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PROPAGATION OF CHAOS FOR INTERACTING PARTICLES
SUBJECT TO ENVIRONMENTAL NOISE

BY MICHELE COGHI AND FRANCO FLANDOLI

Scuola Normale Superiore and University of Pisa

A system of interacting particles described by stochastic differential
equations is considered. As oppopsed to the usual model, where the noise
perturbations acting on different particles are independent, here the particles
are subject to the same space-dependent noise, similar to the (noninteracting)
particles of the theory of diffusion of passive scalars. We prove a result of
propagation of chaos and show that the limit PDE is stochastic and of invis-
cid type, as opposed to the case when independent noises drive the different
particles.

1. Introduction. We prove a propagation of chaos result for the interacting
particle system in R

d described by the equations

dX
i,N
t = 1

N

N∑
j=1

K
(
X

i,N
t − X

j,N
t

)
dt +

∞∑
k=1

σk

(
X

i,N
t

) ◦ dBk
t ,

(1)
i = 1, . . . ,N,

where K,σk : Rd → R
d , k ∈ N, are uniformly Lipschitz continuous and (Bk)k∈N

are independent real-valued Brownian motions on a filtered probability space
(�,F,Ft , P ); the additional assumption Hypothesis 1 will be imposed on σk’s, in
Section 2. In (1), we chose Stratonovich stochastic integration since the final result,
in Stratonovich form and under Hypothesis 1, is more clear and elegant. However,
at the price of additional terms, the results hold for the Itô case and under more
general assumptions (e.g., time-dependent σk); see Section 2.3.

The classical propagation of chaos framework considered in the literature deals
with the system

dX
i,N
t = 1

N

N∑
j=1

K
(
X

i,N
t − X

j,N
t

)
dt + dWi

t ,

(2)
i = 1, . . . ,N,
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where (Wi)i∈N are independent R
d -valued Brownian motions; see, for in-

stance, [14]. Unlike this classical case, in (1) the same space-dependent delta-
correlated-in-time noise v(t, x), formally given by

v(t, x) =
∞∑

k=1

σk(x)
dBk

t

dt

acts on each particle. This type of space correlated noise was introduced in physics
to describe small scale motion in a turbulent fluid, as in the famous Kraichnan
model of the sixties. The physical intuition in this case, for equation (1), is that the
particles are embedded in a turbulent fluid with velocity v(t, x). Each particle is
subject to the transport effect of the fluid and to the motion caused by the inter-
action with the other particles. Among other examples, we may also think of the
case of smoothed point vortices (think of relatively large scale vortex structures in
ocean or atmosphere), subject to the transport effect of each other (the interaction)
and of a background, small scale, turbulent perturbation. Instead of considering
all fluid scales as a whole, described by classical equations of fluid dynamics, one
could try, phenomenologically, to separate the large scale vortex structures from
the small scale more irregular fluctuations and consider the small scales modeled
independently a priori, and the vortices just influencing each other and influenced
by the small scales without feedback on small scales. In such an example, to fit
with the assumptions of model (1), we have to assume that the interaction between
vortices is described by a smoothed Biot–Savart kernel since the singularity of the
true Biot–Savart kernel introduces additional difficulties which cannot be handled
with the techniques of this paper. On the other hand, the more classical model
(2) is more suitable when each particle has its own internal origin of randomness
(like certain living organisms) or the external sources of randomness can be con-
sidered to be totally uncorrelated at the scale of the particles, like for very light
macroscopic particles interacting with the molecules of a gas.

If the covariance of the noise is suitably concentrated (see Hypothesis 1 in Sec-
tion 2), the random field v(t, x) is poorly space-correlated, except at very short
distances, and thus particles which occupy sufficiently distant positions are sub-
ject to almost independent noise, a fact that makes the two systems (1) and (2) not
so different when the collection of particles is sufficiently sparse.

However, in the limit when N → ∞, the behavior is completely different. Let
(Xi)i∈N be a sequence of i.i.d. random vectors in R

d with law μ0; assume that
the families (Bk· )k∈N [(Wi)i∈N for equation (2)] and (Xi)i∈N are independent and
take X

i,N
0 = Xi as initial conditions for system (1). Denote by SN

t the empirical
measure defined as

SN
t = 1

N

N∑
i=1

δ
X

i,N
t

.(3)
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The random probability measure SN
0 converges weakly to μ0 in probability. In

both cases of equations (1) and (2), one can prove [cf. [14] for case (2) and the
present paper for case (1)] that SN

t converges weakly, in probability, to a probabil-
ity measure μt . However, in case (2), μt is deterministic, the weak convergence
of SN

t to μt is understood in probability with respect to both initial conditions and
noise, and μt is a distributional solution of the nonlinear equation

∂μt

∂t
+ div(bμt μt ) = 1

2
�μt,

where, for a generic probability measure ν, the vector field bν :Rd →R
d is defined

as

bν(x) =
∫
Rd

K(x − y)ν(dy).

On the contrary, in case (1), μt is a random probability measure and, under the
particular assumptions of Section 2.1, it satisfies in the distributional sense the
stochastic PDE

dμt + div(bμt μt ) dt +
∞∑

k=1

div(σkμt ) ◦ dBk
t = 0(4)

and the weak convergence of SN
t to μt is understood in probability only with re-

spect to the initial conditions. In Section 2.1, we give the Itô form of this stochastic
partial differential equation and in Section 2.3 we show the modifications when
we start from (1) in Itô form or when the assumptions on σk are more general than
those of Section 2.1.

The main result of this paper is the following theorem, by which one can relate
the convergence of the empirical measure of the system with the convergence of
the empirical measure of the initial conditions.

THEOREM 1. Let T > 0 and assume Hypothesis 1, given in Section 2, on the
noise. There exists a constant C̃T > 0 such that

E
[
W1
(
μ,SN

t

)]≤ C̃T E
[
W1
(
μ0, S

N
0
)]

,

where W1 is the Wasserstein distance (see Definition 9).

In Section 4 we give a more precise statement of Theorem 1, as well as a short
discussion on recent results on quantitative estimates on the rate of convergence of
SN

0 to μ0 which can be applied in our model.
From Theorem 1 we deduce a conditional propagation of chaos result: Condi-

tional to (Bk)k∈N, the particles tend to be independent as N → ∞. One can find
other works in literature dealing with conditional propagation of chaos, but refer-
ring to different objects and in different contexts. In [2] and [8], the authors treat
propagation of chaos conditionally to produce measures on the Kac’s sphere and
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in the latter are given quantitative estimates. In other works, the conditionality is
given with respect to the σ -field of the permutable events; see, for example, [15]
and [4].

The precise statement about conditional propagation of chaos in this work is
given by the following theorem.

THEOREM 2. Let FB
t be the filtration associated to (Bk)k∈N. We suppose

that the noise satisfies Hypothesis 1 in both equations (1) and (4). There exists a
random measure-valued solution μt of equation (4) such that

lim
N→∞E

[∣∣〈SN
t , φ

〉− 〈μt,φ〉∣∣]= 0

for all φ ∈ Cb(R
d).

Moreover, given r ∈ N and φ1, . . . , φr ∈ Cb(R
d), we have

lim
N→∞E

[
φ1
(
X

1,N
t

) · · ·φr

(
X

r,N
t

)|FB
t

]= r∏
i=1

〈μt,φi〉

in L1(�).

In particular, for every r ∈ N and φ ∈ Cb(R
d), limN→∞ E[φ(X

r,N
t )|FB

t ] =
〈μt,φ〉, namely the conditional law of X

r,N
t given FB

t converges weakly to μt .
We can also prove the following.

THEOREM 3. Given μt as in Theorem 2 and r ∈ N, if Xt is the unique strong
solution of the SDE

dXt = bμt (Xt ) dt +
∞∑

k=1

σk(Xt) dBk
t , X0 = Xr

0,

where the noise satisfies Hypotesis 1, then

lim
N→∞E

[∣∣Xr,N
t − Xt

∣∣]= 0.

Moreover, μt is a version of the conditional law of Xt with respect to FB
t , namely

〈μt,φ〉 ∈ E
[
φ(Xt)|FB

t

]
for every φ ∈ C∞

b (Rd).

The result is similar to the case of a deterministic environment acting on the
particles, which could be modeled by the equations

dX
i,N
t

dt
= 1

N

N∑
j=1

K
(
X

i,N
t − X

j,N
t

)+ v
(
t,X

i,N
t

)
,

i = 1, . . . ,N.
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As shown by [5], this system satisfies a propagation of chaos property with the
limit deterministic inviscid PDE

∂μt

∂t
+ div(bμt μt ) dt + div

(
v(x)μt

)= 0.

Also some technical steps of our proof are strongly inspired by [5]. Moreover, with
a different proof and partially a different purpose, some of the technical steps about
existence and (especially) stability results for measure-valued stochastic equations
have been proved before by [10, 11, 13].

We do not treat here a number of additional interesting questions that are post-
poned to future works, like: (i) the fact that μt should have a density with respect to
Lebesgue measure if this is assumed for μ0; (ii) the uniqueness of solutions to the
SPDE (8) (which seems to be true in some class of integrable functions when μ0
has an integrable density, but it is less clear in spaces of measure-valued solutions);
(iii) possible generalizations to non-Lipschitz continuous interation kernel K . In
particular, the problem of propagation of chaos for system (1) when K(x) = x⊥

|x|2 ,
corresponding to point vortices in 2D inviscid fluids, has been posed by [7] and
seems to be a challenging question.

In Section 2, we give some information about the settings in which we study the
problem. Section 3 is devoted to the study of existence and uniqueness of equa-
tion (4) using its Itô version. Finally, in Section 4 we study the convergence and
propagation of chaos results.

2. Precise setting of the problem.

2.1. Assumptions on the noise. We will now state the assumptions which we
will consider on the noise. Recall that σk : Rd → R

d is a vector field, for every
k ∈N.

HYPOTHESIS 1. (i) σk : R
d → R

d are measurable and satisfy∑∞
k=1 |σk(x)|2 < +∞, for every x ∈ R

d .

(ii) σk is a C2 divergence free vector fields, that is,

divσk = 0 ∀k ≥ 1.

Define the matrix-valued function Q :Rd ×R
d →R

d×d as

Qij (x, y) :=
∞∑

k=1

σ i
k(x)σ

j
k (y).(5)

(iii) With a little abuse of notation, there exists a function Q : Rd → R
d×d such

that:
(a) Q(x,y) = Q(x − y) [space homogeneity of the random field ϕ(t, x) =∑∞

k=1 σk(x)Bk
t ];
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(b) Q(0) = Id;
(c) Q(·) is of class C2 with second derivatives uniformly bounded in the

euclidean norm of Rd×d , that is, supx∈Rd |∂2
xixj

Q(x)| < +∞. Here, we
are using the Hilbert–Schmidt norm on the space of the matrices.

