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A POSITIVE TEMPERATURE PHASE TRANSITION IN RANDOM
HYPERGRAPH 2-COLORING1

BY VICTOR BAPST, AMIN COJA-OGHLAN AND FELICIA RASSMANN

Goethe University

Diluted mean-field models are graphical models in which the geometry
of interactions is determined by a sparse random graph or hypergraph. Based
on a nonrigorous but analytic approach called the “cavity method”, physicists
have predicted that in many diluted mean-field models a phase transition oc-
curs as the inverse temperature grows from 0 to ∞ [Proc. National Academy
of Sciences 104 (2007) 10318–10323]. In this paper, we establish the exis-
tence and asymptotic location of this so-called condensation phase transition
in the random hypergraph 2-coloring problem.

1. Introduction and results.

1.1. Background and motivation. Statistical mechanics models of “disordered
system” such as glasses or spin-glasses are notoriously difficult to study analyt-
ically. Nonetheless, since the early 2000s physicists have developed an analytic
but nonrigorous approach, the so-called cavity method, to put forward precise con-
jectures on an important class of models called diluted mean-field models. These
are models where the geometry of interactions between individual “sites” is de-
termined by a sparse random graph or hypergraph. Apart from models of inherent
physical interest, the cavity method has since been applied to a wide variety of
problems in combinatorics, computer science, information theory and compres-
sive sensing [11, 15]. What these problems have in common is that there are “vari-
ables” and “constraints” whose mutual interaction is governed by a sparse random
hypergraph. In effect, it has become an important research endeavour to provide a
rigorous mathematical foundation for the cavity method. The present paper con-
tributes to this effort.

Among the various predictions deriving from the cavity method, perhaps the
most intriguing ones pertain to the existence and location of phase transitions. In
particular, according to the cavity method in a variety of models there occurs a
so-called condensation phase transition. This is a phenomenon that is ubiquitous
in physics. Its role in the context of structural glasses goes back to the work of
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Kauzmann in the 1940s [10]. However, there are but a few rigorous results on the
condensation phase transition in diluted mean-field models.

The aim of the present work is to establish the existence and asymptotic location
of the condensation phase transition in a well-studied diluted mean-field model,
the random hypergraph 2-coloring problem. To define this model, we recall that
a k-uniform hypergraph H consists of a finite set VH of vertices and a set EH of
edges, which are subsets of VH of size k. For a k-uniform hypergraph H and a
map σ : VH → {−1,1} we let EH(σ) be the number of edges e ∈ EH such that
|σ(e)| = 1, that is, either all vertices of e are set to 1 or to −1 under σ . Thus, if we
think of σ as a coloring of the vertices of H with two colors, then EH(σ) is the
number of monochromatic edges. The Hamiltonian EH gives rise to a Boltzmann
distribution πH,β on the set of all maps σ : VH → {−1,1} in the usual way: we let

πH,β[σ ] = exp(−βEH(σ))

Zβ(H)
(1.1)

where Zβ(H) = ∑
τ :VH →{−1,1}

exp
(−βEH(τ)

)

is the partition function. We refer to β as the inverse temperature. Clearly, as
β → ∞ the Boltzmann distribution πH,β will place more and more weight on
maps σ with fewer and fewer monochromatic edges. For a given hypergraph H ,
the key object of interest is the function β �→ 1

n
lnZβ(H), the free entropy.

While the definition (1.1) makes sense for any hypergraph H , in the diluted
mean-field model the hypergraph itself is random. More specifically, we consider
the random hypergraph Hk(n,p) on n vertices V = {1, . . . , n}, in which each of the(n
k

)
possible hyperedges comprising of k distinct vertices is present with probability

p ∈ [0,1] independently. Throughout the paper, we always let β ∈ [0,∞) and
p = d/

(n−1
k−1

)
, where d > 0 is a real number and k ≥ 3 is an integer. The parameters

d, k and β are going to remain fixed while we are going to let n → ∞. The main
objective is to determine

�d,k(β) = lim
n→∞

1

n
E

[
lnZβ

(
Hk(n,p)

)]
,(1.2)

the free entropy density. Of course, in (1.2) the expectation is over the choice of
the random hypergraph Hk(n,p).

An obvious question is whether the limit (1.2) exists for all d, k,β . That this
is indeed the case follows from an application of the combinatorial interpolation
method from [5]. Furthermore, a standard application of Azuma’s inequality shows
that for any d, k,β the sequence { 1

n
lnZβ(Hk(n,p))}n converges to �d,k(β) in

probability.

1.2. The main result. In this paper, we establish the existence and approximate
location of the condensation phase transition in random hypergraph 2-coloring.



1364 V. BAPST, A. COJA-OGHLAN AND F. RASSMANN

More specifically, we are going to obtain a formula that determines the location
of the condensation phase transition up to an error εk that tends to 0 for large k.
This is the first (rigorous) result that determines the condensation phase transition
within such accuracy in terms of the finite parameter β (the “positive temperature”
case, in physics jargon).

We call β0 > 0 smooth if there exists ε > 0 such that the function β ∈ (β0 −
ε,β0 + ε) �→ �d,k(β) admits an expansion as an absolutely convergent power se-
ries around β0. Otherwise, we say that a phase transition occurs at β0. With these
conventions, we have the following theorem.

THEOREM 1.1. For any fixed number C > 0, there exists a sequence εk > 0
with limk→∞ εk = 0 such that the following is true. Let

�k,d(β) = (β + 1) exp(−β + k ln 2) ln 2 − 2
(

d

k
− 2k−1 ln 2 + ln 2

)
.

(i) If d/k < 2k−1 ln 2 − ln 2 − εk , then any β > 0 is smooth and

�d,k(β) = ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β)

))
.(1.3)

(ii) If 2k−1 ln 2 − ln 2 + εk < d/k < 2k−1 ln 2 + C, then �k,d(β) has a unique
zero βc(d, k) ≥ k ln 2 and:

• any β ∈ (0, βc(d, k) + εk) is smooth and �d,k(β) is given by (1.3),
• there occurs a phase transition at βc(d, k) + εk ,
• for β > βc(d, k) + εk we have

�d,k(β) < ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β)

))
.

In summary, Theorem 1.1 shows that in the case that the “density” d/k of the
random hypergraph is less than about 2k−1 ln 2 − ln 2, there does not occur a phase
transition for any finite β . By contrast, for slightly larger densities there is a phase
transition. Its approximate location is given by βc(d, k). While in Theorem 1.1 this
value is determined implicitly as the zero of �k,d(β), it is not difficult to obtain
the expansion

βc(d, k) = (k − 1) ln 2 + lnk + 2 ln ln 2 − ln c + δk,(1.4)

where c = d/k − 2k−1 ln 2 + ln 2 and limk→∞ δk = 0. Furthermore, the proof of
Theorem 1.1 shows that there exists c1 > 0 such that εk ≤ kc12−k . Thus, Theo-
rem 1.1 determines the critical density from that on a phase transition starts to
occur and the critical βc(d, k) up to an error term that decays exponentially with k.
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1.3. Discussion and related work. In this section, we explain how Theo-
rem 1.1 relates to the predictions based on the physicists’ “cavity method”. We also
comment on further related work. As usual, we say that an event occurs asymptot-
ically almost surely (a.a.s.) if its probability converges to 1 as n → ∞.

1.3.1. The “entropy crisis”. Theorem 1.1 is perfectly in line with the pic-
ture sketched by the (nonrigorous) cavity method, and its proof is inspired by
the physicists’ notion that the condensation phase transition results from an “en-
tropy crisis” [12, 15]. More specifically, it is expected that already for densities
much smaller than the one treated in Theorem 1.1, namely for d/k beyond about
2k−1 lnk/k and for large enough β , the Boltzmann distribution can be approxi-
mated by a convex combination of probability measures corresponding to “clus-
ters” of 2-colorings a.a.s. That is, there exist sets Cβ,1, . . . ,Cβ,N ⊂ {−1,1}n and
small numbers 0 < ε < δ such that:

• if σ, τ ∈ Cβ,i for some i, then 〈σ, τ 〉 > (1 − ε)n,
• if σ ∈ Cβ,i , τ ∈ Cβ,j with i �= j , then 〈σ, τ 〉 < (1 − δ)n.

Moreover, with Zβ,i = ∑
τ∈Cβ,i

exp(−βEHk(n,p)(τ )) the volume of Cβ,i , we have

∥∥∥∥∥πHk(n,p),β[·] −
N∑

i=1

Zβ,i

Zβ(Hk(n,p))
· πHk(n,p),β[·|Cβ,i]

∥∥∥∥∥
TV

< exp
(−
(n)

)
.

Given a hypergraph, the definition of the “clusters” Cβ,i is somewhat canonical
(under certain assumptions); we will formalise the construction in Section 3.

With the cluster decomposition in place, the physics story of how the conden-
sation phase transition comes about goes as follows. If β is sufficiently small, we
have maxi≤N lnZβ,i ≤ lnZβ(Hk(n,p))−
(n) a.a.s. That is, even the largest clus-
ter only captures an exponentially small fraction of the overall mass Zβ(Hk(n,p)).
Now, as we increase β (while d/k remains fixed), both Zβ(Hk(n,p)) and
maxi≤N Zβ,i decrease. But Zβ(Hk(n,p)) drops at a faster rate. In fact, for large
enough densities d/k there might be a critical value β∗ where the gap between
maxi≤N lnZβ,i and lnZβ(Hk(n,p)) vanishes. This β∗ should mark a phase tran-
sition. This is because maxi≤N lnZβ,i and lnZβ(Hk(n,p)) cannot both extend
analytically to β > β∗, as otherwise we would arrive at the absurd conclusion that
maxi≤N Zβ,i > Zβ(Hk(n,p)).

The proof of Theorem 1.1 is based on turning this “entropy crisis” scenario
into a rigorous argument. To this end, we establish a rigorous version of the above
“cluster decomposition” and, crucially, an estimate of the cluster volumes Zβ,i .
The arguments that we develop for these problems partly build upon prior work
from [1, 2, 6].

The key difference between [1, 2, 6] and the present work is the presence of the
parameter β . More precisely, [1, 2, 6] dealt with proper hypergraph 2-colorings,
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that is, maps σ : V → {−1,1} such that EH(σ) = 0. Thus, the Boltzmann dis-
tribution in those papers is just the uniform distribution over proper 2-colorings,
and the partition function is the number of proper 2-colorings. In a sense, this cor-
responds to setting β = ∞ in the present setup. In particular, the only parameter
present in [1, 2, 6] is the average degree d of the random hypergraph, whereas in
the present paper we deal with a two-dimensional phase diagram governed by d

and, additionally, β . Of course, from a “classical” statistical physics viewpoint it
seems less natural to vary the parameter d that governs the geometry of the system
and fix β than to fix d and vary β . Theorem 1.1 encompasses the latter case.

To prove Theorem 1.1, we extend some of the arguments from [1, 2, 6].
In particular, we provide a “finite-β” version of the second moment arguments
from [1, 6]. Independently of the present work, a similar extension was obtained
by Achlioptas and Theodoropoulos [3]. In addition, we extend the argument for
estimating the cluster size from [6] to the case of finite β . Moreover, the argument
that we develop for inferring the condensation transition from the second moment
method and the estimate of the cluster size draws upon ideas developed for the
β = ∞ case in [1, 4, 6]. Especially with respect to the estimate of the cluster size,
dealing with finite β requires substantial additional work and ideas.

1.3.2. Prior work on condensation. The first rigorous result on a genuine con-
densation phase transition in a diluted mean field model is due to Coja-Oghlan
and Zdeborová [6], who dealt with the proper hypergraph 2-colorings (i.e., the
β = ∞ case of the problem considered here). Thus, the only parameter in [6]
is d . The main result of [6] is that there occurs a condensation phase transition at
d/k = 2k−1 ln 2 − ln 2 + γk , where limk→∞ γk = 0. Up to the error term γk , the
result confirms a prediction from [8]. Moreover, as Theorem 1.1 shows, the result
from [6] matches the smallest density for which a condensation phase transition
occurs for a finite β . In this sense, [6] determines the intersection of the “conden-
sation line” in the two-dimensional phase diagram of Theorem 1.1 with the d-axis.
Additionally, Bapst, Coja-Oghlan, Hetterich, Raßmann and Vilenchik [4] deter-
mined the condensation phase transition in the random graph coloring problem.
This is the zero-temperature case of the Potts antiferromagnet on the Erdős–Rényi
random graph. Thus, also in [4] the parameter β is absent.

The only prior (rigorous) paper that explicitly deals with the positive tempera-
ture case is the recent work of Contucci, Dommers, Giardina and Starr [7]. They
study the k-spin Potts antiferromagnet on the Erdős–Rényi random graph with fi-
nite β and show that for certain values of the average degree a condensation phase
transition exists. But to the extent that the results are comparable, [7] is less pre-
cise than Theorem 1.1. Indeed, a direct application of the approach from [7] to
the present problem would determine βc(d, k) only up to an additive error of ln k,
rather than an error that diminishes with k. This is due to two technical differences
between the present work and [7]. First, the second moment argument required
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in the case of the k-spin Potts antiferromagnet is technically far more challeng-
ing than in the present case. In effect, an enhanced version of the second moment
argument along the lines of [6] (with explicit conditioning on the cluster size) is
not available in the Potts model. Second, [7] employs a conceptually less precise
estimate of the cluster size than the one we derive. More precisely, [7] essentially
neglects the entropic contribution to the cluster size, leading to under-estimate the
typical cluster size significantly.

The condensation line at finite β in the Potts antiferromagnet on the Erdős–
Rényi random graph was studied by Krzakala and Zdeborová [13] by means of
nonrigorous techniques. They predict the location of the condensation line in terms
of an intricate fixed-point problem. (While conjectured to yield the exact location
of the phase transition for large enough average degrees d , no explicit expansion
for large d such as the one of Theorem 1.1 was given.)

