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In this paper, we consider the Gibbs measure associated to a logarithmi-
cally correlated random potential (including two-dimensional free fields) at
low temperature. We prove that the energy landscape freezes and enters in
the so-called glassy phase. The limiting Gibbs weights are integrated atomic
random measures with random intensity expressed in terms of the critical
Gaussian multiplicative chaos constructed in [Ann. Probab. 42 (2014) 1769–
1808 and Comm. Math. Phys. (2013) To appear]. This could be seen as a first
rigorous step in the renormalization theory of super-critical Gaussian multi-
plicative chaos.

1. Introduction. Consider a log-correlated random distribution (X(x))x∈Rd

on (a subdomain of) Rd and apply a cut-off regularization procedure to get a field
(Xt(x))x∈Rd with variance of order t , that is, E[Xt(x)2] � t as t → ∞. One may,
for instance, think of the convolution of X with a mollifying sequence, the projec-
tion of X onto a finite-dimensional set of functions or a white noise decomposition
of X. We will be interested in the study of the behaviour of the random measure
on the Borel sets of Rd:

Mt(dx) = eγXt (x) dx,

where γ > 0 is a parameter that stands for the inverse temperature. The high tem-
perature phase is well known since the original work of Kahane [14] where it is
proved that for γ 2 < 2d the renormalized measure

e−γ 2/2tMt (dx)

almost surely weakly converges toward a nontrivial measure Mγ (dx), which is
diffuse. At the critical temperature γ 2 = 2d, the renormalized measure

√
te−dtMt (dx)
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weakly converges in probability toward a nontrivial diffuse measure M ′(dx),
which is called derivative multiplicative chaos [10, 11]. The purpose of this pa-
per is to study the supercritical/low temperature phase γ 2 > 2d and to prove that
the renormalized measure

t3γ /(2
√

2d)e(γ
√

2d−d)tMt(dx)(1.1)

weakly converges in law toward a purely atomic stable random measure Sγ with
(random intensity) M ′, up to a deterministic multiplicative constant; call it C(γ )

(see Section 2 for a rigorous statement).
This is a longstanding problem, which has received much attention by physi-

cists. It was first raised in [9, 18] on dyadic trees, and then followed by [8, 12, 13]
for log-correlated Gaussian random fields. Following our notation, these papers es-
sentially derived the statistics of the size ordered atoms of the measure Mt(dx)

Mt ([0,1]d)
,

the so-called Poisson–Dirichlet statistics characteristic of stable Lévy processes.
However, these papers did not investigate the problem of the localization of these
atoms.

A few years later, the mathematical community caught up on this problem. In
the context of branching random walks, convergence of the measures (1.1) is in-
vestigated in [16, 24]. Built on these works, the limit is identified in [5] and is ex-
pressed as a stable transform of the so-called derivative martingale. In the context
of log-correlated Gaussian potentials, the authors in [4] conjecture that results sim-
ilar to branching random walks should hold. The first rigorous and important result
for log-correlated Gaussian fields appeared in [2] where the authors established the
Poisson–Dirichlet statistics of the limiting measure in dimension 1 (renormalized
by its total mass) via spin glass techniques, hence confirming the prediction of [8]
(these results were recently extended by the same authors in [3] to cover the case
of the discrete GFF in a bounded domain).

Roughly speaking, the terminology freezing comes from the linearization of the
free energy of the measure Mt beyond the value γ 2 = 2d (see [8, 9, 12, 13] for
further comments). The terminology glassy phase comes from the fact that for
γ 2 > 2d, the measure Mt is essentially dominated by a few points, the local ex-
treme values of the field Xt (along with the neighborhood of these extreme values).
Therefore, this paper possesses strong connections with the study of the extreme
values of the field Xt . This was conjectured in [11] and important advances on this
topic have recently appeared in [6, 7] in the context of the discrete GFF and in
[17] for a large class of log-correlated fields. However, the description of the local
maxima obtained in [6] is not sufficient to obtain the so-called freezing theorems
that will be established in this paper.

Finally, we would like to stress that we will only deal with the case of white
noise cut-off of the Gaussian distribution X, building on techniques developed in
[17]. We will then extend our results to two-dimensional free fields. It is natural to
wonder whether the nature of the cut-off may affect the structure of the limiting
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measure. We will prove that the freezing theorem does not depend on the chosen
cutoff family provided the cutoff is not too far from a white noise decomposition.
From a more general angle, we believe that the glassy phase does not depend on the
chosen cut-off, except at the level of the multiplicative constant C(γ ). For instance,
given a smooth mollifier θ and setting θε = 1

εd θ( .
ε
), similar theorems should hold

for measures built on approximations of the form θε ∗X: in this setting, one would
obtain an analog of Theorem 2.2 where the constant C(γ ) is replaced by a constant
C(θ, γ ) depending on θ, γ .

2. Setup and main results.

2.1. Star scale invariant fields. We denote by Bb(R
d) the Borel subsets of Rd.

Let us introduce a canonical family of log-correlated Gaussian distributions, called
star scale invariant, and their cut-off approximations, which we will work with in
the first part of the paper. Let us consider a continuous covariance kernel k on R

d

such that we have the following.

ASSUMPTION (A). The kernel k satisfies the following assumptions, for some
constant C independent of x ∈ R

d:

A1. k is of class C1, nonnegative and normalized by the condition k(0) = 1,
A2. k has compact support,
A3. |k(x) − k(0)| ≤ C|x| for some constant C := Ck independent of x ∈R

d.

We set for t ≥ 0 and x ∈R
d

Kt(x) =
∫ et

1

k(xu)

u
du.(2.1)

We consider a family of centered Gaussian processes (Xt(x))x∈Rd,t≥0 with covari-
ance kernel given by

∀t, s ≥ 0, E
[
Xt(x)Xs(y)

] = Kt∧s(y − x),(2.2)

where t ∧ s := min(t, s). The construction of such fields is possible via a white
noise decomposition as explained in Section 4 (page 762) of [1]. We set

Ft = σ
{
Xu(x);x ∈R

d, u ≤ t
}
.

We stress that, for s > t , the field (Xs(x) − Xt(x))x∈Rd is independent from Ft .
We introduce for t > 0 and γ > 0, the random measures M ′

t (dx) and M
γ
t (dx)

M ′
t (A) :=

∫
A

(√
2dt − Xt(x)

)
e
√

2dXt (x)−dt dx,

(2.3)
M

γ
t (A) :=

∫
A

eγXt (x)−(γ 2/2)t dx ∀A ∈ Bb

(
R

d)
.

Recall that (see [11]) we have the following.
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THEOREM 2.1. For each bounded open set A ⊂ R
d, the martingale

(M ′
t (A))t≥0 converges almost surely toward a positive random variable denoted

by M ′(A).
Furthermore, the family of random signed measures (M ′

t (dx))t≥0 almost surely
weakly converges toward a random measure M ′(dx), which is atom-free and has
full support.

2.2. Results for star scale invariant fields. The main purpose of this paper is
to establish the following result which was conjectured in [11].

THEOREM 2.2 (Freezing theorem). For any γ >
√

2d, there exists a constant
C(γ ) > 0 such that for any smooth nonnegative function f on [0,1]d

lim
t→∞ E

(
exp

(
−t3γ /(2

√
2d)et (γ /

√
2−√

d)2
∫
[0,1]d

f (x)M
γ
t (dx)

))
(2.4)

= E
(

exp
(
−C(γ )

∫
[0,1]d

f (x)
√

2d/γ M ′(dx)

))
.

As a consequence, we deduce the following.

COROLLARY 2.3. For any γ >
√

2d, the family of random measures
(t3γ /(2

√
2d)et (γ /

√
2−√

d)2
M

γ
t (dx))t≥0 weakly converges in law toward a purely

atomic random measure denoted by Sγ (dx). The law of Sγ can be described as
follows: conditionally on M ′, Sγ is an independently scattered random measure
such that

E
(
exp

(−θSγ (A)
)) = E

(
exp

(−θ
√

2d/γ C(γ )M ′(A)
))

(2.5)

for all θ ≥ 0 and all Borelian subsets A of Rd.

In other words, Sγ is an integrated α-stable Poisson random measure of spatial
intensity given by the derivative martingale M ′. Indeed, the law of Sγ may be
described as follows. Conditionally on M ′, consider a Poisson random measure
nγ on R

d ×R+ with intensity

M ′(dx) ⊗ dz

z1+√
2d/γ

.

Then the law of Sγ is the same as the purely atomic measure (� stands for the
function gamma)

Sγ (A) = c

∫
A

∫ ∞
0

znγ (dx, dz) with c =
(
C(γ )

√
2d

γ�(1 − √
2d/γ )

)γ /
√

2d

.

From Theorem 2.1, we observe that M ′(O) > 0 almost surely for any nonempty
open set. By considering this together with Corollary 2.3, it is plain to deduce the
following.
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COROLLARY 2.4. For each bounded open set O, the family of random mea-
sures (Mt (dx∩O)

Mt (O)
)t converges in law in the sense of weak convergence of measures

toward Sγ (dx)

Sγ (O)
.

We point out that the size reordered atoms of the measure Sγ (dx)

Sγ (O)
form the

Poisson–Dirichlet process studied in [2, 3]. The interesting point here is that we
keep track of the spatial localization of the atoms whereas all this information is
lost in the Poisson–Dirichlet approach. Yet, we stress that the methods used in
[2, 3] rely on spin glass technics and remain thus quite interesting since far differ-
ent from those used here.

REMARK 2.5. We stress that Corollary 2.4 also holds for all the examples
described below but we will refrain from stating it anymore.

2.3. Massive free field. In this section, we extend our results (Theorem 2.2) to
kernels with long range correlations, and in particular, we will be interested in the
whole plane Massive Free Field (MFF).

The whole plane MFF is a centered Gaussian distribution with covariance kernel
given by the Green function of the operator 2π(m2 − �)−1 on R

2, that is, by

∀x, y ∈ R
2, Gm(x, y) =

∫ ∞
0

e−(m2/2)u−|x−y|2/(2u) du

2u
.(2.6)

The real m > 0 is called the mass. This kernel is of σ -positive type in the sense of
Kahane [14] since we integrate a continuous function of positive type with respect
to a positive measure. It is furthermore a star-scale invariant kernel (see [1]): it can
be rewritten as

Gm(x, y) =
∫ +∞

1

km(u(x − y))

u
du,(2.7)

for some continuous covariance kernel km(z) = 1
2

∫ ∞
0 e−m2/(2v)|z|2−v/2 dv. We

consider a family of centered Gaussian processes (Xt(x))x∈Rd,t≥0 with covariance
kernel given by

∀t, s ≥ 0, E
[
Xt(x)Xs(y)

] = Gm,t∧s(y − x) :=
∫ t∧s

1

km(u(x − y))

u
.(2.8)

One can construct the derivative martingale M ′ associated to (Xt)t≥0 as pre-
scribed in Section D of [10]. Now we claim that our result holds in the case of the
MFF for any cut-off family of the MFF uniformly close to (Gm,t )t .

DEFINITION 2.6. A cut-off family of the MFF is said uniformly close to
(Gm,t )t if it is a family of stochastically continuous centered Gaussian processes
(Xn(x))n∈N,x∈R2 with respective covariance kernels (Kn)n satisfying:
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– we can find a subsequence (tn)n such that limn→∞ tn = +∞,
– the family (Kn − Gm,tn)n uniformly converges toward 0 over the compact sub-

sets of R2.

Then we claim the following.

THEOREM 2.7 (Freezing theorem for MFF). For any γ > 2, there exists a con-
stant C(γ ) > 0 such that for every cut-off family (Xn)n of the MFF uniformly close
to (Gm,t )t , the family of random measures (t

(3γ )/4
n etn(γ /

√
2−√

2)2
M

γ
n (dx))n≥0,

where

Mγ
n (dx) = eγXn(x)−(γ 2/2)E[Xn(x)2] dx,

weakly converges in law toward a purely atomic random measure denoted by Sγ .
The law of Sγ can be described as follows:

E
(
exp

(−Sγ (f )
)) = E

(
exp

(
−C(γ )

∫
R2

f (x)2/γ M ′(dx)

))
(2.9)

for all nonnegative continuous function f with compact support.

The above theorem is a bit flexible in the sense that there is some robustness with
respect to the chosen cutoff approximation: among the class of cut-off families of
the MFF uniformly close to (Gm,t )t , the freezing phenomena related to the MFF
do not depend on the structure of the chosen cutoff.

2.4. Gaussian free field on planar bounded domains. Consider a bounded
open domain D of R2. Formally, a GFF on D is a Gaussian distribution with co-
variance kernel given by the Green function of the Laplacian on D with prescribed
boundary conditions (see [23] for further details). We describe here the case of
Dirichlet boundary conditions. The Green function is then given by the formula

GD(x, y) = π

∫ ∞
0

pD(t, x, y) dt,(2.10)

where pD is the (sub-Markovian) semi-group of a Brownian motion B killed upon
touching the boundary of D, namely the Radon–Nykodim derivative

pD(t, x, y) = P x(Bt ∈ dy,TD > t)/dy

with TD = inf{t ≥ 0,Bt /∈ D}. Note the factor π , which makes sure that GD(x, y)

takes on the form

GD(x, y) = ln+
1

|x − y| + g(x, y),
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where ln+ = max(ln,0) and for some continuous function g on D × D. The most
direct way to construct a cutoff family of the GFF on D is then to consider a white
noise W distributed on D ×R+ and define

X(x) = √
π

∫
D×R+

pD

(
s

2
, x, y

)
W(dy, ds).

One can check that E[X(x)X(x′)] = π
∫ ∞

0 pD(s, x, x′) ds = GD(x, x′). The cor-
responding cut-off approximations are given by

Xt(x) = √
π

∫
D×[e−2t ,∞[

pD

(
s

2
, x, y

)
W(dy, ds),(2.11)

which has covariance kernel

GD,t (x, y) = π

∫ ∞
e−2t

pD(r, x, y) dr.

We define the approximating measures

M2
t (dx) = e2Xt (x)−2E[Xt(x)2] dx

and

M ′
t (dx) = (

2E
[
Xt(x)2] − Xt(x)

)
e2Xt (x)−2E[Xt(x)2] dx.