One can find examples of this model in several references, for example, [3]
and [9]. We recall here the most important properties of this type of noise and we
give an explicit example.

REMARK 4. Under the previous assumptions, we have

∞∑
k=1

∣∣σk(x) − σk(y)
∣∣2 ≤ L2

σ |x − y|2 for all x, y ∈ R
d(6)

for some constant Lσ > 0. Indeed,

∞∑
k=1

∣∣σk(x) − σk(y)
∣∣2 = 2 Tr

(
Q(0)

)− 2 Tr
(
Q(x − y)

)
.

The function f (z) = Tr(Q(z)) has the property f (−z) = f (z), hence from the
identity 2f (z) = f (z) + f (−z) and Taylor development of both f (z) and f (−z)

we get 2f (z) = 2f (0) + 〈D2f (0)z, z〉 + o(|z|2) which implies
∑∞

k=1 |σk(x) −
σk(y)|2 ≤ C1|x − y|2 if |x − y| ≤ 1, for a suitable constant C1 > 0. When |z| > 1
we have f (z) ≤ C2|z|2 for a suitable constant C2 > 0, because Q(·) has bounded
second derivative. Hence,

∑∞
k=1 |σk(x) − σk(y)|2 ≤ C2|x − y|2 when |x − y| > 1.

This proves (6) with L2
σ = max(C1,C2).

It is also important to notice that the covariance function Q can be given first.
Indeed Theorem 4.2.5 of [9] states that any matrix valued function Q : (x, y) →
Q(x,y) satisfying (6) can be expressed in the form (5). A very common example
of this kind of noise is the isotropic random field, which we present now.

EXAMPLE 5. Let d ≥ 2 and f ∈ L1(R+) such that
∫
Rd |y|2f (|y|) dy < +∞.

Given π(y) a d × d matrix defined as

π(y) = (1 − p)Idd + |y|−2(pd − 1)y ⊗ y for y ∈ R
d,p ∈ [0,1],

we consider

Q(x) =
∫
Rd

eiy·xπ(y)f
(|y|)dy, x ∈ R

d .

It is easy to see that property (iii)(a) is satisfied. Property (iii)(c) is true after a
renormalization in L1 of f and (iii)(c) can be verified with a straightforward com-
putation.
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REMARK 6. A strong solution of system (1) is a continuous process (X1,N ,

. . . ,XN,N), adapted to (FB
t )t≥0, such that

P

( ∞∑
k=1

∫ T

0

∣∣σk

(
X

i,N
t

)∣∣2 dt < ∞
)

= 1

for every i = 1, . . . ,N (so that the series of stochastic integrals converge in
probability) and identity (1) holds in the integral sense. But

∑∞
k=1 |σk(X

i,N
t )|2 =

Tr(Q(0)) = d , hence the sum of stochastic integrals in equation (1) always con-
verges, even in mean square.

2.2. Itô formulation. In the Introduction, for the benefit of interpretation,
we have formulated the interacting particle system and the limit SPDE both in
Stratonovich form. However, for the sake of rigor and mathematical simplicity,
it is convenient to work in the corresponding Itô form. Under Hypothesis 1, the
interacting particle system in Itô form is

dX
i,N
t = 1

N

N∑
j=1

K
(
X

i,N
t − X

j,N
t

)
dt +

∞∑
k=1

σk

(
X

i,N
t

)
dBk

t ,

(7)
i = 1, . . . ,N

and the SPDE (4) in Itô form is

dμt + div(bμt μt ) dt +
∞∑

k=1

div
(
σk(x)μt

)
dBk

t = 1

2
�μt,(8)

which will be interpreted in weak form in Definition 11 below. At the rigorous
level, these are the equations to which the statements of the Introduction apply.
Let us motivate the fact that (7) and (8) correspond to (1) and (4) under Hypothe-
sis 1. This correspondence can be made rigorous but it requires [especially for (4)]
proper definitions of solutions and a number of details. If we accept that (1) and
(4) are given only for interpretation ad the rigorous setup is given by (7) and (8),
an heuristic proof of their equivalence is sufficient. The correspondence between
(1) and (7) is due to the fact that the Stratonovich integral

∫ t
0 σk(X

i,N
s ) ◦ dBk

s is
equal to ∫ t

0
σk

(
Xi,N

s

)
dBk

s + 1

2

∫ t

0
(Dσk · σk)

(
Xi,N

s

)
ds

(see [9]) where (Dσk · σk)i(x) =∑d
j=1 σ

j
k (x)∂jσ

i
k(x). This correction term van-

ishes thanks to the assumption

divσk = 0 for each k ∈N
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[it is natural if we interpret v(t, x) as the velocity field of an incompressible fluid]
along with the assumptions on Q made above. Indeed,

0 =
(

d∑
j=1

∂j

)
Qij (0) =

∞∑
k=1

d∑
j=1

∂j

(
σ

j
k (x)σ i

k(x)
)

=
∞∑

k=1

d∑
j=1

σ
j
k (x)∂jσ

i
k(x).

Therefore, the Stratonovich and Itô formulations coincide for the interacting parti-
cle system.

Let us discuss now the correspondence between (4) and (8). The Stratonovich
integral

∫ t
0 div(σk(x)μs) ◦ dBk

s is formally equal to (one should write all terms
applied to test functions)∫ t

0
div
(
σk(x)μs

)
dBk

s − 1

2

∫ t

0
div
(
σk(x)div

(
σk(x)μs

))
ds

[the second term, with heuristic language, is initially given by 1
2

∫ t
0 div(σk(x) d〈μ,

Bk〉s) where 〈μ,Bk〉s is the mutual quadratic covariation; then we use again equa-
tion (4) to compute d〈μ,Bk〉s and get d〈μ,Bk〉s = div(σk(x)μs) ds]. Now we see
that

∞∑
k=1

div
(
σk(x)div

(
σk(x)μs

))
(9)

=
d∑

α,β=1

∂α∂β

(
Qαβ(x, x)μs

)− div

(( ∞∑
k=1

Dσk · σk

)
μs

)
,

where Dσk · σk is the vector field with components

(Dσk · σk)
α =

d∑
β=1

(
∂βσα

k

)
σ

β
k .

Indeed,

∞∑
k=1

div
(
σk(x)div

(
σk(x)μs

))= ∞∑
k=1

d∑
α,β=1

∂α

(
σα

k (x)∂β

(
σ

β
k (x)μs

))

=
∞∑

k=1

d∑
α,β=1

∂α∂β

(
σα

k (x)σ
β
k (x)μs

)

−
∞∑

k=1

d∑
α,β=1

∂α

((
∂βσα

k

)
(x)σ

β
k (x)μs

)
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and
∑∞

k=1 σα
k (x)σ

β
k (x) = Qαβ(x, x). Moreover,

∞∑
k=1

(
Dσk(x) · σk(x)

)α =
∞∑

k=1

d∑
β=1

(
∂βσα

k (x)
)
σ

β
k (x)

(10)

=
d∑

β=1

∂βQαβ(x, x) −
∞∑

k=1

σα
k (x)divσk(x).

In view of the next section, we stress that until now we have not used Hypoth-
esis 1. Under Hypothesis 1, we have Qαβ(x, x) = δαβ and divσk = 0, hence∑∞

k=1(Dσk(x) · σk(x))α = 0 for all α = 1, . . . , d , and finally

∞∑
k=1

div
(
σk(x)div

(
σk(x)μs

))= �μs.

Therefore, the Itô formulation of equation (4) is (8).

2.3. Extensions and variants. As we remarked in the Introduction, we chose to
work under Hypothesis 1 since it leads to particularly simple and elegant equations
and relations between Itô and Stratonovich formulations. However, all the results
hold in more general cases, some of which we discuss here.

Assume u,σk : [0, T ]×R
d →R

d , k ∈ N, are measurable vector fields such that,
for some constants C,L > 0

∣∣u(t, x)
∣∣2 +

∞∑
k=1

∣∣σk(t, x)
∣∣2 ≤ C

(
1 + |x|2),

∣∣u(t, x) − u(t, y)
∣∣2 +

∞∑
k=1

∣∣σk(t, x) − σk(t, y)
∣∣2 ≤ L|x − y|2

for all x, y ∈ R
d and all t ∈ [0, T ]. Under these conditions, always with K Lips-

chitz continuous, consider the system of equations in Itô form

dX
i,N
t = 1

N

N∑
j=1

K
(
X

i,N
t − X

j,N
t

)
dt + u

(
t,X

i,N
t

)
dt +

∞∑
k=1

σk

(
t,X

i,N
t

)
dBk

t ,

(11)
i = 1, . . . ,N.

Set

Q
αβ
t (x, y) :=

∞∑
k=1

σα
k (t, x)σ

β
k (t, y),

aαβ(t, x) := Q
αβ
t (x, x).
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All results of the present paper hold true in this case with the corresponding SPDE
given by

dμt + div
(
(bμt + u)μt

)
dt +

∞∑
k=1

div(σkμt) dBk
t

(12)

= 1

2

d∑
α,β=1

∂α∂β

(
aαβ(t, ·)μN

t

)
dt

(to be interpreted in weak form similar to Definition 11 below). The connection
between these two equations can be seen informally in a few lines by applying Itô
formula to φ(X

i,N
t ), with φ ∈ C∞

c (Rd); the result is that SN
t satisfies

d
〈
SN

t , φ
〉= 〈

SN
t ,∇φ · (bμt + u)

〉
dt +

∞∑
k=1

〈
SN

t ,∇φ · σk(t, ·)〉dBk
t

+
〈
SN

t ,
1

2

d∑
α,β=1

aαβ(t, ·)∂α∂βφ

〉
dt,

which is the weak formulation of the SPDE (12) above.

REMARK 7. Assuming a suitable differentiability of σk(t, ·) in the t variable,
we may rewrite the SPDE (12) in Stratonovich form. We keep this remark at heuris-
tic level, to avoid unnecessary details. As in the previous section, the Stratonovich
integral

∫ t
0 div(σk(s, x)μs)◦dBk

s is equal to the Itô integral
∫ t

0 div(σk(s, x)μs) dBk
s

plus the correction term
1
2

[
div
(
σk(·, x)μ·

)
,Bk·

]
t .(13)

Now, σk(t, x)μt formally satisfies the identity (by Itô’s formula)

d
(
σk(t, x)μt

)= ∂σk

∂t
(t, x)μt dt + σk(t, x) dμt

hence only the term

−σk(t, x)

∞∑
k′=1

div
(
σk′(t, x)μt

)
dBk′

t

contributes to the quadratic covariation (13), which is thus equal (as in the previous
section) to

−1

2

∫ t

0
div
(
σk(s, x)div

(
σk(s, x)μs

))
ds.