2. Preliminaries and notation. Because we take the limit n → ∞ and due
to the presence of the sequences εk, ε

′
k , Theorem 1.1 is an asymptotic statement in

both n and k. Therefore, throughout the paper we tacitly assume that both n, k are
sufficiently large.

We use the standard O-notation when referring to the limit n → ∞. Thus,
f (n) = O(g(n)) means that there exist C > 0, n0 > 0 such that for all n > n0 we
have |f (n)| ≤ C · |g(n)|. In addition, we use the standard symbols o(·),
(·),�(·).
In particular, o(1) stands for a term that tends to 0 as n → ∞. We adopt the com-
mon notation that for the symbol 
(·) the sign matters, that is, f (n) = 
(g(n))

means that there exist C > 0, n0 > 0 such that for all n > n0 we have f (n) ≥
C · g(n) whereas f (n) = −
(g(n)) implies −f (n) ≥ C · g(n) for all n > n0.

Additionally, we use asymptotic notation with respect to k. To make this ex-
plicit, we insert k as an index. Thus, f (k) = Ok(g(k)) means that there exist
C > 0, k0 > 0 such that for all k > k0 we have |f (k)| ≤ C · |g(k)|. Further, we write
f (k) = Õk(g(k)) to indicate that there exist C > 0, k0 > 0 such that for all k > k0
we have |f (k)| ≤ kC · |g(k)|. An analogous convention applies to ok(·),
k(·) and
�k(·). Notice that here as well we have 
k(·) �= −
k(·).

Throughout the paper, we set p = d/
(n−1
k−1

)
. The degree of a vertex v ∈ V in a

hypergraph H = (V ,E) is the number of all edges e ∈ E that contain v. We let
e(H) denote the total number of edges of the hypergraph H .

If L is an integer, then we write [L] for the set {1, . . . ,L}. Moreover, H(z) =
−z ln z − (1 − z) ln(1 − z) denotes the entropy function. Further, we need the fol-
lowing instalment of the Chernoff bound.

LEMMA 2.1 ([9], page 29). Assume that X1, . . . ,Xn are independent random
variables such that Xi has a Bernoulli distribution with mean pi . Let λ = E[X]
and set φ(x) = (1 + x) ln(1 + x) − x. Then

P[X ≥ λ + t] ≤ exp
(−λφ(t/λ)

)
, P[X ≤ λ − t] ≤ exp

(−λφ(−t/λ)
)

for any t > 0. In particular, P[X ≥ tλ] ≤ exp(−tλ ln(t/e)) for any t > 1.
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It is well known that lnZβ , the key quantity that we are interested in, enjoys the
following “Lipschitz property”.

FACT 2.2. Let H be a hypergraph and obtain another hypergraph H ′ from H

by either adding or removing a single edge. Then | lnZβ(H) − lnZβ(H ′)| ≤ β .

This Lipschitz property implies the following concentration bound for
lnZβ(Hk(n,p)).

LEMMA 2.3. For any α > 0 there is δ = δ(α) > 0 such that

P
[∣∣lnZβ

(
Hk(n,p)

) −E
[
lnZβ

(
Hk(n,p)

)]∣∣ > αn
]
< exp(−δn).

PROOF. This is immediate from Fact 2.2 and McDiarmid’s inequality [14],
Theorem 3.8. �

Throughout the paper, it will be convenient to work with two other random hy-
pergraph models. More precisely, for integers n,m > 0 we let Hk(n,m) denote
the random hypergraph on the vertex set [n] obtained by choosing exactly m edges
without replacement uniformly at random from all possible edges, each comprising
of k distinct vertices from [n]. This random hypergraph model will be used essen-
tially in Section 5. The disadvantage of this model is the fact that the edges are
not mutually independent. Therefore, to simplify calculations in Section 4 we let
H ′

k(n,m) denote the random hypergraph on the vertex set [n] obtained by choosing
m edges uniformly and independently at random. In this model, we may choose
the same edge more than once, however, the following statement shows that this is
quite unlikely.

FACT 2.4. Assume that m = m(n) is a sequence such that m = O(n) and let
A be the event that H ′

k(n,m) has no multiple edges. Then P[¬A] = O(1/nk−2).

We relate the expected values of the partition functions of Hk(n,m) and
H ′

k(n,m) in Section 4.1.

3. Outline. Throughout this section let 0 ≤ d/k ≤ 2k−1 ln 2 + Ok(1).
The proof of Theorem 1.1 is based on establishing the physicists’ notion of an

“entropy crisis” rigorously. To this end, we are going to trace two key quantities.
First, the free entropy density �d,k(β), which mirrors the typical value of the parti-
tion function Zβ(Hk(n,p)). Second, the size of the “cluster” of a typical σ chosen
from the Boltzmann distribution. More specifically, we are going to argue that it is
sufficient to study the (appropriately defined) “cluster size” in a certain auxiliary
probability space, the so-called “planted model”. Ultimately, it will emerge that the
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condensation phase transition marks the point where the cluster size in the planted
model equals the typical value of Zβ(Hk(n,p)).

To implement this strategy, we begin by deriving upper and lower bounds on
�d,k(β) via the first and the second moment method. More precisely, in Section 4
we are going to prove the following.

PROPOSITION 3.1. For any β , we have

�d,k(β) ≤ ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β)

))
.(3.1)

Moreover, if either d/k ≤ 2k−1 ln 2 − 2 and β ≥ 0 or d/k > 2k−1 ln 2 − 2 and
β ≤ k ln 2 − ln k, we have

�d,k(β) = ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β)

))
.(3.2)

Since the function β ∈ [0,∞) �→ ln 2+ d
k

ln(1−21−k(1−exp(−β))) is analytic,
it follows that the least β > 0 for which (3.2) is violated marks a phase transition.
Hence, in light of (3.1) we define

βcrit(d, k) = inf
{
β > 0 : �d,k(β) < ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β)

))}
.(3.3)

We have βcrit(d, k) ∈ (0,∞] and Proposition 3.1 readily implies the following
lower bounds on βcrit(d, k).

COROLLARY 3.2. We have βcrit(d, k) ≥ k ln 2 − lnk. If d/k ≤ 2k−1 ln 2 − 2,
then βcrit(d, k) = ∞.

The second main component of the proof of Theorem 1.1 is the analysis of
the “cluster size” in the planted model. More precisely, for a hypergraph H =
(VH ,EH ) and a map σ : VH → {±1} we define the cluster size of σ in H as

Cβ(H,σ) = ∑
τ∈{±1}VH :〈σ,τ 〉≥2n/3

exp
(−βEH(τ)

)
.

Thus, we sum up the contribution to the partition function of all those maps τ

whose “overlap” 〈σ, τ 〉 = ∑
v∈VH

σ(v)τ (v) with the given σ is big. Concerning the
cluster size in Hk(n,p), there is a concentration bound analogous to Lemma 2.3.

LEMMA 3.3. For any σ : [n] → {±1} and α > 0, there is δ = δ(α,σ ) > 0
such that

P
[∣∣lnCβ

(
Hk(n,p), σ

) −E
[
lnCβ

(
Hk(n,p), σ

)]∣∣ > αn
]
< exp(−δn).
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PROOF. This follows from McDiarmid’s inequality [14], Theorem 3.8, and
because we have | lnCβ(H,σ) − lnCβ(H ′, σ )| ≤ β for any σ if the hypergraph
H ′ is obtained from the hypergraph H by either adding or removing a single edge.

�

Ideally, we would like to compare the cluster size of an assignment σ cho-
sen from the Boltzmann distribution on Hk(n,p) with the partition function
Zβ(Hk(n,p)). Then according to the physicists’ “entropy crisis”, the condensa-
tion phase transition should mark the point β where Cβ(Hk(n,p), σ ) is of the
same order of magnitude as Zβ(Hk(n,p)). However, it seems difficult to calculate
Cβ(Hk(n,p), σ ) directly; the basic reason for this is that the Boltzmann distri-
bution on a randomly generated hypergraph is a very difficult object to approach
directly.

To sidestep this difficulty, we introduce another experiment whose outcome is
much easier to study and that will emerge to be sufficient to pin down the con-
densation phase transition. This alternate experiment is the planted model. It is
defined as follows. Let σ : [n] → {−1,1} be a map chosen uniformly at random.
Moreover, given d, k,β , set

p1 = exp(−β)

1 − 21−k(1 − exp(−β))
· d(n−1

k−1

) ,
p2 = 1

1 − 21−k(1 − exp(−β))
· d(n−1

k−1

) .
Now, obtain a random k-uniform hypergraph H by inserting each edge that is
monochromatic under σ with probability p1 and each edge that is bichromatic
under σ with probability p2 independently. In symbols, for any hypergraph H

with vertex set [n] we have

P[H = H |σ ] = p
EH (σ )
1 (1 − p1)

m1p
e(H)−EH (σ )
2 (1 − p2)

m2,

where m1 (resp., m2) are the numbers of edges that are monochromatic (resp.,
bichromatic) under σ and are not in H .

The following proposition reduces the problem of determining βcrit(d, k) to that
of calculating Cβ(H,σ ). We will prove in Section 5.

PROPOSITION 3.4. Assume that d/k = 2k−1 ln 2 + Ok(1) and β0 ≥ k ln 2 −
lnk. If for all k ln 2 − lnk ≤ β ≤ β0 we have

lim
ε↘0

lim inf
n→∞ P

[
1

n
lnCβ(H,σ ) ≤ ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β)

)) − ε

]
(3.4)

= 1,
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then β0 ≤ βcrit(d, k). Conversely, if

lim
ε↘0

lim inf
n→∞ P

[
1

n
lnCβ0(H,σ ) ≥ ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β0)

)) + ε

]
(3.5)

= 1,

then β0 ≥ βcrit(d, k).

Finally, in Section 6 we are going to estimate the cluster size Cβ(H,σ ) to derive
the following result.

PROPOSITION 3.5. Assume that d/k = 2k−1 ln 2 + Ok(1) and β ≥ k ln 2 −
lnk. Then a.a.s. the cluster size in the planted model satisfies

1

n
lnCβ(H,σ ) = ln 2

2k
− β ln 2

exp(β)
+ Õk

(
4−k).

PROOF OF THEOREM 1.1. The result of the theorem in the case d/k ≤
2k−1 ln 2−2 follows from Corollary 3.2. Let us thus assume that d/k = 2k−1 ln 2+
Ok(1). Because we will use Proposition 3.4, we can also assume that β ≥ k ln 2 −
lnk. We write ck = d/k−2k−1 ln 2+ ln 2 and bk = β−k ln 2. With Proposition 3.5,
we have a.a.s.

1

n
lnCβ(H,σ ) −

(
ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β)

)))

=
(

ln 2

2k
− (k ln 2 + bk) ln 2

exp(−bk)

2k

)

−
(

ln 2

2k
− ck

2k−1 + ln 2 exp(−bk)

2k

)
+ Õk

(
4−k)

= 1

2k

[
2ck − (k ln 2 + bk + 1) ln 2 exp(−bk)

] + Õk

(
4−k)

= 1

2k

[−�k,d(β) + Õk

(
2−k)].

The equation �k,d(β) = 0 has exactly one solution βc(d, k) ≥ k ln 2 − lnk for
d/k > 2k−1 ln 2 − ln 2, and no such solution for d/k < 2k−1 ln 2 − ln 2. More-
over, �k,d(β) is smooth for d/k > 2k−1 ln 2 − ln 2 + 2−k , with derivatives of order

(k−4). Consequently, there is εk = Õk(2−k) such that the following is true:

(i) If d/k < 2k−1 ln 2 − ln 2 − εk , then a.a.s. for all β ≥ k ln 2 − lnk,

1

n
lnCβ(H,σ ) ≤

(
ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β)

))) − 
(1).

(ii) If d/k > 2k−1 ln 2 − ln 2 + εk , then a.a.s. for all β ≥ k ln 2 − lnk:
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• if β ≤ βc(d, k) − εk then

1

n
lnCβ(H,σ ) ≤

(
ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β)

))) − 
(1),

• if β ≥ βc(d, k) + εk then

1

n
lnCβ(H,σ ) ≥

(
ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β)

))) + 
(1).

The proof of the theorem is completed by using Proposition 3.4. �

4. The first and the second moment. Throughout this section, we assume
that 0 ≤ d/k ≤ 2k−1 ln 2 + Ok(1). We let m = �dn/k�.

In this section, we prove Proposition 3.1 and also lay the foundations for the
proof of Proposition 3.4. Recall that Hk(n,m) signifies the hypergraph on [n] ob-
tained by choosing m edges uniformly at random without replacement while for
the hypergraph H ′

k(n,m) we choose m edges e1, . . . , em with replacement uni-
formly and independently at random, allowing for multiple edges.

4.1. The first moment. We begin with the following estimate of the first mo-
ment of Zβ in H ′

k(n,m).

LEMMA 4.1. We have E[Zβ(H ′
k(n,m))] = �(2n(1 − 21−k(1 − exp(−β)))m).

The proof of Lemma 4.1 is straightforward, but we carry it out at leisure to
introduce some notation that will be used throughout. For a map σ : [n] → {−1,1},
let

Forb(σ ) =
( ∣∣σ−1(−1)

∣∣
k

)
+

( ∣∣σ−1(1)
∣∣

k

)

be the number of “forbidden k-sets” of vertices that are colored the same under σ .
The function x �→ (x

k

) + (n−x
k

)
is convex and takes its minimal value at x = n

2 .
Therefore,

Forb(σ ) ≥ 2
(

n/2
k

)
= 21−kN

(
1 + O(1/n)

) = 21−kN + O(N/n),

(4.1)

with N =
(

n

k

)
.

Let us call σ balanced if ||σ−1(1)| − n
2 | ≤ √

n. Let Bal = Baln be the set of
all balanced maps σ : [n] → {±1}. Stirling’s formula yields |Bal | = 
(2n). If
σ ∈ Bal, then

Forb(σ ) ≤
(

n/2 + √
n

k

)
+

(
n/2 − √

n

k

)
= 21−kN + O(N/n).(4.2)
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For a hypergraph H , let

Zβ,bal(H) = ∑
σ∈Bal

exp
(−βEH(σ)

)
.