Let us stress that Theorem 2.1 holds for this family (Xt)t (see Section D of [10]).

THEOREM 2.8 (Freezing theorem for GFF on planar domains). For any γ > 2
and every bounded planar domain D ⊂ R

2, there exists a constant C(γ ) > 0 such
that for every cut-off family (Xn)n of the GFF uniformly close to (GD,t )t , the

family of random measures (t
3γ /4
n etn(γ /

√
2−√

2)2
M

γ
n (dx))t≥0, where

Mγ
n (dx) = eγXn(x)−γ 2/2tn dx,

weakly converges in law toward a purely atomic random measure denoted by Sγ .
The law of Sγ can be described as follows:

E
(
exp

(−Sγ (f )
)) = E

(
exp

(
−C(γ )

∫
R2

f (x)2/γ C(x,D)2M ′(dx)

))
(2.12)

for all nonnegative continuous function f with compact support, where C(x,D)

stands for the conformal radius at x ∈ D.

REMARK 2.9. The derivative martingale construction of Theorem 2.1 applies
to other cut-offs of the GFF than (2.11). For instance, one can consider the projec-
tion of the GFF on the triangular lattice with mesh going to 0 along powers of 2
(in this case, the law on the lattice points of this projection is nothing but the dis-
crete GFF on the triangular lattice). Then the derivative martingale construction of
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Theorem 2.1 holds in this context by the methods of [11] since the approximations
correspond to adding independent functions; see [23]. Unfortunately, the methods
of this paper do not enable to prove an analog of Theorem 2.8 in the context of
the projection on the triangular lattice. There are several difficulties to overcome
in this context. First, it would be interesting to prove that Seneta–Heyde renor-
malization of [10] yields the same limit as the derivative martingale in this setting
(this is not obvious from the techniques of [10]). By the universality results in [21]
(more precisely Theorem 5.13), this would imply that the approximation (2.11)
and the projection on the triangular lattice yield the same critical measure M ′ (in
law). Proving an analog of Theorem 2.8 for the triangular lattice would then im-
ply by the above discussion that the renormalized supercritical measures with the
triangular lattice cut-off converge in law to the Sγ defined in (2.12) (up to some
multiplicative constant).

2.5. Further generalization. Our strategy of proofs apply to a more general
class of kernels, at least to some extent, in any dimension. There are two main
inputs to take care of.

First, we discuss the case of long range correlated star scale invariant kernels.
One has to adopt the same strategy as we do for the MFF. Basically, what one
really needs is assumptions (B.1) + (B.2) + (B.3) and the Seneta–Heyde norming,
whatever the dimension. However, further conditions on the kernel k are required
in order to make sure that the Seneta–Heyde norming holds (see [10], Remark 31).
One may, for instance, treat in this way the case of covariance kernel given by the
Green function of the operator (m2 − �)d/2 in R

d provided that m > 0.
One may then wish to treat the case of nontranslation invariant fields, for in-

stance, with correlations given by the Green function of (−�)d/2 in a bounded
domain of R

d with appropriate boundary conditions. Then one has to adopt the
strategy we use for the GFF on planar domains: just replace the conformal radius
by the function

F(x,D) = lim
t→∞ eE[Xt (x)2]−ln t .

3. Proofs for star scale invariant fields. In this section, we carry out the
main arguments of the proof of Theorem 2.2 with the help of auxiliary results
that are gathered in a toolbox in Appendix. Furthermore, from Assumption A2,
the covariance kernel k has compact support. Without loss of generality, we will
assume that the support of k is contained in the ball centered at 0 with radius 1.

3.1. Some further notations.

Processes and measures. Before proceeding with the proof, we introduce
some further notation. We define for all x ∈ R

d, t ≥ 0, all Borelian subset A of Rd:

Yt (x) := Xt(x) − √
2dt and Ys,t (x) := Ys+t (x) − Ys(x).(3.1)



GLASSY PHASE AND FREEZING 651

We recall the following scaling property:

(
Ys,t (x)

)
t∈R+,x∈Rd

(law)= (
Yt

(
xes))

t∈R+,x∈Rd,(3.2)

which can be checked with a straightforward computation of covariances. This
scaling property is related to the notion of star scale invariance and the reader is
referred to [1] for more on this.

The main purpose of Theorem 2.2 will be to establish the convergence of the
renormalized measure t3γ /(2

√
2d)et (γ /

√
2−√

d)2
M

γ
t (dx) and it will thus be conve-

nient to shortcut this expression as

M̃
γ
t (dx) := t3γ /(2

√
2d)et (γ /

√
2−√

d)2
M

γ
t (dx).(3.3)

We will denote by |A| the Lebesgue measure of a measurable set A ⊂ R
d.

Regularity, spaces of functions. We denote by C(D,Rp) the space of continu-
ous functions from D (a subset of Rd) into R

p . B(x, r) stand for the ball centered
at x with radius r .

For any domain D ⊂ R
d , any continuous function f ∈ C(D,R) and δ > 0, we

consider the two following modulus of regularity of f :

w
(D)
f (δ) := sup

x,y∈D,|x−y|≤δ

∣∣f (x) − f (y)
∣∣

and

w
(D,1/3)
f (δ) := sup

x,y∈D,|x−y|≤δ

|f (x) − f (y)|
|x − y|1/3 .

When D = [0,R]d (R > 0), we will use w
(R)
f (δ) and w

(R,1/3)
f (δ) instead of re-

spectively w
([0,R]d)
f (δ) and w

([0,R]d,1/3)
f (δ). Similarly, when D = B(0, b) for some

b > 0, we denote w
(0,b)
f (δ) := w

(B(0,b))
f (δ). For any a, b, t,R > 0, we define

CR(t, a, b) =
{
f : [0,R]d →R;w(R,1/3)

f

(
t−1) ≤ 1,

(3.4)
min

y∈[0,R]d
f (y) > a and max

y∈[0,R]d
f (y) < b

}
.

Constants. We also set for z, t ≥ 0

κd = 1

8
√

2d
and at := − 3

2
√

2d
ln t.(3.5)
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FIG. 1. Decomposition of the cube [0, et ′ ]d .

3.2. A decomposition. Before proceeding with the proof of Theorem 2.2, we
first explain a decomposition of the cube [0, et ′ ]d with t ′ > 0 that will be used
throughout the proof of Theorem 2.2. We will divide this cube into several smaller
cubes of size R > 0, all of these smaller cubes being at distance greater than 1
from each other. To understand more easily our notation, the reader may keep in
mind the picture of Figure 1. We assume that R, t ′ are such that

m := et ′ + 1

(R + 1)
∈ N

∗.

The integer m stands for the number of small squares of size R that one meets
along an edge of the cube. The basis of each small square will be indexed with a
d-uplet

i = (i1, . . . , id) ∈ {1, . . . ,m}d.

The basis of the square Ai is then located at

ai := (R + 1)
(
(i1 − 1), . . . , (id − 1)

) ∈ [
0, et ′]d

in such a way that

Ai := ai + [0,R]d.

One may observe on Figure 1 that all the squares Ai are separated from each other
by a fishnet shaped buffer zone (red), which is precisely

BZR,t ′ := [
0, et ′]d

∖ ⋃
i∈{1,...,m}d

Ai.
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The terminology “buffer zone” is used because this is the minimal area needed
to make sure that the values taken by the process Yt inside each (blue square) Ai
are independent of its values on all other Aj for j �= i.

3.3. Main frame of the proof of Theorem 2.2. This subsection is devoted to the
proof of Theorem 2.2 up to admitting a few auxiliary results, which will be proved
later.

We have to study the Laplace transform of
∫
[0,1]d f (x)M̃

γ
t (dx) for all contin-

uous function f on [0,1]d. It is not difficult to see that it is enough to prove the
result for all f that are continuous on [0,1]d and strictly positive. The proof that
we develop below works for all such functions but for the sake of clarity and sim-
plicity, we write the proof when f is the characteristic function of the set [0,1]d.
The reader may check that the proof is easily adapted to the case f > 0 and con-
tinuous.

We fix ε > 0 and θ > 0. For R > 0 and t ′ > 0 such that et ′+1
R+1 ∈ N

∗, we define
the set (recall the decomposition in Section 3.2)

YR,θ

(
t ′

) :=
{
w

(1,1/3)
Yt ′ (·)

(
1

t ′
e−t ′

)
≤ et ′/3,

∣∣γ −1 ln θ
∣∣M√

2d
t ′

([0,1]d) + ∣∣M ′
t ′
(
e−t ′BZR,t ′

)∣∣ ≤ εθ−√
2d/γ ,(3.6)

∀x ∈ [0,1]d,−10
√

2dt ′ ≤ Yt ′(x) ≤ −κd ln t ′
}
.

Now we consider t, t ′ such that t ≥ et ′ . We have

E
(
e−θM̃

γ
t ([0,1]d);YR,θ

(
t ′

))
≤ E

(
e−θM̃

γ
t ([0,1]d))(3.7)

≤ E
(
e−θM̃

γ
t ([0,1]d);YR,θ

(
t ′

)) + P
(
YR,θ

(
t ′

)c)
.

We estimate now the left-hand side of this relation. Because

M̃
γ
t

([0,1]d) = M̃
γ
t

(
e−t ′BZR,t ′

) + M̃
γ
t

(
e−t ′ ∪ Ai

)
,

we can use the relation uv ≥ u + v − 1 for u, v ∈ [0,1] to get

e−θM̃
γ
t ([0,1]d) ≥ e−θM̃

γ
t (e−t ′BZR,t ′ ) − 1 + e−θM̃

γ
t (e−t ′∪Ai).

We deduce from (3.7)

E
(
e−θM̃

γ
t (e−t ′BZR,t ′ ) − 1;YR,θ

(
t ′

)) + E
(
e−θM̃

γ
t (e−t ′∪Ai);YR,θ

(
t ′

))
≤ E

(
e−θM̃

γ
t ([0,1]d))(3.8)

≤ E
(
e−θM̃

γ
t (e−t ′∪Ai);YR,θ

(
t ′

)) + P
(
YR,θ

(
t ′

)c)
.

Now we claim:
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LEMMA 3.1. The following convergences hold for each t ′ ≥ 0:

lim sup
t→∞

E
[
1 − e−θM̃

γ
t (e−t ′BZR,t ′ );YR,θ

(
t ′

)] ≤ ε,(3.9)

lim sup
t→∞

E
[
e−θM̃

γ
t (e−t ′∪Ai);YR,θ

(
t ′

)]
(3.10)

≤ E
[
exp

(−(
C(γ ) − ε

)
θ

√
2d/γ M ′([0,1]d) + 2ε

(
C(γ ) − ε

))]
and a lower bound similar to (3.10) with a lim inft→∞ in the left-hand side.

By taking the lim supt→∞ in (3.8) and by using Lemma 3.1, we get

lim sup
t→∞

E
[
e−θM̃

γ
t ([0,1]d)]

≤ E
[
exp

(−(
C(γ ) − ε

)
θ

√
2d/γ M ′([0,1]d) + 2ε

(
C(γ ) − ε

))] + P
(
YR,θ

(
t ′

)c)
.

From Lemma A.2, we have lim supt ′→∞ P(YR,θ (t
′)c) ≤ ε. We deduce

lim sup
t→∞

E
[
e−θM̃

γ
t ([0,1]d)]

≤ E
[
exp

(−(
C(γ ) − ε

)
θ

√
2d/γ M ′([0,1]d) + 2ε

(
C(γ ) − ε

))] + ε.

We can proceed in the same way for the lower bound. Since ε can be chosen
arbitrarily close to 0, the proof of Theorem 2.2 follows, provided that we prove the
above lemma.

To prove Lemma 3.1, we need the following proposition, which can actu-
ally be seen as the key tool of this subsection. Its proof requires some addi-
tional material and is carried out in Section 5. In what follows, for any function
χ(·) ∈ CR(t ′, κd ln t ′, ln t), we set

I(χ, θ, γ ) = θ
√

2d/γ
∫
[0,R]d

(
χ(x) − ln θ

γ

)
e−√

2dχ(x) dx

(3.11) [
when θ = 1 we will denote I(χ) = I(χ,1, γ )

]
.

PROPOSITION 3.2. Let γ >
√

2d. There exists a constant C(γ ) > 0 such that
for all R ≥ 1, θ > 0 and ε > 0, we can find t0 > 0 such that for all t ′ > t0 satisfying
et ′+1
R+1 ∈ N

∗, there exists T > 0, such that for any t > T∣∣∣∣E
[
exp

(
−θ

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt dx

)
− 1

]
+ C(γ )I(χ, θ, γ )

∣∣∣∣
(3.12)

≤ εI(χ, θ, γ ).
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PROOF OF LEMMA 3.1. We first prove the first relation (3.9). By the Markov
property at time t ′ and the scaling property (3.2) applied on the set BZR,t ′ we get
that

E
[
1 − e−θM̃

γ
t (e−t ′BZR,t ′ );YR,θ

(
t ′

)]
= E

[
E

[
1 − exp

(
−θ

∫
e−t ′BZR,t ′

eγ [Yt ′,t−t ′ (x)−at−χ(x)]+dt dx

)]
|χ(·)=−Yt ′ (·)

;

YR,θ

(
t ′

)]
(3.13)

= E
[
E

[
1 − exp

(
−θ

∫
BZR,t ′

eγ [Yt−t ′ (x)−at−χ(x)]+d(t−t ′) dx

)]
|χ(·)=−Yt ′ (·/et ′ )

;

YR,θ

(
t ′

)]
.

We can find a finite collection of points in [0, et ′ ]d, call it (yj )j∈J , such that:

– for any distinct j1, . . . , jd+2 ∈ J ,
⋂d+2

k=1(yjk
+ [0,1]d) = ∅,

– the set
⋃

j∈J (yj + [0,1]d) is contained in the closure BZR,t ′ of BZR,t ′ .

We do not detail the construction of these points but this is rather elementary:
basically, you have to cover the red area in Figure 1 with closed squares of side
length 1 (which corresponds to the width of the red strips). Of course, the squares
that you choose may overlap but if this covering is made efficiently enough, they
will not overlap too much in such a way that any intersection of d + 2 such squares
will be empty.

