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STOCHASTIC PERRON FOR STOCHASTIC TARGET GAMES1

BY ERHAN BAYRAKTAR AND JIAQI LI

University of Michigan

We extend the stochastic Perron method to analyze the framework of
stochastic target games, in which one player tries to find a strategy such that
the state process almost surely reaches a given target no matter which action
is chosen by the other player. Within this framework, our method produces a
viscosity sub-solution (super-solution) of a Hamilton–Jacobi–Bellman (HJB)
equation. We then characterize the value function as a viscosity solution to
the HJB equation using a comparison result and a byproduct to obtain the
dynamic programming principle.

1. Introduction. We will extend the stochastic Perron method to analyze a
stochastic (semi) game where a controller tries to find a strategy such that the
controlled state process almost surely reaches a given target at a given finite time,
no matter which control is chosen by an adverse player (nature). More precisely,
the controller has access to a filtration generated by a Brownian motion and can
observe and react to nature, who may choose a parametrization of the model to
be totally adverse to the controller, in a nonanticipative way. This stochastic target
game was introduced and analyzed in [8].

In this paper, we will have a fresh look at the problem of Bouchard and Nutz
[8] with a different methodology, namely the stochastic Perron method. Using this
method we will be able to drop the assumption on the concavity of the Hamiltonian
assumed in [8]. The stochastic Perron method was introduced in [3] for analyzing
linear problems, in [5] for Dynkin games involving free-boundary games and in
[4] for stochastic control problems. This method is a type of verification theo-
rem, which identifies the value function as the unique solution to a corresponding
HJB equation without going through the dynamic programming principle, but does
not require the smoothness of the value function. It is a stochastic version of the
Perron method [9] in that it creates classes of sub- and super-solutions that enve-
lope the value function and are closed under maximization and minimization, re-
spectively. More recently, the stochastic Perron method was adjusted to solve exit
time problems in [12], state constraint problems in [11], singular control problems
in [6], stochastic games in [14] and control problems with model uncertainty in
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[13] and [1]. In this paper, we show how the main ideas of this method can be
modified to analyze the stochastic target games of Bouchard and Nutz [8].

The main difficulty of this analysis is identifying the correct collections of
stochastic sub- and super-solutions. Once this is established, the technical con-
tribution is in showing that in fact the supremum and the infimum of the respective
families are viscosity super- and sub-solutions, respectively. Then a comparison
result establishes the claim since the value function is already enveloped by these
two families. The identification of these classes and the technical proofs turn out to
be quite different from the works cited above because of the difference between na-
ture of the stochastic target problems and the nature of the stochastic control prob-
lems. Unlike the usual stochastic control problems, the goal of the target problems
is to beat a stochastic target almost surely by applying the admissible controls.
These problems, which are generalizations of the super-hedging problems that ap-
pear in mathematical finance, were introduced in the seminal papers [16] and [15];
see [17] for a more recent exposition. Stochastic target games, on the other hand,
were considered recently by Bouchard, Moreau and Nutz [7] when the target is
of controlled loss type. The more difficult case of an almost sure target was then
analyzed in [8].

In this paper we achieve the following:

• We give a proof of the result that the value function of the stochastic target
game is the unique viscosity solution of the associated HJB equation without
first going through the geometric dynamic programming principle. What we
have is a new method for analyzing stochastic target problems.

• We give a more elementary proof of the result in [8]. This way we are able to
avoid using Krylov’s method of shaken coefficients, which requires the concav-
ity of the Hamiltonian.

The rest of the paper is organized as follows: In Section 2, we present the setup
of the stochastic target game, introduce the related HJB equation and the defini-
tions of the sets of stochastic super- and sub-solutions (our conceptual contribu-
tion). The technical contribution of the paper is given in Section 3, where we char-
acterize the infimum (supremum) of the stochastic super-solutions (sub-solutions)
as the viscosity sub-solution (super-solution) of the HJB equation. A viscosity
comparison argument concludes that the value function is the unique bounded
continuous viscosity solution of the HJB equation. Finally, we obtain the dynamic
programming principle as a byproduct. Some technical results are deferred to the
Appendix.

2. Statement of the problem.

2.1. The value function. Let us denote

D := [0, T ] ×Rd, D<T := [0, T ) ×Rd, DT := {T } ×Rd .
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Let � be the space of continuous functions ω : [0, T ] → Rd , and let P be the
Wiener measure on �. We will denote by W the canonical process on �, that
is, Wt(ω) = ωt , and by F = (Fs)0≤s≤T the augmented filtration generated by W .
For 0 ≤ t ≤ T let Ft = (F t

s )0≤s≤T be the augmented filtration generated by
(Ws − Wt)s≥t . By convention, F t

s is trivial for s ≤ t .
We denote by U t (resp., At ) the collection of all Ft -predictable processes in

Lp(P ⊗ dt) with values in a given Borel subset U (resp., bounded set A) of Rd ,
where p ≥ 2 is fixed.

Given (t, x, y) ∈ D ×R and (u,α) ∈ U t ×At , consider the stochastic differen-
tial equations (SDEs){

dX(s) = μX

(
s,X(s), αs

)
ds + σX

(
s,X(s), αs

)
dWs,

dY (s) = μY

(
s,X(s), Y (s), us, αs

)
ds + σY

(
s,X(s), Y (s), us, αs

)
dWs,

(2.1)

with initial data (X(t), Y (t)) = (x, y).

ASSUMPTION 2.1. The coefficients μX,μY ,σX and σY are continuous in all
variables and take values in Rd , R, Rd and Md := Rd×d , respectively. There exists
K > 0 such that∣∣μX(t, x, ·) − μX

(
t ′, x′, ·)∣∣ + ∣∣σX(t, x, ·) − σX

(
t ′, x′, ·)∣∣ ≤ K

(∣∣t − t ′
∣∣ + ∣∣x − x′∣∣),∣∣μX(·, x, ·)∣∣ + ∣∣σX(·, x, ·)∣∣ ≤ K,∣∣μY (·, y, ·) − μY

(·, y′, ·)∣∣ + ∣∣σY (·, y, ·) − σY

(·, y′, ·)∣∣ ≤ K
∣∣y − y′∣∣,∣∣μY (·, y, u, ·)∣∣ + ∣∣σY (·, y, u, ·)∣∣ ≤ K
(
1 + |u| + |y|),

for all (x, y), (x′, y′) ∈ Rd ×R and u ∈ U .

This assumption ensures that the stochastic differential equations given in (2.1)
are well posed. Denote the solutions to (2.1) by (Xα

t,x, Y
u,α
t,x,y). Let t ≤ T . We say

that a map u :At → U t , α �→ u[α] is a t-admissible strategy if it is nonanticipating
in the sense that{

ω ∈ � :α(ω)|[t,s] = α′(ω)|[t,s]} ⊂ {
ω ∈ � :u[α](ω)|[t,s] = u

[
α′](ω)|[t,s]}-a.s.

for all s ∈ [t, T ] and α,α′ ∈ At , where |[t,s] indicates the restriction to the interval
[t, s]. We denote by U(t) the collection of all t-admissible strategies; moreover, we
write Y

u,α
t,x,y for Y

u[α],α
t,x,y . Then we can introduce the value function of the stochastic

target game,

v(t, x) := inf
{
y ∈ R :∃u ∈ U(t) s.t. Y

u,α
t,x,y(T ) ≥ g

(
Xα

t,x(T )
)
-a.s. ∀α ∈ At},(2.2)

where g :Rd → R is a bounded and measurable function. We also need to define
strategies starting at a family of stopping times. Let St be the set of F t -stopping
times valued in [t, T ].
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DEFINITION 2.1 (Nonanticipating family of stopping times). Let {τα}α∈At ⊂
St be a family of stopping times. This family is t-nonanticipating if{

ω ∈ � :α(ω)|[t,s] = α′(ω)|[t,s]}
⊂ {

ω ∈ � : t ≤ τα(ω) = τα′
(ω) ≤ s

} ∪ {
ω ∈ � : s < τα(ω), s < τα′

(ω)
}
-a.s.

Denote the set of t-nonanticipating families of stopping times by St .

We will use {τα} for short to represent {τα}α∈At , which will always denote a
t-nonanticipating family of stopping times.

DEFINITION 2.2 (Strategies starting at a nonanticipating family of stopping
times). Fix t , and let {τα} ∈ St . We say that a map u :At → U t , α �→ u[α] is a
(t, {τα})-admissible strategy if it is nonanticipating in the sense that{

ω ∈ � :α(ω)|[t,s] = α′(ω)|[t,s]}
⊂ {

ω ∈ � : s < τα(ω), s < τα′
(ω)

}
∪ {

ω ∈ � : t ≤ τα(ω) = τα′
(ω) ≤ s,

u[α](ω)|[τα(ω),s] = u
[
α′](ω)|[τα′

(ω),s]
}
-a.s.

for all s ∈ [t, T ] and α,α′ ∈ At , denoted by u ∈ U(t, {τα}).

It is clear that from Definition 2.2 that if we set τα = t for all α, then U(t, {τα})
is then the same as U(t). Hence the above definitions are consistent.

DEFINITION 2.3 (Concatenation). Let α1, α2 ∈ At , τ ∈ St be a stopping time.
The concatenation of α1, α2 is defined as follows:

α1 ⊗τ α2 := α11[t,τ ) + α21[τ,T ].

The concatenation of elements in U t is defined in a similar fashion.

