpretation in an even more restricted frog model. First, a bit of notation (see
Figure 1) is necessary. Say the initial nonbacktracking frog moves down the tree
from the root ∅ to ∅

′ and then to v1. Let v2, . . . , vd be the other children of ∅′

FIG. 1. The frog from ∅ visits ∅
′ and v1. Suppose at most one frog in the nonbacktracking frog

model is allowed to enter each Td (vi) and only frogs woken at ∅′ and emerging from Td (v1) can
enter other subtrees. We see in Lemma 9 that the number of visits to ∅ is stochastically fewer than ν

and is distributed as Aν.
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and let Td(vi) denote the subtree rooted at vi . The measure Aν is the law of the
number of visits to the root in the nonbacktracking frog model with two further
restrictions:

(i) At most one frog can enter Td(vi) for each 1 ≤ i ≤ d .
(ii) Only frogs woken at ∅′ and those emerging from Td(v1) can enter the other

Td(vi).

The advantage of (i) is that it makes the number of frogs emerging from the ac-
tivated subtrees i.i.d. random variables. The advantage of (ii) is that it simplifies
which subtrees become activated (see Lemma 8). Intuitively, these restrictions re-
duce the number of visits to the root. This is made rigorous in Lemma 9 where we
prove that

Aν � ν.(2)

We stress that this a special property of ν. In fact, the essence of our argument is
to show that when μ is large enough, (2) can hold only if ν = δ∞.

Section 2.3 explores properties of A. In Lemma 10, we show that A is mono-
tonic, meaning that for two probability measures π1 and π2,

if π1 � π2, then Aπ1 � Aπ2.(3)

Lemma 11 shows that A acts nicely on the Poisson distribution. In fact, by writing
the Poisson distribution in a nonstandard way (see Lemma 13), we can compare
APoi(λ) with Poi(λ+ ε). We carry this out in Proposition 14, where we show that
when μ ≥ 2(d + 1) logd , there exists ε such that

Poi(λ + ε) � APoi(λ)(4)

for all λ ≥ 0. This is where the value of μ plays a role. Proving (4) reduces to
comparing two binomial distributions with parameters depending on μ.

Now we explain how (1), (2), (3) and (4) imply the recurrence part of Theo-
rem 1.

PROPOSITION 6. If μ > 2(d + 1) logd , then the frog model is recurrent a.s.
on the d-ary tree with an initial configuration of Poi(μ) sleeping frogs per vertex.

PROOF. By (1), it suffices to prove that ν is a point mass at infinity. From (2),
we have

Poi(0) � Aν � ν.

Statement (3) implies this relation is preserved under iterations of A. Moreover,
(4) lets us increase the Poisson term by ε with each iteration. In symbols, this says
that for all n ≥ 1,

Poi(εn) � Anν � An−1ν � · · · � Aν � ν.
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Taking n → ∞ implies that ν is a point mass at infinity, and so the frog model is
recurrent almost surely. �

In the rest of this section, we will carry out this plan and prove statements (1)–
(4). First, we give some notation. Recall that � denotes stochastic domination.
We also use the notation X � Y to indicate that the law of X is stochastically
dominated by the law of Y . An equivalent condition to stochastic dominance is
that π1 � π2 if and only if there exists a coupling (X,Y ) with X ∼ π1, Y ∼ π2,
and X ≤ Y a.s. A thorough reference on stochastic domination is [24].

For a nonnegative random variable N , we use Poi(N) to denote a mixture of
Poisson distributions; when we write X ∼ Poi(N), we mean that X is coupled with
N such that the distribution of X conditional on N = n is Poi(n). If N ∼ π , we
also use Poi(π) to denote the same Poisson mixture. We similarly use the notation
Bin(N,p) and Bin(π,p).

2.1. The nonbacktracking frog model. A random nonbacktracking walk on Td

starting at a vertex x0 moves in its first step to a uniformly random neighbor of x0.
In all subsequent steps, it moves to a vertex chosen uniformly from all its neighbors
except for the one it just arrived from.

