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STRICT LOCAL MARTINGALES AND BUBBLES
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Humboldt-Universität zu Berlin and Universität Zürich

This paper deals with asset price bubbles modeled by strict local mar-
tingales. With any strict local martingale, one can associate a new measure,
which is studied in detail in the first part of the paper. In the second part, we
determine the “default term” apparent in risk-neutral option prices if the un-
derlying stock exhibits a bubble modeled by a strict local martingale. Results
for certain path dependent options and last passage time formulas are given.

1. Introduction. The goal of this paper is to determine the influence of asset
price bubbles on the pricing of derivatives. Asset price bubbles have been stud-
ied extensively in the economic literature looking for explanations of why they
arise, but have only recently gained attention in mathematical finance by Cox and
Hobson [5], Pal and Protter [30], and Jarrow et al. [20–22]. When an asset price
bubble exists, the market price of the asset is higher than its fundamental value.
From a mathematical point of view, this is the case when the stock price process
is modeled by a positive strict local martingale under the equivalent local martin-
gale measure. Here, by a strict local martingale, we understand a local martingale,
which is not a true martingale. Strict local martingales were first studied in the
context of financial mathematics by Delbaen and Schachermayer [6]. Afterward,
Elworthy et al. [10, 11] studied some of their properties including their tail be-
haviour. More recently, the interest in them grew again (cf., e.g., Mijatovic and
Urusov [28]) because of their importance in the modelling of financial bubbles.

Obviously, there are options for which well-known results regarding their val-
uation in an arbitrage-free market hold true without modification, regardless of
whether the underlying is a strict local martingale or a true martingale under the
risk-neutral measure. One example is the put option with strike K ≥ 0. If the un-
derlying is modeled by a continuous local martingale X with X0 = 1, it is shown
by Madan et al. [25] that the risk-neutral value of the put option can be expressed
in terms of the last passage time of the local martingale X at level K via

E(K −XT )+ = E
(
(K −X∞)+1{ρX

K≤T }
)

with ρX
K = sup{t ≥ 0|Xt =K}.
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This formula does not require X to be a true martingale, but is also valid for
strict local martingales. However, if we go from puts to calls, the strict locality
of X is relevant. The general idea is to reduce the call case to the put case by
a change of measure with Radon–Nikodym density process given by (Xt)t≥0 as
done in Madan et al. [25] in the case where X is a true martingale. However, if X

is a strict local martingale, this does not define a measure any more. Instead, we
first have to localize the strict local martingale and can thus only define measures
on stopped sub-σ -algebras. Under certain conditions on the probability space, we
can then extend the so-defined consistent family of measures to a measure defined
on some larger σ -field. Under the new measure, the reciprocal of X turns into
a true martingale. The conditions we impose are taken from Föllmer [15], who re-
quires the filtration to be a standard system (cf. Definition 2.5). This way we get an
extension of Theorem 4 in Delbaen and Schachermayer [6] to general probability
spaces and càdlàg local martingales. We study the behavior of X and other local
martingales under the new measure.

Using these technical results, we obtain decomposition formulas for some
classes of European path-dependent options under the NFLVR condition. These
formulas are extensions of Proposition 2 in Pal and Protter [30], which deals with
nonpath-dependent options. We decompose the option value into a difference of
two positive terms, of which the second one shows the influence of the stock price
bubble.

Furthermore, we express the risk-neutral price of an exchange option in the
presence of asset price bubbles as an expectation involving the last passage time
at the strike level under the new measure. This result is similar to the formula for
call options derived by Madan, Roynette and Yor [24] or Yen and Yor [37] for
the case of reciprocal Bessel processes. We can further generalize their formula to
the case where the candidate density process for the risk-neutral measure is only
a strict local martingale. Then the NFLVR condition is not fulfilled and risk-neutral
valuation fails, so that we have to work under the real-world measure. Since in this
case the price of a zero coupon bond is decreasing in maturity even with an interest
rate of zero, some people refer to this as a bond price bubble as opposed to the
stock price bubbles discussed above; see, for example, Hulley [17]. In this general
setup, we obtain expressions for the option value of European and American call
options in terms of the last passage time and the explosion time of the deflated price
process, which make some anomalies of the prices of call options in the presence
of bubbles evident: European calls are not increasing in maturity any longer and
the American call option premium is not equal to zero any more; see, for example,
Cox and Hobson [5].