LEMMA 2.1. Fix t , and let {τα} ∈St . For u ∈ U(t) and ũ ∈ U(t, {τα}), define
u∗[α] := u[α] ⊗τα ũ[α]. Then u∗ ∈ U(t). For the rest of the paper, we will use
u⊗τα ũ[α] to represent u[α] ⊗τα ũ[α].

PROOF. It is obvious that u∗ maps At to U t . Let us check the nonanticipativity
of the map. For any fixed s ∈ [t, T ] and α,α′ ∈ At , ω′ ∈ {ω ∈ � :α(ω)|[t,s] =
α′(ω)|[t,s]}, by Definition 2.1,

ω′ ∈ {
t ≤ τα = τα′ ≤ s

} ∪ {
s < τα, s < τα′}

-a.s.(2.3)
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(i) If ω′ ∈ {t ≤ τα = τα′ ≤ s}, by the definition of u∗,

u∗[α](ω′)|[t,s] = u[α](ω′)1[t,τα(ω′))|[t,s] + ũ[α](ω′)1[τα(ω′),T ]|[t,s],
u∗

[
α′](ω′)|[t,s] = u

[
α′](ω′)1[t,τα′

(ω′))|[t,s] + ũ
[
α′](ω′)1[τα′

(ω′),T ]|[t,s].

Since τα(ω′) = τα′
(ω′), u ∈ U(t) and by Definition 2.2, we know

ω′ ∈ {
ω ∈ � :u[α](ω)|[t,s] = u

[
α′](ω)|[t,s]}-a.s.

(ii) If ω′ ∈ {s < τα, s < τα′ }, using the definition of u∗,

u∗[α](ω′)|[t,s] = u[α](ω′)|[t,s],
u∗

[
α′](ω′)|[t,s] = u

[
α′](ω′)|[t,s].

Since ω′ ∈ {ω ∈ � :α(ω)|[t,s] = α′(ω)|[t,s]} and u ∈ U(t), then ω′ ∈ {ω ∈ � :
u∗[α](ω)|[t,s] = u∗[α′](ω)|[t,s]}-a.s. �

2.2. The HJB equation. Before giving the HJB equation, we will intro-
duce some notation and an assumption, which was also assumed in [8]. Given
(t, x, y, z, a) ∈D ×R×Rd × A, define the set

N(t, x, y, z, a) := {
u ∈ U :σY (t, x, y,u, a) = z

}
.

ASSUMPTION 2.2. u �→ σY (t, x, y,u, a) is invertible. More precisely, there
exists a measurable map û :D ×R×Rd × A → U such that N = {û}. Moreover,
the map û(·, a) is continuous for each a ∈ A.

Let us define for (t, x, y,p,M) ∈ D ×R×Rd ×Md ,

H(t, x, y,p,M) := sup
a∈A

{
−μû

Y

(
t, x, y, σX(t, x, a)p, a

) + μX(t, x, a)�p

+ 1

2
Tr

[
σXσ�

X (t, x, a)M
]}

,

where

μû
Y (t, x, y, z, a) := μY

(
t, x, y, û(t, x, y, z, a), a

)
, z ∈ Rd .

Consider the equation

φt + H
(
t, x,φ,Dφ,D2φ

) = 0 on D<T ,
(2.4)

φ = g on DT .
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2.3. Stochastic solutions. We will introduce weak solution concepts to the
HJB equation that are stable under minimization and maximization, respectively,
and envelope the value function v of the stochastic target game.

DEFINITION 2.4 (Stochastic super-solutions). A function w : [0, T ] × Rd →
R is called a stochastic super-solution of (2.4) if:

(1) it is bounded, continuous and w(T , ·) ≥ g(·);
(2) for fixed (t, x, y) ∈ D × R and {τα} ∈ St , for any u ∈ U(t), there exists a

strategy ũ ∈ U(t, {τα}) such that for any α ∈ At and each stopping time ρ ∈ St ,

τα ≤ ρ ≤ T with the simplifying notation X := Xα
t,x, Y := Y

u⊗τα ũ[α],α
t,x,y , we have

Y(ρ) ≥ w
(
ρ,X(ρ)

)
P-a.s. on

{
Y

(
τα)

> w
(
τα,X

(
τα))}

.

The set of stochastic super-solutions is denoted by U+. Assume it is nonempty
and v+ := infw∈U+ w. For any stochastic super-solution w, choose τα = t for all
α and ρ = T . Then there exists ũ ∈ U(t) such that, for any α ∈At ,

Y
ũ,α
t,x,y(T ) ≥ w

(
T ,Xα

t,x(T )
) ≥ g

(
Xα

t,x(T )
)

P-a.s. on
{
y > w(t, x)

}
.

Hence, y > w(t, x) implies y ≥ v(t, x) from (2.2). This gives w ≥ v and v+ ≥ v.
Similarly, we could define the stochastic sub-solutions.

DEFINITION 2.5 (Stochastic sub-solutions). A function w : [0, T ] ×Rd → R

is called a stochastic sub-solution of (2.4) if:

(1) it is bounded, continuous and w(T , ·) ≤ g(·);
(2) for fixed (t, x, y) ∈ D × R and {τα} ∈ St , for any u ∈ U(t), α ∈ At , there

exists α̃ ∈ At (may depend on u, α and τα) such that for each stopping time ρ ∈ St ,
τα ≤ ρ ≤ T with the simplifying notation X := Xα

t,x, Y := Y
u,α⊗τα α̃
t,x,y , we have

P
(
Y(ρ) < w

(
ρ,X(ρ)

)|B)
> 0,

for any B ⊂ {Y(τα) < w(τα,X(τα))}, B ∈ F t
τα and P(B) > 0.

The set of stochastic sub-solutions is denoted by U−. Assume it is nonempty,
and let v− := supw∈U− w. For any stochastic sub-solution w, choose τα = t for all
α and ρ = T . Hence for any u ∈ U(t), there exists α̃ ∈ At , such that

P
(
Y
u,α̃
t,x,y(T ) < w

(
T ,Xα̃

t,x(T )
) ≤ g

(
Xα̃

t,x(T )
)|y < w(t, x)

)
> 0.

Hence, y < w(t, x) implies y ≤ v(t, x) from (2.2). This gives w ≤ v and v− ≤ v.
As a result we have

v− � sup
w∈U−

w ≤ v ≤ inf
w∈U+ w � v+.(2.5)

We will show in Section 3 that under some suitable assumptions, v+ and v− are
viscosity sub- and super-solutions of (2.4), respectively.
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2.4. Additional technical assumptions. We will need to make some more tech-
nical assumptions as in [8].

ASSUMPTION 2.3. The map (t, x, y, z) ∈ D ×R×Rd �→ μû
Y (t, x, y, z, a) is

Lipschitz continuous, uniformly in a ∈ A, and (y, z) ∈ R×Rd �→ μû
Y (t, x, y, z, a)

has linear growth, uniformly in (t, x, a) ∈ D × A.

For the derivation of the super-solution property of v−, we will impose a con-
dition on the growth of μY relative to σY .

ASSUMPTION 2.4.

sup
u∈U

|μY (·, u, ·)|
1 + ‖σY (·, u, ·)‖ is locally bounded,

where ‖ · ‖ is the Euclidean norm.

In (2.5) we implicitly assume that the sets U+ and U− are nonempty. The as-
sumptions we made already imply that U+ is not empty, but the same may not be
true when U− is not empty.

ASSUMPTION 2.5. The collection U− is not empty.

2.5. When U+ and U− are not empty. As the next result shows, the assump-
tions above already guarantee that U+ is not empty.

PROPOSITION 2.1. Under Assumptions 2.1, 2.2 and 2.3 the collection U+ is
not empty.

PROOF. See the Appendix. �

In the above proposition the assumptions made can be replaced by the following
natural assumption (although this is not the route we will take):

ASSUMPTION 2.6. There exists u ∈ U such that μY (t, x, y,u, a) = 0,
σY (t, x, y,u, a) = 0 for all (t, x, y, a) ∈ D<T × R × A. (In these equations the
right-hand sides are denoted by just 0 for simplicity, but they in fact are collections
of 0’s matching the dimension on the left-hand side.)

In the context of super-hedging in mathematical finance, in which Y represents
the wealth of an investor and X the stock price, and g(XT ) a financial contract,
the last assumption is equivalent to allowing the investor not to trade in the risky
assets.
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PROPOSITION 2.2. Under Assumptions 2.1 and 2.6 the collection U+ is not
empty.

PROOF. Choose the strategy ũ[α] = u. For any given {τα} ∈ St , we have ũ ∈
U(t, {τα}), and from Assumption 2.6, it holds for any u ∈ U(t) that

Y
u⊗τα ũ[α],α
t,x,y (ρ) = Y

u⊗τα ũ[α],α
t,x,y

(
τα) ∀α ∈ At and ρ ∈ St such that τα ≤ ρ ≤ T .

From the boundedness of g, there exists a C, such that g(x) < C. Now take
w(t, x) ≡ C, which clearly satisfies the first condition in Definition 2.4. On the
other hand, on the set {Y(τα) > w(τα,X(τα))}, we clearly have that {Y(ρ) >

w(ρ,X(ρ))} for any ρ such that τα ≤ ρ ≤ T , which gives the second condition in
Definition 2.4. �

PROPOSITION 2.3. If in addition to Assumptions 2.1 there exists a ∈ A such
that μY (t, x, y,u, a) = 0, σY (t, x, y,u, a) = 0 for all (t, x, y,u) ∈D<T ×R× U ,
then U− is not empty.

PROOF. The proof is similar to that of Proposition 2.2. �

The additional assumption in the latter proposition is not very reasonable. Below
we introduce an alternative assumption.