By using in turn the elementary inequality 1 − ∏
j∈J uj ≤ ∑

j∈J 1 − uj for
(uj )j ∈ [0,1]J and then invariance by translation, we get

E
[
1 − exp

(
−θ

∫
BZR,t ′

eγ [Yt−t ′ (x)−at−χ(x)]+d(t−t ′) dx

)]
|χ(·)=−Yt ′ (e−t ′ ·)

≤ E
[
1

− ∏
j∈J

exp
(
−θ

∫
yj+[0,1]d

eγ [Yt−t ′ (x)−at−χ(x)]+d(t−t ′) dx

)]
|χ(·)=−Yt ′ (e−t ′ ·)

(3.14)

≤ ∑
j∈J

E
[
1

− exp
(
−θ

∫
[0,1]d

eγ [Yt−t ′ (x)−at−χ(x)]+d(t−t ′) dx

)]
|χ(·)=−Yt ′ (yj+e−t ′ ·)

.
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Moreover, on YR,θ (t
′), the function x ∈ [0,1]d �→ −Yt ′(yj + e−t ′x) belongs to

C1(t
′, κd ln t ′, ln t) as soon as ln t > 10

√
2dt ′. So, by Proposition 3.2 with ε = 1,

we can find t0 such that for any t ′ > t0 satisfying et ′+1
R+1 ∈ N

∗ there exists T > 0
such that for any t > T and on YR,θ (t

′)

E
[
1 − exp

(
−θ

∫
[0,1]d

eγ [Yt−t ′ (x)−at−χ(x)]+d(t−t ′) dx

)]
|χ(·)=−Yt ′ (yj+e−t ′ ·)

≤ (
C(γ ) + 1

) ∫
yj+[0,1]d

(
− 1

γ
ln θ − Yt ′

(
xe−t ′))

× e
√

2d(Yt ′ (xe−t ′ )+(1/γ ) ln θ) dx

for any j ∈ J (notice that at − at−t ′ → 0 when t goes to infinity so that we can
replace at by at−t ′ in the above expression in order to be in position to apply
Proposition 3.2). Plugging this estimate into (3.14) yields

E
[
1 − exp

(
−θ

∫
BZR,t ′

eγ [Yt−t ′ (x)−at−χ(x)]+d(t−t ′) dx

)]
|χ(·)=−Yt ′ (e−t ′ ·)

≤ ∑
j∈J

(
C(γ ) + 1

)
(3.15)

×
∫
yj+[0,1]d

(
− 1

γ
ln θ − Yt ′

(
xe−t ′))e

√
2d(Yt ′ (xe−t ′ )+(1/γ ) ln θ) dx.

Now we may assume that κd ln t ′ > 1
γ

ln θ in such a way that, on YR,θ (t
′),

we have (− 1
γ

ln θ − Yt ′(xe−t ′)) ≥ 0 for x ∈ [0, et ′ ]d. Furthermore, the relation⋂d+2
k=1(yjk

+ [0,1]d) = ∅ (valid for all families of distinct indices) entails that∑
j∈J 1{yjk

+[0,1]d} ≤ (d + 2)1BZR,t ′ . Hence, on YR,θ (t
′)

E
[
1 − exp

(
−θ

∫
BZR,t ′

eγ [Yt−t ′ (x)−at−χ(x)]+d(t−t ′) dx

)]
|χ(·)=−Yt ′ (e−t ′ ·)

≤ (d + 2)
(
C(γ ) + 1

)
×

∫
BZR,t ′

(
− 1

γ
ln θ − Yt ′

(
xe−t ′))e

√
2d(Yt ′ (xe−t ′ )+(1/γ ) ln θ) dx(3.16)

≤ (d + 2)
(
C(γ ) + 1

)
×

∫
e−t ′BZR,t ′

(
− 1

γ
ln θ − Yt ′(x)

)
e
√

2d(Yt ′ (x)+(1/γ ) ln θ)+dt ′ dx.

The last inequality results from the change of variables xe−t ′ → x. We recognize

the expressions of the martingales M
√

2d
t ′ and M ′

t ′ as in (2.3). By gathering (3.13)
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and the above relation, we deduce

E
[
1 − e−θM̃

γ
t (e−t ′BZR,t ′ );YR,θ

(
t ′

)]
≤ (d + 2)

(
C(γ ) + 1

)
E

[
θ

√
2d/γ (−γ −1 ln θM

√
2d

t ′
(
e−t ′BZR,t ′

)
(3.17)

+ M ′
t ′
(
e−t ′BZR,t ′

));YR,θ

(
t ′

)]
.

By using the definition (3.6) of YR,θ (t
′), we see that this latter quantity is less than

ε(d + 2)(C(γ ) + 1). By choosing ε as small as we please, we complete the proof
of the first relation (3.9).

Now we prove (3.10). As previously mentioned, we first apply the Markov prop-
erty at time t ′ and the scaling property (3.2).

E
[
e−θM̃

γ
t (e−t ′∪Ai);YR,θ

(
t ′

)]
= E

[
E

[
exp

(
−θ

∫
∪Ai

eγ [Yt−t ′ (x)−at−χ(x)]+d(t−t ′) dx

)]
|χ(·)=−Yt ′ (·e−t ′ )

;(3.18)

YR,θ

(
t ′

)]
.

The important point here is to see that for any t ≥ 0, the process (Yt (x))x∈Rd is
decorrelated at distance 1 [recall that k has compact support in the ball B(0,1)].
Therefore, the random variables (

∫
Ai

eγ [Yt−t ′ (x)−at−χ(x)]+d(t−t ′) dx)i appearing in
the latter expectation are independent since dist(Ai,Aj) ≥ 1 for any i �= j. We de-
duce that

E
[
e−θM̃

γ
t (e−t ′∪Ai);YR,θ

(
t ′

)]
= E

[ ∏
i∈{1,...,m}d

E
[
exp

(
−θ(3.19)

×
∫
Ai

eγ [Yt−t ′ (x)−at−χ(x)]+d(t−t ′) dx

)]
|χ(·)=−Yt ′ (·e−t ′ )

;YR,θ

(
t ′

)]
.

As previously mentioned, we can choose t sufficiently large so that, on YR,θ (t
′)

and for any j ∈ J , the function x ∈ [0,R]d �→ −Yt ′(e−t ′(x + ai)) belongs to
CR(t ′, κd ln t ′, ln t). We can then apply Proposition 3.2 once again and get some

t0 > 0 such that for all t ′ > t0 (with et ′+1
R+1 ∈ N

∗) there exists T > 0 such that for all
t ≥ T and all i,∣∣∣∣E

[
exp

(
−θ

∫
Ai

eγ [Yt−t ′ (x)−at−χ(x)]+d(t−t ′) dx

)]
− 1 + C(γ )I(χ, θ, γ )

∣∣∣∣
≤ εI(χ, θ, γ ),
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with χ(x) = −Yt ′(e−t ′x). By plugging this estimate into (3.19) and by making

a change of variables xe−t ′ → x, we obtain (once again by identifying M
√

2d
t ′

and M ′
t ′)

E
[
e−θM̃

γ
t (∪Ai);YR,θ

(
t ′

)]
≤ E

[ ∏
i∈{1,...,m}d

(
1 − (

C(γ ) − ε
)
θ

√
2d/γ

× [−γ −1 ln θM
√

2d
t ′

(
e−t ′Ai

) + M ′
t ′
(
e−t ′Ai

)]);YR,θ

(
t ′

)]
.

On YR,θ (t
′), ∀i ∈ {1, . . . ,m}d we have |γ −1 ln θM

√
2d

t ′ (e−t ′Ai)| + |M ′
t ′(e

−t ′Ai)| ≤
c ln t ′

(t ′)a ≤ ε for any a < κd

√
2d

2 and t ′ large enough. Indeed, on YR,θ (t
′), ∀x ∈ [0,1]d,

κd ln t ′ ≤ −Yt ′(x), thus

M
√

2d
t ′

(
e−t ′Ai

) ≤ M ′
t ′
(
e−t ′Ai

) =
∫
e−t ′Ai

−Yt ′(x)e
√

2dYt ′ (x)+dt ′ dx

≤ Rd sup
u≥κd ln t ′

ue−√
2du.

Then, by using the inequality
∏

i∈I (1−ui) ≤ e−∑
i∈I ui for ui ∈ [0,1], we obtain

E
[
e−θM̃

γ
t (∪Ai);YR,θ

(
t ′

)]
≤ E

[
exp

(
−(

C(γ ) − ε
)
θ

√
2d/γ

×
[
M ′

t ′
(
e−t ′ ⋃

i

Ai

)
− γ −1 ln θM

√
2d

t ′

(
e−t ′ ⋃

i

Ai

)])
;YR,θ

(
t ′

)]
.

Recall that, on YR,θ (t
′),∣∣∣∣M ′

t ′
(
e−t ′ ⋃

i

Ai

)
− M ′

t ′
([0,1]d)∣∣∣∣ +

∣∣∣∣γ −1 ln θM
√

2d
t ′

(
e−t ′ ⋃

i

Ai

)∣∣∣∣
≤ ∣∣γ −1 ln θM

√
2d

t ′
([0,1]d)∣∣ + ∣∣M ′

t ′
(
e−t ′BZR,t ′

)∣∣ ≤ εθ−√
2d/γ .

So lim supt→∞ E(e−θM̃
γ
t (∪Ai);YR,θ (t

′)) ≤ E(exp(−(C(γ ) − ε)θ
√

2d/γ ×
M ′([0,1]d) + 2ε(C(γ ) − ε))). The lower bound of (3.10) can be derived in the
same way. �

3.4. Proof of Corollary 2.3. Here, we assume that Theorem 2.2 holds and we
show that this implies convergence in law in the sense of weak convergence of
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measures. For a > 0, let us denote by Ca the cube [−a, a]d. Since for all bounded
continuous function f compactly supported in CR , we have

0 ≤
∫
Ca

f (x)M̃
γ
t (dx) ≤ ‖f ‖∞M̃

γ
t (Ca)

and since the right-hand side is tight, this ensures that the family of random mea-
sures (M̃

γ
t (dx))t is tight for the weak convergence of measures on Ca . Since we

can find a sequence (fn)n of smooth strictly positive functions on Ca that is dense
in the set of nonnegative continuous compactly supported functions in Ca for the
uniform topology, uniqueness in law then results from Theorem 2.2. As it is rather
a standard argument of functional analysis, we let the reader check the details, if
need be.

4. Estimation on the tail of distribution of M̃
γ
t ([0,R]d). In this section,

we will identify the path configurations t �→ Yt (x) that really contribute to the
behaviour of the measure M̃

γ
t . We will show that, for these paths, Yt (x) typically

goes faster than at = − 3
2
√

2d
ln t .

To quantify the above rough claim, we will establish the following.

PROPOSITION 4.1. Let R,ε > 0. There exists a constant A > 0 such that for
any t ′, T large enough we have

E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt1{Yt (x)≤at+χ(x)−A} dx

)]
(4.1)

≤ ε

∫
[0,R]d

χ(x)e−√
2dχ(x) dx,

for any t ≥ T and χ(·) ∈ CR(t ′, κd ln t ′, ln t).

Then we focus on the shape of the tail distribution of M̃
γ
t ([0,R]d). For instance,

it is well known in Tauberian theory that an estimate of the type

C−1xe−√
2dx ≤ 1 − E

[
e−e−γ xM̃

γ
t ([0,R]d)] ≤ Cxe−√

2dx(4.2)

valid for x > 0 gives you a tail estimate for M̃
γ
t ([0,R]d) of the type

P
(
M̃

γ
t

([0,R]d)
> eγx) � xe−√

2dx

as x → ∞. Basically, the following proposition is a functional version of (4.2),
meaning that we will replace the variable x by some function χ . Hence, we will
establish the following.

PROPOSITION 4.2. There exist c1, c2, such that for any t ′ > 0 there exists
T > 0 such that for any R ∈ [1, ln t ′]:
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• for any t ≥ T and any χ(·) ∈ CR(t ′, κd ln t ′, ln t),

E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt dx

)]

≤ c2

∫
[0,R]d

χ(x)e−√
2dχ(x) dx.

• for any χ(·) ∈ CR(t ′, κd ln t ′,+∞)

c1

∫
[0,R]d

χ(x)e−√
2dχ(x) dx

≤ lim inf
t→∞ E

[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt dx

)]
.

The two following subsections are devoted to the proofs of Propositions 4.1
and 4.2.

4.1. Proof of Proposition 4.1. Fix ε > 0. We consider t ′ > 0 and R ≥ 1 such

that et ′+1
R+1 ∈ N

∗. We have for t > et ′

E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt1{Yt (x)≤at+χ(x)−A} dx

)]

≤ E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt

(4.3)

× 1{sups∈[ln t ′,t] Ys(x)≤χ(x),Yt (x)≤at+χ(x)−A} dx

)]

+ P
(

sup
x∈[0,R]d

sup
s∈[ln t ′,∞[

Ys(x) ≥ χ(x)
)
.