This paper is organized as follows: In the next section, we study strictly positive
(strict) local martingales in more detail. On the one hand, we demonstrate ways of
how one can obtain strict local martingales, while on the other hand we construct
the above mentioned measure associated with a càdlàg strictly positive local mar-
tingale on a general filtered probability space with a standard system as filtration.
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We give some examples of this construction in Section 3. In Section 4, we then
apply our results to the study of asset price bubbles. After formally defining the
financial market model, we obtain decomposition formulas for certain classes of
European path-dependent options, which show the influence of stock price bubbles
on the value of the options under the NFLVR condition. In Section 5, we further
study the relationship between the original and the new measure constructed in
Section 2.2, which we apply in Section 6 to obtain last passage time formulas for
the European and American exchange option in the presence of asset price bub-
bles. Moreover, we show how this result can be applied to the real-world pricing of
European and American call options. The last section contains some results about
multivariate strict local martingales.

2. Càdlàg strictly positive strict local martingales. When dealing with con-
tinuous strictly positive strict local martingales, a very useful tool is the result
from [6]; see also Proposition 6 in [30], which states that every such process de-
fined as the coordinate process on the canonical space of trajectories can be ob-
tained as the reciprocal of a “Doob h-transform”2 with h(x) = x of a continuous
nonnegative true martingale. Conversely, any such transformation of a continuous
nonnegative martingale, which hits zero with positive probability, yields a strict
local martingale.

The goal of this section is to extend these results to càdlàg processes and general
probability spaces satisfying some extra conditions, which were introduced in [31]
and used in a similar context in [15]. While the construction of strict local martin-
gales from true martingales follows from an application of the Lenglart–Girsanov
theorem, the converse theorem relies as in [6] on the construction of the Föllmer
exit measure of a strictly positive local martingale as done in [15] and [27].

2.1. How to obtain strictly positive strict local martingales. Examples of con-
tinuous strict local martingales have been known for a long time; the canonical
example being the reciprocal of a Bessel process of dimension 3. This example
can be generalized to a broader class of transient diffusions, which taken in natural
scale turn out to be strict local martingales; see, for example, [10]. A natural way to
construct strictly positive continuous strict local martingales is given in Theorem 1
of [6]. There it is shown that every uniformly integrable nonnegative martingale
with positive probability to hit zero gives rise to a change of measure such that its
reciprocal is a strict local martingale under the new measure. For the noncontinu-
ous case and for not necessarily uniformly integrable martingales, we now give a
simple extension of the just mentioned theorem from [6].

2Note that we abuse the word “Doob h-transform” in this context slightly, since Doob h-transforms
are normally only defined in the theory of Markov processes.
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THEOREM 2.1. Let (�,F, (Ft )t≥0,Q) be the natural augmentation of some
filtered probability space with F = ∨

t≥0 Ft , that is, the filtration (Ft ) is right-
continuous and F0 contains all Ft -negligible sets for all t ≥ 0. Let Y be a nonneg-
ative Q-martingale starting from Y0 = 1. Set τ = inf{t ≥ 0 :Yt = 0} and assume
that Q(τ <∞) > 0. Furthermore, suppose that Y does not jump to zero Q-almost
surely. For all t ≥ 0, define a probability measure Pt on Ft via Pt = Yt .Q|Ft ; in
particular, Pt � Q|Ft . Assume that either Y is uniformly integrable under Q or
that the nonaugmented probability space satisfies condition (P).3 Then we can
extend the consistent family (Pt )t≥0 to a measure P on the augmented space
(�,F, (Ft )t≥0). Under the measure P the process Y does never reach zero and
its reciprocal 1/Y is a strict local P-martingale.

PROOF. Since the underlying probability space satisfies the natural assump-
tions, we may choose a càdlàg version of Y ; see, for example, Propositions
3.1 and 3.3 in [29]. Especially, this means that τ is a well-defined stopping time.
If Y is a uniformly integrable martingale, the measure P is defined on F by
dP = Y∞ dQ. In the other case, when the probability space fulfills condition (P ),
the existence of the measure P follows from Corollary 4.9 in [29]. Moreover, note
that