ASSUMPTION 2.7. |μY |
‖σY ‖ is bounded on N = {(t, x, y,u, a) :σY (t, x, y,

u, a) �= 0}.
PROPOSITION 2.4. Under Assumptions 2.1, 2.2, 2.6 and 2.7, the collection

U− is not empty.

PROOF. See the Appendix. �

3. The main result and its proof. To prove the main theorem, we need some
preparatory lemmas.

LEMMA 3.1. The set of stochastic super/sub solutions is upwards/downwards
directed; that is:

(1) if w1,w2 ∈ U+, then w1 ∧ w2 ∈ U+;
(2) if w1,w2 ∈ U−, then w1 ∨ w2 ∈ U−.

PROOF. This lemma is in the spirit of Lemma 3.7 in [14]. Here we only sketch
the proof for (1). For w1,w2 ∈ U+, let w = w1 ∧ w2. Clearly w is bounded, con-
tinuous and w(T ,x) ≥ g(x). For fixed (t, x, y) ∈ D<T × R and {τα} ∈ St , let u1
and u2 be the strategies starting at {τα} for w1 and w2, respectively. Let

u[α] = u1[α]1{w1(τ
α,X(τα))<w2(τ

α,X(τα))} + u2[α]1{w1(τ
α,X(τα))≥w2(τ

α,X(τα))}.
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It is easy to show that u works for w in the definition of stochastic super-solutions.
�

LEMMA 3.2. There exists a nonincreasing sequence U+ � wn ↘ v+ and a
nondecreasing sequence U− � vn ↗ v−.

PROOF. The proof of the lemma follows directly from Proposition 4.1 in [3].
�

Let us also state the following well-known result without proof.

LEMMA 3.3. Given f : X × Y ⊂ Rp ×Rq → R, define F(x) := supy∈Y f (x,

y). If x → f (x, y) is continuous, uniformly in y and F(x) < ∞ for all x ∈ X, then
x → F(x) is continuous.

THEOREM 3.1 (Stochastic Perron for stochastic target games). Let Assump-
tions 2.1 and 2.2 hold.

(1) If in addition g is upper semi-continuous (USC) and Assumption 2.3 holds,
the function v+ is a bounded USC viscosity sub-solution of (2.4).

(2) On the other hand if g is lower semi-continuous (LSC) and Assumptions 2.4
and 2.5 hold, the function v− is a bounded LSC viscosity super-solution of (2.4).

PROOF. Step 1 (v+ is the viscosity sub-solution). First due to Proposition 2.1
v+ is well defined. We will first show the interior viscosity sub-solution property
and then demonstrate the boundary condition.

Step 1.1. The interior sub-solution property: Let (t0, x0) be in the parabolic
interior [0, T ) ×Rd such that a smooth function ϕ strictly touches v+ from above
at (t0, x0). Assume, by contradiction, that

ϕt + H
(
t, x, ϕ,Dϕ,D2ϕ

)
< 0 at (t0, x0).

From the uniform continuity of μX and σX in Assumption 2.1, the uniform con-
tinuity of μû

Y in Assumption 2.3 and the smoothness of ϕ, the map (t, x, y, a) →
−μû

Y (t, x, y, σX(t, x, a)Dϕ(t, x), a) + μX(t, x, a)�Dϕ + 1
2 Tr[σXσ�

X (t, x, a) ×
D2ϕ(t, x)] is uniformly continuous in (t, x, y). Hence the map (t, x, y) →
H(t, x, y,Dϕ(t, x),D2ϕ(t, x)) is continuous due to Lemma 3.3. This implies that
there exists a ε > 0 and δ > 0 such that

ϕt + H
(
t, x, y,Dϕ,D2ϕ

)
< 0

(3.1)
∀(t, x) ∈ B(t0, x0, ε) and

∣∣y − ϕ(t, x)
∣∣ ≤ δ,

where B(t0, x0, ε) = {(t, x) ∈ D : max{|t − t0|, |x −x0|} < ε}. Now, on the compact
torus T = B(t0, x0, ε)−B(t0, x0, ε/2), we have that ϕ > v+, and the min of ϕ−v+
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is attained since v+ is USC. Therefore, ϕ > v+ + η on T for some η > 0. Since
wn ↘ v+, a Dini-type argument shows that for large enough n, we have ϕ > wn +
η/2 on T and ϕ > wn − δ on B(t0, x0, ε/2). For simplicity, fix such an n, and
denote w = wn. Now define, for small κ <

η
2 ∧ δ,

wκ �
{

(ϕ − κ) ∧ w, on B(t0, x0, ε),

w, outside B(t0, x0, ε).

Since ϕ > w + η/2 > w + κ on T, then w = wκ on ∂B(t0, x0; ε/2), which implies
wκ is continuous. Since wκ(t0, x0) < v+(t0, x0), we would obtain a contradiction
if we can show wκ ∈ U+.

Fix t , {τα} ∈ St and u ∈ U(t). We need to construct a strategy ũ ∈ U(t, {τα})
in the definition of stochastic super-solutions for wκ . This can be done as follows:
since w is a stochastic super-solution, there exists an “optimal” strategy ũ1 in Def-
inition 2.4 for w starting at {τα}. We will construct ũ in two steps:

(i) wκ(τα,Xα
t,x(τ

α)) = w(τα,Xα
t,x(τ

α)): set ũ = ũ1;
(ii) wκ(τα,Xα

t,x(τ
α)) < w(τα,Xα

t,x(τ
α)): In this case we necessarily start in-

side the ball. Let Y be the unique strong solution (which is thanks in particular to
Assumption 2.3) of the equation

Y(l) = Y
u,α
t,x,y

(
τα)

+
∫ τα∨l

τα
μû

Y

(
s,Xα

t,x(s), Y (s), σX

(
s,Xα

t,x(s), αs

)
Dϕ

(
s,Xα

t,x(s)
)
, αs

)
ds

+
∫ τα∨l

τα
σX

(
s,Xα

t,x(s), αs

)
Dϕ

(
s,Xα

t,x(s)
)
dWs, l ≥ τα,

for any u ∈ U(t) and α ∈ At , and set Y (s) = Y
u,α
t,x,y(s) for s < τα . Define

ũ0 := ũ0[α](s) = û
(
s,Xα

t,x(s), Y (s), σX

(
s,Xα

t,x(s), αs

)
Dϕ

(
s,Xα

t,x(s)
)
, αs

)
.

Let θα
1 is the first exit time of (s,Xα

t,x(s)) after τα from B(t0, x0; ε/2) and θα
2 be

the first time after τα when |Y(s) − ϕ(s,Xα
t,x(s))| ≥ δ. More precisely,

θα
1 := inf

{
s ∈ [

τα, T
]
:
(
s,Xα

t,x(s)
)

/∈ B(t0, x0, ε/2)
}

and

θα
2 := inf

{
s ∈ [

τα, T
]
:
∣∣Y(s) − ϕ

(
s,Xα

t,x(s)
)∣∣ ≥ δ

}
.

Let θα = θα
1 ∧ θα

2 . We know that {θα} ∈ St from Example 1 in [2]. We will set ũ
to be ũ0 until θα . Starting at θα , we will then follow the strategy uθ ∈ U(t, {θα})
which is “optimal” for w.

In summary, (i) and (ii) together give us the following strategy:

ũ[α] = (
1Aũ1[α] + 1Ac

(
ũ0[α]1[t,θα) + uθ [α]1[θα,T ]

))
1[τα,T ],
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where

A = {
wκ(

τα,Xα
t,x

(
τα)) = w

(
τα,Xα

t,x

(
τα))}

.

We note that ũ0 ∈ U(t) by the pathwise uniqueness of X’s, Y ’s and Y ’s equa-
tions. Then applying Lemma 2.1, ũ0[α]1[t,θα) + uθ [α]1[θα,T ] ∈ U(t). Since ũ1 ∈
U(t, {τα}), by Definition 2.2, it follows that ũ ∈ U(t, {τα}) by the pathwise unique-
ness of X’s equation. Now, let us show the above construction actually works. We
need to show that for any ρ ∈ St such that τα ≤ ρ ≤ T ,

Y(ρ) ≥ w
(
ρ,X(ρ)

)
P-a.s. on

{
Y

(
τα)

> w
(
τα,X

(
τα))}

,

where

X := Xα
t,x and Y := Y

u⊗τα ũ[α],α
t,x,y .

Note that Y (s) = Y
u⊗τα ũ0[α],α
t,x,y (s) for s ≥ τα and

Y = 1AY
u⊗τα ũ1[α],α
t,x,y + 1AcY

u⊗τα ũ0[α],α
t,x,y for τα ≤ s ≤ θα.(3.2)

We will carry out the proof in two steps:
(i) On the set A ∩ {Y(τα) > wκ(τα,X(τα))}, we have

Y
(
τα)

> w
(
τα,X

(
τα))

.

From (3.2) and the “optimality” of ũ1 (for w), we know

Y(ρ) = Y
u⊗τα ũ1[α],α
t,x,y (ρ) ≥ w

(
ρ,X(ρ)

) ≥ wκ(
ρ,X(ρ)

)
P-a.s on the above set.