If χ(·) ∈ CR(t ′, κd ln t ′, ln t) (with t ′ large enough so as to make κd ln t ′ > 10), we
can estimate the probability in the right-hand side with the help of Lemma A.3. If
t ′ is again large enough, we have

(
ln t ′

)3/8 + χ(x)3/4 ≤ ε

2
κd ln t ′ + χ(x)3/4 ≤ εχ(x)

in such a way that

P
(

sup
x∈[0,R]d

sup
s∈[ln t ′,∞[

Ys(x) ≥ χ(x)
)

≤ ε

∫
[0,R]d

χ(x)e−√
2dχ(x) dx.(4.4)

So we need to bound the first term in the right-hand side of (4.3). To this purpose,
we will use Lemma A.4 as follows. First, observe that we can partition the whole
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space of events � as

� ⊂
{

sup
s∈[t/2,t]

Ys(x) ≤ at + χ(x) + L
}

× ⋃
j≥L+1

{
sup

s∈[t/2,t]
Ys(x) − at − χ(x) ∈ [j − 1, j ]

}

⊂
{

sup
s∈[t/2,t]

Ys(x) ≤ at + χ(x) + L
}

× ⋃
j≥L+1

{
sup

s∈[t/2,t−νj ]
Ys(x) − at − χ(x) ∈ [j − 1, j ],

sup
s∈[t−νj ,t]

Ys(x) ≤ at + χ(x) + j
}

× ⋃
j≥L+1

{
sup

s∈[t/2,t−νj ]
Ys(x) ≤ at + χ(x) + j,

sup
s∈[t−νj ,t]

Ys(x) − at − χ(x) ∈ [j − 1, j ]
}

for all family (νj )j such that 0 ≤ νj ≤ t/2 for all j . We deduce the relation

1{sups∈[ln t ′,t] Ys(x)≤χ(x),Yt (x)≤at+χ(x)−A} ≤ 1E1
t ′,t (x) + 1E2

t ′,t (x) + 1E3
t ′,t (x),

where the set E1
t ′,t (x), E2

t ′,t (x), E3
t ′,t (x) are defined as follows: we consider the

constants c4, c5 of Lemma A.4 and for any j ≥ 1, we define νj := e(c5/2)j . Then
we set

E1
t ′,t (x) :=

{
sup

s∈[ln t ′,t]
Ys(x) ≤ χ(x),

sup
s∈[t/2,t]

Ys(x) ≤ at + χ(x) + L,Yt (x) ≤ at + χ(x) − A
}
,

E2
t ′,t (x) := ⋃

j≥L+1

{
sup

s∈[ln t ′,t]
Ys(x) ≤ χ(x),

sup
s∈[t/2,t−νj ]

Ys(x) − at − χ(x) ∈ [j − 1, j ],

sup
s∈[t−νj ,t]

Ys(x) ≤ at + χ(x) + j,Yt (x) ≤ at + χ(x) − A
}
,

E3
t ′,t (x) := ⋃

j≥L+1

{
sup

s∈[ln t ′,t]
Ys(x) ≤ χ(x), sup

s∈[t/2,t−νj ]
Ys(x) ≤ at + χ(x) + j,

sup
s∈[t−νj ,t]

Ys(x) − at − χ(x) ∈ [j − 1, j ]
}
.
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According to Lemma A.4, there exists T > 0 such that for all t > T and χ(·) ∈
CR(t ′,10,+∞)

P
(

sup
x∈[0,R]d

1E3
t ′,t (x) = 1

)

≤ ∑
j≥L+1

c4(1 + νj )e
−c5j

∫
[0,R]d

(√
ln t ′ + χ(x)

)
e−√

2dχ(x) dx(4.5)

≤ ce−(c5/2)L
∫
[0,R]d

(√
ln t ′ + χ(x)

)
e−√

2dχ(x) dx.

If we further impose χ(·) ∈ CR(t ′, κd ln t ′,+∞) while choosing t ′ large enough so
as to make the term

√
ln t ′ smaller than εκd ln t ′ (and therefore less than εχ ) as

well as choosing L large enough to have ce−(c5/2)L ≤ ε, we deduce

E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt1E3
t ′,t (x) dx

)]
(4.6)

≤ 2ε

∫
[0,R]d

χ(x)e−√
2dχ(x) dx.

Now we focus on E1
t ′,t (x). By partitioning the event {Yt (x) ≤ at + χ(x) − A}

as {
Yt (x) ≤ at + χ(x) − A

} = ⋃
p≥0

{
Yt (x) − at − χ(x) + A ∈ [−p − 1,−p]}

and by using the relation 1 − e−u ≤ u for u ≥ 0, we obtain

E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt1E1
t ′,t (x) dx

)]

≤ E
[∫

[0,R]d
eγ [Yt (x)−at−χ(x)]+dt1E1

t ′,t (x) dx

]
(4.7)

≤ e−γA
∑
p≥0

e−γpedt

×
∫
[0,R]d

P
(
E1

t ′,t (x), Yt (x) − at − χ(x) + A ∈ [−p − 1,−p])dx.

By Girsanov’s transform (with density e
√

2dYt (x)+dt ), we obtain for any x ∈ [0,R]d

and p ≥ 0,

P
(
E1

t ′,t (x), Yt (x) − at − χ(x) + A ∈ [−p − 1,−p])
≤ e−√

2d[at+χ(x)−A−p−1]−dtP−χ(x)

(
sup

s∈[ln t ′,t]
Bs ≤ 0,(4.8)

sup
s∈[t/2,t]

Bs ≤ at + L,Bt − at + A ∈ [−p − 1,−p]
)
,
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where, under P−χ(x), the process B is a standard Brownian motion starting from
−χ(x). At this step, we observe that similar quantities have been treated in [17].
More precisely, (A.9) shows that, for some constant c̄ > 0 (which does not depend
on relevant quantities)

P−χ(x)

(
sup

s∈[ln t ′,t]
Bs ≤ 0, sup

s∈[t/2,t]
Bs ≤ at + L,Bt − at + A ∈ [−p − 1,−p]

)
(4.9)

≤ t−3/2c̄(L + A + p)E
[(

Bln t ′ + χ(x)
)
1{Bln t ′+χ(x)≥0}

]
.

Finally, by combining (4.7) + (4.8) + (4.9), we get

E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt1E1
t ′,t (x) dx

)]

≤ e−(γ−√
2d)A

∑
p≥0

c̄(L + A + p)e−(γ−√
2d)p

∫
[0,R]d

χ(x)e−√
2dχ(x) dx(4.10)

≤ (L + A)e−(γ−√
2d)Ac

∫
[0,R]d

χ(x)e−√
2dχ(x) dx,

where we took, for instance, c = c̄
∑

p≥0(1 + p)e−(γ−√
2d)p .

Finally, we treat the contribution of the term E2
t ′,t (x). First, we can follow the

same argument as for E1
t ′,t (x) to get

E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt1E2
t ′,t (x) dx

)]

≤ ∑
j≥L+1

e−γA
∑
p≥0

e−γpedt(4.11)

×
∫
[0,R]d

P
(
E2

t ′,t (x), Yt (x) − at − χ(x) + A ∈ [−p − 1,−p])dx.

By Girsanov’s transform again (with density e
√

2dYt (x)+dt ), we can estimate the
probability in (4.11) by

P
(
E2

t ′,t (x), Yt (x) − at − χ(x) + A ∈ [−p − 1,−p])
≤ e−√

2d[at+χ(x)−A−p−1]−dtP−χ(x)

(
sup

s∈[ln t ′,t]
Bs ≤ 0,

(4.12)
sup

s∈[t/2,t−νj ]
Bs − at ∈ [j − 1, j ],

sup
s∈[t−νj ,t]

Bs ≤ at + j,Bt − at + A ∈ [−p − 1,−p]
)
.

Now we use (A.8) to see that this latter quantity is smaller than

ce−dt e
√

2d(A+p+1)e−√
2dχ(x)(1 + j + A + p)ν

−1/2
j χ(x).(4.13)
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By recalling that νj = e(c5/2)j and by combining (4.11) + (4.12) + (4.13), we get

E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt1E2
t ′,t (x) dx

)]

≤ ce−(γ−√
2d)A

∑
j≥L+1

e−(c5/4)j
∑
p≥0

(1 + j + A + p)e−(γ−√
2d)p

(4.14)
×

∫
[0,R]d

e−√
2dχ(x)χ(x) dx

≤ ce−(c5/8)LAe−(γ−√
2d)A

∫
[0,R]d

e−√
2dχ(x)χ(x) dx.

Now recall that our purpose is to estimate the right-hand side in (4.3). The expec-
tation in this right-hand side is estimated by combining (4.6) + (4.10) + (4.14) in
such a way that

E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt1{Yt (x)≤at+χ(x)−A} dx

)]

≤ c
(
e−[γ−√

2d]A[
(L + A) + e−(c5/8)LA

] + 2ε
)

(4.15)

×
∫
[0,R]d

e−√
2dχ(x)χ(x) dx.

So it suffices to choose A large enough such that ce−[γ−√
2d]A[(L + A) +

e−(c5/8)LA] ≤ ε to complete the proof of Proposition 4.1.

4.2. Proof of Proposition 4.2. The first relation of Proposition 4.2 is an easy
consequence of Lemma A.5 and (4.15). Indeed by using the relation 1−e−(u+v) ≤
(1−e−u)+ (1−e−v) for u, v ≥ 0 and by applying (4.15) with A = 1 and L chosen
with ε = 1 [see the relation ce−(c5/2)L ≤ 1 just before (4.6)], we obtain

E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt dx

)]

≤ E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt1{Yt (x)≥at+χ(x)−1} dx

)]

+ E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt1{Yt (x)≤at+χ(x)−1} dx

)]
(4.16)

≤ P
(∃x ∈ [0,R]d, Yt (x) ≥ at + χ(x) − 1

)
+ c

(
e−[γ−√

2d]A[
(L + A) + e−(c5/8)LA

] + 2
) ∫

[0,R]d
χ(x)e−√

2dχ(x) dx

≤ c′
∫
[0,R]d

χ(x)e−√
2dχ(x) dx,
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with c′ := c1 + c((L + 1) + e−(c5/8)L + 2) where c2 is the constant appearing in
Lemma A.5.

Now we prove the second inequality. For each t ≥ 0, we introduce a tiling pro-
cess Y

tiling
t as follows. We consider a partition of the cube [0,R]d with cubes

of edge size e−t . The amount of cubes in such a partition is of order (Ret )d.
For each point z ∈ [0,R]d, there exists a unique cube denoted C(z) in the par-
tition such that z ∈ C(z). Let us consider the center cz of such a cube. We define
Y

tiling
t (z) = Yt (cz). To sum up, the process Y

tiling
t is constant over each cube in the

partition and takes the value of the process Yt at the center of this cube. Because
of assumption (A.3), it is plain to check that there is a fixed constant D such that
for all R > 0, all x, x′ ∈ [0,R]d, all t ≥ 0

Kt

(
x − x′) − D ≤ E

[
Y

tiling
t (x)Y

tiling
t

(
x′)] ≤ Kt

(
x − x′) + D.(4.17)

With the help of this covariance inequality, we can use Kahane’s convexity in-
equality (see Kahane’s original paper [14] or [21], Theorem 2.1, for an english
statement) to the concave function x �→ 1 − e−x to get

E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt dx

)]

≥ E
[
1 − exp

(
−eγZ−γ 2D/2

∫
[0,R]d

eγ [Y tiling
t (x)−at−χ(x)]+dt dx

)]

for some centered Gaussian random variable Z with variance D independent of
everything.

Let us define the event

E(R, t,χ) = {∃x ∈ [0,R]d, Y
tiling
t (x) ≥ at + χ(x)

}
.

According to the definition (4.65) of hgood in [17], it is clear that {hgood ≥ 1} ⊂
E(R, t,χ). Moreover, with the Paley–Zygmund inequality page 32 in [17], there
exists c2 > 0 such that for any t ′ ≥ 2, there exists T > 0 such that for any R ∈
[1, ln t ′] and t ≥ T ,

P
(
E(R, t,χ)

) ≥ P(hgood ≥ 1) ≥ c2

∫
[0,R]d

χ(x)e−√
2dχ(x) dx(4.18)

for any function χ ∈ CR(t ′, κd ln t ′, ln t). On E(R, t,χ), let us choose any x0 be-
longing to {x ∈ [0,R]d, Y

tiling
t (x) ≥ at + χ(x)}. Then we observe that

E
[
1 − exp

(
−eγZ−γ 2D/2

∫
[0,R]d

eγ [Y tiling
t (x)−at−χ(x)]+dt dx

)]

≥ E
[(

1 − exp
(
−eγZ−γ 2D/2

∫
[0,R]d

eγ [Y tiling
t (x)−at−χ(x)]+dt dx

))
1E(R,t,χ)

]

≥ E
[(

1 − exp
(
−eγZ−γ 2D/2

∫
C(x0)

eγ [Y tiling
t (x)−at−χ(x)]+dt dx

))
1E(R,t,χ)

]
.
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Now we use the fact that Y
tiling
t (x) = Y

tiling
t (x0) on C(x0) and the relation Yt (x0)−

at − χ(x0) ≥ 0 to deduce

E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt dx

)]

≥ E
[(

1 − exp
(−eγZ−γ 2D/2))

1E(R,t,χ)

]
= E

[
1 − exp

(−eγZ−γ 2D/2)]
P

(
E(R, t,χ)

)
.

We complete the proof with (4.18).

5. Proof of Proposition 3.2. Our aim is to study for t, t ′ large and χ(·) ∈
CR(t ′, κd ln t ′, ln t),

E
[
exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt dx

)]
.(5.1)

According to Proposition 4.1, for A large enough, we can restrain our study to the
expectation of

�(A)(χ(·), t)
(5.2)

:= exp
(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt1{Yt (x)−at−χ(x)≥−A} dx

)
.

Throughout this section, keep in mind that the function �(A)(χ(·), t) is bounded
by 1. We fix R,A, ε > 0. We stick to the notation introduced in [17] page 33
relations (5.1), (5.2) and (5.3): we define

Mt,χ := sup
y∈[0,R]d

(
Yt (y) − χ(y)

)
,

(5.3)
Ot,χ := {

y ∈ [0,R]d, Yt (y) ≥ at + χ(y) − 1
}
,

Mt,χ (x, b) := sup
y∈B(x,eb−t )

(
Yt (y) − χ(y)

)
,

(5.4)
Ot,χ (x, b) := {

y ∈ B
(
x, eb−t ), Yt (y) ≥ at + χ(y) − 1

}
,

Rt := [
e−t/2,R − e−t/2]d

.(5.5)

Observe that on the set {Mt,χ−A < at }, we have 1 − �(A)(χ(·), t) = 0. More-
over, for any t > 0, because of the continuity of the function x �→ Yt (x) − χ(x),
the random variables |Ot,χ−A| and |Ot,χ−A(x, b)| (recall that |B| stands for

the Lebesgue measure of the set B ⊂ R
d) are strictly positive respectively on



GLASSY PHASE AND FREEZING 667

{Mt,χ−A ≥ at } and {Mt,χ−A(x, b) ≥ at }. Therefore, for any L ≥ 1,

E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt1{Yt (x)−at−χ(x)≥−A} dx

)]

= E
[
1 − φ(A)(χ(·), t)];Mt,χ−A ≥ at

]
(5.6)

= E
[∫

[0,R]d

[
1 − φ(A)(χ(·), t)]1{m∈Ot,χ−A}1{Mt,χ−A≥at }

|Ot,χ−A| dm

]

:= E(5.6).