PROOF OF LEMMA 4.1. By the independence of edges, we have

E
[
exp

(−βEH ′
k(n,m)(σ )

)] = E

[
m∏

i=1

exp(−β1ei∈Forb(σ ))

]

=
m∏

i=1

E
[
exp(−β1ei∈Forb(σ ))

]

= (
1 − N−1 Forb(σ )

(
1 − exp(−β)

))m
≤ (

1 − 21−k(1 + O(1/n)
)(

1 − exp(−β)
))m

.

Consequently,

E
[
Zβ

(
H ′

k(n,m)
)] = O

(
2n(

1 − 21−k(1 − exp(−β)
))m)

.(4.3)

If σ ∈ Bal, by (4.2) we have E[exp(−βEH ′
k(n,m)(σ ))] = 
((1 − 21−k(1 −

exp(−β)))m). Therefore,

E
[
Zβ

(
H ′

k(n,m)
)] ≥ |Bal | · 
((

1 − 21−k(1 − exp(−β)
))m)

(4.4)
= 


(
2n(

1 − 21−k(1 − exp(−β)
))m)

.

Thus, Lemma 4.1 follows from (4.3) and (4.4). �

The following lemma relates the expectation of the partition functions of the
models Hk(n,m) and H ′

k(n,m).

LEMMA 4.2. We have E[Zβ(Hk(n,m))] = �(E[Zβ(H ′
k(n,m))]).

PROOF. Let A be the event that H ′
k(n,m) has no multiple edges. Then, using

Fact 2.4 we get

E
[
Zβ

(
H ′

k(n,m)
)] ≥ E

[
Zβ

(
H ′

k(n,m)
)|A]

P[A] ≥ E
[
Zβ

(
Hk(n,m)

)](
1 − o(1)

)
,

implying that

E
[
Zβ

(
Hk(n,m)

)] ≤ O(1)E
[
Zβ

(
H ′

k(n,m)
)]

.(4.5)

On the other hand, let m0 = 21−k exp(−β)

1−21−k(1−exp(−β))
m and

f (x) = −xβ − x lnx − (1 − x) ln(1 − x) + x ln
(
21−k) + (1 − x) ln

(
1 − 21−k).



1374 V. BAPST, A. COJA-OGHLAN AND F. RASSMANN

We observe that f is strictly concave and attains its maximum at x = m0
m

where it
is equal to ln(1−21−k(1− exp(−β))). For σ ∈ Bal, we get with Stirling’s formula

E
[
exp

(−βEHk(n,m)(σ )
)]

= ∑
μ

P[EHk(n,m) = μ] exp(−βμ)

≥ ∑
μ∈[m0−√

m,m0+√
m]

exp(−βμ)

(m
μ

)
(Forb(σ ))μ(N − Forb(σ ))m−μ

Nm
(4.6)

= ∑
μ∈[m0−√

m,m0+√
m]

�m

(
1√
m

)
exp

(
mf

(
m0

m

))
�(1)

= �
(
1 − 21−k(1 − exp(−β)

)m)
.

Therefore,

E
[
Zβ

(
Hk(n,m)

)] ≥ |Bal | ·E[
exp

(−βEHk(n,m)(σ )
)]

(4.7)
= 


(
2n(

1 − 21−k(1 − exp(−β)
)m))

.

Combining (4.5), Lemma 4.1 and (4.7) proves the assertion. �

As a further consequence of Lemma 4.1, we obtain the following.

COROLLARY 4.3. 1. We have �d,k(β) ≤ ln 2 + d
k

ln(1 − 21−k(1 − exp(−β)))

for all d,β . 2. Assume that d,β are such that

lim sup
n→∞

1

n
E

[
lnZβ

(
H ′

k(n,m)
)]

< ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β)

))
.

Then �d,k(β) < ln 2 + d
k

ln(1 − 21−k(1 − exp(−β))).

PROOF. Let E be the event that |e(Hk(n,p)) − m| ≤ √
n lnn. Then we can

couple the random hypergraphs Hk(n,m) and Hk(n,p) given E as follows.

1. Choose a random hypergraph H0 = Hk(n,m).
2. Let e = Bin(

(n
k

)
,p) be a binomial random variable given that |e−m| ≤ √

n lnn.
3. Obtain a random hypergraph H1 from H0 as follows:

• If e ≥ m, choose a set of e − m random edges from all edges not present in
H0 and add them to H0.

• If e < m, remove m − e randomly chosen edges from H0.

The outcome H1 has the same distribution as Hk(n,p) given E , and H0,H1 dif-
fer in at most

√
n lnn edges. Therefore, noting that 1

n
| lnZβ | ≤ d

k
β + ln 2 with
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certainty, we obtain with Fact 2.2:

1

n
E lnZβ

(
Hk(n,p)

) ≤ 1

n
E

[
lnZβ(H1)

] +
(

d

k
β + ln 2

)
P[¬E]

≤ 1

n
E

[
lnZβ(H0)

] + β lnn√
n

+
(

d

k
β + ln 2

)
P[¬E](4.8)

= 1

n
E

[
lnZβ

(
Hk(n,m)

)] +
(

d

k
β + ln 2

)
P[¬E] + o(1).

Since e(Hk(n,p)) is a binomial random variable with mean m+O(1), Lemma 2.1
implies that P[¬E] = o(1). Thus, by (4.8) and Jensen’s inequality,

1

n
E lnZβ

(
Hk(n,p)

) ≤ 1

n
E

[
lnZβ

(
Hk(n,m)

)] + o(1)

≤ 1

n
lnE

[
Zβ

(
Hk(n,m)

)] + o(1).

The first assertion follows by Lemmas 4.1 and 4.2 and taking n → ∞. Also the
second assertion readily follows. �

We conclude this section by observing that the contribution to Zβ of certain
“exotic” σ is negligible. We begin with σ that are very imbalanced.

LEMMA 4.4. For any ε > 0 there is δ > 0 such that the following is true. Let
B̄ε be the set of all σ : [n] → {±1} such that ||σ−1(1)| − n

2 | > εn. Moreover, let

Zβ,B̄ε
(H) = ∑

σ∈B̄ε

exp
(−βEH(σ)

)
.

Then E[Zβ,B̄ε
(Hk(n,m))] ≤ exp(−δn)E[Zβ(Hk(n,m))].

PROOF. Stirling’s formula implies that for any ε > 0 there is δ > 0 such that
1
n

ln |B̄ε| < ln 2 − δ. Hence, (4.1) implies together with the independence of the
edges that

E
[
Zβ,B̄ε

(
H ′

k(n,m)
)] = ∑

σ∈B̄ε

E
[
exp

(−βEH ′
k(n,m)(σ )

)]

≤ |B̄ε|(1 − 21−k(1 − exp(−β)
))m

≤ exp(−δn)2n(
1 − 21−k(1 − exp(−β)

))m
.

The assertion follows from the remark that [as in equation (4.5)]

E
[
Zβ,B̄ε

(
Hk(n,m)

)] = O
(
E

[
Zβ,B̄ε

(
H ′

k(n,m)
)])

,

and from Lemma 4.2. �
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LEMMA 4.5. For any ε > 0, there is δ > 0 such that the following is true. Let

m0 = 21−k exp(−β)

1−21−k(1−exp(−β))
m and

Zβ,ε(H) = ∑
σ :[n]→{±1}

exp
(−βEH(σ)

) · 1|EH (σ)−m0|>εm.

Then E[Zβ,ε(Hk(n,m))] ≤ exp(−δn)E[Zβ(Hk(n,m))].
PROOF. Let M0 = {μ ∈ [m] : |μ − m0| > εm}. Moreover, for α > 0 let Bα be

the set of all σ : [n] → {±1} such that ||σ−1(1)| − n
2 | < αn. Then by Lemma 4.4

there exists δ > 0 such that

E
[
Zβ,ε

(
Hk(n,m)

)] ≤ exp(−δn)E
[
Zβ

(
Hk(n,m)

)]
(4.9)

+ ∑
μ∈M0

∑
σ∈Bα

exp(−βμ)P
[
EHk(n,m)(σ ) = μ

]
.

As in the proof of Lemma 4.2, we define f (x) = −xβ − x lnx − (1 − x) ln(1 −
x) + x ln(21−k) + (1 − x) ln(1 − 21−k) and find that for any γ > 0 we can choose
α > 0 small enough so that

1

m
ln

(
exp(−βμ)P

[
EHk(n,m)(σ ) = μ

]) ≤ γ + f

(
μ

m

)
for all σ ∈ Bα.

Because f is strictly concave and attains its maximum at x = m0
m

, there is δ′ > 0
such that∑

μ∈M0

∑
σ∈Bα

exp(−βμ)P
[
EHk(n,m)(σ ) = μ

] ≤ exp
(−δ′n

)
E

[
Zβ

(
Hk(n,m)

)]
.(4.10)

Finally, the assertion follows from (4.9) and (4.10). �

4.2. The second moment. In Section 4.1, we derived an upper bound on
�d,k(β) by calculating the expectation of Zβ(H ′

k(n,m)) (cf. Corollary 4.3). Here,
we obtain for certain values of β and d a matching lower bound by estimating the
second moment E[Zβ,bal(H

′
k(n,m))2]. To this end, we define for α ∈ [−1,1],

Zβ(α) = ∑
σ,τ∈Bal:〈σ,τ 〉=αn

exp
(−β

(
EH ′

k(n,m)(σ ) + EH ′
k(n,m)(τ )

))
.(4.11)

Thus, in (4.11) we sum over balanced pairs σ, τ : [n] → {±1} that agree on pre-
cisely n((1 + α)/2) vertices. Hence, we can express the second moment as

E
[
Zβ,bal

(
H ′

k(n,m)
)2] = ∑

σ,τ∈Bal

E
[
exp

(−β
(
EH ′

k(n,m)(σ ) + EH ′
k(n,m)(τ )

))]

=
n∑

ν=0

E
[
Zβ(2ν/n − 1)

]
.

Consequently, we need to bound Zβ(α) for −1 ≤ α ≤ 1. Recall that H(z) =
−z ln z − (1 − z) ln(1 − z).
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LEMMA 4.6. For α ∈ [−1,1], we have

1

n
lnE

[
Zβ(α)

] = ln 2 + �β(α) − lnn

2n
+ O(1/n),

where

�β(α) = H
(

1 + α

2

)
+ d

k
ln

[
1 − 21−k(1 − exp(−β)

)

×
[
2 − (

1 − exp(−β)
)(1 + α)k + (1 − α)k

2k

]]
.

PROOF. Let e be a randomly chosen edge. Let σ, τ : [n] → {±1} be two bal-
anced maps with overlap 〈σ, τ 〉 = αn. Let us write σ � e if e /∈ Forb(σ ) (i.e., e is
bichromatic under σ ). By inclusion–exclusion,

P
[
σ � e

]
,P

[
τ � e

] = 1 − 21−k + O(1/n),

P
[
σ, τ � e

] = 1 − 22−k + 21−2k((1 + α)k + (1 − α)k
) + O(1/n).

Hence, by the independence of edges,

E
[
Zβ(α)

] = ∑
σ,τ :〈σ,τ 〉=αn

E

m∏
i=1

exp
[−β(1σ�ei

+ 1τ�ei
)
]

= ∑
σ,τ :〈σ,τ 〉=αn

(
E

[
exp

[−β(1σ�e1 + 1τ�e1)
]])m

= 2n

(
n

(1 + α)n/2

)(
P

[
σ, τ � e1

]
+ exp(−β)

(
P

[
σ � e1, τ � e1

] + P
[
σ � e1, τ � e1

])
(4.12)

+ exp(−2β) · P[
σ, τ � e1

])m
= 2n

(
n

(1 + α)n/2

)(
1 + O(1/n)

)[
1 − 22−k(1 − exp(−β)

)
+ 21−2k(1 − exp(−β)

)2(
(1 + α)k + (1 − α)k

)]m
.

Furthermore, by Stirling’s formula,(
n

(1 + α)n/2

)
= O

(
n−1/2)

exp
(
nH

(
1 + α

2

))
.(4.13)

The assertion follows by combining (4.12) and (4.13). �

Hence, we need to study the function �β . Since �β(α) = �β(−α), α = 0 is a
stationary point. Moreover, with

s = s(α,β) = 1 − 21−k(1 − exp(−β)
)[

2 − (
1 − exp(−β)

)(1 + α)k + (1 − α)k

2k

]
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the first two derivatives of �β work out to be

�′
β(α) = ln(1 − α) − ln(1 + α)

2
(4.14)

+ 2d

4ks

(
exp(−β) − 1

)2(
(1 + α)k−1 − (1 − α)k−1)

,

�′′
β(α) = 1

α2 − 1
+ 2d(k − 1)(exp(−β) − 1)2

4ks

(
(1 + α)k−2 + (1 − α)k−2)

(4.15)

− dk(1 − exp(−β))4

24k−2s2

[
(1 + α)k−1 − (1 − α)k−1]2

.

In particular,

�′′
β(0) = −1 + Õk

(
2−k) < 0.(4.16)

Hence, there is a local maximum at α = 0. As a consequence, we have

E
[
Zβ

(
H ′

k(n,m)
)2] = O

(
E

[
Zβ

(
H ′

k(n,m)
)]2)

,

if �β has a strict global maximum at α = 0. More generally, we have the following.

LEMMA 4.7. Assume that β ≥ 0 and J ⊂ [−1,1] is a compact set such that
�β(α) < �β(0) for all α ∈ J \ {0}. Then

n∑
ν=0

E
[
Zβ(2ν/n − 1)

]
12ν/n−1∈J = O

(
E

[
Zβ

(
H ′

k(n,m)
)]2)

.