(ii) On the set Ac ∩{Y(τα) > wκ(τα,X(τα))}, by the definition of ũ0 and (3.2),
using Itô’s formula,

Y
(· ∧ θα) − ϕ

(· ∧ θα,X
(· ∧ θα)) = Y

(
τα) − ϕ

(
τα,X

(
τα)) +

∫ ·∧θα

τα
γ (s) ds,

where

γ := μû
Y

(·,X,Y,σX(·,X,α)Dϕ(·,X),α
) − μX(·,X,α)�Dϕ(·,X)

− 1
2 Tr

[
σXσ�

X (·,X,α)D2ϕ(·,X)
] − ϕt(·,X),

since the definition of û allows us to cancel the Brownian motion terms on
the right-hand side. On [τα, θα], (t,X) ∈ B(t0, x0, ε) and |Y(t) − ϕ(t,X(t))| ≤ δ,
therefore from (3.1) we have that γ > 0. This implies that Y(· ∧ θα) − ϕ(· ∧
θα,X(· ∧ θα)) is nondecreasing on [τα, T ] and

Y
(
θα) − ϕ

(
θα,X

(
θα)) + κ > Y

(
τα) − ϕ

(
τα,X

(
τα)) + κ > 0.(3.3)

As a result, on the one hand, we have

0 <
(
Y

(
θα

1
) − ϕ

(
θα

1 ,X
(
θα

1
)) + κ

) ≤ (
Y

(
θα

1
) − w

(
θα

1 ,X
(
θα

1
)))

(3.4)
on

{
θα

1 < θα
2

}
.
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On the other hand,

Y
(
θα

2
) − ϕ

(
θα

2 ,X
(
θα

2
)) = δ on

{
θα

1 ≥ θα
2

}
.

Observe that the right-hand side of the above expression cannot be −δ due to (3.3).
Therefore,(

Y
(
θα

2
) − w

(
θα

2 ,X
(
θα

2
))) = (

δ + ϕ
(
θα

2 ,X
(
θα

2
)) − w

(
θα

2 ,X
(
θα

2
)))

> 0
(3.5)

on
{
θα

1 ≥ θα
2

}
,

since ϕ > w − δ on B(t0, x0, ε/2). Combining (3.4) and (3.5) we obtain

Y
(
θα) − w

(
θα,X

(
θα))

> 0 on Ac ∩ {
Y

(
τα)

> wκ(
τα,Xα)}

.(3.6)

It follows from this conclusion and the “optimality” of uθ starting at {θα} that(
Y

(
ρ ∨ θα)−wκ(

ρ ∨ θα,X
(
ρ ∨ θα))) ≥ (

Y
(
ρ ∨ θα)−w

(
ρ ∨ θα,X

(
ρ ∨ θα))) ≥ 0,

on Ac ∩ {Y(τα) > wκ(τα,Xα)}.
Also, since Y(· ∧ θα) − ϕ(· ∧ θα,X(· ∧ θα)) is nondecreasing on [τα, T ] it

follows that (Y (ρ ∧ θα) − ϕ(ρ ∧ θα,X(ρ ∧ θα)) + κ) > 0, which further gives(
Y

(
ρ ∧ θα) − wκ(

ρ ∧ θα,X
(
ρ ∧ θα)))

> 0
(3.7)

on Ac ∩ {
Y

(
τα

)
> wκ

(
τα,Xα

)}
.

From (3.6) and (3.7) we have

Y(ρ) − wκ(
ρ,X(ρ)

) ≥ 0 on Ac ∩ {
Y

(
τα)

> wκ (
τα,Xα)}

.

Step 1.2. The boundary condition:
Step A: In this step we will assume that μû

Y is nondecreasing in its y-variable.
Assume on the contrary that for some x0 ∈Rd , we have

v+(T , x0) > g(x0).(3.8)

Since g is USC, then from (3.8) there exists ε > 0 such that

v+(T , x0) > g(x) + ε for |x − x0| ≤ ε.(3.9)

Choose ε such that ε < 1. Since v+ is USC, then v+ is bounded above on the
compact (rectangular) torus T = B(T , x0; ε)−B(T , x0; ε/2), where B(T , x0; ε) =
{(t, x) ∈ D : max {|T − t |, |x − x0|} < ε}. Choose β > 0 small enough, such that

v+(T , x0) + ε2

4β
> ε + sup

T

v+(t, x).

By a Dini-type argument there exists a w ∈ U+ such that

v+(T , x0) + ε2

4β
> ε + sup

T

w(t, x).(3.10)
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For C > 0 let us denote

ϕβ,C(t, x) = v+(T , x0) + |x − x0|2
β

+ C(T − t).

Hence, Dϕβ,C(t, x) = 2(x−x0)
β

and D2ϕβ,C(t, x) = 2
β
Id×d . From Assumption 2.2,

∣∣μX(t, x, a)�Dϕβ,C(t, x)
∣∣ ≤ 2K

|x − x0|
β

≤ 2K

β
(3.11)

for (t, x) ∈ B(T , x0; ε) and a ∈ A,

where we use ε < 1. Similarly,∣∣∣∣1

2
Tr

[
σXσ�

X (t, x, a)D2ϕβ,C(t, x)
]∣∣∣∣ ≤ 1

2
K2 2d

β
= K2d

β
(3.12)

for (t, x) ∈ B(T , x0; ε) and a ∈ A,

where d is the dimension of the space where the variable x lives. From the linear
growth condition of μû

Y in Assumption 2.3, there exists a L > 0, such that

−μû
Y

(
t, x, ϕβ,0 − ε, σX(t, x, a)Dϕβ,0, a

)
≤ L

(
1 + ∣∣ϕβ,0(t, x) − ε

∣∣ + ∣∣σX(t, x, a)Dϕβ,0(t, x)
∣∣)

(3.13)
≤ L

(
1 + v+(T , x0) + 1/β + 1 + 2K/β

)
for (t, x) ∈ B(T , x0; ε) and a ∈ A.

Noting that Dϕβ,C(t, x) = Dϕβ,0(t, x), from the monotonicity assumption of μû
Y ,

we have

−μû
Y

(
t, x, ϕβ,C − ε, σX(t, x, a)Dϕβ,C, a

)
≤ −μû

Y

(
t, x, ϕβ,0 − ε, σX(t, x, a)Dϕβ,0, a

)
.

The above equation, together with (3.11), (3.12) and (3.13), implies that H(·,
ϕβ,C − ε,Dϕβ,C,D2ϕβ,C)(t, x) is bounded from above on B(T , x0; ε), and the
bound is independent of C. As a result for a large enough C we have that

ϕ
β,C
t + H

(·, y,Dϕβ,C,D2ϕβ,C)
(t, x) < 0

(3.14)
∀(t, x) ∈ B(T , x0; ε) and y ≥ ϕβ,C(t, x) − ε,

where we used the monotonicity assumption of μû
Y . Making sure that C ≥ ε/2β ,

we obtain from (3.10) that

ϕβ,C ≥ ε + w on T.

Also,

ϕβ,C(T , x) ≥ v+(T , x0) > g(x) + ε for |x − x0| ≤ ε.(3.15)
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Now we can choose κ < ε and define

wβ,C,κ �
{(

ϕβ,C − κ
) ∧ w, on B(T , x0, ε),

w, outside B(T , x0, ε).
(3.16)

From (3.15) and (3.16) it is easy to see that wβ,C,κ(T , x) ≥ g(x). By applying
similar arguments as in step 1.1, we can show that wβ,C,κ is a stochastic super-
solution with wβ,C,κ(T , x0) < v+(T , x0). This contradicts the definition of v+.

Step B: We now turn to showing the same result for more general μû
Y and follow

a proof similar to that in [8]. Fix c > 0, and define Ỹ
u,α
t,x,y as the strong solution of

dỸ (s) = μ̃Y

(
s,Xα

t,x(s), Ỹ (s),u[α]s, αs

)
ds + σ̃Y

(
s,Xα

t,x(s), Ỹ (s),u[α]s, αs

)
dWs

with initial data Ỹ (t) = y, where

μ̃Y (t, x, y,u, a) := cy + ectμY

(
t, x, e−cty, u, a

)
,

σ̃Y (t, x, y,u, a) := ectσY

(
t, x, e−cty, u, a

)
.

Hence, Ỹ
u,α
t,x,y(s)e

−cs = Y
u,α
t,x,ye−ct (s) for any s ∈ [t, T ] by the strong uniqueness.

Set g̃(x) := ecT g(x), and define

ṽ(t, x) := inf
{
y ∈R :∃u ∈ Ut s.t. Ỹ

u,α
t,x,y(T ) ≥ g̃

(
Xα

t,x(T )
)
-a.s. ∀α ∈ At}.

Therefore, ṽ(t, x) = ectv(t, x). Since μû
Y has linear growth in its second argu-

ment y, one can choose large enough c > 0 so that

μ̃û
Y : (t, x, y, z, a) �→ cy + ectμû

Y

(
t, x, e−cty, e−ct z, a

)
(3.17)

is nondecreasing in its y-variable. This means that these dynamics satisfy the
monotonicity assumption used in step A above. Moreover, all the assumptions
needed to apply step A to this new problem are also satisfied. Let

H̃ (t, x, y,p,M)

:= sup
a∈A

{
−cy − ectμũ

Y

(
t, x, e−cty, e−ctσX(t, x, a)p, a

)
(3.18)

+ μX(t, x, a)�p + 1

2
Tr

[
σXσ�

X (t, x, a)M
]}

,

where ũ is defined like û but now in terms of σ̃Y . We will denote by Ũ+ be the set
of stochastic super-solutions of

ϕt + H̃
(·, ϕ,Dϕ,D2ϕ

) = 0 on D<T ,
(3.19)

ϕ = g̃ on DT

and ṽ+(t, x) := infw∈Ũ+ w(t, x).
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From step A, we know that ṽ+ is a viscosity sub-solution of the above PDE.
Since any function w(t, x) is a stochastic super-solution of (2.4) if and only
if w̃(t, x) = ectw(t, x) is a stochastic super-solution of (3.19), it follows that
ṽ+(t, x) = ectv+(t, x). Now it is easy to conclude that v+ is a viscosity sub-
solution of (2.4).