Now we want to exclude the particles m ∈ Ot,χ−A such that their paths Y·(m) are
unlikely. We set

�α,A,L
t :=

{
(fs)s≥0, sup

s∈[0,t]
f (s) ≤ α,

sup
s∈[t/2,t]

f (s) ≤ at + α + L,ft ≥ at + α − A − 1
}

(5.7)

∀L,α, t > 0.

Observe that �α,0,L
t =:�α,L

t which is introduced in (1.15) in [17].

LEMMA 5.1. For any A,ε > 0 there exists L > 0 such that for any t ′, T > 0
large enough we have for any t ≥ T , χ ∈ CR(t ′, κd ln t ′, ln t),

P
(∃m ∈ Ot,χ−A ∩ [0,R]d, Y·(m) /∈�χ(m),A,L

t

) ≤ εI(χ),
(5.8)

P
(∃m ∈ [0,R]d/Rt

,m ∈ Ot,χ−A

) ≤ εI(χ).

With Proposition 4.4 [17] and the arguments used to bound (3) and obtain (5.11)
in [17], the inequalities of (5.8) are proved for A = 0, but it does not make any
difficulties to extend for any fixed A > 0. Thus, we do not detail the proof of
Lemma 5.1.

Recalling (5.6), from Lemma 5.1, we deduce that, for any A, there exist L > 0,
t0 > 0 such that for any t ′ ≥ t0 there exists T > 0 such that ∀t ≥ T ,χ(·) ∈
CR(t ′, κd ln t ′, ln t),

∣∣∣∣E
[∫

Rt

1{m∈Ot,χ−A,Y·(m)∈�χ(m),A,L
t }1{Mt,χ−A≥at }

|Ot,χ−A|
(5.9)

× [
1 − φ(A)(χ(·), t)]dm

]
− E(5.6)

∣∣∣∣ ≤ εI(χ).

Now the constant L is also fixed.



668 T. MADAULE, R. RHODES AND V. VARGAS

For any t > b ≥ 0, let us introduce:

�χ−A,t (b,m)
(5.10)

= {∃y ∈ [0,R]d, |y − m| ≥ eb−t , Yt (y) ≥ at + χ(y) − A − 1
}
.

On the complement of �χ−A,t (b,m), we have [just observe that everything hap-
pens inside the ball B(m, eb−t )]

1{Mt,χ−A≥at }
|Ot,χ−A| = 1{Mt,χ−A(m,b)≥at }

|Ot,χ−A(m,b)| .

Also, still on the complement of �χ−A,t (b,m), the function [1 − φ(A)(χ(·), t)] is
equal to

1 − exp
(
−

∫
B(m,eb−t )

eγ [Yt (x)−at−χ(x)]+dt1{Yt (x)−at−χ(x)≥−A} dx

)
(5.11)

:= 1 − φ(A,b)(χ(·), t,m)
.

Therefore, for any b ≥ 1,m ∈ Rt we can write

[
1 − φ(A)(χ(·), t)]1{Mt,χ−A≥at }

|Ot,χ−A|
= [

1 − φ(A)(χ(·), t)]1{Mt,χ−A≥at }
|Ot,χ−A| (1{�χ−A,t (b,m)c} + 1{�χ−A,t (b,m)})

= (
1 − φ(A,b)(χ(·), t,m))1{Mt,χ−A(m,b)≥at }

|Ot,χ−A(m,b)| 1{�χ−A,t (b,m)c}

+ [
1 − φ(A)(χ(·), t)]1{Mt,χ−A≥at }

|Ot,χ−A| 1{�χ−A,t (b,m)}

= (
1 − φ(A,b)(χ(·), t,m))1{Mt,χ−A(m,b)≥at }

|Ot,χ−A(m,b)|
− (

1 − φ(A,b)(χ(·), t,m))1{Mt,χ−A(m,b)≥at }
|Ot,χ−A(m,b)| 1{�χ−A,t (b,m)}

+ [
1 − φ(A)(χ(·), t)]1{Mt,χ−A≥at }

|Ot,χ−A| 1{�χ−A,t (b,m)}.

Following this decomposition, the first expectation in (5.9) is equal to the sum of
(we use the fact that {m ∈ Ot,χ−A} ⊂ {Y·(m) ∈�χ(m),A,L

t })

(1)A,L,b := E
[∫

Rt

[
1 − φ(A,b)(χ(·), t,m)]

(5.12)

×
1{Y·(m)∈�χ(m),A,L

t }1{Mt,χ−A(m,b)≥at }
|Ot,χ−A(m,b)| dm

]
,
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(2)A,L,b := E
[∫

Rt

[
1 − φ(A)(χ(·), t)]

(5.13)

× 1�χ−A,t (b,m)

1{Y·(m)∈�χ(m),A,L
t }1{Mt,χ−A≥at }
|Ot,χ−A| dm

]
,

(3)A,L,b := −E
[∫

Rt

[
1 − φ(A,b)(χ(·), t,m)]

(5.14)

× 1�χ−A,t (b,m)

1{Y·(m)∈�χ(m),A,L
t }1{Mt,χ−A(m,b)≥at }
|Ot,χ−A(m,b)| dm

]
.

LEMMA 5.2. For any A,L, ε > 0, there exists b0, t0 large enough such that
for any t ′ ≥ t0, b ≥ b0, ∃T > 0 such that for any t ≥ T , χ ∈ CR(t ′, κd ln t ′, ln t) we
have ∣∣(2)A,L,b

∣∣ + ∣∣(3)A,L,b

∣∣ ≤ εI(χ).(5.15)

We do not detail the proof of Lemma 5.2 but, recalling that |1 − φ(A,b)(χ(·),
t,m)| and |1 − φ(A)(χ(·), t)| are bounded by 1, we just remark that the amounts
(2)A,L,b and (3)A,L,b are very similar to (2)L,b and (3)L,b defined in (5.15) and
(5.16) of [17]. Then Lemma 5.2 is a minor adaptation of the proofs of Lemmas 5.1
and 5.2 in [17] (in [17] A = 0, whereas here A is a fixed positive constant).

Thus, combining Lemma 5.2 and (5.9), we deduce that there exist b and
t0 > 0, such that for any t ′ > t0 there exists T > 0 such that ∀t ≥ T ,χ(·) ∈
CR(t ′, κd ln t ′, ln t),∣∣E(5.6) − (1)A,L,b

∣∣ ≤ 2ε

∫
[0,R]d

χ(x)e−√
2dχ(x) dx.(5.16)

Therefore, we can restrain our study to (1)A,L,b (with A,L,b fixed).
The Markov property at time tb = t − b and the invariance by translation of
(Ys(x))s≥0,x∈Rd give

(1)A,L,b = E
[∫

Rt

1{Y·(m)∈�χ(m),A,L
t ,m∈Ot,χ−A}1{Mt,χ−A(m,b)≥at }

|Ot,χ−A(m,b)|

× [
1 − φ(A,b)(χ(·), t,m)]

dm

]
(5.17)

=
∫
Rt

E
[
1{sups∈[0,tb] Ys(m)≤χ(m),sups∈[t/2,tb] Ys(m)≤at+χ(m)+L}DA,L,b

m,t

]
dm,

where

D
A,L,b
m,t

:= E
[1{sups∈[0,b] Ytb,s (0)+z̄≤0,Ytb,b(0)+z̄≥−L−A−1,∃y∈B(0,eb−t ),Ytb,b(y)+z̄≥−L−A−g(y)}

|B(0, eb−t ) ∩ {y : Ytb,b(y) + z̄ ≥ −L − A − 1 − g(y)}|
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×
(

1 − exp
{
−

∫
B(0,eb−t )

eγ [Ytb,b(y)+z̄+g(y)+L]+dt

× 1{Ytb,b(y)+z̄≥−A−L−g(y)} dy

})]
,

with

g(y) = Ytb(m + y) − Ytb(m) − (
χ(m + y) − χ(m)

)
,

z̄ = Ytb(m) − at − χ(m) − L.

In the following, we will denote

∀m ∈ Rt , χm(·) := χ(m + ·) − χ(m).(5.18)

According to the scaling property(
Ytb,s(y)

)
s≤b,y∈B(0,eb−t )

(d)= (
Ys

(
yet−b))

s≤b,y∈B(0,eb−t ),

thus we can rewrite D
A,L,b
m,t as

edtbEz̄

[1{sups∈[0,b] Ys(0)≤0,Yb(0)≥−L−A−1}1{∃y∈B(0,1),Yb(y)≥−L−A−g(yeb−t )}
|B(0,1) ∩ {y : Yb(y) ≥ −L − A − 1 − g(yeb−t )}|

×
(

1 − exp
(
−

∫
B(0,1)

eγ [Yb(y)+g(yeb−t )+L]1{Yb(y)≥−A−L−g(yeb−t )} dy

))]
,

where we have used the convention: for any z ∈ R, (Ys(x))s≥0,x∈Rd under Pz has
the law (z + Ys(x))s≥0,x∈Rd under P. By applying Lemma A.1 to the process g(y)

and the Girsanov transformation to the process (Ys(m))s≤tb , we get

(1)A,L,b =
∫
Rt

E
[
e
√

2dYtb
(m)+dtb1{sups∈[0,tb] Ys(m)≤χ(m),sups∈[t/2,tb] Ys(m)≤at+χ(m)+L}

× e−√
2dYtb

(m)−dtbedtbD
A,L,b
m,t

]
dm

=
∫
Rt

e−√
2dχ(m)t3/2E−χ(m)

[
1{sups∈[0,tb] Bs≤0,sups∈[t/2,tb] Bs≤at+L}

× FA,L,b

(
Btb − at − L,G

χm

t,b

)]
dm,

where B a standard Brownian motion and, for g ∈ C(B(0,1),R), z ∈ R,

FA,L,b(z, g)

:= e−√
2d(z+L)

(5.19)

× Ez

[1{sups∈[0,b] Ys(0)≤0,Yb(0)≥−L−A−1}1{∃y∈B(0,1),Yb(y)≥−L−A−g(yeb)}
|B(0,1) ∩ {y : Yb(y) ≥ −L − A − 1 − g(yeb)}|

×
(

1 − exp
(
−

∫
B(0,1)

eγ [Yb(y)+g(yeb)+L]1{Yb(y)≥−A−L−g(yeb)} dy

))]
,
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and for any � ∈ CR(B(0, eb),R),

G�
t,b : B(

0, eb) � y
(5.20)

�→ −
∫ tb

0

(
1 − k

(
es−t y

))
dBs − ζt

(
ye−t ) + Z0

tb

(
ye−t ) − �

(
ye−t ).

For � = 0, we denote G0
t,b = Gt,b. In passing, we define for any σ ∈ [0, tb],

Gt,b,σ : B(
0, eb) � y

(5.21)

�→ −
∫ tb

tb−σ

(
1 − k

(
es−t y

))(
es−t y

)
dBs − ζt

(
ye−t ) + Z0

tb

(
ye−t )

and the processes ζ,Z are defined in Lemma A.1. Note that Z0
tb
(·) is a centered

Gaussian process, independent of B , which has the covariances as in [17], equa-
tion (2.6). Furthermore, by [17], Proposition 2.4, for any b > 0, the Gaussian pro-
cess B(0, eb) � y �→ Z0

t−b(ye−t ) − ζt−b(ye−t ), converges in law to B(0, eb) �
y �→ Z(ye−b) − ζ(ye−b) when t goes to infinity.

Finally, with our new notation, we have to study for any m ∈ Rt ,

E−χ(m)

(
1{sups∈[0,tb] Bs≤0,sups∈[t/2,tb] Bs≤at+L}FA,L,b

(
Btb − at − L,G

χm

t,b

))
.

Recalling Proposition 3.2, our goal is to prove that this quantity is equivalent to a
constant times t−3/2χ(m), when t goes to infinity. To do this, we need a renewal
theorem proved in [17].

DEFINITION 5.3. A continuous function F : R× C(B(0, eb),R) → R
+ is “b

regular” if there exists two functions h : R → R+ and F ∗ : C(B(0, eb)) → R
+

satisfying:

(i)

sup
x∈R

h(x) < +∞ and h(x) =
x→−∞O

(
ex)

.(5.22)

(ii) There exists c > 0 such that for any δ ∈ (0,1), g ∈ C(B(0, eb),R) with
w

(0,1)

g(·eb)
(δ) ≤ 1

4 ,

F ∗(g) ≤ cδ−10.(5.23)

(iii) For any z ∈ R, g ∈ C(B(0, eb),R), F(z, g) ≤ h(z)F ∗(g).
(iv) There exists c > 0 such that for any z ∈ R, g1, g2 ∈ C(B(0, eb),R) with

‖g1 − g2‖∞ ≤ 1
8 ,∣∣F(z, g1) − F(z, g2)

∣∣ ≤ c‖g1 − g2‖1/4∞ h(z)F ∗(g1).(5.24)

DEFINITION 5.4. For any M ≥ 0 and F a function b regular, we define

F (M)(x, g) := (
F(x,g) ∧ M

)
1{x≥−M}.(5.25)
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For any γ ∈ R, let Tγ := inf{s ≥ 0,Bs = γ } and let (Rs)s≥0 be a three-
dimensional Bessel process starting from 0.