PROOF. We start by observing that ln 2+�β(0)

2 = ln 2 + d
k

ln(1 − 21−k(1 −
exp(−β))). Hence, Lemma 4.1 yields

exp
[
n
(
ln 2 + �β(0)

)] = O
(
E

[
Zβ

(
H ′

k(n,m)
)]2)

.(4.17)

Now, by (4.16), there exist η, c > 0 such that �β(α) ≤ �β(0) − cα2 for all α ∈
J0 = J ∩ (−η,η). Hence, by Lemma 4.6 and (4.17)

n∑
ν=0

E
[
Zβ(2ν/n − 1)

]
12ν/n−1∈J0

= O
(
n−1/22n) n∑

ν=0

exp
(
n�β(2ν/n − 1)

)
12ν/n−1∈J0

(4.18)

= O
(
2n exp

(
n�β(0)

)) ∑
ν:|2ν/n−1|<η

exp(−nc(2ν/n − 1)2)√
n

= O
(
2n exp

(
n�β(0)

)) = O
(
E

[
Zβ

(
H ′

k(n,m)
)]2)

.
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Further, let J1 = J \ (−η,η). Then J1 is compact. Hence, there exists δ > 0 such
that �β(α) < �β(0) − δ for all α ∈ J1. Therefore, Lemma 4.6 and (4.17) yield

n∑
ν=0

E
[
Zβ(2ν/n − 1)

]
12ν/n−1∈J1 = O

(
n2n)

sup
α∈J1

exp
(
n�β(α)

)

= O
(
n2n)

exp
(
n
(
�β(0) − δ

))
(4.19)

= O
(
E

[
Zβ

(
H ′

k(n,m)
)]2)

.

Finally, the assertion follows from (4.18) and (4.19). �

Now we prove that for the set J from Lemma 4.7 we have at least [−1 +
2−3k/4,1 − 2−3k/4] ⊂ J for all β ≥ 0.

LEMMA 4.8. For d/k = 2k−1 ln 2 + Ok(1) and β ≥ 0 we have �β(α) <

�β(0) for all α �= 0 with |α| ≤ 1 − 2−3k/4.

PROOF. We know that there is a local maximum at α = 0. Moreover, we read
off of (4.15) that �′′

β(α) < 0 if |α| < 1 − 6 ln k/k, and thus

�β(0) > �β(α) for all α ∈ (−(1 − 6 lnk/k),1 − 6 lnk/k
)
.

Further, we obtain from (4.14) for |α| ≥ 1 − 6 ln k/k

�′
β(α) ≤ ln(1 − α)

2
+ 2d(1 − exp(−β))2(1 + α)k−1

4k(1 + Ok(2−k))

≤ ln(1 − α)

2
+ d(1 − exp(−β))2 exp((1 + α)(k − 1)/2)

2k(1 + Ok(2−k))
.

Hence, for k large enough �′
β(α) < 0 if |α| < 1 − 2.01 ln k/k and a similar esti-

mate yields

�′
β(α) > 0 if |α| > 1 − 1.99 ln k/k.(4.20)

Thus, to proceed we need to evaluate �β at |α| = 1 − γ lnk/k for γ ∈
[1.99,2.01] and at |α| = 1 − 2−3k/4. We find

�β(α) = − ln 2 + ok(1)

for |α| = 1 − γ lnk/k with γ ∈ [1.99,2.01] and �β(α) = − ln 2 + ok(1) for |α| =
1 − 2−3k/4 proving the assertion. �

LEMMA 4.9. The function β �→ �β(α) − �β(0) is nondecreasing for α �= 0.
In particular, if d > 0 and β0 ≥ 0 are such that �β0(α) < �β0(0) for all α �= 0,
then �β(α) < �β(0) for all α �= 0,0 ≤ β < β0.
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PROOF. The derivative of �β with respect to β works out to be

∂�β

∂β

= d

k
· 22−2k((1 + α)k + (1 − α)k) exp(−β)(1 − exp(−β)) − 22−k exp(−β)

1 − 22−k(1 − exp(−β)) + 21−2k(1 − exp(−β))2((1 + α)k + (1 − α)k)
.

Substituting z = (1 +α)k + (1 −α)k and b = 1 − exp(−β) in the above, we obtain

g(z) = d

k
· 22−2kb(1 − b)z − 22−k(1 − b)

1 − 22−kb + 21−2kb2z
.

Because a function z �→ az−b
cz+d

with a, b, c, d ≥ 0 is nondecreasing, this completes
the proof. �

With these instruments in hand we identify regimes of d and β where �β(α)

takes its global maximum at α = 0.

LEMMA 4.10. Assume that d/k = 2k−1 ln 2 + Ok(1) and β ≤ k ln 2 − lnk.
Then �β(0) > �β(α) for all α ∈ [−1,1] \ {0}.

PROOF. For |α| ≤ 1 − 2−3k/4 this is the statement of Lemma 4.8. We write
α = 1 − δ with δ ∈ [0,2−3k/4]. Let

fβ(δ) = (
1 − exp(−β)

)[
2 − (

1 − exp(−β)
)(2 − δ)k + δk

2k

]
∈ [0,2].

For β = k ln 2 − lnk, we have the expansion

fβ(δ) =
(

1 − k

2k

)[
2 −

(
1 − k

2k

)(
1 − k

δ

2
+ Õk

(
4−k))]

= 1 + k
δ

2
+ Õk

(
4−k).

Therefore,

�β(α) = −δ

2
ln

(
δ

2

)
−

(
1 − δ

2

)
ln

(
1 − δ

2

)

+ d

k
ln

[
1 − 21−k

[
1 + k

δ

2
+ Õk

(
4−k)]]

= − ln 2 − δ

2
ln δ + δ

2
− (k − 1)

δ

2
ln 2 + Ok

(
2−k).

The function δ �→ − δ
2 ln δ + δ

2 − (k − 1) δ
2 ln 2 is easily studied: it takes its

maximum at δ0 = 21−k for which it is equal to 2−k . Hence, for α = 1 − δ with
δ ∈ [0,2−3k/4],

�β(α) ≤ − ln 2 + Ok

(
2−k).



A POSITIVE TEMPERATURE PHASE TRANSITION 1381

By symmetry, this also holds for α = −1 + δ with δ ∈ [0,2−3k/4]. By comparison,

�β(0) = ln 2 + (
2k−1 ln 2 + Ok(1)

)
ln

(
1 − 22−k + 4k

4k
+ Ok

(
4−k))

= − ln 2 + 21−kk ln 2 + Ok

(
2−k).

Therefore, �β(0) > �β(α) for all α �= 0 if β = k ln 2− ln k. Using Lemma 4.9, we
can expand the result to all β ≤ k ln 2 − lnk. �

LEMMA 4.11. Assume that d/k ≤ 2k−1 ln 2 − 2 and β ≥ 0. Then �β(0) >

�β(α) for all α ∈ [−1,1] \ {0}.
PROOF. Let rk = Ok(1) such that d/k = 2k−1 ln 2 + rk . Define the function

�∞ : [−1,1] → R as

α �→ H
(

1 + α

2

)
+ d

k
ln

(
1 − 22−k + 21−2k((1 + α)k + (1 − α)k

))
.

Analogously to the proof of Lemma 4.10, we get �∞(α) ≤ − ln 2 − (ln 2 + 2rk −
1)2−k + Õk(4−k) for all α and �∞(0) = − ln 2 − 2(ln 2 + 2rk)2−k + Õk(4−k),
which implies that for rk ≤ −2 we have �∞(α) < �∞(0) for all α ∈ [−1,1] \ {0}.
Because the continuous functions �β converge uniformly to �∞ as β → ∞, we
conclude that there is β0 ≥ 0 such that for all β > β0,

�β(α) < �β(0) for all α ∈ [−1,1] \ {0}.(4.21)

Hence, Lemma 4.9 implies that (4.21) holds for all β ≥ 0, as desired. �

PROOF OF PROPOSITION 3.1. The first assertion follows directly from Corol-
lary 4.3. Moreover, if d,β are such that for some n-independent number C > 0 we
have

E
[
Zβ

(
H ′

k(n,m)
)2] ≤ C ·E[

Zβ

(
H ′

k(n,m)
)]2

,(4.22)

then the Paley–Zygmund inequality implies that

P
[
Zβ

(
H ′

k(n,m)
) ≥ E

[
Zβ

(
H ′

k(n,m)
)]

/2
] ≥ E[Zβ(H ′

k(n,m))]2

4E[Zβ(H ′
k(n,m))2]

(4.23)

≥ 1

4C
> 0.

Let A be the event that H ′
k(n,m) has no multiple edges. Since A occurs a.a.s. by

Fact 2.4, (4.23) implies that

P
[
Zβ

(
H ′

k(n,m)
) ≥ E

[
Zβ

(
H ′

k(n,m)
)]

/2|A] ≥ 1 − o(1)

4C
.(4.24)

Further, since the number e(Hk(n,p)) of edges in Hk(n,p) has a binomial distri-
bution with mean m+O(1), Stirling’s formula implies that P[e(Hk(n,p)) = m] ≥
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(n−1/2). Because given e(Hk(n,p)) = m, Hk(n,p) is identically distributed as
H ′

k(n,m) given A, (4.24) implies that

P
[
Zβ

(
Hk(n,p)

) ≥ E
[
Zβ

(
H ′

k(n,m)
)]

/2
] ≥ 


(
n−1/2)

.(4.25)

The concentration bound from Lemma 2.3 and (4.25) yields lnE[Zβ(H ′
k(n,m))]−

E[lnZβ(Hk(n,p))] − ln 2 = o(n). Hence, if (4.22) is true, then

1

n
E

[
lnZβ

(
Hk(n,p)

)] ≥ 1

n
lnE

[
Zβ

(
H ′

k(n,m)
)] − o(1).(4.26)

Finally, Lemma 4.7 and Lemma 4.11 imply that (4.22) holds for all β ≥ 0 and
d/k ≤ 2k−1 ln 2 − 2. Moreover, by Lemma 4.7 and Lemma 4.10 the bound (4.22)
is true if d/k = 2k−1 ln 2+Ok(1) and β ≤ k ln 2− ln k. Thus, the assertion follows
from (4.26). �

5. The planted model. The aim of this section is to prove Proposition 3.4.
Throughout the section, we let m = �dn/k�. For ε > 0, we let Bε be the set of all
σ : [n] → {±1} such that ||σ−1(1)| − n

2 | < εn. Further, we let σ : [n] → {±1} be
a map chosen uniformly at random and H be the random hypergraph obtained by
inserting each edge that is monochromatic under σ with probability p1 and each
edge that is bichromatic with probability p2.

5.1. Quiet planting. We begin with the second part of Proposition 3.4. The
following statement relates the planted model to the random hypergraph Hk(n,m).
A similar statement has been obtained independently by Achlioptas and Theodor-
opoulos [3].

LEMMA 5.1. Let d > 0 and β ≥ 0. Assume that there is a sequence (En)n≥1

of events such that lim supn→∞P[H ∈ En]1/n < 1. Then E[Zβ(Hk(n,m))1En] ≤
exp(−
(n))E[Zβ(Hk(n,m))].

PROOF. Fix α > 0 such that lim supn→∞ P[H ∈ En]1/n ≤ exp(−α). To shorten
the notation, we write Hn,m for Hk(n,m). For any ε > 0, we have the decomposi-
tion

E
[
Zβ(Hn,m)1En

]
= ∑

σ :[n]→{±1}
E

[
exp

(−βEHn,m(σ )
)
1En

]
(5.1)

≤ ∑
σ∈Bε

E
[
exp

(−βEHn,m(σ )
)
1En

] + ∑
σ /∈Bε

E
[
exp

(−βEHn,m(σ )
)]

.
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To bound the first summand in (5.1), we let m0 = 21−k exp(−β)

1−21−k(1−exp(−β))
m and define

the set Mε = {μ ∈ [m] : |μ − m0| < εn}. Now, for any μ ∈ [m] we have∑
σ∈Bε

P
[{

EHn,m(σ ) = μ
} ∩ {Hn,m ∈ En}]

= ∑
σ∈Bε

P
[
Hn,m ∈ En|EHn,m(σ ) = μ

]
P

[
EHn,m(σ ) = μ

]
.

Under the conditions e(H) = m and EHn,m(σ ) = EH(σ ) for σ : [n] → {±1}, the
two random hypergraphs Hn,m and H are identically distributed. Therefore,

P
[
Hn,m ∈ En

∣∣EHn,m(σ ) = μ
]

= P
[
H ∈ En

∣∣EH(σ ) = μ,e(H) = m
] ≤ P[H ∈ En]

P
[
EH(σ ) = μ,e(H) = m

] .
By standard concentration results, there is ε > 0 such that

P
[
EH(σ ) = μ,e(H) = m

] ≥ exp
(
−α

2
n

)
for any σ ∈ Bε,μ ∈ Mε.

Hence, for any μ ∈ Mε:∑
σ∈Bε

P
[{

EHn,m(σ ) = μ
} ∩ {Hn,m ∈ En}]

≤ exp
(

α

2
n

) ∑
σ∈Bε

P[H ∈ En]P[
EHn,m(σ ) = μ

]

and, therefore, letting A = 2n(1 − 21−k(1 − exp(−β)))m, we get∑
μ∈Mε

∑
σ∈Bε

E
[
exp

(−βEHn,m(σ )
)
1En

]

= ∑
μ∈Mε

∑
σ∈Bε

exp(−βμ)P
[{

EHn,m(σ ) = μ
} ∩ {Hn,m ∈ En}]

(5.2)

≤ exp
(
−α

2
n

) ∑
μ∈Mε

∑
σ∈Bε

exp(−βμ)P
[
EHn,m(σ ) = μ

]

≤ A exp
(
−α

2
n

)
.