Step 2 (v− is the viscosity super-solution). Due to Assumption 2.5, v− is well
defined. Next we will show that it satisfies the interior viscosity super-solution
property followed by the boundary condition.

Step 2.1. The interior super-solution property: Let (t0, x0) in the parabolic inte-
rior [0, T ) × Rd such that a smooth function ϕ strictly touches v− from below at
(t0, x0). Assume by contradiction that

ϕt + H
(·, ϕ,Dϕ,D2ϕ

)
> 0 at (t0, x0).

Hence there exists a0 ∈ A, such that

ϕt + Hu0,a0
(·, ϕ,Dϕ,D2ϕ

)
> 0 at (t0, x0),(3.20)

where u0 = û(t0, x0, ϕ(t0, x0), σX(t0, x0, a0)Dϕ(t0, x0),D
2ϕ(t0, x0)) and

Hu,a(t, x, y,p,M)
(3.21)

:= −μY (t, x, y,u, a) + μX(t, x, a)�p + 1
2 Tr

[
σXσ�

X (t, x, a)M
]
.

From the continuity assumption on the coefficients in Assumption 2.1 and the
continuity of û in Assumption 2.2, there exists ε, δ > 0 such that

ϕt + Hu,a0
(·, y,Dϕ,D2ϕ

)
> 0 ∀(t, x) ∈ B(t0, x0, ε)

and (y, u) ∈ R × U s.t.
∣∣y − ϕ(t, x)

∣∣ ≤ δ

and
∥∥σY (t, x, y,u, a0) − σX(t, x, a0)Dϕ(t, x)

∥∥ ≤ δ.

Now, on the compact torus T = B(t0, x0, ε) − B(t0, x0, ε/2), we have that ϕ <

v− and the max of ϕ − v− is attained since v− is LSC. Therefore, ϕ + η < v−
on T for some η > 0. Since wn ↗ v−, a Dini-type argument shows that for large
enough n, we have ϕ + η/2 < wn on T and ϕ < wn + δ on B(t0, x0, ε/2). For
simplicity, fix such an n and denote w = wn. Now define for small κ <

η
2 ∧ δ,

wκ �
{

(ϕ + κ) ∨ w, on B(t0, x0, ε),

w, outside B(t0, x0, ε).

Since wκ(t0, x0) > v−(t0, x0), we obtain a contradiction if we can show that wκ ∈
U−.

In order to do so, fix t and {τα} ∈ St . For a given u ∈ U(t) and α ∈ At , we will
construct an “optimal” α̃ ∈ At in the definition of stochastic sub-solutions for wκ .
We will divide the construction into two cases:
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(i) w(τα,X(τα)) = wκ(τα,X(τα)): Since w is a stochastic sub-solution, there
exists an α̃1 for w in the definition which is “optimal” for the nature given u, α and
τα . Let α̃ = α̃1.

(ii) w(τα,X(τα)) < wκ(τα,X(τα)): Let

θα
1 := inf

{
s ∈ [

τα, T
]
:
(
s,X

α⊗τα a0
t,x (s)

)
/∈ B(t0, x0, ε/2)

}
and

θα
2 := inf

{
s ∈ [

τα, T
]
:
∣∣Y u,α⊗τα a0

t,x,y (s) − ϕ
(
s,X

α⊗τα a0
t,x (s)

)∣∣ ≥ δ
}
,

with the convention that inf∅ = T . Denote θα = θα
1 ∧θα

2 . Then let α̃ = a0 until θα .
Starting from θα , choose α̃ = α∗, where the latter is “optimal” for nature given α

and u this time onward.

In summary, the above construction yields a candidate “optimal” control for wκ

given by

α̃ = (
1Aα̃1 + 1Ac

(
a01[t,θα) + α∗1[θα,T ]

))
1[τα,T ],

where

A = {
w

(
τα,Xα

t,x

(
τα)) = wκ(

τα,Xα
t,x

(
τα))}

.

Let us check that what we constructed actually works: Let us abbreviate

(X,Y ) = (
X

α⊗τα α̃
t,x , Y

u,α⊗τα α̃
t,x,y

)
.

Note that

X(s) = 1AX
α⊗τα α̃1
t,x (s) + 1AcX

α⊗τα a0
t,x (s) for τα ≤ s ≤ θα,

(3.22)
Y(s) = 1AY

u,α⊗τα α̃1
t,x,y (s) + 1AcY

u,α⊗τα a0
t,x,y (s) for τα ≤ s ≤ θα.

Again for brevity, let us introduce the following sets:

E = {
Y

(
τα)

< wκ(
τα,X

(
τα))}

, E0 = E ∩ A, E1 = E ∩ Ac,

G = {
Y(ρ) < wκ(

ρ,X(ρ)
)}

, G0 = {
Y(ρ) < w

(
ρ,X(ρ)

)}
.

Observe that

E = E0 ∪ E1, E0 ∩ E1 =∅ and G0 ⊂ G.

The proof will be complete if we can show that P(G|B) > 0 for any nonnull set
B ⊂ E. In fact, it suffices to show that P(G ∩ B) > 0. Relying on the decomposi-
tion P(G ∩ B) = P(G ∩ B ∩ E0) + P(G ∩ B ∩ E1) (recall that B ⊂ E), we will
divide the proof into two steps:

(i) P(B ∩ E0) > 0: Directly from the way α̃1 is defined, the definition of the
stochastic sub-solutions and B ∩ E0 ⊂ A, we get

P(G0|B ∩ E0) = P
(
Y
u,α⊗τα α̃1
t,x,y (ρ) < w

(
ρ,X

α⊗τα α̃1
t,x (ρ)

)|B ∩ E0
)
> 0.
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This further implies that P(G ∩ B ∩ E0) ≥ P(G0 ∩ B ∩ E0) > 0.
(ii) P(B ∩ E1) > 0: From (3.22) and B ∩ E1 ⊂ Ac,

P
(
Y

(
θα)

< wκ (
θα,X

(
θα))|B ∩ E1

)
= P

(
Y
u,α⊗τα a0
t,x,y

(
θα)

< wκ(
θα,X

α⊗τα a0
t,x

(
θα))|B ∩ E1

)
.

The analysis in [8] shows that

�(s) = Y
(
s ∧ θα) − (

ϕ
(
s ∧ θα,X

(
s ∧ θα)) + κ

)
is a super-martingale up to a change of measure. We will summarize these argu-
ments here: Let

λ(s) := σY

(
s,X(s), Y (s),u[a0]s, a0

) − σX

(
s,X(s), a0

)
Dϕ

(
s,X(s)

)
,

β(s) := (
ϕt

(
s,X(s)

) + H u[a0]s ,a0
(
s,X(s), Y (s),Dϕ

(
s,X(s)

)
,D2ϕ

(
s,X(s)

)))
× ∥∥λ(s)

∥∥−2
λ(s)1{‖λ(s)‖>δ}.

From the definition of θα and the regularity and growth conditions in Assump-
tions 2.1 and 2.4, β is uniformly bounded on [τα, θα]. This ensures that the posi-
tive exponential local martingale M defined by the SDE

M(·) = 1 +
∫ ·∧θα

τα
M(s)β�

s dWs

is a true martingale. An application of Itô’s formula immediately implies that M�

is a local super-martingale. By the definition of θα , � is bounded by −δ − κ from
below and by δ − κ from above on [τα, θα]. Therefore, M� is bounded above
by a martingale 2Mδ, and below by another martingale −2Mδ. An application of
Fatou’s lemma implies that M� is a super-martingale.

From the definition of E1 and wκ , �(τα) < 0 on B ∩ E1. The super-martingale
property of M� implies that there exists a nonnull H ⊂ B ∩ E1, H ∈ F t

τα such
that �(θα ∧ ρ) < 0 on H . Therefore, from the decomposition

�
(
θα ∧ ρ

)
1H = (

Y
(
θα

1
) − (

ϕ
(
θα

1 ,X
(
θα

1
)) + κ

))
1H∩{θα

1 <θα
2 ∧ρ}

+ (
Y

(
θα

2
) − (

ϕ
(
θα

2 ,X
(
θα

2
)) + κ

))
1H∩{θα

2 ≤θα
1 ∧ρ}

+ (
Y(ρ) − (

ϕ
(
ρ,X(ρ)

) + κ
))

1H∩{ρ<θα},

we see that

Y
(
θα

1
) − (

ϕ
(
θα

1 ,X
(
θα

1
)) + κ

)
< 0 on H ∩ {

θα
1 < θα

2 ∧ ρ
}
,(3.23)

Y
(
θα

2
) − (

ϕ
(
θα

2 ,X
(
θα

2
)) + κ

)
< 0 on H ∩ {

θα
2 ≤ θα

1 ∧ ρ
}

(3.24)

and that

Y(ρ) − (
ϕ

(
ρ,X(ρ)

) + κ
)
< 0 on H ∩ {

ρ < θα}
.(3.25)



STOCHASTIC PERRON FOR STOCHASTIC TARGET GAMES 1099

On the one hand, on H ∩{θα
1 < θα

2 ∧ρ}, ϕ(θα
1 ,X(θα

1 ))+ κ < w(θα
1 ,X(θα

1 )). Then
from (3.23), we will have

Y
(
θα

1
)
< w

(
θα

1 ,X
(
θα

1
))

on H ∩ {
θα

1 < θα
2 ∧ ρ

}
.(3.26)

On the other hand, on H ∩ {θα
2 ≤ θα

1 ∧ ρ}, we get Y(θα
2 ) − ϕ(θα

2 ,X(θα
2 )) = −δ.