P(τ <∞)= lim
t→∞P(τ ≤ t)= lim

t→∞EQ(1{τ≤t}Yt )= 0,

therefore, the process 1/Y is a P-almost surely well-defined semi-martingale. The
result now follows from Corollary 3.10 in Chapter III of [19] applied to M ′

t :=
1
Yt

1{τ>t}, once we can show that (M ′
t∧τn

Yt∧τn) with τn = inf{t ≥ 0 :Yt ≤ 1
n
} is a

local Q-martingale for every n ∈N. But,

M ′
t∧τn

Yt∧τn = 1{τ>t∧τn} = 1 Q-a.s.,

because Y does not jump to zero Q-almost surely. This trivially proves the martin-
gale property. Finally, the strictness of the local martingale 1/Y under P follows
from

EP
(

1

Yt

)
= Q(τ > t) < 1

for t large enough, since by assumption Q(τ <∞) > 0. �

Starting with a Brownian motion stopped at zero under Q, it is easy to show
that the associated strict local martingale under P is the reciprocal of the three-
dimensional Bessel process, which is the canonical example of a strict local mar-
tingale (cf. Example 1 in [30]). Without stating the general result, the above con-
struction is also applied in [4] to construct examples of strict local martingales

3Condition (P ) first appeared in [31] and was later used in [29]. We recall its definition in the
Appendix.
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with jumps related to Dunkl Markov processes on the one hand (cf. Proposition 3
in [4]) and semi-stable Markov processes on the other hand (cf. Proposition 5
in [4]). Apart from the previous, there do not seem to be any well-known examples
of strict local martingales with jumps. Note, however, that one can construct an ex-
ample by taking any continuous strict local martingale and multiplying it with the
stochastic exponential of an independent compound Poisson process or any other
independent and strictly positive jump martingale.

In the following example, we construct a “nontrivial” positive strict local mar-
tingale with jumps by a shrinkage of filtration.

EXAMPLE 2.2. Consider the well-known reciprocal three-dimensional Bessel
process Y as a function of a three-dimensional standard Brownian motion B =
(B1,B2,B3) starting from B0 = (1,0,0), that is,

Y = 1√
(B1)2 + (B2)2 + (B3)2

.

We define the filtrations (Ft )t≥0 and (Gt )t≥0 through Ft = σ(B1
s ,B2

s ,B3
s ; s ≤ t)

and Gt = σ(B1
s ,B2

s ; s ≤ t), as well as the filtration (Ht )t≥0 through

Ht =F
nt�/n ∨ Gt = σ

(
B1

s ,B2
s , s ≤ t;B3

u, u≤ 
nt�
n

)

for some n ∈N. It is shown in Theorem 15 of [16] that not only Y itself is a strict
local (Ft )t≥0-martingale, but that also the optional projection of Y onto (Gt )t≥0
is a continuous local (Gt )t≥0-martingale. Since Gt ⊂Ht ⊂ Ft for t ≥ 0, it follows
by Corollary 2 of [16] that then the optional projection of Y onto (Ht )t≥0, de-
noted by ◦Y , is also a local martingale. However, since its expectation process is
decreasing, ◦Y must be a strict local martingale that jumps at t ∈ N

n
. Indeed, since

B3 is a Brownian motion independent of B1 and B2, B3
t given Ht is normally

distributed with mean B3
nt�/n and variance t − 
nt�
n

. Therefore, ◦Y is given by the

explicit formula ◦Yt = u(B1
t ,B2

t ,B3
nt�/n, t), where

u(x, y, a, t) =
∫
R

(
x2 + y2 + z2)−1/2

×
√

1

2π(t − 
nt�/n)
exp

(
− 1

2(t − 
nt�/n)
(z− a)2

)
dz.

REMARK 2.3. In the recent preprint [34], the method of filtration shrinkage
is applied in greater generality to construct more sophisticated examples of strict
local martingales with jumps.

EXAMPLE 2.4. As a further example, any nonnegative nonuniformly inte-
grable (Ft )t≥0-martingale Z with Z0 = 1 allows to construct a strictly positive
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strict local martingale Y relative to a new filtration (F̃t )t≥0 through a deterministic
change of time: simply set

Yt =

⎧⎪⎪⎨
⎪⎪⎩

1

2
(1 +Zt/(1−t)), 0 ≤ t < 1,

1

2

(
1 + lim

t→∞Zt

)
, 1 ≤ t

and define F̃t =Ft/(1−t) for t < 1 and F̃t =F∞ for t ≥ 1. Since Z is not uniformly
integrable, we have EY1 < Y0 = Z0 = 1 almost surely. Note, however, that Y is
a true martingale on the interval [0,1). Instead of setting Y constant for t ≥ 1 one
can also define Y to behave like any other strictly positive local martingale starting
from Y1 := 1

2(1 + limt→∞Zt) on [1,∞).