Furthermore, Lemma 4.5 shows that there is δ > 0 such that∑
μ/∈Mε

∑
σ∈Bε

exp(−βμ)P
[
EHn,m(σ ) = μ

] ≤ A exp(−δn).(5.3)
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To bound the second summand in (5.1), we get from Lemma 4.4 that there is δ′ > 0
such that ∑

σ /∈Bε

E
[
exp

(−βEHn,m(σ )
)] ≤ A exp

(−δ′n
)
.(5.4)

Combining the estimates (5.2), (5.3) and (5.4) in the decomposition (5.1) yields

E
[
Zβ(Hn,m)1En

] ≤ A exp
(−max

(
α/2, δ, δ′)n)

.

The assertion follows with Lemmas 4.1 and 4.2. �

COROLLARY 5.2. Let d > 0 and β ≥ 0. Assume that there exists a sequence
(En)n≥1 of events such that

lim
n→∞P

[
Hk(n,m) ∈ En

] = 1 while lim sup
n→∞

P[H ∈ En]1/n < 1.

Then �d,k(β) < ln 2 + d
k

ln(1 − 21−k(1 − exp(−β))).

PROOF. Since Zβ(Hk(n,m))1/n ≤ 2 and P[Hk(n,m) ∈ En] = 1 − o(1),
Jensen’s inequality yields

E
[
Zβ

(
Hk(n,m)

)1/n] = E
[
Zβ

(
Hk(n,m)

)1/n1En

] + o(1)

≤ E
[
Zβ

(
Hk(n,m)

)
1En

]1/n + o(1).

Hence, under the assumptions of the corollary we obtain with Jensen’s inequal-
ity and Lemma 5.1

�d,k(β) ≤ lim sup
n→∞

lnE
[
Zβ

(
Hk(n,m)

)1/n]
≤ exp

(−
(1)
)

lim sup
n→∞

E
[
Zβ

(
Hk(n,m)

)]1/n
.

The result then follows from Lemmas 4.1 and 4.2. �

5.2. An unlikely event. As a next step, we establish the following.

LEMMA 5.3. Assume that (3.5) holds for some β ≥ k ln 2 − ln k. Then there
exists z > 0 such that

lim
n→∞P

[
1

n
lnZβ

(
Hk(n,m)

) ≤ z

]
= 1, lim sup

n→∞
P

[
1

n
lnZβ(H) ≤ z

]1/n

< 1.

The proof of Lemma 5.3, to which we dedicate the rest of this subsection, is an
extension of the argument from [4], Section 6, to the case of finite β . We need the
following concentration result.
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LEMMA 5.4. For any fixed d > 0, β ≥ 0, α > 0 there are δ > 0, δ′ > 0 such
that the following is true. Suppose that (σn)n≥1 is a sequence of maps [n] → {±1}.
Then for all large enough n,

P
[∣∣ln(

Zβ(H)
) −E

[
lnZβ(H)

∣∣σ = σn

]| > αn|σ = σn

] ≤ exp(−δn)

and

P
[∣∣ln(

Cβ(H,σ )
) −E

[
lnCβ(H,σ )

∣∣σ = σn

]| > αn|σ = σn

] ≤ exp
(−δ′n

)
.

PROOF. This is immediate from the Lipschitz property and McDiarmid’s in-
equality [14], Theorem 3.8. �

We further need several statements about quantities in the planted model condi-
tioned on σ being some fixed (balanced) coloring.

LEMMA 5.5. Assume that (3.5) is true for some β ≥ k ln 2 − lnk. Then there
exist a fixed number ε > 0 and a sequence σn of balanced maps [n] → {±1} such
that

lim
n→∞P

[
1

n
lnCβ(H,σ ) > ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β)

)) + ε|σ = σn

]
= 1.

PROOF. By Stirling’s formula, there is an n-independent number δ > 0 such
that for sufficiently large n we have

P[σ ∈ Bal] ≥ δ.(5.5)

Let A = ln 2+ d
k

ln(1−21−k(1−exp(−β))). Using (3.5), we know that there is ε >

0 such that lim infn→∞P[ 1
n

lnCβ(H,σ ) > A + 3ε] ≥ 0.9. With the concentration
bound from Lemma 3.3, we get

lim
n→∞P

[
1

n
lnCβ(H,σ ) > A + 2ε

]
= 1.

Thus, with pn = lim infn→∞ maxσn∈Bal P[ 1
n

lnCβ(H,σ ) > A + 2ε|σ = σn] and
(5.5) we get

1 ≤ lim inf
n→∞

( ∑
σn∈Bal

P

[
1

n
lnCβ(H,σ ) > A + 2ε|σ = σn

]
P[σ = σn]

+ ∑
σn /∈Bal

P[σ = σn]
)

(5.6)
≤ lim inf

n→∞ pnP[σ ∈ Bal] + P[σ /∈ Bal]
≤ lim inf

n→∞ pn + 1 − δ,
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implying that lim infn→∞ pn ≥ δ. Thus, the concentration bound from Lemma 5.4
yields

lim
n→∞ max

σn∈Bal
P

[
1

n
lnCβ(H,σ ) > A + ε|σ = σn

]
= 1

completing the proof. �

LEMMA 5.6. For any η > 0, there is δ > 0 such that

lim sup
n→∞

1

n
lnP

[∣∣∣∣σ−1(1)
∣∣ − n/2

∣∣ > ηn
] ≤ −δ.

PROOF. This is immediate from the Chernoff bound. �

For a set S ⊂ V let Vol(S|H) be the sum of the degrees of the vertices in S in
the hypergraph H .

LEMMA 5.7. For any γ > 0, there is α > 0 such that for any set S ⊂ [n]
of size |S| ≤ αn and any map σ : [n] → {±1} we have lim sup 1

n
lnP[Vol(S|H) ≥

γ n|σ = σ ] ≤ −α.

PROOF. Let (Xv)v∈[n] be a family of independent random variables with dis-
tribution Bin(

(n−1
k−1

)
,2p). Then for any σ and any S ⊂ [n] the volume Vol(S|H)

is stochastically dominated by XS = 2k
∑

v∈S Xv . Furthermore, E[XS] = 4dk|S|.
Thus, for any γ > 0 we can choose an n-independent α > 0 such that for
any S ⊂ [n] of size |S| ≤ αn we have E[XS] ≤ γ n/2. In fact, the Chernoff
bound shows that by picking α > 0 sufficiently small, we can ensure that
P[Vol(S|H) ≥ γ n|σ = σ ] ≤ P[XS ≥ γ n] ≤ exp(−αn), as desired. �

LEMMA 5.8. Let d > 0 and β ≥ 0. Assume that there exist numbers z > 0,
ε > 0 and a sequence (σn)n≥1 of balanced maps [n] → {±1} such that

lim
n→∞

1

n
E

[
lnZβ(H)|σ = σn

]
> z + ε.

Then lim supn→∞ P[ 1
n

lnZβ(H) ≤ z]1/n < 1.

PROOF. Suppose that n is large enough so that 1
n
E[lnZβ(H)|σ = σn] > z +

ε/2. Set ni = |σ−1
n (i)| and let T be the set of all τ : [n] → {±1} such that

|τ−1(i)| = ni for i = ±1. As Zβ is invariant under permutations of the vertices,
we have

1

n
E

[
lnZβ(H)|σ = τ

] = 1

n
E

[
lnZβ(H)|σ = σn

]
> z + ε/2

(5.7)
for any τ ∈ T .
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Let γ = ε/(4β) > 0. By Lemma 5.7, there exists α > 0 such that for large enough
n for any set S ⊂ V of size |S| ≤ αn and any σ : [n] → {±1} we have

P

[
Vol(S|H) <

γn

2

∣∣∣σ = σ

]
≥ 1 − exp(−αn).(5.8)

Fix such an α > 0, and pick and fix a small 0 < η < α/3. By Lemma 5.6, there
exists an (n-independent) number δ = δ(β, ε, η) > 0 such that

P[σ ∈ Bη] ≥ 1 − exp(−δn).(5.9)

Because σn is balanced, we have |ni −n/2| ≤ √
n for i = ±1. Therefore, if σ ∈ Bη,

then it is possible to obtain from σ a map τσ ∈ T by changing the colors of at
most 2ηn vertices. Hence, if σ ∈ Bη we let Hτσ be the random hypergraph with
planted coloring τσ . Further, let Hσ be the hypergraph obtained by removing from
Hτσ each edge that is monochromatic under σ but not under τσ with probability
1 − exp(−β) independently and inserting each edge that is monochromatic under
τσ but not under σ with probability (1−exp(−β))p2 independently. Then Hσ = H
in distribution.

Let Sσ be the set of vertices v with σ (v) �= τσ (v). Our choice of η ensures
that |Sσ | < αn. Let � be the number of edges present in Hτσ but not in Hσ or
vice versa. Then � ≤ Vol(Sσ |Hτσ ) + Vol(Sσ |Hσ ). Hence, with (5.8) there exists a
constant c > 0 such that

P[� ≤ γ n|σ ∈ Bη] ≥ 1 − c exp(−αn).(5.10)

Using (5.9), (5.10) and the fact that removing a single edge can reduce 1
n

lnZβ by
at most β/n, we obtain

P

[
1

n
lnZβ(H) ≤ z

]
= P

[
1

n
lnZβ(Hσ ) ≤ z

]

≤ exp(−δn) + P

[
1

n
lnZβ(Hσ ) ≤ z

∣∣∣σ ∈ Bη

]

≤ exp(−δn) + c exp(−αn)
(5.11)

+ P

[
1

n
lnZβ(Hσ ) ≤ z

∣∣∣σ ∈ Bη,� ≤ γ n

]

≤ exp(−δn) + c exp(−αn)

+ P

[
1

n
lnZβ(Hτσ ) − γβ ≤ z

∣∣∣σ ∈ Bη,� ≤ γ n

]
.

By the choice of γ , (5.9), (5.10) and (5.7), we have

P

[
1

n
lnZβ(Hτσ ) − γβ ≤ z

∣∣∣σ ∈ Bη,� ≤ γ n

]

≤ 2P
[

1

n
lnZβ(Hτσ ) ≤ z + ε

4

∣∣∣σ ∈ Bη

]
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≤ 3P
[

1

n
lnZβ(H) ≤ z + ε

4

∣∣∣σ = σn

]

≤ 3P
[

1

n
lnZβ(H) ≤ 1

n
E

[
lnZβ(H)|σ = σn

] − ε

4

∣∣∣σ = σn

]
.

The assertion follows by combining this with (5.11) and Lemma 5.4. �

PROOF OF LEMMA 5.3. Lemma 5.5 shows that there exist ε > 0 and balanced
maps σn : [n] → {±1} such that

lim
n→∞P

[
1

n
lnCβ(H,σ ) ≥ ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β)

)) + ε
∣∣∣σ = σn

]
(5.12)

= 1.

Clearly, (5.12) implies that

lim
n→∞P

[
1

n
lnZβ(H) ≥ ln 2 + d

k
ln

(
1 − 21−k(1 − exp(−β)

)) + ε
∣∣∣σ = σn

]
(5.13)

= 1.

Hence, with z = ln 2 + d
k

ln(1− 21−k(1− exp(−β)))+ ε/2, Lemma 5.8 and (5.13)
yield

lim sup
n→∞

P

[
1

n
lnZβ(H) ≤ z

]1/n

< 1.(5.14)

By comparison, Lemma 4.1 and Lemma 4.2 imply

lim
n→∞P

[
1

n
lnZβ

(
Hk(n,m)

) ≤ z

]
= 1.(5.15)

Thus, the assertion follows from (5.14) and (5.15). �

5.3. Tame colorings. To facilitate the proof of the first part of Proposi-
tion 3.4, we introduce a random variable that explicitly controls the “cluster size”
Cβ(Hk(n,m),σ ). The idea of explicitly controlling the cluster size was introduced
in [6] in the “zero temperature” case, and here we generalise it to the case of fi-
nite β . More precisely, we call σ : [n] → {±1} tame in H if σ is balanced and if
Cβ(H,σ) ≤ E[Zβ(H)]. Now, let

Zβ,tame
(
Hk(n,m)

) = ∑
σ :[n]→{−1,1}

exp
(−βEHk(n,m)(σ )

) · 1σ is tame.

LEMMA 5.9. Assume that 0 ≤ d/k ≤ 2k−1 ln 2 + Ok(1) is such that
lim infn→∞ E[Zβ,tame(Hk(n,m))]

E[Zβ(Hk(n,m))] > 0. Then

lim inf
n→∞

E[Zβ,tame(Hk(n,m))]2

E[Zβ,tame(Hk(n,m))2] > 0.
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PROOF. The proof is based on a second moment argument. Mimicking the
notation of Section 4.2, we let

Zβ,tame(α)

= ∑
σ,τ :〈σ,τ 〉=αn

exp
(−β

(
EHk(n,m)(σ ) + EHk(n,m)(τ )

)) · 1σ is tame · 1τ is tame.

Then it is clear that

E
[
Zβ,tame

(
Hk(n,m)

)2] =
n∑

ν=0

E
[
Zβ,tame(2ν/n − 1)

]
.

Furthermore, we have Zβ,tame(α) ≤ Zβ(α) for any α. We define I = [−1 +
2−3k/4,1 − 2−3k/4]. Lemma 4.8 and Lemma 4.7 yield∑

α∈I

E
[
Zβ(α)

] = O
(
E

[
Zβ

(
Hk(n,m)

)]2)
.(5.16)

By the definition of “tame” we have∑
α>1−2−3k/4

E
[
Zβ,tame(α)

]

≤ E

[∑
σ

exp
(−βEHk(n,m)(σ )

) · 1σ is tame · Cβ

(
Hk(n,m),σ

)]
(5.17)

≤ E

[∑
σ

exp
(−βEHk(n,m)(σ )

) ·E[
Zβ,tame

(
Hk(n,m)

)]]

= O
(
E

[
Zβ,tame

(
Hk(n,m)

)]2)
.

Moreover,
∑

α<−1+2−3k/4 E[Zβ,tame(α)] = ∑
α>1−2−3k/4 E[Zβ,tame(α)] by symme-

try. Hence, E[Zβ,tame(Hk(n,m))2] = O(E[Zβ(Hk(n,m))]2) by equations (5.16)
and (5.17).