Suppose that (Sn, n ≥ 0) is a random nonbacktracking walk starting from x0,
stopped if it arrives at the root at step 1 or beyond. (If x0 is the root, then it is never
stopped.) Define the nonbacktracking frog model just as the usual frog model,
except that the motion of a frog waking at x0 is an independent copy of (Sn),
rather than a simple random walk. The advantage is that when a nonbacktracking
frog moves away from the root, it will forever remain in the just-entered subtree.
This gives the model more self-similarity. As shown in [16], Proposition 7, (Sn)

can be coupled with a simple random walk on Td starting from x0 so that its path is
a subset of the simple random walk’s path. This lets us relate the nonbacktracking
and usual frog models, proving (1).

PROPOSITION 7. Let ν and ν′ be the laws of the number of returns to the
root in the nonbacktracking and usual frog models on Td , respectively, both with
Poi(μ) sleeping frogs per vertex. Then ν � ν′.

PROOF. It suffices to show that we can couple the two models so that at least
as many frogs visit the root in the usual model as in the nonbacktracking model.
We construct the coupling as follows. For each vertex v ∈ Td , make the number of
sleeping frogs on v identical in the two models. Make each frog’s path in the non-
backtracking model a subset of the corresponding frog’s path in the usual model as
previously described. Thus, any frog woken in the nonbacktracking model is also
woken in the usual model, and any visit to the root in the nonbacktracking model
corresponds to a visit in the usual model. �
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(a) (b)

FIG. 2. An interacting particle system related to the frog model. Initially, the number of active par-
ticles at ∅′ is distributed as Poi(μ), and the number of active particles at v1 is distributed according
to some probability measure π . Active particles take random nonbacktracking steps until reaching
a leaf. For each 2 ≤ i ≤ d , if any of these particles reach vi , then a new π -distributed batch of par-
ticles is released at vi . These second-wave particles do not activate other vertices. (a) Initial state:
particles at ∅′ and v1 will move first and possibly release a second wave of particles from v2, . . . , vd .
(b) Terminal state: #{particles at ∅} ∼Aπ .

For the remainder of this section, we only consider the nonbacktracking frog
model. We record an observation: Suppose the initial frog in the nonbacktracking
model steps from the root ∅ to a child ∅

′. Since frogs are stopped at the root, no
other child of the root besides ∅′ is ever visited, and all action occurs in the subtree
rooted at ∅′.

2.2. Formal definition of A. Fix a probability measure π on the nonnegative
integers. We will define Aπ to be the probability measure for the number of parti-
cles ending at ∅ (see Figure 2) in the random system of nonbacktracking particles
described below.

The setting for the particle system is a star graph, consisting of a central vertex
connected to d + 1 leaf vertices. In a slight abuse of notation, we reuse the vertex
names from Figure 1, calling the central vertex ∅

′ and the leaves ∅ and v1, . . . , vd .
Let X ∼ Poi(μ) and X1, . . . ,Xd ∼ π , all independent. Place X particles at ∅′
and Xi particles at each vi . Each particle if activated will perform an independent
random nonbacktracking walk until it halts at a leaf.

Initially, only the particles at ∅′ and at v1 are active. If one of these first-wave
particles lands at vi for i ≥ 2, then the particles there are activated and begin inde-
pendent nonbacktracking random walks until reaching a leaf. These second-wave
particles do not activate other particles; only the first-wave particles have that
power. The number of particles that finish at ∅ in this system is a random vari-
able, and we define Aπ as its law. With these dynamics, we can summarize the
system as follows:
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• Particles at ∅′ move to one of {∅, v1, . . . , vd} each with probability 1/(d + 1).
• Particles at v1 move to one of {∅, v2, . . . , vd} each with probability 1/d .
• If a first-wave particle visits vi , the particles at vi move to ∅ with probability

1/d .

For 2 ≤ i ≤ d , let Ei be the event that a first-wave particle ends at vi . The fol-
lowing lemma follows from the definition of A. Informally, it says that conditional
on how many of the events E2, . . . ,Ed occur, the number of second-wave particles
ending at ∅ is a sum of independent thinned copies of π .

LEMMA 8. Conditional on
∑d

i=2 1Ei
= u, the number of second-wave parti-

cles ending at ∅ is distributed as the sum of u independent Bin(π,1/d)-distributed
random variables.