[The right-hand side cannot be equal to δ; otherwise (3.24) would be contradicted.]
Recalling the fact that ϕ < w + δ on B(t0, x0, ε/2), this observation gives that

Y
(
θα

2
) − w

(
θα

2 ,X
(
θα

2
)) = (ϕ − w)

(
θα

2 ,X
(
θα

2
)) − δ < 0

(3.27)
on H ∩ {

θα
2 ≤ θα

1 ∧ ρ
}
.

We have obtained in (3.26) and (3.27) that

Y
(
θα)

< w
(
θα,X

(
θα))

on H ∩ {
θα ≤ ρ

}
.

Now from the definition of stochastic sub-solutions and of α∗, we have that

P
(
G0|H ∩ {

θα ≤ ρ
})

> 0 if P
(
H ∩ {

θα ≤ ρ
})

> 0.(3.28)

On the other hand, (3.25) implies that

P
(
G|H ∩ {

θα > ρ
})

> 0 if P
(
H ∩ {

θα > ρ
})

> 0.(3.29)

Since P(H) > 0,G0 ⊂ G, and H ⊂ E1 ∩ B , (3.28) and (3.29) imply P(G ∩ E1 ∩
B) > 0.

Step 2.2. The boundary condition:
Assume that for some x0 ∈ Rd , we have

v−(T , x0) < g(x0).(3.30)

Since g is LSC, then from (3.30) there exists ε > 0 such that

v−(T , x0) < g(x) − ε for |x − x0| ≤ ε.(3.31)

Since v− is LSC, then v− is bounded below on the compact (rectangular) torus
T = B(T , x0; ε) − B(T , x0; ε/2). Choose β > 0 small enough, such that

v−(T , x0) − ε2

4β
< inf

T
v−(t, x) − ε.

By a Dini-type argument, there exists a w ∈ U−, such that

v−(T , x0) − ε2

4β
< inf

T
w(t, x) − ε.(3.32)

We now define for C > 0,

ϕβ,C = v−(T , x0) − |x − x0|2
β

− C(T − t).
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For any a0 we can choose large enough C,2

ϕ
β,C
t + Hu0,a0

(·, ϕβ,C,Dϕβ,C,D2ϕβ,C)
> 0 on B(T , x0; ε),

where Hu,a is the same as that in (3.21), u0 = û(T , x0, ϕ(T , x0), σX(T , x0, a0) ×
Dϕ(T , x0), a0). Then from the continuity of the coefficients in Assumption 2.1 and
the continuity of û in Assumption 2.2, for any a0, and there exists a small enough
δ > 0 such that

ϕ
β,C
t + Hu,a0

(·, y,Dϕβ,C,D2ϕβ,C)
> 0 ∀(t, x) ∈ B(T , x0, ε)

and (y, u) ∈ R × U s.t.
∣∣y − ϕβ,C(t, x)

∣∣ ≤ δ

and
∥∥σY (t, x, y,u, a0) − σX(t, x, a0)Dϕβ,C(t, x)

∥∥ ≤ δ.

Choosing C at least as large as ε/2β , we obtain from (3.32) that

ϕβ,C ≤ w − ε on T.

Also we have that

ϕβ,C(T , x) ≤ v−(T , x0) < g(x) − ε for |x − x0| ≤ ε.(3.33)

Now for κ < ε ∧ δ define

wβ,C,κ �
{(

ϕβ,C + κ
) ∨ w, on B(T , x0, ε),

w, outside B(T , x0, ε).
(3.34)

From (3.33) and (3.34) it is easy to see that wβ,C,κ(T , x) ≤ g(x). By applying
arguments similar to those in step 2.1, we can show that wβ,C,κ is a stochastic sub-
solution with wβ,C,κ(T , x0) > v−(T , x0). This contradicts the definition of v−.

�

To characterize v as the unique viscosity solution of (2.4), we need a comparison
principle.

PROPOSITION 3.1 (Comparison principle). Under Assumptions 2.1, 2.2
and 2.3, the comparison principle for (2.4) holds. More precisely, let U (resp., V )
be a bounded USC viscosity sub-solution (resp., LSC viscosity super-solution) to
(2.4). If U ≤ V on DT , then U ≤ V on D.

PROOF. Step 1: Without loss of generality, assume that

∃γ > 0, such that H(t, x, y,p,M) − H
(
t, x, y′,p,M

)
< −γ

(
y − y′)

(3.35)
for all y > y′.

2Similar analysis for (3.14) will guarantee that choosing C is possible.
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Otherwise, let Ũ (t, x) = ectU(t, x) and Ṽ (t, x) = ectV (t, x). Then a straightfor-
ward calculation shows that Ũ (resp., Ṽ ) is a sub-solution (resp., super-solution)
to

−ϕt − H̃
(·, ϕ,Dϕ,D2ϕ

) = 0 on D<T ,
(3.36)

ϕ = g̃ on DT ,

where g̃(x) = ecT g(x) and H̃ is the same as that in (3.18). We can choose c large
enough such that (3.35) holds for H̃ . In fact, from the Lipschitz continuity of μû

Y

in Assumption 2.3, for y > y′,
H̃ a(t, x, y,p,M) − H̃ a(

t, x, y′,p,M
)

= −c
(
y − y′) + ect (μũ

Y

(
t, x, e−cty′, e−ctσX(t, x, a)p, a

)
− μũ

Y

(
t, x, e−cty, e−ctσX(t, x, a)p, a

))
≤ −c

(
y − y′) + ectL · e−ct (y − y′)

= −(c − L)
(
y − y′),

where L is the Lipschitz constant and

H̃ a(t, x, y,p,M) := −cy − ectμũ
Y

(
t, x, e−cty, e−ctσX(t, x, a)p, a

)
+ μX(t, x, a)�p + 1

2 Tr
[
σXσ�

X (t, x, a)M
]
.

Then γ := c − L > 0 for large enough c. Since H̃ (·) = supa∈A H̃ a(·), equa-
tion (3.35) holds for H̃ .

Step 2: In this step, we claim that for large enough λ, Vδ := V + δe−λt (1 +|x|2)
is a LSC viscosity super-solution to (2.4) for δ > 0. Then, if we can show that
U −Vδ ≤ 0 on D for all δ > 0, we will get the required result by sending δ to zero.
Now we prove the above claim.

Obviously, the boundary condition is satisfied. Let ϕ be a smooth function
which strictly touches Vδ from below at (t0, x0) ∈ D<T . Let ϕδ = ϕ − δe−λt (1 +
|x|2). Then V − ϕδ has a strict minimum at (t0, x0). Since V is a viscosity super-
solution, then it holds that

ϕδ
t + H

(
t, x, ϕδ,Dϕδ,D2ϕδ) ≤ 0.(3.37)

Note that

ϕδ
t = ϕt + λδe−λt (1 + |x|2)

, Dϕδ = Dϕ − 2δe−λtx,
(3.38)

D2ϕδ = D2ϕ − 2δe−λt Id×d .

Consider the difference of H(t, x,ϕδ,Dϕδ,D2ϕδ) and H(t, x,ϕ,Dϕ,D2ϕ).
From (3.38) and Assumption 2.1, we get∣∣μ�

X(t, x, a)Dϕ(t, x) − μ�
X(t, x, a)Dϕδ(t, x)

∣∣ ≤ K
∣∣Dϕ(t, x) − Dϕδ(t, x)

∣∣
(3.39)

= 2Kδe−λt |x|.
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Similarly,∣∣1
2 Tr

(
σXσ�

X (t, x, a)
)
D2ϕ(t, x) − 1

2 Tr
(
σXσ�

X (t, x, a)
)
D2ϕδ(t, x)

∣∣
(3.40)

≤ K2 dδe−λt .

From the Lipschitz continuity of μû
Y in Assumption 2.3,∣∣μû

Y

(
t, x, ϕ, σX(t, x, a)Dϕ,a

) − μû
Y

(
t, x, ϕδ, σX(t, x, a)Dϕδ, a

)∣∣
(3.41)

≤ L
(
δe−λt (1 + |x|2) + 2Kδe−λt |x|).

From (3.39), (3.40) and (3.41),∣∣H (
t, x, ϕδ,Dϕδ,D2ϕδ) − H

(
t, x, ϕ,Dϕ,D2ϕ

)∣∣
≤ δe−λt (1 + |x|2)(

L + LK + K2d + K
)
.

Taking λ > λ∗ := L + LK + K2d + K , from the above inequality, we get

ϕt + H
(
t, x, ϕ,Dϕ,D2ϕ

) ≤ ϕδ
t + H

(
t, x, ϕδ,Dϕδ,D2ϕδ) − λδe−λt (1 + |x|2)

+ ∣∣H (
t, x, ϕδ,Dϕδ,D2ϕδ) − H

(
t, x, ϕ,Dϕ,D2ϕ

)∣∣
≤ ϕδ

t + H
(
t, x, ϕδ,Dϕδ,D2ϕδ) ≤ 0.