Finally, the assertion follows from our assumption that E[Zβ,tame(Hk(n,m))] =

(E[Zβ(Hk(n,m))]). �

LEMMA 5.10. Let d > 0 and β ≥ 0 and assume that we have

lim sup
n→∞

P[σ is not tame in H]1/n < 1.

Then there is c > 0 such that E[Zβ,tame(Hk(n,m))] ≥ E[Zβ(Hk(n,m))]/c.

PROOF. The proof is very similar to the proof of Lemma 5.1. We fix an α > 0
such that lim supn→∞ P[σ is not tame in H]1/n ≤ exp(−α) < 1. For any ε > 0, we
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have

E
[
Zβ

(
Hk(n,m)

) − Zβ,tame
(
Hk(n,m)

)]
= ∑

σ :[n]→{±1}
E

[
exp

(−βEHk(n,m)(σ )
)
1σ is not tame in Hk(n,m)

]

≤ ∑
σ∈Bε

E
[
exp

(−βEHk(n,m)(σ )
)
1σ is not tame in Hk(n,m)

]

+ ∑
σ /∈Bε

E
[
exp

(−βEHk(n,m)(σ )
)]

.

With m0 and Mε as in the proof of Lemma 5.1 and A(σ,μ) the event {EH(σ ) =
μ,e(H) = m, |σ−1(1)| = |σ−1(1)|}, we fix an ε > 0 such that P[A(σ,μ)] >

exp(−α
2 n) for all σ ∈ Bε,μ ∈ Mε . Then for any μ ∈ Mε:∑

σ∈Bε

P
[{

EHk(n,m)(σ ) = μ
} ∩ {

σ is not tame in Hk(n,m)
}]

= ∑
σ∈Bε

P
[
σ is not tame in Hk(n,m)|EHk(n,m)(σ ) = μ

]
P

[
EHk(n,m)(σ ) = μ

]

= ∑
σ∈Bε

P
[
σ is not tame in H|A(σ,μ)

]
P

[
EHk(n,m)(σ ) = μ

]

≤ ∑
σ∈Bε

P[σ is not tame in H]
P(A(σ,μ))

P
[
EHk(n,m)(σ ) = μ

]

≤ exp
(
−α

2
n

) ∑
σ∈Bε

P
[
EHk(n,m)(σ ) = μ

]
.

Letting A = 2n(1 − 21−k(1 − exp(−β)))m, we get∑
μ∈Mε

∑
σ∈Bε

E
[
exp

(−βEHk(n,m)(σ )
)
1σ is not tame in Hk(n,m)

]

= ∑
μ∈Mε

∑
σ∈Bε

exp(−βμ)P
[{

EHk(n,m)(σ ) = μ
}

(5.18)

∩ {
σ is not tame in Hk(n,m)

}] ≤ A exp
(
−α

2
n

)
.

Furthermore Lemma 4.5 shows that there is δ > 0 such that∑
μ/∈Mε

∑
σ∈Bε

exp(−βμ)P
[
EHk(n,m)(σ ) = μ

] ≤ A exp(−δn)(5.19)

and we get from Lemma 4.4 that there is δ′ > 0 such that∑
σ /∈Bε

E
[
exp

(−βEHk(n,m)(σ )
)] ≤ A exp

(−δ′n
)
.(5.20)
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Combining the estimates (5.18), (5.19) and (5.20) and using Lemmas 4.1 and 4.2
yields

E
[
Zβ

(
Hk(n,m)

) − Zβ,tame
(
Hk(n,m)

)] ≤ A exp
(−max

(
α/2, δ, δ′)n)

≤ exp
(−
(n)

)
E

[
Zβ

(
Hk(n,m)

)]
,

which proves the assertion. �

COROLLARY 5.11. Assume that d/k = 2k−1 ln 2 + Ok(1) and that β0 ≥
k ln 2− lnk is such that (3.4) holds for all k ln 2− lnk ≤ β ≤ β0. Then βcrit(d, k) ≥
β0.

The proof of this corollary extends a “zero temperature” argument from [4],
Section 5, to the case of β ∈ [0,∞).

PROOF OF COROLLARY 5.11. Assume for contradiction that β0 is such
that (3.4) holds for all k ln 2 − ln k ≤ β ≤ β0 but βcrit(d, k) < β0. By Corollary 3.2,
we have βcrit(d, k) ≥ k ln 2 − lnk. We pick and fix a number βcrit(d, k) < β < β0.
We let A = ln 2 + d

k
ln(1 − 21−k(1 − exp(−β))). There exists ε > 0 such that

lim
n→∞

1

n
E

[
lnZβHk(n,m)

]
< A − ε.(5.21)

On the other hand, (3.4) and Lemma 3.3 ensure that we can apply Lemma 5.10
and find a number c > 0 such that

E
[
Zβ,tame

(
Hk(n,m)

)] ≥ c ·E[
Zβ

(
Hk(n,m)

)]
.(5.22)

Hence, E[Zβ,tame(Hk(n,m))2] = O(E[Zβ,tame(Hk(n,m))]2) by Lemma 5.9.
Using the Paley–Zygmund inequality, there is a number C > 0 such that

lim inf
n→∞ P

[
Zβ,tame

(
Hk(n,m)

) ≥ E
[
Zβ,tame

(
Hk(n,m)

)]
/2

] ≥ 1/C > 0.

With (5.22) and because c/2 ·E[Zβ(Hk(n,m))] > exp(nA − nε/3) we see that

lim inf
n→∞ P

[
Zβ,tame

(
Hk(n,m)

) ≥ exp(nA − nε/3)
]
> 0.

With Lemma 2.3, it follows that

lim
n→∞P

[
Zβ,tame

(
Hk(n,m)

) ≥ exp(nA − 2nε/3)
] = 1.

With (5.21), we get the contradiction

A − ε > lim inf
n→∞

1

n
E

[
lnZβ,tame

(
Hk(n,m)

)] ≥ A − 2ε/3

which refutes our assumption that βcrit(d, k) < β0. �

PROOF OF PROPOSITION 3.4. The proposition is immediate from Corol-
lary 5.2 combined with Lemma 5.3 and from Corollary 5.11. �
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6. The cluster size. In this section, we prove Proposition 3.5. Throughout the
section, we assume that d/k = 2k−1 ln 2 + Ok(1) and that β ≥ k ln 2 − lnk.

In order to analyse the cluster size, we will show that there is a large set of ver-
tices (the “core”) whose value cannot be changed without creating a large number
of monochromatic edges. Hence, the contribution of these vertices to the cluster
size can be controlled. Then we analyze the contribution of the remaining vertices.

The proof strategy broadly follows the argument for estimating the cluster size
in the “zero temperature” case from [6]. However, the fact that we are dealing
with a finite β causes significant complications. More precisely, one of the key
features of the “zero temperature” case is the existence of “frozen variables”, that
is, vertices that take the same color in all colorings in the cluster. Indeed, in the
zero temperature case the problem of estimating the cluster size basically reduces
to estimating the number of “frozen variables”. By contrast, in the case of finite β ,
frozen variables do not exist. In effect, we need to take a much closer look.

We let σ : [n] → {±1} be a map chosen uniformly at random conditioned on
the event that σ ∈ Bal and H be the random hypergraph obtained by inserting each
edge that is monochromatic under σ with probability p1 and each edge that is
bichromatic with probability p2.

We say that a vertex v supports an edge e � v under σ if σ (e \ {v}) = {−σ (v)}.
In this case, we call e critical. Moreover, if U ⊂ [n], then we say that an edge e of
H is U -endangered if |σ (U ∩ e)| = 1 (i.e., the vertices in U ∩ e all have the same
color).

For the first three subsections of this section, it will be convenient to introduce
a slightly more general construction. Let ω ≥ 0 be fixed and let v1, . . . , vω be
vertices chosen uniformly at random without replacement from all vertices in H.
Let H′ be the hypergraph obtained from H by removing v1, . . . , vω and edges e

involving one of these vertices. Without loss of generality, we can assume that
{v1, . . . , vω} = {n−ω+ 1, . . . , n}. The edge set of H′ is thus [n′], with n′ = n−ω.

6.1. The core. Let core(H,σ ) be the maximal set V ′ ⊂ [n] of vertices such
that the following two conditions hold.

CR1 Each vertex v ∈ V ′ supports at least 100 edges that consist of vertices from
V ′ only.

CR2 No vertex v ∈ V ′ occurs in more than 10 edges that are V ′-endangered un-
der σ .

If V ′,V ′′ are sets that satisfy CR1–CR2, then so does V ′ ∪ V ′′. Hence, the core is
well-defined.

PROPOSITION 6.1. A.a.s. |core(H,σ )| = n(1 − Õk(2−k)).

To prove this proposition, we consider the following whitening process on the
graph H′ whose result U is such that its complement Ū = [n′] \ U is a subset of
core(H′,σ ).
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WH1 Let W contain all vertices of H′ that either support fewer than 200 edges or
that occur in more than 2 edges that are monochromatic under σ .

WH2 Let U = W initially. While there is a vertex v ∈ [n′] \ U such that:

• v occurs in more than 5 edges that are [n′] \ U -endangered and contain a
vertex from U , or

• v supports fewer than 150 edges containing vertices in [n′] \ U only,

add v to U .

Proposition 6.1 will be a consequence of the following lemma, by taking ω = 0
and noticing that core(H′,σ ) is a superset of the set Ū .

LEMMA 6.2. Let U be the outcome of the process WH1–WH2 on H′. Then
|U | = n′Õk(2−k) a.a.s.

The rest of this subsection is dedicated to the proof of this lemma. We first
bound the size of the set W generated by WH1.

LEMMA 6.3. A.a.s. the set W contains n′Õk(2−k) vertices.

PROOF. Our assumptions on β and d ensure that the number of monochro-
matic edges that any fixed vertex v occurs in is binomially distributed with mean
Õk(2−k). Therefore, the probability that v occurs in more than 2 monochromatic
edges is bounded by Õk(2−2k). Furthermore, the number of edges that v supports
is binomially distributed with mean k ln 2 + Ok(1). Hence, by the Chernoff bound
the probability that v supports fewer than 200 edges is bounded by Õk(2−k). Con-
sequently,

E
[|W |] = n′Õk

(
2−k).(6.1)

Finally, either adding or removing a single edge from the hypergraph can alter
the size of W by at most k. Therefore, (6.1) and Azuma’s inequality imply that
|W | = n′Õk(2−k) a.a.s., as desired. �

In the next step, we state two results excluding some properties of small sets of
vertices in H′.

LEMMA 6.4. A.a.s. the random hypergraph H′ enjoys the following property:

There is no set T �= ∅ of vertices with |T | ≤ n′/k8 such that at least
0.9|T | vertices from T occur in two or more [n′] \ T -endangered
edges that contain another vertex from T .

(6.2)
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PROOF. For a set T ⊂ [n′] we define ε = |T |/n′ and we let Xi(T ) for
i ∈ {2, . . . , k} be the number of edges that are [n′] \ T -endangered and contain
exactly i vertices from T . Then Xi(T ) is stochastically dominated by a binomial
random variable Bin((1 + o(1))2i+1−k

(εn′
i

)( n′
k−i

)
,2p). Indeed, there are

(εn′
i

)
ways

to choose i vertices from T and at most
((1−ε)n′

k−i

) ≤ ( n′
k−i

)
ways to choose k − i

vertices from [n′] \ T . Moreover, these k − i vertices are required to have the
same color and because we assumed that σ is balanced, this gives rise to the
(1 + o(1))2i+1−k-factor. Let X(T ) = ∑k

i=2 Xi(T ) be the total number of edges
that are [n′] \ T -endangered and contain at least two vertices from T . Then using
the rough upper bound

(n
k

)
2p ≤ n2k ln 2 we obtain

E
[
X(T )

] =
k∑

i=2

E
[
Xi(T )

] ≤ kE
[
X2(T )

] ≤ 3.6k3ε2n′.(6.3)

Let E(T ) be the event that X(T ) ≥ 1.8|T |. If the set T satisfies (6.2) then E(T )

occurs. The Chernoff bound (Lemma 2.1) and the above upper bound (6.3) on
E[X(T )] yield

P
[
E(T )

] ≤ exp
(
−1.8εn′ ln

(
1

2ek3ε

))
.

Hence, the probability of the event E that there is a set T of size |T | ≤ n′/k8 such
that E(T ) occurs is bounded by

P
[
E

] ≤ ∑
T :|T |≤n′/k8

P
[
E(T )

] ≤ ∑
1/n′≤ε≤1/k8

(
n′
εn′

)
exp

(
−1.8εn′ ln

(
1

2ek3ε

))

≤ ∑
1/n′≤ε≤1/k8

(
2en′

εn′
)εn′

exp
(
−1.8εn′ ln

(
1

2ek3ε

))

≤ ∑
1/n′≤ε≤1/k8

exp
(
εn′(5 + 5.6 ln(k) + 0.8 ln(ε)

)) = o(1),

as claimed. �

LEMMA 6.5. A.a.s. the random hypergraph H′ enjoys the following property:

There is no set T �= ∅ of vertices of size |T | ≤ n′/k6 such that at
least 0.09|T | vertices from T support at least 20 edges that contain
another vertex from T .