2.2. From strictly positive strict local martingales to true martingales. In the
following, let (�,F, (F̃t )t≥0,P) be a filtered probability space. Furthermore, we
denote by (Ft )t≥0 the right-continuous augmentation of (F̃t )t≥0, that is, Ft :=
F̃t+ = ⋂

s>t F̃s for all t ≥ 0. Note, however, that the filtration is not completed
with the negligible sets of F .

DEFINITION 2.5 (cf. [15]). Let T be a partially ordered nonvoid index set and
let (F̃t )t∈T be a filtration on �. Then (F̃t )t∈T is called a standard system if:

• each measurable space (�, F̃t ) is a standard Borel space, that is, F̃t is σ -
isomorphic to the σ -field of Borel sets on some complete separable metric
space;

• for any increasing sequence (ti)i∈N ⊂ T and for any A1 ⊃A2 ⊃ · · · ⊃Ai ⊃ · · · ,
where Ai is an atom of F̃ti , we have

⋂
i Ai �=∅.

As noted in [29], the filtration F̃t = σ(Xs, s ≤ t), where Xt(ω) = ω(t) is the
coordinate process on the space C(R+,R+) of nonexplosive nonnegative con-
tinuous functions, is not a standard system. However, it will be seen below that
when dealing with strict local martingales it is natural to work on the space of all
R+ =R+ ∪ {∞}-valued processes that are continuous up to some time α ∈ [0,∞]
and constant afterward. As noted in example (6.3) in [15], the filtration generated
by the coordinate process on this space is indeed a standard system. More gener-
ally, we have the following lemma.

LEMMA 2.6. Let � = D′(R+,R
n

+) be the space of functions from R+ into
R

n

+ with componentwise right-continuous paths (ωi(t))t≥0, i = 1, . . . , n, that have
left limits on (0, α(ω)) for some α(ω) ∈ [0,∞] and remain constant on [α(ω),∞)

at the value limt↑α(ω) ωi(t) if this limit exists and at ∞ otherwise. We denote by
(Xt)t≥0 the coordinate process, that is, Xt(ω1, . . . ,ωn)= (ω1(t), . . . ,ωn(t)), and

by (F̃t )t≥0 the canonical filtration generated by the coordinate process, that is,
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F̃t = σ(Xs; s ≤ t). Furthermore, set F = ∨
t≥0 F̃t . Then, (F̃t )t≥0 is a standard

system on the space (�,F, (F̃t )t≥0). The same is true, if we replace D′(R+,R
n

+)

by its subspace C′(R+,R
n

+) of functions which are componentwise continuous on
some (0, α(ω)) and remain constant on [α(ω),∞) at the value limt↑α(ω) ωi(t) if
this limit exists and at ∞ otherwise.

PROOF. We prove the claim for �=D′(R+,R
n

+). The case �= C′(R+,R
n

+)

is done in a similar way. As in [9], we define a bijective mapping i from �

to some subspace A ⊂ (R
n

+)Q (where here Q denotes the set of all rational
numbers), via ω �→ (Xr(ω))r∈Q. It is clear that i is bijective and we have
F = i−1(B(A)). Furthermore, a sequence A1 ⊃ A2 ⊃ · · · ⊃ Ai ⊃ · · · of atoms
of Fti = σ(Xs; s ≤ ti) defines a component-wise càdlàg function on the interval
[0, lim ti] ∩ [0, α(ω)), which is constant on [0, lim ti] ∩ [α(ω),∞), for every in-
creasing sequence (ti)i∈N ⊂ R+. This function can easily be extended to an ele-
ment of D′(R+,R

n

+). �

Recall that for any (Ft )t≥0-stopping time τ the sigma-algebra Fτ− is defined as

Fτ− = σ
(
F̃0,

{{τ > t} ∩ 	 :	 ∈Ft , t > 0
})

.

LEMMA 2.7 (cf. [15], Remark 6.1). Let (F̃t )t≥0 be a standard system on �.
Then for any increasing sequence (τn)n∈N of (Ft )-stopping times the family
(Fτn−)n∈N is also a standard system.