THEOREM 5.5 ([17] Theorem 5.6). Let b > 0 and F : R× C(B(0, eb),R) →
R

+ be a function b regular. For any ε > 0, there exist M,σ, t ′, T > 0 large enough
such that for any t ≥ T , χ(·) ∈ CR(t ′, κd ln t ′, ln t), z ∈ [1, (ln t)30],∣∣∣∣

∫
Rt

t3/2e−√
2dχ(x)E−χ(x)

(
1{sups∈[0,tb] Bs≤0,sups∈[t/2,tb] Bs≤−z}

(5.26)

× F
(
Btb + z,G

χx

t,b

))
dx − CM,σ (F )I(χ)

∣∣∣∣ ≤ εI(χ),

with

CM,σ (F ) :=
√

2

π

∫ M

0

∫ u

0
E

(
F (M)

(
−u,y �→ Z

(
ye−b) − ζ

(
ye−b)

−
∫ T−γ ∧σ

0

(
1 − k

(
e−sye−b))

dBs(5.27)

−
∫ σ

T−γ ∧σ

(
1 − k

(
e−sye−b))

dRs−T−γ

))
dγ du.

The proof of the following lemma is postponed until Section 5.1.

LEMMA 5.6 (Control of FA,L,b). For any A,L,b > 0, the function FA,L,b

defined in (5.19) is b regular.

Now we are in position to complete the proof Proposition 3.2. Indeed by com-
bining Proposition 4.1, inequalities (5.9), (5.16), Lemma 5.6 and Theorem 5.5 we
deduce that: ∀ε > 0 there exist A,L,b,M,σ > 0 such that for t ′, T > 0 large
enough we have: for any t ≥ T ,χ(·) ∈ CR(t ′, κd ln t ′, ln t),∣∣∣∣E

[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt dx

)]

− CM,σ (FA,L,b)

∫
[0,R]d

χ(x)e−√
2dχ(x) dx

∣∣∣∣(5.28)

≤ ε

∫
[0,R]d

χ(x)e−√
2dχ(x) dx.

In addition, by Proposition 4.2, there exist c2 > 0 and t ′, T > 0 large enough
such that for any t ≥ T and ρ(·) ∈ CR(t ′, κd ln t ′, ln t),

E
[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt dx

)]
(5.29)

≤ c2

∫
[0,R]d

χ(x)e−√
2dχ(x) dx.
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For any n > 0, let (An,Ln, bn,Mn,σn) such that (5.28) is true with ε = 1
n

. Clearly
Cn := CMn,σn(FAn,Ln,bn) ∈ [0,2c2] for any n ∈ N. Let φ : N → N strictly increas-
ing such that Cφ(n) → C(γ ) ∈ [0,2c2] as n → ∞.

Now we fix ε > 0. Let N0 > 0 such that for any n ≥ N0, |Cφ(n) − C(γ )| ≤
ε. Then we choose N1 > N0 such that n ≥ N1 implies 1

φ(n)
≤ ε. Finally, there

exist [according to (5.28)] t ′(= t ′(N1)) and T (= T (N1)) > 0 such that for any
t ≥ T ,χ(·) ∈ CR(t ′, κd ln t ′, ln t),∣∣∣∣E

[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt dx

)]

− C(γ )

∫
[0,R]d

χ(x)e−√
2dχ(x) dx

∣∣∣∣
≤ ε

∫
[0,R]d

χ(x)e−√
2dχ(x) dx.

To complete the proof of Proposition 3.2, it remains to prove that C(γ ) > 0. It is
a consequence of Proposition 4.2. Indeed let t ′ > 0 large and χ ∈ CR(t ′, κd ln t ′,
+∞) such that for any t > T ,∣∣∣∣E

[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt dx

)]

− C(γ )

∫
[0,R]d

χ(x)e−√
2dχ(x) dx

∣∣∣∣
≤ c1

2

∫
[0,R]d

χ(x)e−√
2dχ(x) dx,

with c1 the constant defined in Proposition 4.2. From Proposition 4.2, we have

lim inf
t→∞ E

[
1 − exp

(
−

∫
[0,R]d

eγ [Yt (x)−at−χ(x)]+dt dx

)]

≥ c1

∫
[0,R]d

χ(x)e−√
2dχ(x) dx,

then it is plain to deduce C(γ ) ≥ c1
2 > 0, which completes the proof of Proposi-

tion 3.2.

5.1. Proof of Lemma 5.6. Recall the convention: for any z ∈ R,
(Ys(x))s≥0,x∈Rd under Pz has the law (z + Ys(x))s≥0,x∈Rd under P.

PROOFS OF LEMMA 5.6. Fix A,L,b > 1, recall (5.19) for the definition of
FA,L,b. We shall prove that FA,L,b is b regular with

h = hL,b(z) := e−√
2d(z+L)Pz+L+1

(
Yb(0) ≥ 0

)1/2
,(5.30)

F ∗ = F ∗
b (g) := sup

z∈R
Ez

[ 1{∃y∈B(0,1),Yb(y)≥−g(yeb)}
|B(0,1) ∩ {y,Yb(y) ≥ −g(yeb) − 1/2}|8

]1/4

.(5.31)
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Check (i) is an elementary computation whereas (iii) stems from the Cauchy–
Schwarz inequality. Let us start by showing that F ∗

b satisfies (5.23). Let g ∈
C(B(0, eb),R) such that w

(0,1)

g(·eb)
(δ) ≤ 1

4 . We define

� = ∣∣B(0,1) ∩ {
y,Yb(y) ≥ −g

(
yeb) − 1

2

}∣∣.
On the set {∃y ∈ B(0,1), Yb(y) ≥ −g(yeb)}, we introduce

r = sup
{
s; ∃xs with B(xs, s) ⊂ B(0,1),∃zs ∈ B(xs, s) with Yb(zs) ≥ g

(
zse

b)
,

∀y ∈ B(xs, s), Yb(y) ≥ −g
(
yeb) − 1

2

}
.

With S the volume of the unit ball, observe that

F ∗
b (g)4 = sup

x∈R
Ex

[1{∃y∈B(0,1),Yb(y)≥−g(yeb)}
�8

]

≤ S−8(
eb/δ

)8 +
∞∑

k=eb/δ

S−8(k + 1)8

× sup
x∈R

Ex[1{∃y∈B(0,1),Yb(y)≥−g(yeb)}1{S/(k+1)≤�≤S/k}].

Clearly, � ≤ S(1
k
)d implies r ≤ 1

k
and {r ≤ 1

k
< δ} implies{

sup
x,y∈B(0,1)

|x−y|≤1/k

∣∣Yb(x) − Yb(y)
∣∣ ≥ 1

2
− w

(0,1)

g(.eb)
(δ)

}
.

Thus by recalling that w
(0,1)

g(·eb)
(δ) ≤ 1

4 , one has

P
(

r ≤ 1

k
< δ

)
≤ P

(
sup

x,y∈B(0,1)

|x−y|≤1/k

∣∣Yb(x) − Yb(y)
∣∣ ≥ 1

2
− w

(0,1)

g(.eb)
(δ)

)

≤ P
(

sup
x,y∈B(0,1)

|x−y|≤1/k

∣∣Yb(x) − Yb(y)
∣∣ ≥ 1

4

)
.

From [17], equation (3.10) (with h = 1
k
,m = 2k,p = 2, t ′ = b and x = ce−bk), we

have

sup
z∈R

Pz

(
sup

x,y∈B(0,1)

|x−y|≤1/k

∣∣Yb(x) − Yb(y)
∣∣ ≥ 1

4

)
= P0

(
sup

x,y∈B(0,1)

|x−y|≤1/k

∣∣Yb(x) − Yb(y)
∣∣ ≥ 1/4

)

≤ c′e−1/c′′e−bk.

Finally, F ∗
b (g)4 ≤ S−8e8b/δ8 + ∑∞

k=1+eb/δ
S−8(k + 1)8ce−1/c′′e−bk ≤ c(b)δ−8,

which suffices to prove (5.23).
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Now it remains to prove (5.24). Let g1, g2 two continuous functions from
B(0, eb) → R such that ‖g1 − g2‖∞ = δ < 1

8 . Let us define (uniquely for this
proof) ∀g ∈ C(B(0, eb),R) and γ ∈ R:

M(g) := sup
y∈B(0,1)

(
Yb(y) + g

(
yeb))

,

�g(γ ) := ∣∣B(0,1) ∩ {
y,Yb(y) ≥ −g

(
yeb) + γ

}∣∣.
With the triangular inequality then twice the Cauchy–Schwarz inequality we ob-
tain ∣∣FA,L,b(z, g1) − FA,L,b(z, g2)

∣∣
≤ e−√

2d(z+L)Ez+L+1

[
1{Yb(0)≥0}

∣∣∣∣1{M(g1)≥1}
�g1(0)

− 1{M(g2)≥1}
�g2(0)

∣∣∣∣
]

(5.32)

+ hL,b(z)F
∗
b (g1)Ez+L+1

[(
�(g1, g2)

)8]
,

with

�(g1, g2) := e
− ∫

B(0,1) eγ [Yb(y)+g1(yeb)−1]1{Yb(y)+A≥1−g1(yeb)} dy

(5.33)

− e
− ∫

B(0,1) eγ [Yb(y)+g2(yeb)−1]1{Yb(y)+A≥1−g2(yeb)} dy
.

Let us treat the first term of (5.32). From [20], Theorem 3.1, as Var(Yb(y)) = b ≥ 1,
∀y ∈ B(0,1), we can affirm that there exists c > 0 such that for any δ ∈ (0,1),
g ∈ C(B(0, eb),R),

sup
z∈R

P
(
M(g) ∈ [z − δ, z + δ]) ≤ cδ.(5.34)

Thus, the first term in (5.32) is smaller than

≤ Ez+L+1

[
1{Yb(0)≥0,M(g1)∈[1−δ,1+δ]}

�g1(0)

]

+ Ez+L+1

[
1{Yb(0)≥0,M(g2)≥1}

�g1(−δ) − �g1(δ)

�g1(0)�g2(0)

]

:= (A) + (B).

By applying twice the Cauchy–Schwarz inequality to (A), we get that

(A) ≤ Pz+L+1
(
Yb(0) ≥ 0

)1/2 × Ez+L+1

[
1{M(g1)≥1−δ}

�g1(0)4

]1/4

× Pz+L+1
(
M(g1) ∈ [1 − δ,1 + δ])1/4

.
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Now by applying (5.34) to the last term we obtain

(A) ≤ cPz+L+1
(
Yb(0) ≥ 0

)1/2 × Ez+L+δ

[
1{M(g1)≥0}
�4

g1
(δ − 1)

]1/4

δ1/4

(5.35)
≤ c‖g1 − g2‖1/4∞ hL,b(z)F

∗
b (g1)

(
as δ − 1 ≤ −1

2

)
.

Similarly, observing that min(�g1(0),�g2(0)) ≥ �g1(
1
4), we deduce that

(B) =
∫
B(0,1)

Ez+L+1

[
1{Yb(0)≥0,M(g2)≥1}

�g1(0)�g2(0)
1{Yb(x)+g1(xeb)∈[−δ,δ]}

]
dx

≤ Pz+L+1
(
Yb(0) ≥ 0

)1/2Ez+L+1

[
1{M(g1)≥1−δ}
[�g1(1/4)]8

]1/4

×
∫
B(0,1)

Pz+L+1+g1(xeb)

(
Yb(x) ∈ [−δ, δ])1/4

dx

(5.36)
≤ cPz+L+1

(
Yb(0) ≥ 0

)1/2

× Ez+L+1+δ

[1{∃y∈B(0,1),Yb(y)≥−g1(yeb)+1}
[�g1(1/4 + δ)]8

]1/4

δ1/4

≤ c‖g1 − g2‖1/4∞ hL,b(z)F
∗
b (g1).

So we are done with the study of the first term of (5.32). Now we treat the second
term. By the triangular inequality, |�(g1, g2)| is smaller than (1) + (2) with

(1) :=
∣∣∣∣exp

(
−

∫
B(0,1)

eγ [Yb(y)+g1(yeb)−1]1{Yb(y)+A≥1−g1(yeb)} dy

)
(5.37)

− exp
(
−

∫
B(0,1)

eγ [Yb(y)+g2(yeb)−1]1{Yb(y)+A≥1−g1(yeb)} dy

)∣∣∣∣,
(2) :=

∣∣∣∣exp
(
−

∫
B(0,1)

eγ [Yb(y)+g2(yeb)−1]1{Yb(y)+A≥1−g1(yeb)} dy

)
(5.38)

− exp
(
−

∫
B(0,1)

eγ [Yb(y)+g2(yeb)−1]1{Yb(y)+A≥1−g2(yeb)} dy

)∣∣∣∣.
Recalling that ‖g1 −g2‖∞ = supx∈B(0,eb) |g1(x)−g2(x)| := δ, in (5.37) by forcing
the factorization by

exp(−U∗) := exp
(
−

∫
B(0,1)

eγ [Yb(y)+g1(yeb)−1]1{Yb(y)+A≥1−g1(yeb)} dy

)
,

we have

(1) ≤ e−U∗(
e(eγ δ−e−γ δ)U∗ − 1

) ≤ eγ δ − e−γ δ.(5.39)
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Similarly, by some elementary computations we get

(2) ≤
[
1 − exp

(
−

∫
B(0,1)

eγ [Yb(y)+g2(yeb)−1]

× 1{min(−g1(yeb),−g2(yeb))≥Yb(y)+A−1≤max(−g1(yeb),−g2(yeb))} dy

)]

≤
∫
B(0,1)

1{min(−g1(yeb),−g2(yeb))≤Yb(y)+A−1≤max(−g1(yeb),−g2(yeb))} dy

≤
∫
B(0,1)

1{min(−g1(yeb),−g2(yeb))≤Yb(y)+A−1≤min(−g1(yeb),−g2(yeb))+δ} dy

(for δ ≤ 1).

By the Jensen inequality and recalling that supy∈B(0,1) supz∈R P(Yb(y) ∈ [z, z +
δ]) ≤ δ√

b
, we deduce that the expectation of [(1) + (2)]8 is smaller than cδ. Com-

bining this inequality with (5.39) yields

sup
z∈R

Ez+L+1
[∣∣�(g1, g2)

∣∣8] ≤ c‖g1 − g2‖∞.(5.40)

Finally, by combining (5.35), 5.36) and (5.40), we deduce (5.24). �

6. Proofs for two-dimensional free fields.

6.1. Proof of Theorem 2.7. Before proceeding with the proof, let us make a
few observations. First, we stress that the kernel km satisfies:

B.1 km is nonnegative, of class C1 and k(0) = 1.
B.2 km is Lipschitz at 0, that is, |km(0) − km(x)| ≤ C|x| for all x ∈ R

2

B.3 km satisfies the integrability condition sup|e|=1
∫ ∞

1
km(ue)

u
du < +∞.