(6.4)

PROOF. For a set T ⊂ [n′] and a set Q ⊂ [T ], we let E(T ,Q) be the event that
each vertex v ∈ Q supports at least 20 edges that contain another vertex from T .
Let ε = |T |/n′. Then for each vertex v the number Xv of edges that v supports
and that contain another vertex from T is stochastically dominated by a binomial



A POSITIVE TEMPERATURE PHASE TRANSITION 1395

random variable Bin((1 + o(1))22−kεn′( n′
k−2

)
,p2). Indeed, there are εn′ − 1 ways

to choose another vertex v′ �= v from T , and at most
( n′
k−2

)
ways to choose k − 2

further vertices to complete the edges. Moreover, these k − 2 vertices are required
to have color −σ (v), and because we assumed that σ is balanced this gives rise
to the (1 + o(1))22−k-factor. Furthermore, the random variables Xv are mutually
independent, because the edges in question are distinct as they are supported by the
distinguished vertex v. Therefore, using the rough upper bound

(n
k

)
p2 ≤ n2k ln 2,

we obtain

P
[
E(T ,Q)

] ≤ ∏
v∈Q

P[Xv ≥ 20]

≤ P

[
Bin

((
1 + o(1)

)
22−kεn′

(
n′

k − 2

)
,p2

)
≥ 20

]|Q|
(6.5)

≤ (
k2ε

)20|Q|
.

Now, let E(T ) be the event that there is a set Q ⊂ [T ] of size |Q| ≥ 0.09|T |
such that E(T ,Q) occurs. Then (6.5) implies that

P
[
E(T )

] ≤ 2|T |(k2|T |/n′)1.8|T |
.

Hence, the probability of the event E that there is a set T of size |T | ≤ n′/k6 such
that E(T ) occurs is bounded by

P[E] ≤ ∑
T :|T |≤n′/k6

P
[
E(T )

] ≤ ∑
1≤t≤n′/k6

(
n′
t

)
2t (k2t/n′)1.8t

≤ ∑
1≤t≤n′/k6

(
2en′

t

)t (
k2t/n′)1.8t ≤ ∑

1≤t≤n′/k6

[
2e

(
t/n′)0.8

k3.6]t = o(1),

as claimed. �

PROOF OF LEMMA 6.2. By Lemmas 6.4 and 6.5, we may assume that H′
enjoys the properties (6.2) and (6.4). We are going to argue that |U | ≤ k|W | a.a.s.
Indeed, assume for contradiction that |U | > k|W | and let U ′ be the set obtained by
WH2 when precisely (k−1)|W | vertices have been added to U ; thus, |U ′| = k|W |.
Then by construction each vertex v ∈ U ′ has one of the following properties:

(1) v belongs to W ,
(2) or v occurs in two or more [n′] \ U ′-endangered edges,
(3) or v supports at least 20 edges that contain another vertex from U ′.

Let U0 ⊂ U ′ be the set of all v ∈ U ′ that satisfy (1), let U1 ⊂ U ′ \ U0 be the set of
all v ∈ U ′ \ U0 that satisfy (2) and let U2 = U ′ \ (U0 ∪ U1). There are two cases to
consider.
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Case 1. |U1| ≥ 0.9|U ′|] then (6.2) implies that |U ′| > n′/k8.
Case 2. |U1| < 0.9|U ′|] then |U0| + |U2| ≥ 0.1|U ′| and since |U0| = |W | and

|U ′| = k|W | we have |U2| ≥ 0.09|U ′| for k large enough. Thus, (6.4) entails that
|U ′| > n′/k6.

Hence, in either case we have k|W | = |U ′| > n′/k8, and thus |W | > n′/k9. But by
Lemma 6.3 we have |W | = n′Õk(2−k) a.a.s. Thus, we conclude that |U | ≤ k|W | =
n′Õk(2−k) a.a.s. �

6.2. The backbone. We define the backbone back(H,σ ) as the set of all ver-
tices v ∈ [n] \ core(H,σ ) such that the following two conditions hold.

BB1 v supports at least one edge e such that e \ {v} ⊂ core(H,σ ).
BB2 v does not occur in a {v} ∪ core(H,σ )-endangered edge.

Given H′, we simply reconstruct H (in distribution) by adding for each i ∈ [ω]
each monochromatic edge involving vi with probability p1, and each bichromatic
edge involving vi with probability p2. We let A be the event that:

• no vertex v ∈ [n′] is incident with more than one edge containing a vertex from
{v1, . . . , vω}, and

• there is no edge containing two vertices from {v1, . . . , vω}.
With the notation from the previous subsection we let Ū be the complement

of the set of vertices produced by the whitening process WH1–WH2 applied to
the hypergraph H′. We note that |Ū | = n′(1 − Õk(2−k)) a.a.s. by Lemma 6.2. In
addition, if A occurs, then Ū ⊂ core(H,σ ). In this case, the following lemma
states the probabilities for some events concerning the vertices vi, i ∈ [ω].

LEMMA 6.6. Assume that A holds. Let l ≥ 0 be fixed. Then the following
statements are true for all i ∈ [ω]:

(1) The probability that vi supports exactly l edges is (1 + o(1)) λl

l! exp(λ)
where

λ = d

2k−1 − 1 + exp(−β)
= k ln 2 + Õk

(
2−k).

(2) The probability that vi occurs in exactly l monochromatic edges is (1 +
o(1)) (λ′)l

l! exp(λ′) where λ′ = Õk(2−k).
(3) The probability that there exist exactly l edges blocking vi and containing

at least one vertex outside {vi} ∪ Ū is (1 + o(1)) (λ′′)l
l! exp(λ′′) where λ′′ = Õk(2−k).

(4) The probability that exactly l edges are {vi} ∪ Ū -endangered is (1 +
o(1)) (λ′′′)l

l! exp(λ′′′) where λ′′′ = Õk(2−k).
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PROOF. For each i ∈ [ω] the number of edges that vi supports is a binomial
random variable Bin(

(n−1
k−1

)
(1 + o(1))21−k,p2) and the number of monochromatic

edges involving vi is a binomial random variable Bin(
(n−1
k−1

)
(1 + o(1))21−k,p1).

Indeed, because we assumed that σ is balanced, there are
(n−1
k−1

)
(1 + o(1))21−k

edges e involving vi such that σ (v) = −σ (vi) [resp., σ (v) = σ (vi)] for all v ∈
e \ {vi} and each of them is added independently at random with probability p2
(resp., p1). Hence, the Poisson approximation of the binomial distribution shows
that the probability that vi supports precisely l edges is (1 + o(1)) λl

l! exp(λ)
with

λ =
(

n − 1
k − 1

)
p2

2k−1 = d

2k−1 − 1 + exp(−β)
,

which proves assertion (1). Moreover, since β = 
k(k ln 2) and d = Õk(2k), the

probability that vi occurs in precisely l monochromatic edges is (1 + o(1)) (λ′)l
l! exp(λ′)

with

λ′ =
(

n − 1
k − 1

)
p1

2k−1 = λÕk

(
2−k) = Õk

(
2−k).

This implies assertion (2).
The probability that in an edge blocking vi at least one of the vertices is outside

{vi} ∪ Ū is Õk(2−k) by Lemma 6.2. Using (1), the number of edges blocking vi

and containing at least one vertex outside {vi}∪ Ū is stochastically dominated by a
Bin(

(n−1
k−1

)
Õk(4−k),p2) random variable. (3) then follows by the Poisson approxi-

mation.
If an edge e is {vi}∪ Ū -endangered it is either monochromatic or such that |(e \

{vi})∩ Ū | ≤ k −2. Given H′, these two events are independent and the numbers of
edges of each type are binomially distributed. The expected number of edges of the
first type is Õk(2−k) by (2). The expected number of edges of the second type is
Õk(2−k) by Lemma 6.3. Thus, (4) follows again from the Poisson approximation.

�

6.3. The rest. Let rest(H,σ ) = [n] \ (core(H,σ ) ∪ back(H,σ )).

PROPOSITION 6.7. A.a.s. |rest(H,σ )| = n2−k(1 + Õk(2−k)).

PROOF. rest(H,σ ) contains at least all vertices that do not support an edge.
Because the number of edges that a vertex supports is binomially distributed with
mean k ln 2 + Ok(1), by the Chernoff bound we have |rest(H,σ )| ≥ n2−k(1 +
Õk(2−k)) a.a.s. Now let Y = rest(H,σ ) and let ω = ω(n) be a slowly diverging
function. Let ε = Õk(2−k). We are going to show that

E
[
Y(Y − 1) · · · · · (Y − ω + 1)

] ≤
(

(1 + ε + o(1))n

2k

)ω

.(6.6)
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This bound implies the assertion; indeed,

P
[
Y > (1 + 2ε)n2−k]

≤ P
[
Y(Y − 1) · · · · · (Y − ω + 1) >

((
1 + 2ε − o(1)

)
n2−k)ω]

≤ E[Y(Y − 1) · · · · · (Y − ω + 1)]
((1 + 2ε − o(1))n2−k)ω

≤
(

1 + ε + o(1)

1 + 2ε − o(1)

)ω

= o(1).

To prove (6.6), we observe that Y(Y − 1) · · · · · (Y −ω+ 1) is just the number of
ordered ω-tuples of vertices belonging to neither the core nor the backbone—that
is, belonging to Y . Hence, by symmetry and the linearity of expectation,

E
[
Y(Y − 1) · · · · · (Y − ω + 1)

] ≤ nω
P[v1, . . . , vω ∈ Y ].

Thus, we are left to estimate P[v1, . . . , vω ∈ Y ]. If A occurs, then Ū ⊂
core(H,σ ). If Ū ⊂ core(H,σ ) and v1, . . . , vω ∈ Y , then for any i ∈ [ω] one of
the following must occur.

(1) There is no edge blocking vi that consists of vertices in {vi} ∪ Ū only.
(2) vi occurs in more than 10 edges that are {vi} ∪ Ū -endangered.
(3) There are at least 200 edges blocking vi but fewer than 100 of them consist

of vertices in {vi} ∪ Ū only.
(4) There are at most 200 edges blocking vi and one edge e such that vi ∈ e

and that is {vi} ∪ Ū -endangered.

Indeed, if a vertex vi is in rest(H,σ ) then it violates one of the conditions CR1 and
CR2 and one of BB1 and BB2. Therefore, we have to consider several cases. If vi

violates BB1, then (1) is true. If it violates CR1 and BB2, then either (3) or (4) is
true. If vi violates CR2 and one of BB1 and BB2, then (2) is true.

Let Bi be the event that one of the above is true for i ∈ [ω]. By the principle of
deferred decisions, we have P[A] = 1 − O(ω2/n) and, therefore, we get

P[v1, . . . , vω ∈ Y ] ≤ P[v1, . . . , vω ∈ Y |A] + o(1) ≤ P

[
ω⋂

i=1

Bi

∣∣∣A
]

+ o(1).

Given that there is no edge containing two vertices from v1, . . . , vω, the events
B1, . . . ,Bω are mutually independent. Therefore, P[⋂ω

i=1 Bi |A] = P[B1|A]ω.
Given that A occurs, by Lemma 6.6 the probability of event (1) is asymptot-
ically equal to 2−k + Õk(4−k) and the probabilities of events (2), (3) and (4)
are asymptotically equal to Õk(4−k). Hence, P[B1|A] = 2−k + Õk(4−k) and
P[v1, . . . , vω ∈ Y ] ≤ (2−k + Õk(4−k) + o(1))ω = ((1 + ε + o(1))2−k)ω. �

We define free(H,σ ) as the set of all vertices v ∈ rest(H,σ ) such that v occurs
only in edges e such that e ∩ core(H,σ ) is bichromatic.

PROPOSITION 6.8. A.a.s. |rest(H,σ )\free(H,σ )| = nÕk(4−k). In particular,
|free(H,σ )| = n(2−k + Õk(4−k)).
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PROOF. We introduce Y = |rest(H,σ ) \ free(H,σ )| and proceed just as in the
proof of Proposition 6.7. To estimate P[v1, . . . , vω ∈ Y ] we observe that if Ū ⊂
core(H,σ ) and v1, . . . , vω ∈ Y then for any i ∈ [ω] one of the following must
occur.

(1) There is no edge blocking vi that consists of vertices in {vi} ∪ Ū only and
vi occurs in at least one edge that is {vi} ∪ Ū -endangered.

(2) vi occurs in more than 10 edges that are {vi} ∪ Ū -endangered.
(3) There are at least 200 edges blocking vi but fewer than 100 of them consist

of vertices in {vi} ∪ Ū only.
(4) There are at most 200 edges blocking vi and one edge e such that vi ∈ e

and that is {vi} ∪ Ū -endangered.

Events (2), (3) and (4) are as in the proof of Proposition 6.7 and their probabili-
ties are asymptotically equal to Õk(4−k). By Lemma 6.6, the probability of (1) is
Õk(4−k) and the assertion follows. �

In the last three subsections, we calculate the cluster size Cβ(H,σ ) up to a small
error term. We proceed by first eliminating the contribution of the vertices in the
core and in a second step the contribution of the vertices in the backbone. Finally,
we calculate the contribution of the vertices in rest(H,σ ).

6.4. Rigidity of the core. In the following, we let x = k−5. We first show that
the cluster of σ under H mostly consists of configurations at distance less than 2x

from σ .

LEMMA 6.9. A.a.s.

Cβ(H,σ ) ∼ ∑
τ∈{−1,1}n:〈σ ,τ 〉≥(1−x)n

exp
(−βEH(τ )

)
.

To prove this result, we recall the notation from Section 4. We need the follow-
ing technical lemma.

LEMMA 6.10. Let d/k = 2k−1 ln 2 + Ok(1) and β ≥ k ln 2 − lnk. Then
supα∈[2/3,1−k−5] �β(α) < �β(1) − 
k(k

−5).