Step 3: In this step, we show that U − Vδ ≤ 0 on D for all δ > 0. From bound-
edness of U and V , for all δ > 0,

lim|x|→∞ sup
[0,T ]

(U − Vδ)(t, x) = −∞.(3.42)

This implies the supremum of U − Vδ on D is attained on [0, T ] × O for some
open bounded set O of Rd . We assume

M∗ := sup
D

(U − Vδ) = max[0,T )×O
(U − Vδ) > 0,

and we will obtain a contradiction to the above equation. We consider a bounded
sequence (tε, sε, xε, yε)ε that maximizes �ε on [0, T ]2 × Rd × Rd with �ε =
U(t, x) − Vδ(s, y) − φε(t, s, x, y) and φε(t, s, x, y) := 1

2ε
(|t − s|2 + |x − y|2). By

arguments similar to those in Theorem 4.4.4 of [10], we know that (tε, sε, xε, yε)ε
converges to (t0, t0, x0, x0) for some (t0, x0) ∈ [0, T ] ×O and

Mε = �(tε, sε, xε, yε) → M∗ and φε(tε, sε, xε, yε) → 0.(3.43)

In view of Ishii’s lemma (Lemma A.2), there exist M,N ∈ Sd such that(
1

ε
(tε − sε),

1

ε
(xε − yε),M

)
∈ P

2,+
U(t, x),(

1

ε
(tε − sε),

1

ε
(xε − yε),N

)
∈ P

2,−
Vδ(t, x).
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From the viscosity sub-solution and super-solution characterization of U and Vδ

in terms of super-jets and sub-jets, we then have

−1

ε
(tε − sε) − H

(
tε, xε,U(tε, xε),

1

ε
(xε − yε),M

)
≤ 0,

−1

ε
(tε − sε) − H

(
sε, yε,Vδ(sε, yε),

1

ε
(xε − yε),N

)
≥ 0.

By subtracting the two inequalities above, we get

H

(
tε, xε,U(tε, xε),

1

ε
(xε − yε),M

)
≥ H

(
sε, yε,Vδ(sε, yε),

1

ε
(xε − yε),N

)
.

Subtracting H(tε, xε,Vδ(sε, yε),
1
ε
(xε − yε),M) from both sides of the equation

above, we get

LHS := H

(
tε, xε,U(tε, xε),

1

ε
(xε − yε),M

)
− H

(
tε, xε,Vδ(sε, yε),

1

ε
(xε − yε),M

)
≥ H

(
sε, yε,Vδ(sε, yε),

1

ε
(xε − yε),N

)
(3.44)

− H

(
tε, xε,Vδ(sε, yε),

1

ε
(xε − yε),M

)
=: RHS.

On the one hand, since U(tε, xε) − Vδ(sε, yε) ≥ M∗,

LHS ≤ −γ
(
U(tε, xε) − Vδ(sε, yε)

) ≤ −γM∗.(3.45)

On the other hand, applying inequality (A.5) to C = σX(tε, xε, a) and D =
σX(sε, yε, a), we get

I1 :=
∣∣∣∣1

2
Tr

[
σXσ�

X (tε, xε, a)M
] − 1

2
Tr

[
σXσ�

X (sε, yε, a)N
]∣∣∣∣

≤ 3

2ε
Tr

[(
σX(tε, xε) − σX(sε, yε)

)(
σX(tε, xε) − σX(sε, yε)

)�]
≤ 1

2ε
O

(|tε − sε|2 + |xε − yε|2) → 0.

In the last inequality, we use (3.43) and Lipschitz continuity of σX (uniformly
in a). Therefore,

I1 → 0 as ε → 0, uniformly in a ∈ A.(3.46)
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Similarly, from (3.43) and Lipschitz continuity of μX (uniformly in a)

I2 :=
∣∣∣∣1

ε
μ�

X(tε, xε, a)(xε − yε) − 1

ε
μ�

X(sε, yε, a)(xε − yε)

∣∣∣∣ → 0

(3.47)
uniformly in a ∈ A.

From (3.43) and Lipschitz continuity of σX (Assumption 2.1) and μû
Y (Assump-

tion 2.3), we get

I3 :=
∣∣∣∣μû

Y

(
tε, xε,Vδ(sε, yε), σX(tε, xε, a)

(
xε − yε

ε

)
, a

)
− μû

Y

(
sε, yε,Vδ(sε, yε), σX(sε, yε, a)

(
xε − yε

ε

)
, a

)∣∣∣∣
≤ ν

(|tε − sε| + |xε − yε|) + 1

2ε
O

(|tε − sε|2 + |xε − yε|2) → 0 as ε → 0,

where ν(z) → 0 as z → 0. The first term in the last inequality above is the modulus
of continuity of μû

Y in the variables (t, x) (uniformly in a) and the second term
comes from similar arguments for I1 and I2. Therefore,

I3 → 0 uniformly in a ∈ A.(3.48)

Then (3.46), (3.47) and (3.48) imply that

RHS → 0 as ε → 0.(3.49)

From (3.44), (3.45) and (3.49), we obtain a contradiction. �

COROLLARY 3.1. If g is continuous and Assumptions 2.1–2.5 hold, then v is
the unique bounded continuous viscosity solution of (2.4).

PROOF. From Theorem 3.1, v+ (resp., v−) is a bounded USC viscosity sub-
solution (resp., LSC viscosity super-solution) to (2.4). Then v+(T , x) ≤ g(x) ≤
v−(T , x). This implies v+ ≤ v− on D from Proposition 3.1. Since v+ ≥ v ≥ v−
by definition, v+ = v = v−. We have shown that v is continuous and a bounded
viscosity solution of (2.4).

To check the uniqueness, let w be a bounded continuous viscosity solution of
(2.4). Note that w is a LSC viscosity super-solution and v is an USC viscosity
sub-solution of (2.4). From Proposition 3.1, v ≤ w on D. Similarly, w ≤ v on D.
This implies w = v on D. �

From Theorem 3.1 and Corollary 3.1, we obtain dynamic programming princi-
ple as a byproduct.

COROLLARY 3.2 (Dynamic programming principle). Assume g is continuous
and Assumptions 2.1–2.5 hold. For any (t, x) ∈ D, the following two statements
hold:
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DPP 1. For any y > v(t, x), there exists u ∈ U(t) such that for all α ∈ At and
θ ∈ St ,

Y
u,α
t,x,y(θ) ≥ v

(
θ,Xα

t,x(θ)
)
.

DPP 2. For any y < v(t, x) and u ∈ U(t), there exists α ∈ At such that for all
θ ∈ St ,

P
(
Y
u,α
t,x,y ≥ v

(
θ,Xα

t,x(θ)
))

< 1.

PROOF. DPP 1: If y > v(t, x) = v+(t, x) (due to Corollary 3.1), there exists
a w ∈ U+ such that y > w(t, x). From the definition of stochastic super-solution,
there exists u ∈ U(t) such that

Y
u,α
t,x,y(θ) ≥ w

(
θ,Xα

t,x(θ)
) ≥ v

(
θ,Xα

t,x(θ)
)

for all θ ∈ St and α ∈At .
DPP 2: If y < v(t, x) = v−(t, x) = supw∈U− w(t, x), there exists a w ∈ U− such

that y < w(t, x). From the definition of stochastic sub-solution, for any u ∈ U(t),
there exits an α ∈At such that

P
(
Y
u,α
t,x,y(θ) < w

(
θ,Xα

t,x(θ)
))

> 0

for all θ ∈ St . Since w(θ,Xα
t,x(θ)) ≤ v(θ,Xα

t,x(θ)), this gives us the desired result.
�

APPENDIX

A.1. Proof of Proposition 2.1. We carry out the proof in two steps. First un-
der Assumptions 2.2 and 2.3, we will show that there exists a classical solution
to (2.4). Next, we will show that if we additionally have Assumption 2.1, then
every classical super-solution is a stochastic super-solution, which implies in par-
ticular that U+ is not empty.

Step 1. Existence of a classical super-solution to (2.4):
Step 1A. In this step we will assume that μû

Y is nondecreasing in its y-variable.
Letting φ(t, x) = −eλt we have that

φt + H
(
t, x,φ,Dφ,D2φ

) = −λeλt + sup
a∈A

{−μû
Y

(
t, x,φ(t, x),0, a

)}
.(A.1)

From the linear growth condition of μû
Y in Assumption 2.3, we know there ex-

ists an L > 0, such that −μû
Y (t, x,φ(t, x),0, a) ≤ L(1 + |φ(t, x)|) = L(1 + eλt ).

Therefore, from (A.1),

φt + H
(
t, x,φ,Dφ,D2φ

) ≤ −λeλt + L
(
1 + eλt ) ≤ 0 in D, for λ > 2L.

Fix λ > 2L, and choose N2 such that −eλT + N2 ≥ ‖g‖∞. Then φ′(T , x) =
φ(T , x) + N2 ≥ g(x). From the assumption that μû

Y is nondecreasing in its y-
variable, it holds that

φ′
t + H

(
t, x,φ′,Dφ′,D2φ′) ≤ 0 on D<T .
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Therefore, φ′ is a classical super-solution.
Step 1B. We now show the same result for more general μû

Y . This follows the
same reparameterization argument outlined in step 1.2B in the proof of the main
theorem.

Step 2. Classical super-solutions are stochastic super-solutions. Let w be a clas-
sical super-solution. Fix (t, x, y) ∈ D × R and {τα} ∈ St . Let Y be the unique
strong solution (which is thanks to Assumption 2.3) of the equation

Y(l) = Y
u,α
t,x,y

(
τα)

+
∫ τα∨l

τα
μû

Y

(
s,Xα

t,x(s), Y (s), σX

(
s,Xα

t,x(s), αs

)
Dw

(
s,Xα

t,x(s)
)
, αs

)
ds

+
∫ τα∨l

τα
σX

(
s,Xα

t,x(s), αs

)
Dw

(
s,Xα

t,x(s)
)
dWs, l ≥ τα,

for any u ∈ U(t) and α ∈ At , and set Y(s) = Y
u,α
t,x,y(s) for s < τα . We will set ũ to

be

ũ := ũ[α](s) = û
(
s,Xα

t,x(s), Y (s), σX

(
s,Xα

t,x(s), αs

)
Dw

(
s,Xα

t,x(s)
)
, αs

)
.