NOTATION. When working on the subspace (�,Fτ−) of (�,F), where τ is
some (Ft )-stopping time, we must restrict the filtration to (Ft∧τ−)t≥0, where with
a slight abuse of notation we set Ft∧τ− := Ft ∩ Fτ−. In the following, we may
also write (Ft )0≤t<τ for the filtration on (�,Fτ−,P).

Working with standard systems will allow us to derive for every strictly positive
strict local P-martingale the existence of a measure Q on (�,Fτ−, (Ft )0≤t<τ ),
such that the reciprocal of the strict local P-martingale is a true Q-martingale.
In Section 4, we will use this result to reduce calculations involving strict local
martingales to the much easier case of true martingales.

From Theorem 4 in [6] and Proposition 6 in [30], we know that every continuous
local martingale understood as the canonical process on C(R+,R+) gives rise
to a new measure under which its reciprocal turns into a true martingale. In the
context of arbitrage theory, similar results have recently been derived and applied
by [14] and [36] for continuous processes in a Markovian setting. Theorem 2.12
below is an extension of these results to more general probability spaces and càdlàg
processes. Its proof relies on the construction of the Föllmer measure (cf. [15] and
[27]); nevertheless, we will give a detailed proof, since it is essential for the rest of
the paper.
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PROPOSITION 2.8. Let (�,F, (F̃t )t≥0,P) be a filtered probability space and
assume that (F̃t )t≥0 is a standard system. Let X be a càdlàg local martingale
on the space (�,F, (Ft )t≥0,P) with values in (0,∞) and X0 = 1 P-almost
surely. We define τX

n := inf{t ≥ 0 :Xt > n} ∧ n and τX = limn→∞ τX
n . Then

there exists a unique probability measure Q on (�,FτX−, (Ft∧τX−)t≥0), such that
dP
dQ |Ft∩FτX− = 1

Xt
1{t<τX} for all t ≥ 0. Moreover, 1/X is a local Q-martingale on

the interval [0, τX) which does not jump to zero Q-almost surely.

PROOF. First, note that τX
n is an (Ft )t≥0-stopping time and the process

(Xt∧τX
n
)t≥0 is a uniformly integrable {(Ft )t≥0,P}-martingale for all n ∈ N. In-

deed, if (σm) is any localizing sequence for X such that EPXσm = 1 for all m ∈N,
then

XτX
n ∧σm

≤ n∨XτX
n

and EP(n∨XτX
n
)≤ n+EPXτX

n
≤ n+ 1

by the super-martingale property of X. By the dominated convergence theorem,
we thus conclude that EPXτX

n
= 1, and thus (τX

n ) is a localizing sequence as well.

Furthermore, P(τX = ∞) = 1, since a positive càdlàg local martingale does
not explode almost surely. We define on (�,FτX

n
) the probability measure Q̃n via

Q̃n =XτX
n
·P|F

τX
n

for all n ∈N. The family (Q̃n)n∈N constitutes a consistent family

of probability measures on (FτX
n
)n≥1: If A ∈FτX

n
, then

Q̃n+k(A)= EP(XτX
n+k

1A)= EP(XτX
n
1A)= Q̃n(A),

that is, Q̃n+k|F
τX
n
= Q̃n for all n, k ∈ N. This induces a sequence of consistently

defined measures (Qn)n∈N on the sequence (FτX
n −)n∈N, which is a standard sys-

tem by Lemma 2.7. Note that FτX− = ∨
n≥1 FτX

n −, since (τX
n )n≥1 is increasing.

We can thus apply Theorem 3.2 together with Theorem 4.1 in Chapter V of [31]
(cf. also Theorem 6.2 in [15]), which yield the existence of a unique measure Q
on (�,FτX−, (Ft∧τX−)t≥0) such that Q|F

τX
n − = Qn = Q̃n|F

τX
n − . Moreover, since

{τX
n < τX

m } ∈FτX
m−,

Q
(
τX
n < τX)
= lim

m→∞Q
(
τX
n < τX

m

) = lim
m→∞ Q̃m

(
τX
n < τX

m

) = lim
m→∞EP(1{τX

n <τX
m }XτX

m
)

= lim
m→∞EP(1{τX

n <τX
m }XτX

n
)= EP(1{τX

n <τX}XτX
n
)= EP(XτX

n
)= 1,

that is, 1/X does not jump to zero under Q. Therefore, if 
n ∈FτX
n

, then

Q(
n) = Q
(

n ∩ {

τX > τX
n

}) = lim
m→∞Q

(

n ∩ {

τX
m > τX

n

})
= lim

m→∞EP(XτX
m
1
n1{τX

m >τX
n })= lim

m→∞EP(XτX
n
1
n1{τX

m >τX
n })

= EP(XτX
n
1
n)= Q̃n(
n).
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Therefore, Q|F
τX
n
= Q̃n for all n ∈N.