From identity (9), where now Qαβ(x, x) is replaced by aαβ(t, x), we get that μt

satisfies (in weak form) the Stratonovich equation

dμt = −div
(
(bμt + u)μt

)
dt −

∞∑
k=1

div
(
σk(t, ·)μt

) ◦ dBk
t +D(t, ·)μt dt,(14)
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where the first-order differential operator D(t, x) is given by

Df := 1

2
div

( ∞∑
k=1

Dσk · σkf

)
.

REMARK 8. The Stratonovich reformulation (14) reveals that the true nature
of the SPDE (12) is not parabolic but of a first-order equation, informally speaking
of hyperbolic type.

If we start from the beginning with the Stratonovich equation,

dX
i,N
t = 1

N

N∑
j=1

K
(
X

i,N
t − X

j,N
t

)
dt + u

(
t,X

i,N
t

)
dt +

∞∑
k=1

σk

(
t,X

i,N
t

) ◦ dBk
t

in place of (11), we may rewrite it in the Itô form

dX
i,N
t = 1

N

N∑
j=1

K
(
X

i,N
t − X

j,N
t

)
dt + u

(
t,X

i,N
t

)
dt

+
∞∑

k=1

σk

(
t,X

i,N
t

)
dBk

t + 1

2

∞∑
k=1

(Dσk · σk)
(
t,X

i,N
t

)
dt,

where (Dσk · σk)
α =∑d

β=1 ∂βσα
k σ

β
k . This is the case because the correction term

of the α-component is

1

2

∞∑
k=1

d
[
σα

k

(·,Xi,N·
)
,Bk

t

]
t = 1

2

∞∑
k=1

∇σα
k

(
t,X

i,N
t

) · σk

(
t,X

i,N
t

)
dt

since, under suitable differentiability assumptions on σk , we may apply Itô’s for-
mula to σα

k (t,X
i,N
t ) and see that for the quadratic covariation [σα

k (·,Xi,N· ),Bk
t ]t

only the following term [part of ∇σα
k (t,X

i,N
t ) · dX

i,N
t ] matters:

∇σα
k

(
t,X

i,N
t

) · ∞∑
k′=1

σk′
(
t,X

i,N
t

)
dBk′

t .

Thus we see that under appropriate regularity and summability (in k) properties on
σk , we may transform the Stratonovich equation into the Itô one (11) and apply the
previous result. The additional drift

1

2

∞∑
k=1

(Dσk · σk)(t, x)(15)

appears in the Itô formulation.
Finally, we have seen that two annoying correction terms appear in the com-

putations above, namely D(t, ·)μt in the SPDE (14) and the additional drift (15).
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Both are related to passages from Itô to Stratonovich forms. Both of them are equal
to zero if we assume

∞∑
k=1

Dσk · σk = 0.

Similar to (10), this can be rewritten as

d∑
β=1

∂βaαβ(t, x) −
∞∑

k=1

σα
k divσk = 0.

A sufficient condition thus is the pair of assumptions

aαβ(t, x) independent of x,

divσk = 0 for every k,

which are part of Hypothesis 1.

2.4. Some definitions. Recall the definition of the empirical measure SN
t :=

1
N

∑N
i=1 δ

X
i,N
t

, which can be used, as we did in the Introduction, to rewrite the drift

coefficient as bSN
t
(x) = K ∗ SN

t (x) = 1
N

∑N
j=1 K(x − X

j,N
t ). We can thus write

equation (7), for i = 1, . . . ,N , as

dX
i,N
t = bSN

t

(
X

i,N
t

)
dt +

∞∑
k=1

σk

(
X

i,N
t

)
dBk

t .

If we take a test function φ ∈ C2
b(Rd) and we apply Itô’s formula, from the as-

sumptions on Q it follows, for i = 1, . . . ,N ,

dφ
(
X

i,N
t

)= [
∇φ
(
X

i,N
t

) · bSN
t

(
X

i,N
t

)+ 1

2
�φ

(
X

i,N
t

)]
dt

+
∞∑

k=1

∇φ
(
X

i,N
t

) · σk

(
X

i,N
t

)
dBk

t ,

which becomes, adding over N and dividing by N ,

〈
SN

t , φ
〉= [〈

SN
t ,∇φ · bSN

t

〉+ 1

2

〈
SN

t ,�φ
〉]

dt +
∞∑

k=1

〈
SN

t ,∇φ · σk

〉
dBk

t .

Hence, SN
t is a measure-valued solution of equation (4), in the sense of Defini-

tion 11 below.
We define now the space over which we will study equation (4).
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DEFINITION 9. (P1(R
d),W1) is the space of probability measures μ0 on R

d

with finite first moment, that is,

‖μ0‖ :=
∫
Rd

dμ0 = 1, M1(μ0) :=
∫
Rd

|x|dμ0(x) < ∞
endowed with the 1-Wasserstein metric defined as

W1(ν0,μ0) = inf
m∈
(μ0,ν0)

∫
R2d

|x − y|m(dx, dy), μ0, ν0 ∈ P1
(
R

d).
Here, 
(μ0, ν0) is the set of the finite measures on R

2d with first and second
marginals equal respectively to μ0 and ν0, namely


(μ0, ν0)

= {
m ∈ P1

(
R

2d) : m(A ×R
d)= μ0(A),m

(
R

d × A
)= ν0(A),∀A ∈ B

(
R

d)}.
S will be the space of the stochastic processes taking values on (P1(R

d),W1),

μ : [0, T ] × � → P1
(
R

d)
such that E[supt∈[0,T ]

∫
Rd |x|dμt(x)] < ∞ and 〈μt,φ〉 is Ft -adapted for every test

function φ ∈ C∞
b (Rd). We endow S with the following distance:

dS(μ, ν) := E

[
sup

t∈[0,T ]
W1(μt , νt )

]
,

where μ = (μt )t∈[0,T ], ν = (νt )t∈[0,T ] ∈ S .

REMARK 10. The metric space (P1(R
d),W1) has been well studied in opti-

mal transportation theory and extensive results on it can be found in the literature,
(see, e.g., [1]). In particular, this space is complete and separable (Proposition 7.1.5
of [1]). Hence, follows from standard arguments that (S, dS) is also a complete
metric space.

HYPOTHESIS 2. Concerning the initial condition μ0 : � → P1(R
d) of equa-

tion (4) we shall always assume that:

(i) μ0 is F0-measurable;
(ii) E[∫

Rd |x|dμ0(x)] < ∞.

For every μ0 that satisfies the previous hypothesis, we call Sμ0 the set of μ ∈ S
such that μ|t=0 = μ0.

DEFINITION 11. A family {μt(ω); t ≥ 0,ω ∈ �} of random probability mea-
sures taking value in P1(R

d) is a measure-valued solution of equation (4) if:

(i) for all φ ∈ Cb(R
d), 〈μt,φ〉 is an adapted process with a continuous version,
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(ii) for all φ ∈ C2
b(Rd)

〈μt,φ〉 = 〈μ0, φ〉 +
∫ t

0
〈μs, bμs · ∇φ〉ds + 1

2

∫ t

0
〈μs,�φ〉ds

+
∞∑

k=1

∫ t

0
〈μs,σk · ∇φ〉dBk

s .

REMARK 12. Notice that the infinite sum in the previous equation converges
under our assumptions. Indeed, if φ ∈ C2

b(Rd), it holds, by Itô isometry and Jensen
inequality,

E

[∣∣∣∣∣
∞∑

k=1

∫ t

0
〈μs,σk · ∇φ〉dBk

s

∣∣∣∣∣
2]

= E

[ ∞∑
k=1

∫ t

0
〈μs,σk · ∇φ〉2 ds

]

≤ E

[ ∞∑
k=1

∫ t

0

〈
μs, |σk · ∇φ|2〉ds

]
.

Now, by the assumptions on σk , we have

∞∑
k=1

∣∣σk(x) · ∇φ(x)
∣∣2 ≤

∞∑
k=1

∣∣∇φ(x)
∣∣2∣∣σk(x)

∣∣2 = ∣∣∇φ(x)
∣∣2 ∞∑

k=1

∣∣σk(x)
∣∣2

≤ C
∣∣∇φ(x)

∣∣2 < +∞.

3. Well posedness of the stochastic PDE. In this chapter, we study the well
posedness of equation (4), and thus we prove the following.

THEOREM 13. Let T ≥ 0 and μ0 : � → P1(R
d) be as in Hypothesis 2. There

exists a unique solution μ = (μt )t∈[0,T ] of equation (4) in the sense of Definition 11
starting from μ0 and defined up to time T , that can be seen as the only fixed point
of the operator (27) defined below.

We have already seen that the empirical measure SN
t defined in (3) satisfies in

the distributional sense (4) for every test function φ, moreover it is a probability
measure with finite first moment and the process

〈
SN

t , φ
〉= 1

N

N∑
i=1

φ
(
X

i,N
t

)
is Ft -adapted. This is true since the processes X

i,N
t are solutions of the SDE (7),

and hence are adapted and continuous. Hence, the empirical measure SN
t satisfies

(4) in the sense of Definition 11.
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3.1. Stochastic Liouville equation. In order to investigate the solutions of
equation (4), we first want to study what happens when the drift coefficient does
not depend on the solution but it is instead a priori defined (but random). We hence
consider the following stochastic differential equation:

dXt = b(t,Xt) dt +
∞∑
k

σk(Xt) dBk
t ,

(16)
X0 = x ∈R

d,

where the σk’s are defined as before. Here, b = b(t, x,ω) is an Ft -adapted process,
continuous in (t, x), which satisfies:

• b Lipschitz continuous in x uniformly in (t,ω), with Lipschitz constant Lb, not
depending on ω and t , that is,∣∣b(t, x,ω) − b(t, y,ω)

∣∣≤ Lb|x − y| ∀x, y ∈ R
d,∀t ∈ R,P-a.s.

• For every fixed w, b has linear growth in x uniformly t , that is,∣∣b(t, x,ω)
∣∣≤ c1|x| + c2(ω) ∀x ∈R

d,∀t ∈ R, for P-a.e. ω,

where c1 ∈ R and c2(ω) is a random variable such that E[|c2(ω)|] < ∞.

By classical results on SDEs (see, e.g., [9]), this equation admits a unique so-
lution Xt = X(t, x,ω) which is continuous in time. Moreover, taking into account
the following lemma, it follows from Kolmogorov continuity theorem that there
exists a modification of X(t, x) which is continuous in x. It is also jointly continu-
ous in (t, x) by Kolmogorov theorem for processes taking values in Banach spaces,
precisely in the space C([0, T ];Rd). This results on continuity of the stochastic
flow of equation (16) can be found in the literature as in [9]. However, we want
to stress in the following the dependence on the different parameters and outline
more explicitly the constants.