PROOF. If Ei occurs then by definition a π -distributed batch of particles is
released at vi . With probability 1/d each released particle halts at ∅. As parti-
cles move independently, the total number is distributed as Bin(π,1/d). Since the
second-wave particles cannot wake other sites, the total number of particles to ar-
rive is distributed as claimed. �

Now, we show the connection between this operator and the frog model.

LEMMA 9. Let ν be the distribution of number of returns to the root in the non-
backtracking frog model on the d-ary tree with sleeping frog distribution Poi(μ).
Then Aν � ν.

PROOF. Let Td(x) denote the subtree of Td rooted at a given vertex x. Recall
that no children of the root other than ∅

′, the child visited by the initial frog, are
ever visited. In light of this, it will be helpful to think of the nonbacktracking frog
model as taking place on ∅∪Td(∅′) rather than on all of Td .

We say that the frogs sleeping on some vertex v ∈ Td(v1) wake within Td(v1)

if there exists a chain of vertices x1, . . . , xm = v all in Td(v1) such that the initial
frog starting from the root visits x1, a frog starting at x1 visits x2, and so on. More
simply, a frog is woken within Td(v1) if it would have been woken even if there
were no frogs sleeping on any vertices outside of Td(v1).

We define some random variables counting frogs that might possibly visit the
root. Let X ∼ Poi(μ) be the number of frogs sleeping on ∅

′, which are woken by
the initial frog. Let X1 be the number of frogs waking within Td(v1) that visit ∅′.
We claim that X1 is distributed as ν. Indeed, when we consider frogs as waking
only if they wake within Td(v1) and relabel the vertices {∅′} ∪ Td(v1) as {∅} ∪
Td(∅′), we see a process identical in law to the original nonbacktracking frog
model. Call the frogs counted by X and X1 the first-wave frogs.

For each 2 ≤ i ≤ d , let Ei be the event that some of the frogs counted by X

or X1 move to vi . Conditional on Ei , arbitrarily choose one of these frogs that
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visits vi and call it f . We say that the frogs at v are woken within Td(vi) if there
exists a chain of vertices x1, . . . , xm = v in Td(vi) such that f visits x1, a frog
starting at x1 visits x2, and so on. Let Xi be the number of frogs waking within
Td(vi) that visit ∅′. By the same argument showing that X1 ∼ ν, the distribution of
Xi conditional on Ei is also ν. Furthermore, for any {i1, . . . , ik} ⊆ {2, . . . , d}, the
random variables Xi1, . . . ,Xik are conditionally independent given Ei1, . . . ,Eik ,
since each Xi is determined solely by the paths of the frogs sleeping in Td(vi). We
call the frogs counted by X2, . . . ,Xd the second-wave frogs.

The first- and second-wave frogs all visit ∅′. We define V ′′ as the number of
these that move from there to ∅.

CLAIM. V ′′ ∼ Aν.

PROOF. Our strategy is to show that the first-wave frogs behave identically as
the first-wave particles, and then to show that the second-wave frogs conditional
on the behavior of first-wave frogs behave the same as the second-wave particles
conditional on the behavior of the first-wave particles.

For the first of these claims, consider the first-wave frogs, counted by X and X1.
Observe that X and X1 are independent with X ∼ Poi(μ) and X1 ∼ ν, just as in the
particle system defining Aν. The frogs counted by X move from ∅

′ independently
to a random choice out of ∅, v1, . . . , vd , and the frogs counted by X1 move from ∅

′
independently to a random choice out of ∅, v2, . . . , vd , also matching the particle
system. Thus, the locations of the first-wave frogs one step after leaving ∅

′ are
distributed identically to the ending locations of the first-wave particles.