Now let S be an (Ft )t≥0-stopping time. Note that {S < τX
n } ∈ FS and {S <

τX
n } ∈FτX

n
. Thus,

Q
(
S < τX

n

) = Q̃n

(
S < τX

n

) = EP(1{S<τX
n }XτX

n
)= EP(

1{S<τX
n }EP(XτX

n
|FS)

)
= EP(1{S<τX

n }XS).

Since P(τX
n < τX = ∞) = 1, taking the limit as n → ∞ in the above equation

yields

Q
(
S < τX) = EP(1{S<∞}XS).(1)

Applied to the stopping time SA := S1A +∞1Ac , where A ∈FS , this gives

Q
(
S < τX,A

) = EP(1A∩{S<∞}XS).

Especially, if S is finite P-almost surely, then Q(S < τX,A)= EP(XS1A) for A ∈
FS . If A ∈Ft ∩FτX−, then

P(A) = lim
n→∞P

(
A∩ {

t < τX
n

}) = lim
n→∞EQ

(
1A1{t<τX

n }
1

XτX
n

)

= lim
n→∞EQ

(
1A1{t<τX

n }
1

Xt

)
= EQ

(
1A1{t<τX}

1

Xt

)
.

Therefore, dP
dQ |Ft∩FτX− = 1

Xt
1{t<τX} for all t ≥ 0.

Finally, note that because (X
τX
n

t )t≥0 is a strictly positive uniformly integrable
P-martingale for all n ∈N, P|F

τX
n
∼ Q|F

τX
n

and

dP|F
τX
n
= 1

XτX
n

dQ|F
τX
n

⇔ dQ

dP

∣∣∣∣
F

t∧τX
n

=Xt∧τX
n

∀t ≥ 0.

Thus,

EQ
(

1

Xt∧τX
n

∣∣∣Fs

)
= EP

(
1

Xt∧τX
n

· Xt∧τX
n

Xs∧τX
n

∣∣∣Fs

)
= 1

Xs∧τX
n

for s ≤ t , that is, 1
X

is a local Q-martingale on the interval
⋃

n∈N[0, τX
n ] = [0, τX).

�

COROLLARY 2.9. Under the assumptions of Proposition 2.8, X is a strict
local P-martingale, if and only if Q(τX <∞) > 0.

PROOF. It follows directly from equation (1) that Q(t < τX) = EPXt , which
is smaller than 1 for some t , iff X is a strict local martingale under P. �
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REMARK 2.10. Corollary 2.9 makes clear why we cannot work with the nat-
ural augmentation of (F̃t )t≥0. Indeed, we have An := {τX ≤ n} ∈ Fn ∩ FτX−
and P(An) = 0 for all n ∈ N, while Q(An) > 0 for some n if X is a strict local
P-martingale. However, it is in general rather inconvenient to work without any
augmentation, especially if one works with an uncountable number of stochastic
processes. For this reason, a new kind of augmentation—called the (τX

n )-natural
augmentation—is introduced in [23], which is suitable for the change of measure
from P to Q undertaken here. Since for the financial applications in the second
part of this paper the setup introduced above is already sufficient, we do not bother
about this augmentation here and refer the interested reader to [23] for more tech-
nical details.

In the following, we extend the measure Q in an arbitrary way from FτX− to
F∞ = ∨

t≥0 F̃t . For notational convenience, we assume that F =F∞. In fact, it is
always possible to extend a probability measure from FτX− to F : since (�, F̃t )

is a standard Borel space for every t ≥ 0 and (�,FτX
n −) is a standard Borel space

for all n ∈ N by Lemma 2.7, it follows from Theorem 4.1 in [31] that (�,F)

and (�,FτX−) are also standard Borel spaces. Especially, they are countably gen-
erated which allows us to apply Theorem 3.1 of [12] that guarantees an exten-
sion of Q from FτX− to F . Moreover, it does not matter for the results how we
extend it, because all events that happen with positive probability under P take
place before time τX under Q almost surely. However, if Y is any process on
(�,F, (Ft )t≥0,P), then Yt is only defined on {t < τX} under Q. Especially, if Y