It is not difficult to check that ũ ∈ U(t, {τα}). We will show that for any u ∈ U(t),
α ∈ At and each stopping time ρ ∈ St , τα ≤ ρ ≤ T with the simplifying notation

X := Xα
t,x, Y := Y

u⊗τα ũ[α],α
t,x,y , we have

Y(ρ) ≥ w
(
ρ,X(ρ)

)
P-a.s. on

{
Y

(
τα)

> w
(
τα,X

(
τα))}

.

Note that Y = Y
u⊗τα ũ[α],α
t,x,y for s ≥ τα . We will carry out the rest of the proof in two

steps.
Step 2A. In this step we will assume that μû

Y is nondecreasing in its y-variable.
Let

A = {
Y

(
τα)

> w
(
τα,X

(
τα))}

, Z(s) = w
(
s,X(s)

)
,

�(s) = (
Z(s) − Y(s)

)
1A.

Therefore, for s ≥ τα ,

dY = μû
Y

(
s,X(s), Y (s), σX

(
s,X(s), αs

)
Dw

(
s,X(s)

)
, αs

)
ds

+ σX

(
s,X(s), αs

)
Dw

(
s,X(s)

)
dWs,

dZ = {
wt

(
s,X(s)

) + μX

(
s,X(s), αs

)�
Dw

(
s,X(s)

)
+ 1

2 Tr
[
σXσ�

X

(
s,X(s), αs

)
D2w

(
s,X(s)

)]}
ds

+ σX

(
s,X(s), αs

)
Dw

(
s,X(s)

)
dWs.

From above equations,

�(s) = 1A

∫ s

τα

(
ξ(u) − γ ′(u)

)
du for s ≥ τα,(A.2)
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where

γ ′ := μû
Y

(·,X,w(·,X), σX(·,X,α)Dw(·,X),α
) − μX(·,X,α)�Dw(·,X)

− 1
2 Tr

[
σXσ�

X (·,X,α)D2w(·,X)
] − wt(·,X)

and

ξ := μû
Y

(·,X,Z,σX(·,X,α)Dw(·,X),α
) − μû

Y

(·,X,Y,σX(·,X,α)Dw(·,X),α
)
.

Since w is a classical super-solution γ ′ ≥ 0. Then from (A.2) it follows that

�(s) ≤ 1A

∫ s

τα
ξ(u) du and �+(s) ≤ 1A

∫ s

τα
ξ+(u) du for s ≥ τα.

From the Lipschitz continuity of μû
Y in y-variable in Assumption 2.3,

�+(s) ≤ 1A

∫ s

τα
ξ+(u) du ≤

∫ s

τα
L�+(u) du for s ≥ τα,

where we also use the assumption that μû
Y is nondecreasing in its y-variable to

obtain the second inequality. Since E�+(τα) = 0, an application of Gronwall’s
inequality implies that E�+(ρ) ≤ 0.

Step 2B: Now we will show the same result for more general μû
Y . However, this

again follows the same reparameterization argument outlined in step 1.2B in the
proof of the main theorem.

A.2. Proof of Proposition 2.4. Take w(t, x) = m for any (t, x) ∈ D, where
the constant m is a lower bound of g. For any given u ∈ U(t), α ∈ At , choose any
α̃ ∈ At . Let B ⊂ {Y(τα) < w(τ,X(τα))} and P(B) > 0. Set

θs �

⎧⎪⎪⎨⎪⎪⎩
μY σY

‖σY ‖2

(
s,X(s), Y (s),u[α ⊗τα α̃]s, [α ⊗τα α̃]s),
if σY

(
s,X(s), Y (s),u[α ⊗τα α̃]s, [α ⊗τα α̃]s) �= 0,

C, otherwise,

for some constant vector C in Rd . Therefore, θs satisfies Novikov’s condition due
to Assumption 2.7, and W̃ (s) = W(s) − ∫ s

0 θu du is a Brownian motion under the
probability measure Q, where

Q(A) = EP(ZT 1A) for all A ∈ F and

Zs := exp
(∫ s

0
θu dWu − 1

2

∫ s

0
‖θu‖2 du

)
.

ZT ∈ Lq(P) for any q ≥ 1 since θ is a bounded. From Assumption 2.6 and the
assumption that σY is invertible in its u-variable (Assumption 2.2), it follows that
σY (t, x, y,u, a) = 0 implies μY (t, x, y,u, a) = 0. Therefore under Q

dY (s) = σY

(
s,X(s), Y (s),u[α̃]s, α̃s

)
dW̃s for s ≥ τα,
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where Y := Y
u,α⊗τα α̃
t,x,y . We will show that the Q-local martingale Y is actually a

Q-martingale. Assumption 2.1 implies that

EP

[
sup

0≤s≤T

∣∣Y(s)
∣∣2]

< ∞;(A.3)

see, for example, Theorem 1.3.5 in [10] or Theorem 2.2 in [17]. As a result an
application of Hölder’s inequality yields

EQ

[
sup

0≤s≤T

∣∣Y(s)
∣∣] = EP

[
sup

0≤s≤T

∣∣Y(s)
∣∣ · ZT

]
(A.4)

≤ EP

[
sup

0≤s≤T

∣∣Y(s)
∣∣2]

EP

[
Z2

T

]
< ∞.

From (A.4), Y is a martingale on [τα, T ] under Q. Moreover, since Q is equivalent
to P we have Q(B) > 0. As a result of the latter two statements, for any ρ ≥ τα ,

Y(ρ) ≤ Y
(
τα)

on some set H ⊂ B with Q(H) > 0.

Since H ⊂ B ,

Y(ρ) ≤ Y
(
τα)

< m = w(t, x) on H.

This implies Q(Y (ρ) < m|B) > 0 and by equivalence of the measures P(Y (ρ) <

m|B) > 0. Therefore, w(t, x) = m is a stochastic sub-solution. �

A.3. Some well-known results from the theory of viscosity solutions. In
this subsection, we introduce an alternative definition of viscosity solutions and
Ishii’s lemma following [10]. First, we define the second-order super-jet of an
USC function U at a point (t, x) ∈ [0, T ) ×Rd as the set of elements (q,p,M) ∈
R×Rd × Sd satisfying

U(t, x) ≤ U(t, x) + q(t − t) + p · (x − x) + 1
2M(x − x) · (x − x)

+ o
(|t − t | + |x − x|2)

.

This set is denoted by P 2,+U(t, x). Similarly, P 2,−V (t, x), the second-order sub-
jet of a LSC function V at the point (t, x) ∈ [0, T ) × Rd is defined as the set of
elements (q,p,M) ∈ R×Rd × Sd satisfying

V (t, x) ≥ V (t, x) + q(t − t) + p · (x − x) + 1
2M(x − x) · (x − x)

+ o
(|t − t | + |x − x|2)

.

For technical reasons related to Ishii’s lemma, we also need to consider the
limiting super-jets and sub-jets. More precisely, we define P

2,+
U(t, x) as the

set of elements (q,p,M) ∈ R × Rd × Sd for which there exists a sequence
(tε, xε, qε,pε,Mε)ε satisfying (qε,pε,Mε) ∈ P 2,+U(tε, xε) and (tε, xε,U(tε, xε),

qε,pε,Mε) → (t, x,U(t, x), q,p,M). The set P
2,−

V (t, x) is defined similarly.
Now we state the alternative definition of viscosity solutions to (2.4).
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LEMMA A.1. A USC (resp., LSC) function w on D<T is a viscosity sub-
solution (resp., super-solution) to (2.4) if and only if for all (t, x) ∈ D<T , and

all (q,p,M) ∈ P
2,+

w(t, x) [resp., P
2,−

w(t, x)],

−q − H
(
t, x,w(t, x),p,M

) ≤ (resp.,≥) 0.

Finally, we state Ishii’s lemma used in [10] without proof and refer the reader
to Theorem 8.3 in [9].

LEMMA A.2 (Ishii’s lemma). Let U (resp., V) be an USC (resp., LSC) function
on D<T , ϕ ∈ C1,1,2,2([0, T )2 ×Rd ×Rd), and (t0, s0, x0, y0) ∈ [0, T )2 ×Rd ×Rd

a local maximum of U(t, x) − V (s, y) − ϕ(t, s, x, y). Then, for all η > 0, there
exist M,N ∈ Sd satisfying(

ϕt(t0, s0, x0, y0),Dxϕ(t0, s0, x0, y0),M
) ∈ P

2,+
U(t, x),(−ϕs(t0, s0, x0, y0),−Dyϕ(t0, s0, x0, y0),N

) ∈ P
2,−

V (t, x)

and (
M 0
0 N

)
≤ D2

x,yϕ(t0, s0, x0, y0) + η
(
D2

x,yϕ(t0, s0, x0, y0)
)2

.

REMARK A.1. From Remark 4.4.9 in [10], by choosing ϕε(t, s, x, y) :=
1
2ε

(|t − s|2 + |x − y|2) and η = ε, for any d × n matrices C,D, we get

Tr
(
CC�M − DD�N

) ≤ 3

ε
Tr

(
(C − D)(C − D)�

)
.(A.5)
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