Now, condition on some arrangement of the first-wave frogs on ∅, v1, . . . , vd

one step after leaving ∅. Suppose that u out of the vertices v2, . . . , vd are occu-
pied by first-wave frogs in this arrangement. The number of second-wave frogs
visiting ∅

′ conditional on this arrangement of first-wave frogs is a sum of u inde-
pendent copies of ν. Each second-wave frog that visits ∅′ has an independent 1/d

chance of moving next to ∅. Thus, the number of second-wave frogs that visit ∅
is the sum of u independent copies of Bin(ν,1/d). This matches the conditional
distribution of second-wave particles ending at ∅ given in Lemma 8. Thus, the
distribution of the number of first- and second-wave frogs visiting ∅ is the same
as the distribution of the number of first- and second-wave particles ending at ∅,
which is by definition Aν. �

With this claim, the proof of the lemma is almost complete: Let V be the total
number of visits to ∅ in the nonbacktracking frog model. Since V ′′ ≤ V with
V ′′ ∼Aν and V ∼ ν, we have shown that Aν � ν. �

2.3. Properties of A. We first show (3), monotonicity of A with respect to
stochastic dominance.
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LEMMA 10. If π1 � π2, then Aπ1 � Aπ2.

PROOF. If π1 � π2, then we can couple the two particle systems defining Aπ1
and Aπ2 so that the second particle system contains all the same particles as the
first, moving identically, as well as additional ones. Thus, at least as many particles
visit ∅ in the second system as in the first, and Aπ1 �Aπ2. �

Now, we describe the result of applying A to a Poisson distribution, whose
thinning property simplifies things.

LEMMA 11. The distribution APoi(λ) is a mixture of Poisson distributions,
given by

APoi(λ) ∼ Poi
(

(U + 1)λ

d
+ μ

d + 1

)
,(5)

where

U ∼ Bin
(
d − 1,1 − exp

(
−λ

d
− μ

d + 1

))
.(6)

PROOF. In the particle process defining APoi(λ), let Yu→v be the num-
ber of particles that start at u and finish at v, for u ∈ {∅′, v1, . . . , vd} and v ∈
{∅, v1, . . . , vd}. Each of the Poi(μ) particles starting at ∅′ moves to a random
neighbor. By Poisson thinning, the random variables Y∅′→v for v ∈ {∅, v1, . . . , vd}
are independent and distributed as Poi(μ/(d + 1)). Similarly, Yv1→v for v ∈
{∅, v2, . . . , vd} are independent and distributed as Poi(λ/d). These two collections
of random variables are also independent of each other.

Thus, the number of first-wave particles that move to vi for each 2 ≤ i ≤ d

are independent and distributed as Poi(λ/d + μ/(d + 1)). Let U be the number
of vertices out of {v2, . . . , vd} that are visited. As each vertex has an independent
1 − exp(−λ/d − μ/(d + 1)) chance of being visited, the distribution of U is as
given in (6). And since U is determined by Y∅′→vi

and Yv1→vi
for i = 2, . . . , d , it

is independent of Y∅′→∅ and Yv1→∅.
By Lemma 8 and Poisson thinning, the number of second-wave particles ending

at ∅ is Poi(Uλ/d). The number of first-wave particles ending at ∅ is Y∅′→∅ +
Yv1→∅, independent of U and distributed as Poi(λ/d +μ/(d +1)). Summing these
together yields (5). �

We are nearly in a position to establish that An Poi(0) grows without limit as
n → ∞. First, we need two technical lemmas on the Poisson distribution.

LEMMA 12. Let Zλ be distributed as Poi(λ) conditioned to be nonzero. If
λ1 ≤ λ2, then Zλ1 � Zλ2 .
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PROOF. Consider the Radon–Nikodym derivative of the law of Zλ2 with re-
spect to the law of Zλ1 ,

r(k) = P[Zλ2 = k]
P[Zλ1 = k] = 1 − e−λ1

1 − e−λ2
eλ1−λ2

(
λ2

λ1

)k

.

The function r(k) is increasing, and it is straightforward to show that this implies
that Zλ1 � Zλ2 (or see [24], Theorem 1.C.1). �

LEMMA 13. Let Z
(1)

λ/n,Z
(2)

λ/n, . . . be independent and distributed as Poi(λ/n)

conditioned to be nonzero. Let M be independent of these and be distributed as
Bin(n,1 − e−λ/n), and let

Z =
M∑
i=1

Z
(i)

λ/n.

Then Z is distributed as Poi(λ).

PROOF. Decompose Poi(λ) as a sum of n independent copies of Poi(λ/n).
Let M be the number of these that are nonzero, and condition on M to get the
desired representation. �

Finally, we prove (4).