We stick to the notation of Section 2 so that we set for t ≥ 0 and x ∈ R
d

Gm,t (x) =
∫ et

1

km(xu)

u
du.(6.1)

In [10], Theorem 5, it is proved that we have the following.

THEOREM 6.1. We set M
γ
t (dx) = eγXt (x)−(γ 2/2)E[Xt (x)2] dx. The family

(
√

tM
√

2d
t )t weakly converges in probability as t → ∞ toward a nontrivial limit,

which turns out to be the same, up to a multiplicative constant, as the limit of the
derivative martingale. More precisely, we have

√
tM

√
2d

t (dx) →
√

2

π
M ′(dx) in probability as t → ∞.
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Now we begin the proof and we first treat the case when the cut-off family of
the MFF is (Xt)t . We will see thereafter that the general case [i.e., any other cut-
off uniformly close to (Gm,t )t ] is a straightforward consequence. The problem to
face is that the covariance kernel of the family (Xt)t does not possess a compact
support so that Theorem 2.2 does not apply as it is. We split the proof into two
levels: a main level along which we explain the main steps of the proof relying on
a few lemmas and a second level in which we prove these auxiliary lemmas.

Main level: Let us consider any nonnegative smooth function ρ : R2 → R+
such that:

∫
R2 ρ2(y) dy = 1, ρ is isotropic and has compact support. We set

ϕ(x) =
∫
R2

ρ(y + x)ρ(y) dy.

Under the above assumptions on ρ, it is plain to see that ϕ is nonnegative, smooth,
positive definite, with compact support, ϕ(0) = 1 and isotropic. For each ε > 0, let
us define the function

∀x ∈ R
2, ϕε(x) = ϕ(εx).

It is straightforward to check that the family (ϕε)ε uniformly converges toward 1
over the compact subsets of R2 as ε → 0. For ε > 0, we further define

kε(x) = km(x)ϕε(x), Kε
t (x) =

∫ et

1

kε(ux)

u
du.

Observe that kε satisfies Assumption (A) in Section 2.1 (it is positive definite be-
cause it is the Fourier transform of the convolution of the spectrum of km and that
of ϕε). For each ε > 0, we follow Section 2 to introduce all the objects related to
the kernel kε and add an extra superscript ε in the notation to indicate the relation
to kε [i.e., we introduce (Xε

t (x))t,x , M
′,ε
t , M

γ,ε
t , M ′,ε].

Now we claim the following.

LEMMA 6.2. For each δ > 0, there exists ε0 > 0 such that for all 0 < ε < ε0
and all x ∈R

2 and all t ≥ 0:

Kε
t (x) ≤ Gm,t (x) ≤ Kε

t (x) + δ.(6.2)

This lemma will help us to see the family (Xε
t )t as a rather good approximation

of the family (Xt)t as ε → 0. Because kε satisfies Assumption (A), Theorem 2.2
holds for the family (Xε

t )t for any γ > 2. The conclusion of this theorem involves
some constant Cε(γ ), which may depend on ε. Fortunately, we claim the follow-
ing.

LEMMA 6.3. For each fixed γ > 2, the family (Cε(γ ))ε converges as ε → 0
toward some constant denoted by C(γ ).



GLASSY PHASE AND FREEZING 679

Then we use Lemmas 6.2 and 6.3 to prove the following.

LEMMA 6.4. For any γ > 2 and for any continuous nonnegative function f

with compact support, we have

lim
t→∞ E

[
exp

(−t (3γ )/4et(γ /
√

2−√
2)2

M
γ
t (f )

)]

= lim
ε→0

E
[
exp

(
−C(γ )

∫
R2

f (x)2/γ M ′,ε(dx)

)]
.

It thus remains to compute the limit in the above right-hand side.

LEMMA 6.5. For any γ > 2 and for any continuous negative function f with
compact support, we have

lim
ε→0

E
[
exp

(
−C(γ )

∫
R2

f (x)2/γ M ′,ε(dx)

)]

= E
[
exp

(
−C(γ )

∫
R2

f (x)2/γ M ′(dx)

)]
.

We are now done with the proof of Theorem 2.7. It just remains to prove the
four above lemmas.

PROOFS OF AUXILIARY LEMMAS. Most of the forthcoming proofs will heav-
ily rely on Kahane’s convexity inequalities (KCI for short) so that the reader is
referred to Kahane’s original paper [14] (or [21, 22] for an English statement).

PROOF OF LEMMA 6.2. Let us fix δ > 0. In what follows and when con-
sidering an isotropic function f , we will identify, with a slight abuse of nota-
tion, the function f : R2 → R with the function f : R+ → R through the relation
f (y) = f (|y|) for y ∈ R

2. Observe that

∣∣Kε
t (x) − Gm,t (x)

∣∣ =
∣∣∣∣
∫ et

1

km(u|x|) − kε(u|x|)
u

du

∣∣∣∣
≤

∫ ∞
1

|km(u|x|) − kε(u|x|)|
u

du

≤
∫ ∞

0

|km(v) − kε(v)|
v

dv.

We prove now that we can get the above quantities arbitrarily close to 0. We fix
R > 1 such that

∫ ∞
R

|km(v)|
v

dv ≤ δ/4. Since ϕε(y) ≤ ϕε(0) = 1 (by positive defi-
niteness), we also have∫ ∞

R

|kε(v)|
v

dv ≤
∫ ∞
R

|km(v)|
v

dv ≤ δ/4.
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On [1,R], we use the fact that the family (ϕε)ε uniformly converges toward 1 over
compact sets to deduce that for some ε0 and all ε < ε0, we have∫ R

1

|km(v) − kε(v)|
v

dv ≤ δ/4.

It remains to treat the interval [0,1]. Since ϕ is smooth, it is locally Lipschitz at
0, meaning that we can find a constant C such that |1 − ϕ(x)| ≤ C|x| for all x

belonging to some ball centered at 0, say B(0,1). Furthermore, |km(v)| ≤ km(0) =
1. We deduce ∫ 1

0

|km(v) − kε(v)|
v

dv =
∫ 1

0

|km(v)||1 − ϕ(εv)|
v

dv

≤ Cε.

For ε small enough, this quantity can be made less than δ/4. �

PROOF OF LEMMA 6.5. Let us fix δ > 0. Because of the convexity of the
function x �→ e−x and the covariance inequality of Lemma 6.2 for ε small enough,
we can apply KCI to get for all θ > 0 and some standard Gaussian random variable
N independent of everything

E
[
exp

(
−θ

√
t

∫
R2

f (x)2/γ M
2,ε
t (dx)

)]

≤ E
[
exp

(
−θ

√
t

∫
R2

f (x)2/γ M2
t (dx)

)]
,

E
[
exp

(
−θ

√
t

∫
R2

f (x)2/γ M2
t (dx)

)]

≤ E
[
exp

(
−e

√
δN−δ/2θ

√
t

∫
R2

f (x)2/γ M
2,ε
t (dx)

)]
.

By taking the limit as t → ∞ and by using Theorem 6.1, we obtain for all θ ≥ 0

E
[
exp

(−θM ′,ε(f 2/γ ))] ≤ E
[
exp

(−θM ′(f 2/γ ))]
≤ E

[
exp

(−θe
√

δN−δ/2M ′,ε(f 2/γ ))]
.

It is then straightforward to deduce that

lim
ε→0

E
[
exp

(−θM ′,ε(f 2/γ ))] = E
[
exp

(−θM ′(f 2/γ ))]
. �

PROOF OF LEMMAS 6.3 AND 6.4. First, recall that the family (t(3γ )/4 ×
et(γ /

√
2−√

2)2
M

γ
t (f ))t is tight and every possible converging limit (in law) is non-

trivial [11], Section 4.3, provided that f is nontrivial.
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Then, for any ε > 0, we have from Theorem 2.2

lim
t→∞ E

[
exp

(−t (3γ )/4et(γ /
√

2−√
2)2

M
γ,ε
t (f )

)]

= E
[
exp

(
−Cε(γ )

∫
R2

f (x)2/γ M ′,ε(dx)

)]
.

Furthermore, for each δ > 0 and ε small enough, we have at our disposal the in-
equality Kε

t (x) ≤ Gm,t (x) ≤ Kε
t (x) + δ and a convex function x �→ e−x . So, de-

noting by N a standard Gaussian random variable, we can apply KCI to get for all
δ > 0, ε large enough and all θ ≥ 0

E
[
exp

(−θt3γ /4et(γ /
√

2−√
2)2

M
γ,ε
t (f )

)]
(6.3)

≤ E
[
exp

(−θt(3γ )/4et(γ /
√

2−√
2)2

M
γ
t (f )

)]
,

E
[
exp

(−θt3γ /4et(γ /
√

2−√
2)2

M
γ
t (f )

)]
(6.4)

≤ E
[
exp

(−θe
√

δN−δ/2t3γ /4et(γ /
√

2−√
2)2

M
γ,ε
t (f )

)]
.

Consider a possible limit Z of some subsequence of the family (t3γ /4 ×
et(γ /

√
2−√

2)2
M

γ
t (f ))t . By taking the limit as t → ∞ along the proper subse-

quence in (6.3) + (6.4), we get for all θ ≥ 0

E
[
exp

(
−θCε(γ )

∫
R2

f (x)2/γ M ′,ε(dx)

)]
≤ E

[
exp(−θZ)

]
(6.5)

and for η > 0

E
[
exp(−θZ)

] ≤ E
[
exp

(
−θe

√
δN−δ/2Cε(γ )

∫
R2

f (x)2/γ M ′,ε(dx)

)]

≤ E
[
exp

(
−θ(1 − η)Cε(γ )

∫
R2

f (x)2/γ M ′,ε(dx)

)]
(6.6)

+ P
(
e
√

δN−δ/2 ≤ 1 − η
)
.

By taking the lim supε→0, then lim infε→0 and finally limδ→0, we deduce that for
all θ ≥ 0 and η > 0

lim sup
ε→0

E
[
exp

(
−θCε(γ )

∫
R2

f (x)2/γ M ′,ε(dx)

)]
≤ E

[
exp(−θZ)

]
,(6.7)

lim inf
ε→0

E
[
exp

(
−θCε(γ )

∫
R2

f (x)2/γ M ′,ε(dx)

)]
(6.8)

≥ E
[
exp

(−θ(1 − η)−1Z
)]

.

Now we can take the limit as η → 0 and get

lim
ε→0

E
[
exp

(
−θCε(γ )

∫
R2

f (x)2/γ M ′,ε(dx)

)]
= E

[
exp(−θZ)

]
.(6.9)
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Therefore, the family (Cε(γ )
∫
R2 f (x)2/γ M ′,ε(dx))ε converges in law toward Z.

As a by-product, this shows that the law of Z does not depend on the chosen sub-
sequence along which the family (t3γ /4et(γ /

√
2−√

2)2
M

γ
t (f ))t converges in law.

Thus, the whole family converges in law toward a nontrivial random variable Z.
Furthermore, Lemma 6.5 shows that the family (

∫
R2 f (x)2/γ M ′,ε(dx))ε converges

in law as ε → 0 toward
∫
R2 f (x)2/γ M ′(dx) which is almost surely strictly positive

because f is not trivial. This comes from the fact that M ′ has full support [11]. It is
then straightforward to deduce that the family (Cε(γ ))ε converges as ε → 0. �

General case: Now, we consider a general cut-off family (Xn)n of the MFF
uniformly close to (Gm,t )t . By assumption, this family satisfies Lemma 6.2 with
Kn instead of Kε

t and Gm,tn instead of Gm,t . We can then control the kernel Kn

in terms of Gm,tn . Furthermore, we now that the freezing theorem holds for the
family (Gm,tn)n with some fixed constant C(γ ): this was the difficult part that we
have handled above. Now we can use the same strategy of using KCI to transfer
the freezing theorem to the family (Xn)n. Details are quite the same as those we
have just developed and are thus left to the reader. �

6.2. Proof of Theorem 2.8. In what follows, (Xt)t is the family defined
by (2.11) and

M
γ
t (dx) = eγXt−(γ 2/2)t dx,

M ′(dx) = lim
t→∞

(
2E

[
Xt(x)2] − Xt(x)

)
e2Xt (x)−2E[Xt(x)2] dx.

For t0 > 0, we will also consider

M ′
t0,∞(dx) = lim

t→∞
(
2E

[
(Xt − Xt0)(x)2] − Xt(x) + Xt0(x)

)
× e2(Xt−Xt0 )(x)−2E[(Xt−Xt0 )(x)2] dx.

For each t0 > 0, we consider the MFF like fields [constructed in the same way
as in Section 2.3 and assumed to be independent of the family (Xt)t , e.g., by
considering a white noise W independent of that involved in the construction of
(Xt)t ]

XMFF
t0,t

(x) = √
π

∫
R2×[e−2t ,e−2t0 [

p

(
s

2
, x, y

)
W(dy, ds)

with covariance kernel

Gt0,t (x, y) =
∫ e−2t0

e−2t
p(s, x, y) ds.

We further introduce the corresponding measures for γ > 2

M
γ,MFF
t0,t

(dx) = e
γXMFF

t0,t (x)−(γ 2/2)E[XMFF
t0,t (x)2]

dx
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and the derivative multiplicative chaos

M
′,MFF
t0,∞ (dx) = lim

t→∞
(
2t − 2t0 − XMFF

t0,t
(x)

)
e

2XMFF
t0,t (x)−2E[(XMFF

t0,t (x))2]
dx.

The strategy that we followed to prove Theorem 2.7 for the MFF works for these
MFF like fields as well

lim
t→∞ E

[
exp

(−t3γ /4e(t−t0)(γ /
√

2−√
2)2

M
γ,MFF
t0,t

(f )
)]

(6.10)

= E
[
exp

(
−Ct0(γ )

∫
R2

f (x)2/γ M
′,MFF
t0,∞ (dx)

)]
,

for some constant Ct0(γ ), which depends on t0. Indeed, observe that the covari-
ance kernel of XMFF

t0,t
is the same as XMFF

t up to a multiplicative change of spatial
coordinates so that this variation in the covariance structure should affect Ct0(γ ).
Actually we can even explicitly calculate this dependence.