PROOF. We observe that for α ∈ [1 − k−5,1 − k−7],
�′

β(α) = ln(1 − α)

2
+ d

2k
+ Õk

(
2−k) = k ln 2 + Ok(lnk) ≥ 1.(6.7)

An expansion of �β(α) near α = 1 gives �β(1 − k−7) ≤ �β(1) + Ok(k
−6) and

together with (6.7) this implies

�β

(
1 − k−5) ≤ �β(1) − 
k

(
k−5)

.(6.8)
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Further, using that �′
β(α) > 0 if α > 1−1.99 ln k/k (as in the proof of Lemma 4.8)

and (6.8) we obtain

sup
α∈[1−1.99 ln k/k,1−k−5]

�β(α) ≤ �β

(
1 − k−5) ≤ �β(1) − 
k

(
k−5)

.(6.9)

A study of �β(α) also gives

sup
γ∈[1.99,2.01]

�β(1 − γ lnk/k) ≤ �β(1) − 
k

(
k−5)

(6.10)

and �β(α) − �β(1 − 2.01 ln k/k) = H(1+α
2 ) + Õk((

2
2.01)k) ≤ 0 for α ∈ [2/3,1 −

2.01 ln k/k], which leads to

sup
α∈[2/3,1−2.01 ln k/k]

�β(α)

≤ H
(

1 + α

2

)
+ Õk

((
2

2.01

)k)
+ �β(1 − 2.01 ln k/k)(6.11)

≤ �β(1) − 
k

(
k−5)

.

Combining (6.9), (6.10) and (6.11) completes the proof of the assertion. �

PROOF OF LEMMA 6.9. Let A be the event that |e(Hk(n,p)) − m| ≤ m2/3.
Given σ and α ∈ [−1,1] and using Lemma 4.2 we have

E

[ ∑
τ∈{−1,1}n:〈σ ,τ 〉=αn

exp
(−βEH(τ )

)∣∣∣∣∣e(H) − m
∣∣ ≤ m2/3

]

= E[∑τ :〈σ ,τ 〉=αn exp(−βEHk(n,p)(σ )) exp(−βEHk(n,p)(τ ))|A]
E[exp(−βEHk(n,p)(σ ))|A]

≤ E[Zβ(α)]
E[Zβ(H ′

k(n,m))] exp
(
O

(
m2/3))

.

In order to derive the last line, we used an observation similar to equation (4.5)
and Lemma 4.2. We observe that by Lemma 4.5 we have a.a.s. Cβ(H,σ ) ≥
exp(−βEH(σ )) ∼ exp(−nÕk(2−k)). Hence,

E

[ ∑
τ∈{−1,1}n:

2/3n≤〈σ ,τ 〉<(1−x)n

exp
(−βEH(τ )

)|∣∣e(H) − m
∣∣ ≤ m2/3

]

≤
n∑

ν=0

E[Zβ(2ν/n − 1)]
E[Zβ(H ′

k(n,m))]12ν/n−1∈[2/3,(1−x)] exp
(
O

(
m2/3))

≤ exp
(
n
(

sup
α∈[2/3,1−x]

�β(α) − �β(1) + Õk

(
2−k)))

Cβ(H,σ )

≤ exp
(−n
k

(
k−5))

Cβ(H,σ )
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by Lemma 4.6 and by Lemma 6.10. It follows from Markov’s inequality that a.a.s.∑
τ∈{−1,1}n:2/3n≤〈σ ,τ 〉<(1−x)n

exp
(−βEH(τ )

) = o
(
Cβ(H,σ )

)
.

�

We now approximate Cβ(H,σ ) based on the previous decomposition of the ver-
tex set V . Given a k-uniform hypergraph H, σ : [n] → {±1}, and three maps τcore :
core(H,σ ) → {±1}, τback : back(H,σ ) → {±1} and τrest : rest(H,σ ) → {±1},
we define EH(τcore, τback, τrest) as EH(τ ) for the unique τ whose restriction to
core(H,σ ) [resp., back(H,σ ), rest(H,σ )] is given by τcore (resp., τback, τrest).

We introduce the “restricted” cluster size

Cback+rest
β (H,σ ) = ∑

τback,τrest

exp
(−βEH(σ core, τback, τrest)

)
.

The summation is over τback : back(H,σ ) → {±1} and τrest : rest(H,σ ) → {±1}.
The aim of this section is to prove the following.

PROPOSITION 6.11. A.a.s.
1

n
lnCback+rest

β (H,σ ) ≤ 1

n
lnCβ(H,σ ) ≤ 1

n
lnCback+rest

β (H,σ ) + exp(−88β).

In order to proceed, we first need a few additional results. We introduce the set
EH(τ,σ ) of edges that:

• are supported by a vertex v such that τcore(v) �= σ core(v),
• contain two or more vertices v′ such that τcore(v

′) �= σ core(v
′).

The following lemma is reminiscent of [6], Lemma 5.9.

LEMMA 6.12. A.a.s. it holds that, for all τ : [n] → {±1} satisfying 〈σ , τ 〉 ≥
(1 − x)n, ∣∣EH(τ,σ )

∣∣ ≤ 2
∣∣{v : σ core(v) �= τcore(v)

}∣∣.
PROOF. We claim that a.a.s. H has the following property. Let T ⊂ V be of

size |T | ≤ n/(2e3k2λ2). Then there are no more than 2|T | edges that are supported
by a vertex in T and contain a second vertex from T . Indeed, by a first moment
argument, with |T | = tn the probability that there is a set T that violates the above
property is bounded by(

n

tn

)((
1 + o(1)

)
λn

2tn

)(
kt2)2tn ≤

[(
1 + o(1)

)e
t

(
λe

2t

)2(
kt2)2

]tn

≤ ((
1 + o(1)

)
t
(
e3λ2k2))tn = o(1).

With T = {v : σ core(v) �= τcore(v)} and x = k−5, we have |T | ≤ 2xn <

n/(2e3k2λ2) which completes the proof. �



1402 V. BAPST, A. COJA-OGHLAN AND F. RASSMANN

LEMMA 6.13. A.a.s. it holds that, for all τ : [n] → {±1} satisfying 〈σ , τ 〉 ≥
(1 − x)n,

EH(τcore, τback, τrest) ≥ EH(σ core, τback, τrest) + 88 dist(τcore,σ core).

PROOF. Denote for a vertex v ∈ V and τ : [n] → {±1} by:

• X(v) the number of critical (under σ ) edges e supported by v such that e \ {v} ⊂
core(H,σ ),

• Y(v) the number of core(H,σ )-endangered edges containing v,
• Mτ(v) the number of edges containing v that are monochromatic under

(σ core, τback, τrest).

We can lower bound EH(τcore, τback, τrest) in terms of EH(σ core, τback, τrest) as

EH(τcore, τback, τrest) ≥ EH(σ core, τback, τrest)
(6.12)

+ ∑
v:τcore(v) �=σ core(v)

(
X(v) − Mτ(v)

) − ∣∣EH(τ,σ )
∣∣.

Only edges that were core(H,σ )-endangered can be monochromatic under
(σ core, τback, τrest): Mτ(v) ≤ Y(v). In particular,

∀v ∈ core(H,σ ), X(v) − Mτ(v) ≥ 90.(6.13)

On the other hand, we can upper bound |EH(τ,σ )| with Lemma 6.12. Replacing
in (6.12) and using (6.13) gives

EH(τcore, τback, τrest) ≥ EH(σ core, τback, τrest) + 88 dist(τcore,σ core),

a.a.s., completing the proof. �

PROOF OF PROPOSITION 6.11. We first prove the lower bound on Cβ(H,σ ).
With Proposition 6.1, a.a.s. for all (τback, τrest) we have 〈σ , (σ core, τback, τrest)〉 ≥
(1 − x)n. Hence, with Lemma 6.9. a.a.s.

Cβ(H,σ ) ≥ ∑
τback,τrest

exp
(−βEH(σ core, τback, τrest)

) = Cback+rest
β (H,σ ).

To derive the upper bound, we write

Cβ(H,σ ) ≤ ∑
τcore:

〈σ core,τcore〉≥(1−x)n

∑
τback,τrest

exp
(−βEH(τcore, τback, τrest)

)

(6.14)
≤ ∑

τcore:
〈σ core,τcore〉≥(1−x)n

exp
(−88β dist(σ core, τcore)

)
Cback+rest

β (H,σ ),
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where the second inequality holds a.a.s. by Lemma 6.13. Finally,∑
τcore:

〈σ core,τcore〉≥(1−x)n

exp
(−88β dist(σ coreτcore)

)

=
xn/2∑
i=0

(
n

i

)
exp(−88βi) ≤

n∑
i=0

(
n

i

)
exp(−88βi)(6.15)

= (
1 + exp(−88β)

)n ≤ exp
(
n exp(−88β)

)
.

Replacing with (6.16) in (6.14) completes the proof. �

6.5. Rigidity of the backbone. We proceed one step further by eliminating the
vertices in the backbone and comparing Cback+rest

β (H,σ ) to Crest
β (H,σ ), where

Crest
β (H,σ ) = ∑

τrest

exp
(−βEH(σ core,σ back, τrest)

)
.

The sum is over τrest : rest(H,σ ) → {±1}. We prove the following result.

PROPOSITION 6.14. A.a.s.
1

n
lnCrest

β (H,σ ) ≤ 1

n
lnCback+rest

β (H,σ ) ≤ 1

n
lnCrest

β (H,σ ) + Õk

(
4−k).

PROOF. The left inequality is obvious. To prove the right inequality, we ob-
serve that, by definition of the backbone, for any τback : back(H,σ ) → {±1} and
τrest : rest(H,σ ) → {±1}, the following is true.

EH(σ core, τback, τrest) ≥ EH(σ core,σ back, τrest) + dist(σ back, τback).(6.16)

Indeed for any vertex v ∈ back(H,σ ) with σ back(v) �= τback(v) and any edge e � v:

• either v supports e and e \ {v} ⊂ core(H,σ ), in which case the edge e is bichro-
matic under (σ core,σ back, τrest) and monochromatic under (σ core, τback, τrest),

• or e is not {v} ∪ core(H,σ )-endangered and is bichromatic both under (σ core,

σ back, τrest) and under (σ core, τback, τrest).

Moreover, by the definition of back(H,σ ) there is at least one edge of the first type
for any v ∈ back(H,σ ) with σ back(v) �= τback(v).

Using the definition of Cback+rest
β (H,σ ) and (6.16) yields

Cback+rest
β (H,σ )

≤ ∑
τback,τrest

exp
(−β dist(σ back, τback)

)
exp

(−βEH(σ core,σ back, τrest)
)

(6.17)

≤ ∑
τback

exp
(−β dist(σ back, τback)

)
Crest

β (H,σ ).
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The remaining sum can easily be upper-bounded:

∑
τback

exp
(−β dist(σ back, τback)

) =
|back(H,σ )|∑

i=0

( ∣∣back(H,σ )
∣∣

i

)
exp(−βi)

= (
1 + exp(−β)

)|back(H,σ )|(6.18)

≤ exp
(
exp(−β)

∣∣back(H,σ )
∣∣).

The upper bound of Proposition 6.14 then follows from (6.17) and (6.18) combined
with Proposition 6.1. �

6.6. The remaining vertices. We finally deal with the vertices that belong nei-
ther to the core nor to the backbone. As anticipated in Proposition 6.8, most of
them are free. This yields the following result.

PROPOSITION 6.15. A.a.s.
1

n
lnCrest

β (H,σ ) = ln 2

2k
− β

EH(σ )

n
+ Õk

(
4−k).

In order to prove the proposition, we need the following result. Let M ′
σ (v) be

the number of monochromatic edges involving v in the configuration σ .

LEMMA 6.16. A.a.s. ∑
v∈rest(H,σ )\free(H,σ )

M ′
σ (v) = nÕk

(
4−k).

PROOF. We start with the following observation:∑
v∈rest(H,σ )\free(H,σ )

M ′
σ (v) ≤ ∑

v:M ′
σ (v)>2

M ′
σ (v) + 2

∣∣rest(H,σ ) \ free(H,σ )
∣∣.

The number of monochromatic edges involving a vertex v is a binomial random
variable Bin(

(n−1
k−1

)
(1 + o(1))2k−1,p1). Hence

∑
v∈V :M ′

σ (v)>2 M ′
σ (v) = nÕk(4−k).

Applying Proposition 6.8 completes the proof. �

PROOF OF PROPOSITION 6.15. By the definition of free(H,σ ), the number of
monochromatic edges EH(σ core,σ back, τrest) does not depend on the values τrest(v)

for v ∈ free(H,σ ). Consequently,

Crest
β (H,σ ) ≥ 2| free(H,σ )| exp

(−βEH(σ )
)
.

Together with Proposition 6.8 this gives the lower bound on 1
n

lnCrest
β (H,σ ). For

the upper bound, we start with the general inequality

1

n
lnCrest

β (H,σ ) ≤ ln 2

n

∣∣rest(H,σ )
∣∣ − β

n
inf
τrest

EH(σ core,σ back, τrest).
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Because the number of monochromatic edges does not depend on the values of the
vertices in free(H,σ ) we have

inf
τrest

EH(σ core,σ back, τrest) ≥ EH(σ ) − ∑
v∈rest(H,σ )\free(H,σ )

M ′
σ (v).

Hence, we obtain

1

n
lnCrest

β (H,σ )

(6.19)

≤ ln 2

n

∣∣rest(H,σ )
∣∣ − β

EH(σ )

n
+ β

n

∑
v∈rest(H,σ )\free(H,σ )

M ′
σ (v).

The upper bound follows by combining (6.19) with Proposition 6.7 and Lem-
ma 6.16. �

6.7. Proof of Proposition 3.5. Combining Propositions 6.11, 6.14 and 6.15,
we obtain that a.a.s.

1

n
lnCβ(H,σ ) = ln 2

2k
− β

EH(σ )

n
+ Õk

(
4−k).(6.20)

The number of monochromatic edges in the planted model is tightly concentrated
by Chernoff bounds. Therefore, we get a.a.s.

EH(σ ) =
(

n

k

)
21−kp1

(
1 + o(1)

) ∼ exp(−β)

2k−1 − 1 + exp(−β))

d

k
n.

For d/k = 2k−1 ln 2 + Ok(1) and β ≥ k ln 2 − ln k, we have EH(σ ) =
ln 2 exp(−β)n + Õk(4−k)n. Inserting this in (6.20) yields a.a.s.

1

n
lnCβ(H,σ ) = ln 2

2k
− β ln 2 exp(−β) + Õk

(
4−k),

proving Proposition 3.5.
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