We define now some constants depending on the coefficients b and σk of the
problem, which we will use in the following results. For a fixed real number p ≥ 1,
we call Cp the constat which appears in the Burkholder–Davis–Gundy theorem.
Moreover, for t > 0 and p ≥ 1, we define

C(p, t) := CpT 1/(2p)Lσ + T 1/pLb.(17)

Finally, for a fixed T > 0, let n ∈ N be the minimum such that C(p, (T /n)) < 1,
so that we can define

Cp,T := (
1 − C

(
p, (T /n)

))−np
.(18)



1422 M. COGHI AND F. FLANDOLI

From our choice of n ∈N, this last constant is well defined and depending only on
T ,p and the coefficients of problem (16).

LEMMA 14. Let p ≥ 1, T ≥ 0 and let X(t, x) be a solution of equation (16)
up to time T . Then

E

[
sup

t∈[0,T ]
∣∣X(t, x) − X

(
t, x′)∣∣p∣∣F0

]
≤ Cp,T

∣∣x − x′∣∣p,(19)

where the constant Cp,T is defined in (18).

PROOF. Let n ∈ N be the minimum such that C(p, (T /n)) < 1, where C(·, ·)
is defined in (17). Now we divide the temporal interval [0, T ] in n subintervals.
We set X(0)(t, x) = x and we call X(m), for m = 1, . . . , n, the solution to

dXt = b(t,Xt) dt +
∞∑
k

σk(Xt) dBk
t ,

X((m−1)/n)T = X(m−1)

(
m − 1

n
T ,x

)
on the interval [m−1

n
T , m

n
T ]. We prove by induction that, for every m = 1, . . . , n,

E
[

sup
t∈[((m−1)/n)T ,(m/n)T ]

∣∣X(m)(t, x) − X(m)(t, x′)∣∣p∣∣F0

]1/p

(20)

≤ |x − x′|
(1 − C(p, (T /n)))m

.

It follows from the uniqueness of solution of the stochastic differential equations
that the solution Xt of equation (16) coincides on each interval [m−1

n
T , m

n
T ] with

the process X
(m)
t . The thesis follows noting that the worst constant in (20) appears

when m = n and it coincides with Cp,t .
Step 1. Now we prove (20) for m = 1. By a triangular inequality, we get

E

[
sup

t∈[0,(T /n)]
∣∣X(1)(t, x) − X(1)(t, x′)∣∣p∣∣F0

]1/p

≤ ∣∣x − x′∣∣
+E

[
sup

t∈[0,(T /n)]

∣∣∣∣∫ t

0
b
(
s,X(1)(s, x)

)− b
(
s,X(1)(s, x′))ds

∣∣∣∣p∣∣∣F0

]1/p

+E

[
sup

t∈[0,(T /n)]

∣∣∣∣∫ t

0

∑
k

σk

(
X(1)(s, x)

)− σk

(
X(1)(s, x′))dBk

s

∣∣∣∣p∣∣∣F0

]1/p

.
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In order to estimate this, we first notice that, by the Lipschitz continuity of b one
can get

E

[
sup

t∈[0,(T /n)]

∣∣∣∣∫ t

0
b
(
s,X(1)(s, x)

)− b
(
s,X(1)(s, x′))ds

∣∣∣∣p∣∣∣F0

]1/p

≤ ((T /n)
)1/p

LbE

[
sup

t∈[0,(T /n)]
∣∣X(1)(t, x) − X(1)(t, x′)∣∣p∣∣F0

]1/p
.

Now, using the conditional Burkholder–Davis–Gundy inequality (Proposition 27),
we obtain

E

[
sup

t∈[0,(T /n)]

∣∣∣∣∫ t

0

∑
k

σk

(
X(1)(s, x)

)− σk

(
X(1)(s, x′))dBk

s

∣∣∣∣p∣∣∣F0

]1/p

≤ CpE

[(∫ (T /n)

0

∑
k

∣∣σk

(
X(1)(s, x)

)− σk

(
X(1)(s, x′))∣∣2 ds

)p/2∣∣∣F0

]1/p

≤ Cp

(
(T /n)

)1/(2p)
LσE

[
sup

t∈[0,(T /n)]
∣∣X(1)(t, x) − X(1)(t, x′)∣∣p∣∣F0

]1/p
.

We have hence proved the base step of the induction.
Step 2. Now we suppose (20) true for m and we prove it for m+ 1. First, thanks

to a triangular inequality we obtain

E

[
sup

t∈[(m/n)T ,((m+1)/n)T ]
∣∣X(m+1)(t, x) − X(m+1)(t, x′)∣∣p∣∣F0

]1/p

≤ E

[∣∣∣∣X(m)

(
m

n
T,x

)
− X(m)

(
m

n
T,x′

)∣∣∣∣p∣∣∣F0

]1/p

+E

[
sup

t∈[(m/n)T ,((m+1)/n)T ]

∣∣∣∣∫ t

(m/n)T
b
(
s,X(m+1)(s, x)

)
− b

(
s,X(m+1)(s, x′))ds

∣∣∣∣p∣∣∣F0

]1/p

+E

[
sup

t∈[(m/n)T ,((m+1)/n)T ]

∣∣∣∣∫ t

(m/n)T

∑
k

σk

(
X(m+1)(s, x)

)

− σk

(
X(m+1)(s, x′))dBk

s

∣∣∣∣p∣∣∣F0

]1/p.

Now, as in step 1, we use the Lipschitz property of b and σk and Lemma 27 to get

E

[
sup

t∈[(m/n)T ,((m+1)/n)T ]
∣∣X(m+1)(t, x) − X(m+1)(t, x′)∣∣p∣∣F0

]1/p

≤ E[|X(m)((m/n)T , x) − X(m)((m/n)T , x′)|p|F0]1/p

(1 − C(p, (T /n)))p
.
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Now estimate the right-hand side using (20) for m, and we conclude this last step,

E

[
sup

t∈[(m/n)T ,((m+1)/n)T ]
∣∣X(m+1)(t, x) − X(m+1)(t, x′)∣∣p∣∣F0

]1/p

≤ |x − x′|
(1 − C(p, (T /n)))m

1

(1 − C(p, (T /n)))
. �

Using the continuous version in x of the solution of equation (16), we are going
to define a solution for equation (4) in the case in which the drift coefficient is
fixed. This is shown in the following proposition. The push forward described in
the next statement has to be understood ω-wise: for a.e. ω and for each t ∈ [0, T ],
we take the initial measure μ0(ω) = μ0(ω, dx) and we consider its image measure
(or push forward) under the continuous map x �→ X(t, x,ω), denoted by μt(ω) or
μt(ω, dx).

PROPOSITION 15. Given μ0 which satisfies Hypotesis 2, the push forward of
μ0 with respect to the solution of (16) namely

μt(ω) = X(t, ·,ω)#μ0(ω)

solves the following equation in the sense of Definition 11:⎧⎪⎨⎪⎩dμt = −div(bμt ) dt −
∞∑

k=0

div(σkμt) dBk
t + 1

2
�μt,

μt |t=0 = μ0.

PROOF. First, notice that μ ∈ S . By definition, for every t ∈ [0, T ] and P-a.s.,
μt is a finite and positive measure. We show that the first moment of μt is finite,

E

[∫
Rd

|x|dμt(x)

]
= E

[∫
Rd

|Xt |dμ0(x)

]
≤ E

[∫
Rd

|x|dμ0(x)

]
(21)

+E

[∫
Rd

∫ t

0

∣∣b(X(s, x)
)∣∣ds dμ0(x)

]
(22)

+E

[∫
Rd

∣∣∣∣∣
∫ t

0

∞∑
k

σk

(
X(s, x)

)
dBk

s

∣∣∣∣∣dμ0(x)

]
.(23)

It follows from the choice of μ0 that (21) is finite. We can bound (22) if we notice
that the Lipschitz continuity assumption on b implies |b(x)| ≤ 1+|x|, which gives

E

[∫
Rd

∫ t

0

∣∣b(X(s, x)
)∣∣ds dμ0(x)

]
≤ CT + C

∫ t

0
E

[∫
Rd

|x|dμs(x)

]
ds.(24)
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In order to bound (23), we use Propositions 28 and 27 and we do the following:

E

[
E

[∫
Rd

∣∣∣∣∣
∫ t

0

∞∑
k=0

σk

(
X(s, x)

)
dBk

s

∣∣∣∣∣dμ0(x)
∣∣∣F0

]]

= E

[∫
Rd

E

[∣∣∣∣∣
∫ t

0

∞∑
k=0

σk

(
X(s, x)

)
dBk

s

∣∣∣∣∣∣∣∣F0

]
dμ0(x)

]
(25)

≤ CE

[∫
Rd

E

[∫ t

0

∞∑
k=0

∣∣σk

(
X(s, x)

)∣∣2 ds
∣∣∣F0

]1/2

dμ0(x)

]

≤ C
√

T .

Here, we used
∑∞

k=0 |σk(X(s, x))|2 < +∞. Taking into account (24) and (25), we
can apply the Gronwall lemma to deduce that the first moment of μt is finite for
every t . Let us stress a detail. In order to apply Proposition 28 of the Appendix, we
need to know that the random field (t here is fixed)

f (x) =
∫ t

0

∞∑
k=0

σk

(
X(s, x)

)
dBk

s

is continuous, or it has a continuous modification. This is true because by the BDG
inequality,

E
[∣∣f (x) − f (y)

∣∣p]= E

[∣∣∣∣∣
∫ t

0

∞∑
k=0

(
σk

(
X(s, x)

)− σk

(
X(s, y)

))
dBk

s

∣∣∣∣∣
p]

≤ CpE

[(∫ t

0

∞∑
k=0

∣∣σk

(
X(s, x)

)− σk

(
X(s, y)

)∣∣2 ds

)p/2]

≤ CpLp
σE

[(∫ t

0

∣∣X(s, x) − X(s, y)
∣∣2 ds

)p/2]
≤ Cp,T CpLp

σT |x − y|p.

This last inequality follows from Lemma 14. Thus, for p > d we may apply Kol-
mogorov regularity theorem and deduce that f has a continuous version.

We show now that μt satisfies the conditions of Definition 11:

(i) to prove that 〈μt,φ〉 is continuous and adapted, it is sufficient to notice that

〈μt,φ〉 =
∫
Rd

φ
(
X(t, x)

)
μ0(dx).

(ii) Let φ ∈ C2
b(Rd), we apply Itô’s formula

dφ(Xt) = ∇φ(Xt) · dXt + 1

2

∞∑
k

d∑
i,j=1

∂2
i,j φ(Xt)σ

i
k(Xt )σ

j
k (Xt) dt.
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Under the homogeneity assumption over σk , we obtain the following:

dφ(Xt) =
[
∇φ(Xt) · b(Xt) + 1

2
�φ(Xt)

]
dt +

∞∑
k

∇φ(Xt)σk(Xt) dBk
t .

Integrating now over μ0, we get

d〈μt,φ〉 =
[
〈μt,∇φ · b〉 + 1

2
〈μt,�φ〉

]
dt +

∞∑
k

∫
Rd

∇φ(Xt)σk(Xt) dBk
t dμ0.