LEMMA 6.6. Let us set C(γ ) := Ct0=0(γ ). The constant Ct0(γ ) satisfies

Ct0(γ )e−2t0+(4/γ )t0 = C(γ ) ∀t0 ≥ 0.(6.11)

PROOF. It suffices to apply (6.10) at two different scales t0 and t0 + s.
Then in the relation corresponding to t0 + s, we replace the function f by

es(γ /
√

2−√
2)2

e
γXMFF

t0,t0+s (x)−(γ 2/2)E[XMFF
t0,t0+s (x)2]

f (x), which remains a compactly
supported continuous function. It is random but independent of the measure
M

γ,MFF
t0+s,t (dx). By identification of both limits, we get the relation Ct0+s(γ ) ×

e−2s+(4/γ )s = Ct0(γ ). �

Equipped with this relation, we will now try to apply the freezing theorem to
a process that we call switch process. Basically the switch process is a Gaussian
interpolation between the MFF and the GFF. We will plug this switch process
in (6.10) in order to transfer by interpolation the property (6.10) to the GFF. For
t0 ≤ t , the switch process is defined by

St0,t (x) = Xt0(x) + XMFF
t0,t

(x)

(keep in mind that this is a sum of two independent processes) and we also consider
the associated measure

M
γ,switch
t0,t

(dx) = eγSt0,t (x)−(γ 2/2)t dx.

To evaluate to which extent the switch process is a good interpolation between
the MFF and the GFF, we need to evaluate how the covariance kernel of the switch
process evolves with t0. To this purpose, we set

∀x, y ∈ D, GD,t0,t (x, y) = GD,t (x, y) − GD,t0(x, y).
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Consider a domain D′ ⊂ D such that dist(D′,Dc) > 0. We have

lim
t,t0→∞(t0≤t)

sup
x,y∈D′

∣∣GD,t0,t (x, y) − Gt0,t (x, y)
∣∣ = 0.(6.12)

This comes from the following lemma, the proof of which is postponed to the end
of this subsection.

LEMMA 6.7. For all subset D′ of D such that dist(D′,Dc) > 0, the following
convergence holds uniformly on D′ × D′:

lim
t→0

∣∣pD(t, ·, ·) − p(t, ·, ·)∣∣ = 0,

where p(t, x, y) stands for the transition densities of the whole planar Brownian
motion (i.e., not killed on the boundary of D).

Let us now tackle the interpolation procedure. By independence of Xt0 and
XMFF

t0,t
, we can apply (6.10) to the function

f(6.10)(x) = f (x)et0(γ /
√

2−√
2)2

eγXt0 (x)−(γ 2/2)t0

and get after a straightforward calculation involving (6.11)

lim
t→∞ E

[
exp

(
−t (3γ )/4et(γ /

√
2−√

2)2
∫
R2

f (x)M
γ,switch
t0,t

(dx)

)]
(6.13)

= E
[
exp

(
−C(γ )

∫
R2

f (x)2/γ e2Xt0 (x)−2t0M
′,MFF
t0,∞ (dx)

)]
.

Let ε > 0 be fixed. From (6.12), we can choose T such that for all T ≤ t0 ≤ t ,

sup
x,y∈D′

∣∣GD,t0,t (x, y) − Gt0,t (x, y)
∣∣ ≤ ε.(6.14)

Let us set gt0,t (x) = e(γ 2/2)(E[(Xt (x)−Xt0 (x))2]−(t−t0)). From (6.14), we have

e−γ 2/2ε ≤ gt0,t (x) ≤ e(γ 2/2)ε for all T ≤ t0 ≤ t . We will use this relation in the
forthcoming lines. By Kahane’s convexity inequalities and (6.14), we have for all
T ≤ t0 ≤ t

E
[
exp

(
−t3γ /4et(γ /

√
2−√

2)2
∫
R2

f (x)M
γ
t (dx)

)]

≤ E
[
exp

(
−t3γ /4et(γ /

√
2−√

2)2
eε1/2Z−ε/2

∫
R2

f (x)gt0,t (x)M
γ,switch
t0,t

(dx)

)]

≤ E
[
exp

(
−t3γ /4et(γ /

√
2−√

2)2
eε1/2Z−ε/2e−(γ 2/2)ε

∫
R2

f (x)M
γ,switch
t0,t

(dx)

)]

for some standard Gaussian random variable Z independent of everything. We
just explain some subtlety: observe that the definition of M

γ
t does not involve a
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renormalization by the variance E[Xt(x)2] but t instead. To apply KCI, one needs
to compare measure involving a renormalization by the variance. So the function
gt0,t (x) appearing in the first inequality just results from the switching of variance
required to apply KCI.

By taking the lim sup as t → ∞ in the above relation and by using (6.13), we
deduce

lim sup
t→∞

E
[
exp

(
−t (3γ )/4et(γ /

√
2−√

2)2
∫
R2

f (x)M
γ
t (dx)

)]

≤ lim sup
t→∞

E
[
exp

(
−t (3γ )/4et(γ /

√
2−√

2)2
eε1/2Z−ε/2e−γ 2/2ε

×
∫
R2

f (x)M
γ,switch
t0,t

(dx)

)]

= E
[
exp

(
−C(γ )e2ε1/2Z/γ−ε/γ−γ ε

∫
R2

f (x)2/γ e2Xt0 (x)−2t0M
′,MFF
t0,∞ (dx)

)]
.

Now we want to apply once again KCI to the derivative martingale to replace
the M

′,MFF
t0,∞ part by M ′

t0,∞. Recall that this is possible because we know that the
Seneta–Heyde norming [10] holds for both of these measures. The control of co-
variance kernels is provided by (6.12) (notice that the uniform control w.r.t. t is
necessary to apply KCI for t = ∞). We get

lim sup
t→∞

E
[
exp

(
−t (3γ )/4et(γ /

√
2−√

2)2
∫
R2

f (x)M
γ
t (dx)

)]

≤ E
[
exp

(
−C(γ )e2ε1/2Z/γ−ε/γ−γ ε+ε1/2Z′−ε/2(6.15)

×
∫
R2

f (x)2/γ e2Xt0 (x)−2t0M ′
t0,∞(dx)

)]
,

for some other standard Gaussian random variable Z′ independent of everything.
By using the lognormal �-scale invariance stated in [10], Theorem 4, we have the
relation

e2Xt0 (x)−2E[Xt0 ]M ′
t0,∞(dx) = M ′(dx),

hence we see that (6.15) can be reformulated as

lim sup
t→∞

E
[
exp

(
−t (3γ )/4et(γ /

√
2−√

2)2
∫
R2

f (x)M
γ
t (dx)

)]

≤ E
[
exp

(
−C(γ )e2ε1/2Z/γ+ε1/2Z′−ε(1γ+γ+1/2)(6.16)

×
∫
R2

f (x)2/γ e2E[Xt0 ]−2t0M ′(dx)

)]
.
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By using the uniform convergence on D′ of (E[Xt(x)2]− t)t as t → ∞ toward the
conformal radius lnC(x,D) (see [15], Lemma 6.1), we deduce

lim sup
t→∞

E
[
exp

(
−t (3γ )/4et(γ /

√
2−√

2)2
∫
R2

f (x)M
γ
t (dx)

)]

≤ E
[
exp

(
−C(γ )e2ε1/2Z/γ+ε1/2Z′−ε(1γ+γ+1/2)

×
∫
R2

f (x)2/γ C(x,D)2M ′(dx)

)]
.

Since ε can be chosen arbitrarily small, the upper bound for the limit in Theo-
rem 2.8 when the cut off family (Xt)t has covariance GD,t is proved. The lower
bound follows from a similar argument. Then we can use the same arguments as in
the case of the MFF to extend the convergence to cut-off families uniformly close
to (GD,t )t .

PROOF OF LEMMA 6.7. Recall the standard formula ([19], Section 3.3)

�(s, x, y) := p(s, x, y) − pD(s, x, y)

= Ex

[
1{T x

D≤s}
1

2π(s − T x
D)

e
−|Bx

T x
D

−y|2/(2(s−T x
D))

]
,

where Bx
t is a standard Brownian motion starting from x and T x

D = inf{t ≥ 0,Bx
t /∈

D}. If we denote δ = dist(D′,Dc) > 0, we deduce

�(s, x, y) ≤ Ex

[
1{T x

D≤s}
1

2π(s − T x
D)

e−δ2/(2(s−T x
D))

]
.

Now observe that the mapping u �→ ue−u is decreasing for u ≥ 1. Therefore, for
s ≤ δ2/2, we have

�(s, x, y) ≤ 1

2πs
e−δ2/(2s),

which obviously completes the proof of the lemma. �

APPENDIX: TOOLBOX OF TECHNICAL RESULTS

In this appendix, we gather some results in [10, 11, 17] in order to have a paper
self-contained, at least as much as possible.

We first recall a lemma that can be found in [11] (see Lemma 16, page 17).

LEMMA A.1. For any fixed u �= x, the process (Yt (u))t≥0 can be decomposed
as

Yt (u) = P x
t (u) + Zx

t (u) − ζ x
t (u) ∀t > 0,

where, for t > 0:
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– ζ x
t (u) := √

2dt − √
2d

∫ t
0 k(es(x − u)) ds,

– P x
t (u) := ∫ t

0 k(es(x − u)) dYs(x) is measurable with respect to the σ -algebra
generated by (Yt (x))t≥0,

– (Zx
t (u))t≥0 is a centered Gaussian process independent of (Yt (x))t≥0 with co-

variance kernel:

E
(
Zx

t (u)Zx
t ′(v)

) :=
∫ t∧t ′

0

[
k
(
es(u − v)

) − k
(
es(x − u)

)
k
(
es(x − v)

)]
ds

(A.1)
∀x,u, v ∈ R

d.

The following lemma can be found in [17] (we refer to the Lemmas 3.1, 3.2
and 3.3).

LEMMA A.2. For any θ ∈R
∗+ and ε > 0

lim
t ′,R→∞,(et ′+1)/(R+1)∈N∗

P
(∣∣γ −1 ln θ

∣∣M√
2d

t ′
([0,1]d) ≥ εθ−√

2d/γ )
(A.2)

+ P
(
M ′

t ′
(
e−t ′BZR,t ′

) ≥ εθ−√
2d/γ ) ≤ ε,

lim
t→∞ P

(
w

(1,1/3)
Yt (·)

(
1

t
e−t

)
≥ et/3

)
(A.3)

= lim
t→∞ P

(
sup

x,y∈[
0,et

]d
,|x−y|≤1/t

|Yt (x/et ) − Yt (y/et )|
|x − y|1/3 ≥ 1

)
= 0,

lim
t→∞ P

(∀x ∈ [0,1]d,−10
√

2dt ≤ Yt (x) ≤ −κd ln t
) = 1.(A.4)

In this section, we will use the following two lemmas from [17] (see Lemma 4.2
in [17] and (4.26) in [17]).

LEMMA A.3. We can find a constant c3 > 0 such that for any t ′ > 2 and R ≥ 1

such that et ′+1
R+1 ∈ N

∗

P
(

sup
x∈[0,R]d

sup
s∈[ln t ′,∞)

Ys(x) ≥ χ(x)
)

(A.5)
≤ c3

∫
[0,R]d

((
ln t ′

)3/8 + χ(x)3/4)
e−√

2dχ(x) dx

for any χ(·) ∈ CR(t ′,10,+∞).

LEMMA A.4. We can find two constants c4, c5 > 0 such that for any t ′ ≥ 2,
there exists T (t ′) > 0 such that for any L > 0,R ≥ 1, χ(·) ∈ CR(t ′,10,+∞), t ≥ t ′
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and a ≤ t
2 ,

P
(
∃x ∈ [0,R]d, sup

s∈[ln t ′,t]
Ys(x) ≤ χ(x),

sup
s∈[t/2,t−a]

Ys(x) ≤ at + χ(x) + L − 1,

(A.6)
sup

[t−a,t]
Ys(x) ∈ at + χ(x) + L + [−1,0]

)

≤ c4(1 + a)e−c5L
∫
[0,R]d

(√
ln t ′ + χ(x)

)
e−√

2dχ(x) dx.

Here, we reproduce [17], Proposition 4.1.

LEMMA A.5. There exist two constants c1, c2 > 0 such that for any t ′ ≥ 2,
there exists T > 0 such that for any R ∈ [1, ln t ′] and t ≥ T

c1

∫
[0,R]d

χ(x)e−√
2dχ(x) dx ≥ P

(∃x ∈ [0,R]d, Yt (x) ≥ at + χ(x)
)

(A.7)
≥ c2

∫
[0,R]d

χ(x)e−√
2dχ(x) dx

for any function χ ∈ CR(t ′, κd ln t ′, ln t).

Here, we reproduce the inequalities (B.3) and (B.6) in [17], Lemma B.2 [strictly
speaking (A.8) and (A.9) are very slight extensions of (B.3) and (B.6)].

LEMMA A.6. (i) For any a, t ′, z, j,p > 1 and t
3 ≥ a + t ′ + 1,

t3/2P−z

(
sup

s∈[ln t ′,t]
Bs ≤ 0, sup

s∈[t/2,t−a]
Bs − at ∈ [j − 1, j ],

sup
s∈[t−a,t]

Bs − at ≤ j,Bt − at ∈ [−p − 1,−p]
)

(A.8)

≤ c12Ez(Bln t ′1{Bln t ′≥0})(1 + j + p)a−1/2.

(ii) For any t ′, z,L,p ≥ 1, t ≥ t ′ + 1,

t3/2P−z

(
sup

s∈[ln t ′,t]
Bs ≤ 0, sup

s∈[t/2,t]
Bs − at ≤ L,Bt − at ∈ [−p − 1,−p]

)
(A.9)

≤ c12Ez(Bln t ′1{Bln t ′≥0})(1 + L + p).
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