PROPOSITION 14. If μ > 2(d + 1) logd , then there exists ε > 0 such that

Poi(λ + ε) � APoi(λ)

for all λ ≥ 0.

PROOF. Let X ∼ Poi(λ + ε) for some ε > 0 to be chosen later, and let
Y ∼ APoi(λ). We start by decomposing X into a sum of Poissons conditioned

to be nonzero. For any a, let Z
(1)

a ,Z
(2)

a , . . . be distributed as Poi(a) conditioned
to be nonzero, and let Za ∼ Poi(a) (with no conditioning). Take all these random
variables to be independent. By Lemma 13, we can write X as

X = Z(λ+ε)/d +
M∑
i=1

Z
(i)

(λ+ε)/d,(7)

where

M ∼ Bin
(
d − 1,1 − exp

(
−λ + ε

d

))
.

We now turn to Y , which by Lemma 11 is distributed as

Poi
(

(U + 1)λ

d
+ m

)
,(8)
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where m = μ/(d + 1) and U ∼ Bin(d − 1,1 − exp(−λ/d − m)). Let Y ′ ∼
Poi((U + 1)(λ + m)/d). For each u, the distribution of Y ′ conditional on U = u

is stochastically dominated by the distribution of Y conditional on U = u, simply
because Poi(a) � Poi(b) when a ≤ b. It follows that Y ′ � Y . Thus, it suffices to
show that X � Y ′. Decomposing Y ′ by Lemma 13 and using the same notation as
before, we can write Y ′ as

Y ′ = Z(λ+m)/d +
N∑

i=1

Z
(i)

(λ+m)/d(9)

with

N ∼ Bin
(
U,1 − exp

(
−λ + m

d

))
.

These decompositions allow us to stochastically compare X and Y ′. Assume
that ε is chosen to be smaller than m. We claim that to show that X � Y ′, it suffices
to show that M � N . Indeed, we can then couple the random variables on the right-
hand sides of (7) and (9) so that:

(1) M ≤ N ;
(2) Z(λ+ε)/d ≤ Z(λ+m)/d ;

(3) Z
(i)

(λ+ε)/d ≤ Z
(i)

(λ+m)/d for each i.

Property (2) is possible because Poi(a) � Poi(b) if a ≤ b, and (3) is possible by
Lemma 12. Together, this yields a coupling of X and Y ′ with X ≤ Y ′.

Thus, it only remains to show that M � N . Recalling that U is itself binomial,
we have

N ∼ Bin
(

Bin
(
d − 1,1 − exp

(
−λ

d
− m

))
,1 − exp

(
−λ + m

d

))

= Bin
(
d − 1,

(
1 − exp

(
−λ

d
− m

))(
1 − exp

(
−λ + m

d

)))
.

Since M and N are both binomial, proving M � N reduces to comparing their
parameters. The argument will be complete once we show for some ε > 0 and all
λ > 0,

1 − exp
(
−λ + ε

d

)
≤

(
1 − exp

(
−λ

d
− m

))(
1 − exp

(
−λ + m

d

))
.(10)

Some basic calculus (see Lemma 16 in the Appendix) establishes that for all
d ≥ 2,

e−2 logd + e−2 logd/d < 1.

Since m > 2 logd , we can choose ε > 0 such that

1 > exp
(
− ε

d

)
≥ e−m + e−m/d.
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Multiplying both sides of this inequality by e−λ/d gives

exp
(
−λ + ε

d

)
≥ exp

(
−λ

d
− m

)
+ exp

(
−λ + m

d

)
.

Thus,

1 − exp
(
−λ + ε

d

)
≤ 1 − exp

(
−λ

d
− m

)
− exp

(
−λ + m

d

)

≤
(

1 − exp
(
−λ

d
− m

))(
1 − exp

(
−λ + m

d

))
.

Looking back at (10), we have shown that M � N . �

We have now proven (1)–(4), completing the proof of Proposition 6.