Using the stochastic Fubini’s theorem, we interchange the stochastic integral and
the integral in μ0 and we obtain the desired equation. �

3.2. The contraction mapping. In this section, we will construct a solution of
equation (4) by means of a fixed-point argument. Given μ0 : � → P1(R

d) as in
Hypothesis 2, we define now an operator �μ0 : S → S . In Theorem 17, we prove
that it is a contraction and we see that his unique fixed point is a solution to (4).

Let μ = (μt )t∈[0,T ] ∈ S . We define the following as the convolution between μt

and K :

bμ(t, x,ω) :=
∫
Rd

K(x − y)μt(ω, dy).

Notice that bμ(t, ·,ω) is Lipschitz continuous with Lipschitz constant LK , which
is the Lipschitz constant of K and does not depend on t and ω. Moreover, since
|K(x)| ≤ LK(K(0) + |x|),∣∣bμ(t,0,ω)

∣∣≤ ∫
Rd

∣∣K(−y)
∣∣μt(ω, dy) ≤ LK

∫
Rd

(
K(0) + |y|)μt(ω, dy)

≤ LKK(0) + LK

∫
Rd

|x|μt(ω, dx)

and the random variable
∫
Rd |x|μt(ω, dx) is integrable. Hence, bμ satisfies the

assumptions required in Section 3 to have strong existence and uniqueness of so-
lutions. Let now X

μ
t be the solution to equation (16) with drift coefficient bμ,

namely

dXt = bμ(Xt) dt +∑
k

σk(Xt) dBk
t ,

(26)
X0 = x.

Let Xμ(t, x,ω) be a modification of X
μ
t continuous in x. We define, for every t ,

(�μ0μ)t (ω) := Xμ(t, ·,ω)#μ0(ω), ω-a.s.(27)

REMARK 16. Notice that the range of �μ0 is included in Sμ0 and that �μ0μ

is a solution of equation (4) in the sense of Definition 11, thanks to Proposition 15.
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From Lemma 19 and Proposition 15, we deduce the following theorem, which
is the main result of this section.

THEOREM 17. Given T > 0, the operator �μ0 has a unique fixed point μ =
{μt }t∈[0,T ] in Sμ0 . This fixed point is a solution of equation (4).

PROOF. From Lemma 19, we have

dS(�μ0μ,�μ0ν) ≤ γT dS(μ, ν) ∀μ,ν ∈ S,

where γT is defined in (28) as γT := LKT C1,T . Hence, there exists a time t∗
up to which the operator �μ0 is a contraction, thus it has a unique fixed point
μ = (μt )t∈[0,t∗]. It follows from Proposition 15 that μ is a solution, in the sense
of Definition 11, to equation (4) on the interval [0, t∗], starting from μ0. We can
repeat this method on the interval [t∗,2t∗] with initial condition μt∗ , and iterate
it up to any finite time T because t∗ depends only on the Lipschitz constants of
the coefficients, and not on the initial condition. In this way, we have shown that
we can construct a solution μ on the interval [0, T ] which is a fixed point for the
operator �μnt∗ on the interval [nt∗, (n + 1)t∗], for every n ∈N such that nt∗ < T .
Moreover, we can prove that any two fixed points μ,ν of the map �μ0 on the
interval [0, T ] coincide. Indeed, if t0 ∈ [0, T ] is the largest time such that μ =
ν, one proves t0 = T by contradiction, by applying the contraction argument on
[t0, t0 + δ] for a suitable δ > 0, if t0 < T . �

LEMMA 18. Set T > 0. Let μ = {μt }t≥0, ν = {νt }t≥0 ∈ S and let Xμ,Xν be
the solutions of equation (26) with drift coefficients bμ and bν , respectively. The
following holds true:

E

[
sup

t∈[0,T ]
∣∣Xμ(t, x) − Xν(t, x)

∣∣∣∣F0

]
≤ γT E

[
sup

t∈[0,T ]
W1(μt , νt )

∣∣F0

]
,

where

γT := LKT C1,T .(28)

The constant C1,T is defined in (18).

PROOF. Given T > 0, we call n the smallest positive integer such that
C(1, (T /n)) < 1 [see (17)]. We split the interval [0, T ] in n subintervals, namely
[m−1

n
T , m

n
T ], for m ≤ n. We will give the proof by induction over m.

First, we prove our claim on the interval [0, (T /n)]. We start our estimation by
giving bounds for the drift and the noise of equation (26). It holds, P-a.s.,∫ t

0

∣∣bμ

(
s,Xμ(s, x)

)− bν

(
s,Xν(s, x)

)∣∣ds

≤
∫ t

0

∣∣bμ

(
s,Xμ(s, x)

)− bμ

(
s,Xν(s, x)

)∣∣ds(29)
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+
∫ t

0

∣∣bμ

(
s,Xν(s, x)

)− bν

(
s,Xν(s, x)

)∣∣ds

≤ LK

∫ t

0

∣∣Xμ(s, x) − Xν(s, x)
∣∣ds + LK

∫ t

0
W1(μs, νs) ds.

Here, we used that, for every t ∈ [0, (T /n)], x ∈ R
d and P-a.s.,∣∣bμ(t, x) − bν(t, x)

∣∣≤ LKW1(μt , νt ).(30)

To prove this, we apply first the definition of bμ:∣∣bμ(t, x) − bν(t, x)
∣∣

=
∣∣∣∣∫

Rd
K(x − y)dμt(y) −

∫
Rd

K
(
x − y′)dνt

(
y′)∣∣∣∣.

Given ω ∈ � a.s. and t ∈ [0, (T /n)] for every m ∈ 
(μt(ω), νt (ω)) so we can
rewrite the right-hand side as follows and then apply the Lipshitz continuity of K

to obtain, for P-a.e. ω,∣∣bμ(s, x) − bν(s, x)
∣∣

=
∣∣∣∣∫

Rd×Rd
K(x − y)dm

(
y, y′)− ∫

Rd×Rd
K
(
x − y′)dm

(
y, y′)∣∣∣∣

≤
∫
Rd×Rd

∣∣K(x − y) − K
(
x − y′)∣∣dm

(
y, y′)

≤ LK

∫
Rd×Rd

∣∣y − y′∣∣dm
(
y, y′).

Now (30) follows since m is arbitrary.
Using the conditional Burkholder–Davis–Gundy inequality (see Proposition 27)

and the Lipschitz continuity of the noise, we can estimate the following:

E

[
sup

t∈[0,(T /n)]

∣∣∣∣∫ t

0

∑
k

σk

(
Xμ(s, x)

)− σk

(
Xν(s, x)

)
dBk

s

∣∣∣∣∣∣∣F0

]

≤ C1E

[(∫ (T /n)

0

∑
k

(
σk

(
Xμ(s, x)

)− σk

(
Xν(s, x)

))2
ds

)1/2∣∣∣F0

]

≤ C1LσE

[(∫ (T /n)

0

∣∣Xμ(t, x) − Xν(t, x)
∣∣2 dt

)1/2∣∣∣F0

]
(31)

≤ C1(T /n)1/2LσE

[(
sup

t∈[0,(T /n)]
∣∣Xμ(t, x) − Xν(t, x)

∣∣2)1/2∣∣F0

]
≤ C1(T /n)1/2LσE

[
sup

t∈[0,(T /n)]
∣∣Xμ(t, x) − Xν(t, x)

∣∣∣∣F0

]
.
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We now use (29) and (31) to estimate the following:

E

[
sup

t∈[0,(T /n)]
∣∣Xμ(t, x) − Xν(t, x)

∣∣∣∣F0

]

≤ E

[
sup

t∈[0,(T /n)]

∫ t

0

∣∣bμ

(
s,Xμ(t, x)

)− bν

(
s,Xν(t, x)

)∣∣ds
∣∣∣F0

]

+E

[
sup

t∈[0,(T /n)]

∣∣∣∣∫ t

0

∑
k

(
σk

(
Xμ(s, x)

)− σk

(
Xν(s, x)

))
dBk

s

∣∣∣∣∣∣∣F0

]

≤ (LK(T /n) + C1Lσ (T /n)1/2)
E

[
sup

t∈[0,T ]
∣∣Xμ(s, x) − Xν(s, x)

∣∣∣∣F0

]
+ LK(T /n)E

[
sup

t∈[0,(T /n)]
W1(μt , νt )

∣∣F0

]
.

Hence,

E

[
sup

t∈[0,(T /n)]
∣∣Xμ(t, x) − Xν(t, x)

∣∣∣∣F0

]

≤ 1

1 − C(1, (T /n))
LK(T /n)E

[
sup

t∈[0,(T /n)]
W1(μt , νt )

∣∣F0

]
,

where C(1, (T /n)) is defined in (18).
We now prove the inductive step. Suppose that for some m − 1 ≤ n, it holds

E

[
sup

t∈[((m−2)/n)T ,((m−1)/n)T ]
∣∣Xμ(t, x) − Xν(t, x)

∣∣∣∣F0

]
(32)

≤
(
LK(T /n)

m−1∑
i=1

(
1

1 − C(1, (T /n))

)i
)
E

[
sup

t∈[0,T ]
W1(μt , νt )

∣∣F0

]
,

we will prove the same for m. In the same way as in the first step, one can deduce

E

[
sup

t∈[((m−1)/n)T ,(m/n)T ]
∣∣Xμ(t, x) − Xν(t, x)

∣∣∣∣F0

]
(33)

≤ E
[∣∣Xμ((m − 1)T /n, x

)− Xν((m − 1)T /n, x
)∣∣∣∣F0

]
+ (

LK(T /n) + C1Lσ (T /n)1/2)
(34)

×E

[
sup

t∈[((m−1)/n)T ,(m/n)T ]
∣∣Xμ(s, x) − Xν(s, x)

∣∣∣∣F0

]
+ LK(T /n)E

[
sup

t∈[((m−1)/n)T ,(m/n)T ]
W1(μt , νt )

∣∣F0

]
.(35)

Now we use the inductive hypothesis (32) to estimate (33). We put (34) on the
left-hand side and we note that the supremum in (33) is less than the supremum
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over the whole interval

C−1
1,(T /n)E

[
sup

t∈[((m−1)/n)T ,(m/n)T ]
∣∣Xμ(t, x) − Xν(t, x)

∣∣∣∣F0

]

≤
(
LKT

(m−1)∑
i=1

(
1

1 − C(1, (T /n))

)i
)
E

[
sup

t∈[0,T ]
W1(μt , νt )

∣∣F0

]
+ LK(T /n)E

[
sup

t∈[0,T ]
W1(μt , νt )

∣∣F0

]

= LK(T /n)

(
(m−1)∑
i=1

(
1

1 − C(1, (T /n))

)i

+ 1

)
E

[
sup

t∈[0,T ]
W1(μt , νt )

∣∣F0

]
.