is a P-semi-martingale, then Y τX
n is a Q-semi-martingale for each n ∈ N as fol-

lows from Girsanov’s theorem, since Q|F
τX
n
∼ P|F

τX
n

. Therefore, Y is a Q-semi-

martingale on the stochastic interval
⋃

n∈N[0, τX
n ] or a “semi-martingale up to time

τX” in the terminology of [18]. We note that in general it may not be possible to
extend Y to the whole positive real line under Q in such a way that Y remains
a semi-martingale. Indeed, according to Proposition 5.8 of [18] such an extension
is possible if and only if YτX− exists in R+ Q-almost surely. We define the pro-
cess Ỹ as

Ỹt =
⎧⎨
⎩

Yt , t < τX,

lim inf
s→τX,s<τX,s∈Q

Ys, τX ≤ t <∞.(2)

Note that Ỹt = Yt on {t < τX}. The above definition specifies an extension of the
process Y , which is a priori only defined up to time τX , to the whole positive real
line. In the following, we will work with this extension.

LEMMA 2.11. Under the assumptions of Proposition 2.8, we have 1
X̃t

=
1
Xt

1{t<τX}. Furthermore, the process ( 1
X̃t

)t≥0 is a true Q-martingale for any ex-

tension of Q from FτX− to F .
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PROOF. First, note that Q-almost surely

lim sup
n→∞

1

Xt∧τX
n

= lim sup
n→∞

(
1

Xt

1{t<τX
n } +

1

XτX
n

1{t≥τX
n }

)

≤ 1

Xt

1{t<τX} + lim sup
n→∞

1

n
1{t≥τX

n } =
1

Xt

1{t<τX}

and

lim inf
n→∞

1

Xt∧τX
n

= lim inf
n→∞

(
1

Xt

1{t<τX
n } +

1

XτX
n

1{t≥τX
n }

)

≥ lim inf
n→∞

1

Xt

1{t<τX
n } =

1

Xt

1{t<τX}.

Thus, 1
X̃t

= 1
Xt

1{t<τX}. Furthermore,

0 ≤ 1

XτX−
1{τX<∞} = lim

k→∞
1

XτX−
1{τX<k} = lim

k→∞ lim
n→∞

1

XτX
n

1{τX<k}

≤ lim
k→∞ lim

n→∞
1

n
1{τX<k} = 0

implies that XτX− =∞ on {τX < ∞} Q-almost surely. From the proof of Propo-
sition 2.8, we know that 1

XτX
n

is a true Q-martingale for all n ∈N. By the definition

of τX
n , we have for any integer n≥ t

Xt∧τX
n
= X̃t∧τX

n
= X̃

t∧inf{s≥0 : X̃s>n} ≥ X̃t ∧ 1 ⇒ 1

Xt∧τX
n

≤ 1

X̃t ∧ 1
= 1 ∨ 1

X̃t

.

Because

EQ
(

1

X̃t

)
= EQ

(
lim inf
n→∞

1

Xt∧τX
n

)
≤ lim inf

n→∞ EQ
(

1

Xt∧τX
n

)
= 1,

the dominated convergence theorem implies that for all 0 ≤ s ≤ t

EQ
(

1

X̃t

∣∣∣Fs

)
= EQ

(
lim

n→∞
1

Xt∧τX
n

∣∣∣Fs

)
= lim

n→∞EQ
(

1

Xt∧τX
n

∣∣∣Fs

)

= lim
n→∞

1

Xs∧τX
n

= 1

X̃s

.
�

To simplify notation, we identity in the following the process X with X̃. We
summarize our results so far in the following theorem.

THEOREM 2.12. Let (�,F, (F̃t )t≥0,P) be a filtered probability space and
assume that (F̃t )t≥0 is a standard system. Let X be a càdlàg local martingale on
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(�,F, (Ft )t≥0,P) with values in (0,∞) and X0 = 1 P-almost surely. We define
τX
n := inf{t ≥ 0 :Xt > n}∧n and τX = limn→∞ τX

n . Then there exists a probability
measure Q on (�,F∞) such that 1/X is a Q-martingale, which does not jump to
zero Q-almost surely, and such that Q(A, τX > t) = EP(Xt1A) for all t ≥ 0 and
A ∈Ft . In particular, P|Ft � Q|Ft for all t ≥ 0.