2.4. Comparison to one-per-site results. In [16], we proved that the frog
model on a binary tree with one sleeping frog per site is recurrent. The proof has
the same overarching idea as here: We use the self-similarity of the tree to obtain
a recursive distributional relationship for the number of returns to the root. We
then use this relationship in a bootstrapping argument, assuming that the number
of visits to the root is stochastically larger than Poi(λ) and proving that it is in fact
stochastically larger than Poi(λ + ε).

The major difference between the two arguments is in the bootstrapping por-
tion. The approach in this paper using traditional stochastic domination fails with
the one-per-site frog model. The problem is that the distributions given by succes-
sively applying the analogue of the A operator in the one-per-site model have finite
support, and hence are never stochastically greater than any Poisson distribution.
Our proof in [16] instead uses an exotic definition of stochastic dominance, where
π1 is dominated by π2 if the probability generating function of π1 is greater than
the probability generating function of π2.

This generating function approach works better than the technique in this paper
in some ways and worse in others. On one hand, it can handle both determinis-
tic and random initial configurations. On the other hand, the generating function
approach seems confined to small values of d . It relies on a purely analytic argu-
ment that is elementary but difficult. It seems impossible to apply this argument to
an arbitrary choice of d . Even for d = 3, the generating functions to be analyzed
become extremely complicated. The technical advance in this paper is the proba-
bilistic argument we give in Proposition 14, which allows us to work on any d-ary
tree.

3. Transience. The main idea of our proof of transience is to consider a
weight function on the frog model. To analyze the weight function, we bound the
frog model by a branching random walk. The weight function is the frog model
analogue to a common martingale derived from branching random walk (see [6]).
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PROPOSITION 15. If Eη < (d−1)2

4d
, then the frog model with an independent

copy of η frogs per site on Td is almost surely transient.

PROOF. Let Fn be the set of frogs awake at time n. For f ∈ Fn, let |f | denote
the level of f on the tree (that is, its distance from the root). We define a weight
function

Wn = ∑
f ∈Fn

e−θ |f |,

with θ to be chosen shortly. Let

m = 1

d + 1
eθ + d

d + 1
E[η + 1]e−θ .

Before we explain the meaning of this, we minimize m by setting θ = log((Eη +
1)d)/2, making

m = 2
√

(Eη + 1)d

d + 1
< 1

under our assumption that Eη < (d−1)2

4d
.

The strategy of the proof now is to show that Wn → 0, and hence that the root
eventually stops being visited. The term m gives an upper bound for the expected
contribution to Wn+1 of a frog at time n in the following way: Suppose that at
time n, some frog f is at level i of the tree for any i ≥ 1. With probability 1/(d +
1), the next jump of f is toward the root, waking no frogs. With probability d/(d +
1), the jump is away from the root, possibly waking up an η-distributed number
of frogs. Thus, the expected contribution to Wn+1 from f and any frogs it wakes
at time n + 1 is at most e−θim. If f is at the root at time n, then the expected
contribution to Wn+1 from f and the frogs it wakes is at most E[η + 1]e−θ , which
is bounded by m given our choice of θ . Therefore,

E[Wn+1 | Wn] ≤ ∑
f ∈Fn

e−θ |f |m = mWn.

Thus, Wn/mn is a positive supermartingale. By the martingale convergence the-
orem, it converges almost surely to a finite limit. Since mn → 0, we also have
Wn → 0 a.s., which implies that eventually no frogs are present at the root. �

APPENDIX

LEMMA 16. x−2 + x−2/x < 1 for all x ≥ 2.

PROOF. Let f (x) = x−2 + x−2/x . First, we show the inequality holds on the
interval [2,8]. Since x−2 is decreasing,

f (x) ≤ 1
4 + x−2/x.
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It is easily checked that the maximum of x−2/x on [2,8] occurs at x = 8 and is
less than 3

4 .
Next, we consider x ≥ 8. L’Hôpital’s rule implies that limx→∞ f (x) = 1. Thus,

it suffices to confirm that f (x) is increasing on [8,∞). We compute

f ′(x) = 2x−(2/x)−2(
logx − x(2/x)−1 − 1

)
.

For x ≥ 8, it holds that x(2/x)−1 < 1. Hence,

f ′(x) ≥ 2x−(2/x)−2(logx − 2),

which is positive on [8,∞) since log 8 > 2. �
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