So, (32) is proved for m.
Finally, to obtain the constant of Lemma 18 notice that 1

1−C(1,(T /n))
> 1, hence

( 1
1−C(1,(T /n))

)i ≤ ( 1
1−C(1,(T /n))

)n when i ≤ n. Thus, the constant in (32), in the
case m = n, can be further estimate by(

LK(T /n)

m∑
i=1

(
1

1 − C(1, (T /n))

)i
)

≤
(
LK(T /n)

n∑
i=1

(
1

1 − C(1, (T /n))

)i
)

≤ LK(T /n)n

(
1

1 − C(1, (T /n))

)n

.

This last term is exactly γT because of the definition of C1,T [see (18)]. �

LEMMA 19. For every T > 0, we have

dS(�μ0μ,�μ0ν) ≤ γT dS(μ, ν) ∀μ,ν ∈ S,

where γT is defined in (28).

PROOF. Let ω ∈ � and t ∈ [0, T ] be fixed. The measure m = (Xμ(t, ·,ω),

Xν(t, ·,ω))#μ0 belongs to 
((�μ0μ)t (ω), (�μ0ν)t (ω)). Indeed, for every A ∈
R

2d , it holds m(B) = μ0{x ∈ R
d : Xμ(t, x,ω),Xν(t, x,ω) ∈ B}, which implies,

for every A ∈ B(Rd),

m
(
A ×R

d)= μ0
{
x ∈ R

d : Xμ(t, x,ω) ∈ A
}

= Xμ(t, ·,ω)#μ0(A) = (�μ0μ)t (ω)(A).

In the same way, m(Rd × A) = (�μ0ν)t (ω)(A). Thus, from the definition of the
Wasserstein metric W1, it is easy to see that

dS(�μ0μ,�μ0ν) ≤ E

[
sup

t∈[0,T ]

∫
Rd

∣∣Xμ(t, x) − Xν(t, x)
∣∣dμ0

]
.
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From the F0-measurability of the initial condition μ0 and applying Proposition 28,
we have the following:

E

[
E

[
sup

t∈[0,T ]

∫
Rd

∣∣Xμ(t, x) − Xν(t, x)
∣∣dμ0

∣∣∣F0

]]

= E

[∫
Rd

E

[
sup

t∈[0,T ]
∣∣Xμ(t, x) − Xν(t, x)

∣∣∣∣∣F0

]
dμ0

]
.

Now we complete the proof applying Lemma 18 as follows:

dS(�μ0μ,�μ0ν) ≤ E

[∫
Rd

E

[
sup

t∈[0,T ]
∣∣Xμ(t, x) − Xν(t, x)

∣∣∣∣F0

]
dμ0

]
≤ γT dS(μ, ν). �

4. Convergence and propagation of chaos. In this section, we will show
that the distance between two solutions of (4) can be estimated by the distance
between the respective initial conditions. Since we have shown in Section 2 that
the empirical measure solves (4) with the appropriate initial condition, we will be
able to deduce from 20 some results of propagation of chaos.

Last we will give a review on recent quantitative results that can be applied
together with Theorem 20 to obtain a more explicit rate of convergence to approx-
imate the solution of SPDE (4) with the solution of SDE (1).

THEOREM 20. Given T > 0, let μ0, ν0 : � → P1(R
d) be as in Hypothesis 2,

and let μ ∈ Sμ0 , ν ∈ Sν0 be the respective solutions of equation (4) given by the
contraction method described before, there exists a constant C̃T > 0, such that

dS(μ, ν) ≤ C̃T E
[
W1(μ0, ν0)

]
.

PROOF. Given T > 0, we define

C̃T :=
(

1

(1 − γ(T /n))(1 − C(1, (T /n)))

)n

,

where n ∈ N is the smallest integer such that γ(T /n) = LkT C1,T < 1; see (18)
for the definition of C1,T , and C(1, (T /n)) < 1, defined in (17). We will give the
proof in the case when T is small enough such that n = 1 and we refer to the
inductive procedure used in Lemma 14 for the general case. Notice that under this
assumption

C̃T := C1,T

1 − γT

,

where C1,T is defined in (18).
Notice that, since ‖μ0‖ = ‖ν0‖ = 1, the Lipschitz constants of bμ and bν are

the same, LK . Moreover, recalling the definition of the operator �μ0 (resp., �ν0 ),
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it holds that its fixed point μ (resp., ν) can be written as μt = Xμ(t, ·)#μ0 [resp.,
νt = Xν(t, ·)#ν0] where Xμ(t, x,ω) [resp., Xν(t, x,ω)] is a continuous version
of the solution of equation (16) with drift coefficient bμ (resp., bν ). Let now ω

be fixed. Notice that the infimum in the definition of the Wasserstein metric is
indeed a minimum (see [1], Chapter 6), that is, there exists a measure m(ω) ∈

(μ0(ω), ν0(ω)) such that∫

Rd×Rd

∣∣x − x′∣∣m(ω,dx, dx′)= W1
(
ν0(ω),μ0(ω)

)
.(36)

Moreover, the function ω �→ m(ω) is F0-measurable. Indeed, for every couple of
measures (μ, ν) ∈ P1 × P1 we can construct a measurable map (μ, ν) �→ m ∈

0(μ, ν) using Proposition 29 in the Appendix, and then we can see that the func-
tion ω �→ (μ0(ω), ν0(ω)) �→ m(ω) is F0-measurable since it is a composition of
measurable functions. If we define mt(ω) = (Xμ(t, ·,ω),Xν(t, ·,ω))#m(ω), we
get mt ∈ 
((�μ0μ)t , (�ν0ν)t ).

As a particular case of Lemma 14, we have that

E

[
sup

t∈[0,T ]
∣∣Xμ(t, x) − Xμ(t, x′)∣∣∣∣F0

]
≤ C1,T

∣∣x − x′∣∣,(37)

where x, x′ ∈ R
d are two initial condition for equation (26).

In the following estimates, we use the definition of the Wasserstein metric, the
definition of mt , Proposition 28, inequality (37) and identity (36),

E

[
sup

t∈[0,T ]
W1
(
(�μ0μ)t , (�ν0μ)t

)]
≤ E

[
sup

t∈[0,T ]

∫
R2d

∣∣x − x′∣∣dmt

(
x, x′)]

= E

[
E

[
sup

t∈[0,T ]

∫
R2d

∣∣Xμ(t, x) − Xμ(t, x′)∣∣dm
(
x, x′)∣∣∣F0

]]
(38)

≤ E

[∫
R2d

E

[
sup

t∈[0,T ]
∣∣Xμ(t, x) − Xμ(t, x′)∣∣∣∣F0

]
dm
(
x, x′)]

≤ E

[∫
R2d

C1,T

∣∣x − x′∣∣dm
(
x, x′)]

= C1,T E
[
W1(μ0, ν0)

]
.

Using now the definition of the operators �μ0,�ν0 and a triangular inequality, we
obtain

dS(μ, ν) = dS(�μ0μ,�ν0ν)

≤ dS(�μ0μ,�ν0μ) + dS(�ν0μ,�ν0ν)(39)

≤ C1,T E
[
W1(μ0, ν0)

]+ γT dS(μ, ν).
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In the last inequality, we have used (38) and Lemma 19. Inequality (39) leads to

dS(μ, ν) ≤ C1,T

1 − γT

E
[
W1(μ0, ν0)

]
. �

Reading the proof of this theorem, one may wonder if it is really necessary to
add the complication of splitting the time interval in subintervals. Indeed a more
simple calculation can lead to a global estimate, although it can only be obtained
if the initial conditions belong W2, which is a stronger assumption. Nevertheless,
we will give now the proof in that case so that the reader can compare the two
different approaches. Moreover, if one is interested in the W2 norm, one can apply
this method to other results within this paper. We are indebted to an anonymous
referee for suggesting us this idea.

At the end of this subsection, we will stress what is the difficulty encountered
using W1 which prevents us to obtain a straightforward global estimation in time.

THEOREM 21. Under the same assumptions of Theorem 20, suppose that the
random measures μ0, ν0 take values in P2(R

d), namely they have finite second
moments. Then it holds, for all t ≤ T ,

E
[
W 2

2 (μt , νt )
]≤ 4e4t (2tL2

k+C2L
2
σ )
E
[
W 2

2 (μ0, ν0)
]
,

where LK and Lσ are the Lipschitz constants of the coefficients of the system and
C2 is the constant appearing in Burkholder–Davis–Gundy inequality with expo-
nent 2.

PROOF. Proceeding as in the proof of Theorem 20, we can find a random mea-
sure m ∈ 
0(μ0, ν0), such that W 2

2 (μ0, ν0) = ∫
Rd×Rd |x −x′|dm(x, x′). Moreover,

it holds

E
[
W 2

2 (μt , νt )
] ≤ E

[∫ ∣∣Xμ(t, x) − Xν(t, x′)∣∣2 dm

]
= E

[∫
E
[∣∣Xμ(t, x) − Xν(t, x′)∣∣2∣∣∣F0

]
dm
(
x, x′)].

Hence, we proceed estimating the conditional expectation in the last term using
that Xμ(t, x) and Xν(t, x′) solve (26) and a parallelogram inequality,

E
[∣∣Xμ(t, x) − Xν(t, x′)∣∣2|F0

]
(40)

≤ 2
∣∣x − x′∣∣2
+ 2E

[(∫ t

0

∣∣bμs

(
Xμ(s, x)

)− bνs

(
Xν(s, x′))∣∣ds

)2∣∣∣F0

]
(41)

+ 2E
[(∫ t

0

∑
k

∣∣σk

(
Xμ(s, x)

)− σk

(
Xν(s, x′))∣∣dBk

s

)2∣∣∣F0

]
.(42)
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Using a Burkholder–Davis–Gundy inequality and the Lipschitz continuity of σk ,
we can estimate (42) as follows:

2E
[(∫ t

0

∑
k

∣∣σk

(
Xμ(s, x)

)− σk

(
Xν(s, x′))∣∣dBk

s

)2∣∣∣F0

]
(43)

≤ 2C2L
2
σE

[∫ t

0

∣∣Xμ(t, x) − Xν(t, x′)∣∣2 ds
∣∣∣F0

]
.

To estimate (41), we first apply the Jensen inequality, then we need to split the drift
using a triangular inequality and then use the Lipschitz continuity of K ,

2E
[(∫ t

0

∣∣bμs

(
Xμ(s, x)

)− bνs

(
Xν(s, x′))∣∣ds

)2∣∣∣F0

]
≤ 2tE

[∫ t

0

∣∣bμs

(
Xμ(s, x)

)− bνs

(
Xν(s, x′))∣∣2 ds

∣∣∣F0

]
≤ 4tE

[∫ t

0
ds

∫ ∣∣K(Xμ(s, x) − y
)− K

(
Xν(s, x′)− y

)∣∣2 dμs(y)

+
∣∣∣∣∫ (K(Xν(s, x′)− y

)
− K

(
Xν(s, x′)− y′))d(μs(y) − νs

(
y′))∣∣∣∣2∣∣∣F0

]
≤ 4tL2

k

∫ t

0
E
[∣∣Xμ(s, x) − Xν(s, x′)∣∣2|F0

]
ds(44)

+ 4tL2
k

∫ t

0
E
[
W 2

2 (μs, νs)|F0
]
ds.(45)

We used here a property of the Wassertein metric which we already used and
proved in the proof of Lemma 18 [see (29)] for W1, but which can be straight-
forwardly readapted to W2.

We now put together (41), (44), (45) and (43) to obtain

E
[
W 2

2 (μt , νt )
]

≤ E

[∫ ∣∣Xμ(t, x) − Xν(t, x′)∣∣2 dm
(
x, x′)]

≤ 2E
[
W 2

2 (μ0, ν0)
]

+ 4tL2
k

∫ t

0
E

[
W 2

2 (μs, νs) +
∫ ∣∣Xμ(s, x) − Xν(s, x′)∣∣2 dm

(
x, x′)]ds

+ 2C2L
2
σ

∫ t

0
E

[∫ ∣∣Xμ(s, x) − Xν(s, x′)∣∣2 dm
(
x, x′)]ds.
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Adding at the end the positive term 2C2L
2
σ

∫ t
0 E[W 2

2 (μs, νs)]ds, we can apply the
Gronwall inequality and obtain

E

[
W 2

2 (μt , νt ) +
∫ ∣∣Xμ(t, x) − Xν(t, x′)∣∣2 dm

(
x, x′)]

≤ 4e4t (2tL2
k+C2L

2
σ )
E
[
W 2

2 (μ0, ν0)
]
. �

REMARK 22. Reading the proof of the previous theorem, one can be led to
think that it is possible to do the same calculations using the norm W1, which is
true up to some point. In particular, following the idea of the proof of Theorem 21
one can reach the inequality

E
[
W1(μt , νt )

]≤ E

[∫ ∣∣Xμ
t − Xν

t

∣∣dm

]
≤ E

[
W1(μ0, ν0)

]+ Lk

∫ t

0
E

[
W1(μs, νs) +

∫ ∣∣Xμ
s − Xν

s

∣∣dm

]
ds

+ C1LσE

[∫ (∫ t

0

∣∣Xμ
s − Xν

s

∣∣2 ds

)1/2

dm

]
.

The difficult term is the last one, indeed we do not see a way to get rid of the
powers or to switch them with the integrals. What we indeed do in most of the
proofs in this paper is to take the supremum in time inside the integrals to obtain

E

[∫ (∫ t

0

∣∣Xμ
s − Xν

s

∣∣2 ds

)1/2

dm

]
≤ tC1LσE

[∫
sup

s∈[0,t]
∣∣Xμ

s − Xν
s

∣∣dm

]
.

At this point, it is no longer possible to apply the Gronwall lemma, but this last
term can be subtracted in both sides of the estimations to get something of the
form (1 − tC1Lσ )E[∫ sups∈[0,t] |Xμ

s − Xν
s |dm] ≤ · · ·, from which the need to do

the estimations in small intervals first.

4.1. Propagation of chaos. Let (�,F,Ft ,P) be a filtered probability space,
and (Xi

0)i∈N be a sequence of symmetric R
d -valued random variable on this

space that are measurable with respect to F0. We consider a collection Bk
t ,

k ≥ 1, of independent Brownian motions on this space, independent from
the Xi

0, and we call (FB
t )t≥0 the filtration generated by (Bk

t )k≥1. For every

N ∈ N, XN = (X
1,N
t , . . . ,X

N,N
t )t≥0 is the solution of equation (1) with ini-

tial condition (X1
0, . . . ,X

N
0 ). We will further suppose that the empirical measure

SN
0 := 1

N

∑N
i=0 δXi

0
converges to a random probability measure μ0, in the met-

ric E[W1(·, ·)]. Under these settings, we will now prove Theorems 24 (which is
slightly more general then Theorem 2) and 3, but first we need the following
lemma.
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LEMMA 23. Let σ : {1, . . . ,N} → {1, . . . ,N} be a permutation. Then

E
[
f
(
X

1,N
t , . . . ,X

N,N
t

)|FB
t

]= E
[
f
(
X

σ(i),N
t , . . . ,X

σ(N),N
t

)|FB
t

]
,(46)

for every f ∈ Cb((R
d)N).

PROOF. Let Xσ,N := (X
σ(1),N
t , . . . ,X

σ(N),N
t )t≥0. Since XN is a strong solu-

tion of equation (1) with initial condition (X1, . . . ,XN) it is easy to see that Xσ,N

is a strong solution of equation (1) with initial condition (Xσ(1), . . . ,Xσ(N)). Since
the coefficients b and σk have the necessary Lipschitz properties (see [9]), we have
strong uniqueness at fixed initial data x ∈ R

d . Thus, we can apply Proposition 1.4
of [12] (notice that XN and Xσ,N have the same initial law) and we obtain unique-
ness in law. More precisely we have(

XN
t ,
(
Bk

t

)
k∈N

)
#P = (

X
σ,N
t ,

(
Bk

t

)
k∈N

)
#P ∀t ≥ 0.

This implies, for every A ∈ FB
t such that A = {(Bk

t )k≥1 ∈ Ã} with Ã ∈ B((Rd)∞)

and for every φ ∈ Cb((R
d)N),

E
[
1Af

(
XN

t

)]= E
[
1{(Bk

t )k≥1∈Ã}f
(
XN

t

)]= E
[
1{(Bk

t )k≥1∈Ã}f
(
X

N,σ
t

)]
= E

[
1Af

(
X

N,σ
t

)]
.

Since the integrals of f (XN
t ) and f (X

N,σ
t ) coincide on every element of a basis

of FB
t , their conditional expectation coincide also; hence, (46) follows. �

Using the previous result, we can now prove Theorem 2 which we restate here
for simplicity.

THEOREM 24. There exists a random measure-valued solution μt of equa-
tion (8) such that

lim
N→∞E

[∣∣〈SN
t , φ

〉− 〈μt,φ〉∣∣]= 0

for all φ ∈ Cb(R
d).

Moreover, given r ∈ N and φ1, . . . , φr ∈ Cb(R
d), we have

lim
N→∞E

[
φ1
(
X

1,N
t

) · · ·φr

(
X

r,N
t

)|FB
t

]= E

[
r∏

i=1

〈μt,φi〉
∣∣∣FB

t

]

in L1(�).

PROOF. Since the convergence in the Wasserstein metric W1 implies the weak
convergence, the first statement follows from Theorem 20.
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Without loss of generality, we prove the second statement in the case r = 2. Let
φ1, φ2 ≤ M . By a triangular inequality, we obtain∣∣E[φ1

(
X

1,N
t

)
φ2
(
X

2,N
t

)|FB
t

]−E
[〈μt,φ1〉〈μt,φ2〉|FB

t

]∣∣
≤ ∣∣E[φ1

(
X

1,N
t

)
φ2
(
X

2,N
t

)|FB
t

]−E
[〈
SN

t , φ1
〉〈
SN

t , φ2
〉|FB

t

]∣∣(47)

+ ∣∣E[〈SN
t , φ1

〉〈
SN

t , φ2
〉|FB

t

]−E
[〈μt,φ1〉〈μt,φ2〉|FB

t

]∣∣.(48)

Using Lemma 23, we can estimate (47) as follows:∣∣E[φ1
(
X

1,N
t

)
φ2
(
X

2,N
t

)|FB
t

]−E
[〈
SN

t , φ1
〉〈
SN

t , φ2
〉|FB

t

]∣∣
=
∣∣∣∣∣ 1

N2 − N

N∑
i,j=1,i �=j

E
[
φ1
(
X

i,N
t

)
φ2
(
X

j,N
t

)|FB
t

]

− 1

N2

N∑
i,j=1

E
[
φ1
(
X

i,N
t

)
φ2
(
X

j,N
t

)|FB
t

]∣∣∣∣∣
≤
∣∣∣∣( 1

N2 − N
− 1

N2

)(
N2 − N

)
M2
∣∣∣∣+ ∣∣∣∣ 1

N
M2
∣∣∣∣

= 2
M2

N
→ 0 as N → ∞.

The convergence to zero of (47) follows from the first statement of this theorem.
Indeed,

E
[∣∣E[〈SN

t , φ1
〉〈
SN

t , φ2
〉|FB

t

]−E
[〈μt,φ1〉〈μt,φ2〉|FB

t

]∣∣]
≤ E

[∣∣〈SN
t , φ1

〉− 〈μt,φ1〉
∣∣∣∣〈SN

t , φ2
〉∣∣]+E

[∣∣〈SN
t , φ2

〉− 〈μt,φ2〉
∣∣∣∣〈μt,φ1〉

∣∣]
≤ ME

[∣∣〈SN
t , φ1

〉− 〈μt,φ1〉
∣∣]+ ME

[∣∣〈SN
t , φ2

〉− 〈μt,φ2〉
∣∣]

= 2ME
[∣∣〈SN

t , φ1
〉− 〈μt,φ1〉

∣∣]→ 0 as N → ∞. �

PROOF OF THEOREM 3. First, notice that Xr,N is the strong solution of equa-
tion (26) with drift coefficient bν , where ν = SN = {SN

t }t∈[0,T ], and initial condi-
tion Xr

0. We can thus write Xr,N = Xν(t,Xr
0(ω),ω).

If we apply Lemma 18, we obtain

E
[∣∣Xr,N

t − Xt

∣∣]≤ γT dS
(
μ,SN ).

This last quantity goes to 0 as N → ∞ thanks to Theorem 20. �

4.2. Quantitative estimates. As already mentioned, there are several recent re-
sults in literature that deal with the rate of convergence of an empirical measure.
In this section, we want to give some examples of how these results can be applied
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in our model using Theorem 20. Under the assumption in the beginning of the sec-
tion, we further define GN

0 the law of the initial condition (X1
0, . . . ,X

N
0 ) and we

denote by GN
0,2 its first two marginals. Given a p > 0, we suppose that GN

0 and μ0

have finite first p moments Mp(GN
0 ) and Mp(μ0).

Using Theorem 2.4 of [8] on the initial conditions and our estimates of Theo-
rem 20, we can compare the rate of convergence of the empirical measure of the
solution to the rate of convergence of just two initial particles.

COROLLARY 25. For every exponent γ < (d + 1 + d
p
)−1, there exists a finite

positive constant 
 depending only on p and d such that, for every N ≥ 1,

E
[
W1
(
SN

t ,μ
)]≤ C̃


(
Mp

(
GN

0
)+ Mp(μ0)

)1/p
(
W1
(
GN

0,2,μ0
)+ 1

N

)γ

.

When the initial condition consists of a sequence of i.i.d. μ0-distributed ran-
dom variables (Xi

0)i∈N, a quantitative estimate can be derived from [6]. Under
this stronger assumptions one can obtain a slightly stronger result, however in this
case we must suppose that the measures which we are working on have finite p

moments with p strictly greater than one.

COROLLARY 26. Let p > 1. There exists a constant 
 depending on p and d

such that, for all N ≥ 1,

E
[
W1
(
SN

t ,μt

)]
≤ C̃
Mp(μ0)

1/p

×
⎧⎪⎨⎪⎩

N−1/2 log(1 + N) + N−(p−1)/p, if d = 2 and p �= 2,

N−1/d + N−(p−1)/p, if d > 2 and p �= d

(d − 1)
.

APPENDIX

PROPOSITION 27. Given (�,F, (Ft )t∈[0,T ],P), let Mt be a continuous mar-
tingale with respect to Ft . If we define M∗

t = sup0≤s≤t |Ms |, it holds

E
[∣∣M∗

t

∣∣p|F0
]≤ CpE

[[M]p/2
t |F0

]
,

for some constant Cp > 0.

PROOF. We fix an A ∈F0 and we prove the following:

E
[
1A

∣∣M∗
t

∣∣p]≤ CpE
[
1A[M]p/2

t

]
.
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First, we note that Nt := Mt1A is a continuous Ft -martingale, indeed A ∈ F0 ⊂
Fs implies

E[1AMt |Fs] = 1AE[Mt |Fs] = 1AMs.

We can thus apply the Burkholder–Davis–Gundy inequality to Nt and we obtain

E
[∣∣N∗

t

∣∣p]≤ CpE
[[N ]p/2

t

]
.

Notice that 1A commute with supt∈[0,T ]. The thesis follows from the equality

[1AM]t = 1A[M]t .(49) �

Throughout the paper, we repeatedly used an identity of the form

E

[∫
Rd

f (x) dμ0(x)
∣∣∣F0

]
=
∫
Rd

E
[
f (x)|F0

]
dμ0(x).(50)

This identity may look at first sight completely general but it requires appropriate
assumptions of continuity in x and integrability. Just in order that all objects are
well defined, we need:

(i) f : � → C(Rd) measurable,
(ii) E[∫

Rd |f (x)|dμ0(x)] < ∞,
(iii) E[supx∈K |f (x)|] < ∞ for every compact set K ⊂R

d .

Indeed, under (i)–(ii), the integral
∫
Rd f (x) dμ0(x) is first well defined and fi-

nite a.s. (f has to be continuous in x since μ0 is a general probability measure),
and also L1(�), so the conditional expectation E[∫

Rd f (x) dμ0(x)|F0] is well de-
fined. As to the right-hand side of (50), on any compact set K ⊂ R

d , from (i)
and (iii), we have ω �→ f (ω, ·) of class L1(�;C(K)) [the space C(K) of contin-
uous functions on K endowed with the uniform topology], hence by the defini-
tion of conditional expectation of random variables with values in Banach spaces,
E[f |K |F0] is again a well-defined element of L1(�;C(K)); and, as shown below
in the proof of next proposition, taking as compact sets the sequence of closed balls
B(0, n) one gets a definition of E[f (x)|F0] as a measurable function from � to
C(Rd); notice in particular that continuity in x of E[f (x)|F0] is essential to define∫
Rd E[f (x)|F0]dμ0(x) because μ0 is a general probability measure. Finally, the

finiteness of
∫
Rd E[f (x)|F0]dμ0(x) is ultimately a consequence of (ii) again, as

proved in the next proposition.

PROPOSITION 28. Under assumptions (i), (ii) and (iii), identity (50) holds
true almost surely.

PROOF. As already noticed, given n ∈ N, E[f |B(0,n)|F0] is a well-defined
element of L1(�;C(B(0, n))). Moreover, if g is in the equivalence class of
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E[f |B(0,n)|F0], then at any x ∈ B(0, n) we have that g(x) is in the equiva-
lence class of E[f (x)|F0] [understood as the conditional expectation of the r.v.
ω �→ f (ω,x), x given]. Indeed, for every A ∈ F0,

E
[
g(x)1A

]= E[g1A](x) = E[f 1A](x) = E
[
f (x)1A

]
.

We can choose a sequence f (m) =∑m
i=1 fi1Ai

such that fi ∈ C(B(0, n)), Ai ∈
F and f (m) → f in L1(�,C(B(0, n))), as m → ∞. Moreover one can choose,
up to subsequences, f (m) such that the convergence is almost sure and ‖f (m)‖∞ ≤
‖f |B(0,n)‖∞, a.s. It is easy to see that E[f (m)|F0] =∑

i E[fi |F0]1Ai
. From this it

follows that

E

[∫
B(0,n)

f (m) dμ0|F0

]
=
∫
B(0,n)

E
[
f (m)

∣∣∣F0
]
dμ0, P-a.s.

Notice that, for every fixed ω, it holds f (m)(ω) → f (ω) uniformly in x on the
compact B(0, n), and hence, by the dominated convergence theorem∫

B(0,n)
f (m)(ω)(x)μ0(ω, dx) →

∫
B(0,n)

f (ω)(x)μ0(ω, dx).

Thus,
∫
B(0,n) f

(n) dμ0 → ∫
B(0,n) f dμ0 in L1 from which follows that, up to a sub-

sequence, E[∫K f (n) dμ0|F0] → E[∫B(0,n) f dμ0|F0], P-a.s. On the other hand,
we can first apply conditional dominated convergence and then the traditional ver-
sion of it to obtain

∫
B(0,n)E[f (n)|F0]dμ0 → ∫

B(0,n)E[f |F0]dμ0.
We have proven (50) on a closed ball of Rd , we want to extend it on the whole

space. Given n ∈ N, we call fn the restriction of f on B(0, n). It holds, as already
noted, fn ∈ L1(�,C(B(0, n))) for every n ∈ N.

We construct now the sequence {gn}n∈N such that gn : � → C(B(0, n)) and

gn ∈ L1(�;C(B(0, n)
))

for every n ∈N,

gn ∈ E[fn|F0] for every n ∈ N.

We will show that there exists a function g : � → C(Rd), such that for every
x ∈ R

d , g(x) ∈ E[f (x)|F0] and g|�×B(0,n) = gn. Moreover, if g,g′ : � → C(Rd)

have the same properties, then g = g′ a.s.
First, let us prove that gn+1|�×B(0,n), as a function from � to C(B(0, n)),

is equal to gn on a set �n of measure one. The function gn+1 is characterized
by two properties: it is F0-measurable, and E[gn+11A] = E[fn+11A] for every
A ∈ F0. Here, E[gn+11A] and E[fn+11A] are elements of C(B(0, n + 1)). Simi-
larly, gn is F0-measurable, and E[gn1A] = E[fn1A] for every A ∈ F0. Obviously,
gn+1|�×B(0,n) is F0-measurable. Moreover,

E[gn+1|�×B(0,n)1A] = E[gn+11A]|B(0,n).

To show this, notice that the function

Gn(x) := E
[
gn+1(x)|�×B(0,n)1A

]
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is well defined by Fubini theorem as a function from B(0, n) to R
d . In the same

way, one can define G(x) := E[gn+1(x)1A] as a function on B(0, n + 1). Now
Gn(x) = G(x) for every x ∈ B(0, n), hence Gn = G|B(0,n). Now,

E[gn+11A]|B(0,n) = E[fn+11A]|B(0,n) = E[fn+1|�×B(0,n)1A]
= E[fn1A] = E[gn1A]

and thus gn+1|�×B(0,n) is almost surely equal to gn.
On the set

⋂
n �n, we have gm|�×B(0,k) = gk for every m ≥ k ≥ 0. Let g : � ×

R
d → R be defined on

⋂
n �n as g(x,ω) = gm(x,ω) where m is the smallest

integer such that x ∈ B(0,m) (and arbitrarily on the complementary of
⋂

n �n).
For every ω ∈ ⋂n �n, the function x �→ g(x,ω) is continuous on each B(0,m)

(easy to check by the previous properties). Hence, g : � → C(Rd).
Now, if g′ : � → C(Rd) is such that, for every n ∈ N, it holds g′|�×B(0,n) ∈

E[fn|F0], then there exists a set �n ⊂ �, such that P(�n) = 1 and gn = g′
n on

�n. Then for every ω ∈⋂n �n, and for every x ∈ B(0, n), g(ω,x) = gn(ω, x) =
g′

n(ω, x) = g′(ω, x); hence, g = g′ a.e. Finally, if x ∈ B(0, n), and A ∈ F0,

E
[
g(x)1A

]= E
[
gn(x)1A

]= E[gn1A](x) = E[fn1A](x) = E
[
fn(x)1A

]
= E

[
f (x)1A

]
.

Hence, g(x) ∈ E[f (x)|F0]. To conclude, we notice that applying Lebesgue domi-
nate convergence theorem to the sequence fn, the random variables

∫
B(0,n) fn dμ0

converges a.s. to the random variable
∫
Rd f dμ0, as n → ∞. Thus, by the condi-

tional version of dominated convergence theorem,

E

[∫
Rd

f dμ0

∣∣∣F0

]
= lim

n→∞E

[∫
B(0,n)

fn dμ0

∣∣∣F0

]
.(51)

By the definition of g, we have that, as n → ∞, the positive part g+
n increases

to g+ a.s., and the negative g−
n increases to g−. Thus, by monotone convergence

theorem, it holds a.s.∫
Rd

g dμ0 =
∫
Rd

g+ dμ0 −
∫
Rd

g− dμ0

(52)
= lim

n→∞

∫
B(0,n)

g+
n dμ0 − lim

n→∞

∫
B(0,n)

g−
n dμ0.

The thesis follows from the equalities (51) and (52). Notice that this also implies
that

∫
Rd E[f (x)|F0]dμ0(x) is finite, because it is equal to a finite quantity. �

PROPOSITION 29. Let (μ, ν) ∈ P1(R
d). If we define the set


0(μ, ν)

:=
{
m̄ ∈ 
(μ, ν)

∣∣∣ ∫
R2d

|x − y|dm̄(x, y) = inf
m∈
(μ,ν)

∫
R2d

|x − y|dm(x, y)

}
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then there exists a measurable function f : P1(R
d) × P1(R

d) → P1(R
2d) such

that f (μ, ν) ∈ 
0(μ, ν).

PROOF. The set {(μ, ν,m)|m ∈ 
0(μ, ν)} is closed in P1(R
d) × P1(R

d) ×
P1(R

2d) endowed with the weak topology (see, e.g., [1], Proposition 7.1.3), thus
the proposition follows from Von Neumann theorem on measurable selections. �
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