Note that in the case where X is a strict local P-martingale Theorem 2.12 is
a precise converse to Theorem 2.1, if one identifies X of Theorem 2.12 with 1/Y

of Theorem 2.1.

3. Examples. In this section, we shed new light on some known examples of
strict local martingales by applying the theory from the last section for illustration.

3.1. Continuous local martingales. For the following examples, we work on
the path space C′(R+,R+) with W denoting the coordinate process. Here, (Ft )t≥0

is the right-continuous augmentation of the canonical filtration generated by the
coordinate process and P is Wiener measure.

3.1.1. Exponential local martingales. Suppose that X has dynamics

dXt =Xtb(Yt ) dWt, X0 = 1,

where Y is assumed to be a (possibly explosive) diffusion with

dYt = μ(Yt ) dt + σ(Yt ) dWt, Y0 = y ∈R.

Here, b(·),μ(·) and σ(·) are chosen such that both SDEs allow for strong solutions
and guarantee X to be strictly positive. Exponential local martingales of this type
are further studied in [28]. Under Q the dynamics of 1

X
up to time τX are

d

(
1

Xt

)
=−b(Yt )

Xt

dWQ
t

for a Q-Brownian motion WQ defined up to time τX , and the Q-dynamics of Yt up
to time τX are

dYt = [
μ(Yt )+ σ(Yt )b(Yt )

]
dt + σ(Yt ) dWQ

t .

Notably, the criterion whether X is a strict local or a true P-martingale from [28],
Theorem 2.1, is deterministic and only involves the functions b,σ and μ via the
scale function of the original diffusion Y under P and an auxiliary diffusion Ỹ ,
whose dynamics are identical with the Q-dynamics of Y stated above.
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3.1.2. Diffusions in natural scale. We now take X to be a local P-martingale
of the form

dXt = σ(Xt) dWt, X0 = 1,

assuming that σ(x) is locally bounded and bounded away from zero for x > 0 and
σ(0)= 0. Using the results from [8], we know that X is strictly positive, whenever∫ 1

0

x

σ 2(x)
dx =∞,

which we shall assume in the following. Furthermore, X is a strict local martingale,
if and only if ∫ ∞

1

x

σ 2(x)
dx <∞.

We know that 1
X

is a Q-martingale, where dP
dQ |Ft = 1

Xt
, with decomposition

d

(
1

Xt

)
=−σ(Xt)

X2
t

dWQ
t = σ

(
1

Xt

)
dWQ

t

for a Q-Brownian motion WQ defined up to time τX and σ(y) := −y2 ·σ( 1
y
). Note

that ∫ ∞
1

y

σ 2(y)
dy =

∫ 1

0

x

σ 2(x)
dx =∞,

which confirms that 1
X

is a true Q-martingale. We see that, if X is a strict local
martingale under P, then∫ 1

0

y

σ 2(y)
dy =

∫ ∞
1

x

σ 2(x)
dx <∞,

that is, 1
X

hits zero in finite time Q-almost surely.

3.2. Jump example. 4 Let � = D′(R+,R) with (ξt )t≥0 denoting the coordi-
nate process and (Ft )t≥0 being the right-continuous augmentation of the canoni-
cal filtration generated by the coordinate process. Assume that under P, (ξt )t≥0 is
a one-dimensional Lévy process with ξ0 = 0, EP exp(bξt ) = exp(tρ(b)) < ∞ for
all t ≥ 0 and characteristic exponent

�(λ)= iaλ+ 1

2
σ 2λ2 +

∫
R

(
1 − eiλx + iλx1{|x|<1}

)
π(dx),

4This example is taken from [4]. However, we corrected a small mistake concerning the time-
scaling.
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where a ∈ R, σ 2 ≥ 0 and π is a positive measure on R \ {0} such that
∫
(1 ∧

|x|2)π(dx) <∞. Define

Xt = Yb
t exp

(
−ρ(b)

∫ t

0

ds

Ys

)
,

where (Yt )t≥0 is a semi-stable Markov process, that is, (1
c
Y

(x)
ct )t≥0

(d)= (Y
(xc−1)
t )t≥0

for all c > 0, implicitly defined via

exp(ξt )= Y∫ t
0 exp(ξs) ds .

Following [4], (Xt)t≥0 is a positive strict local martingale if a and b satisfy

−a +
∫
|x|>1

xπ(dx) ≥ 0,

−a + bσ 2 −
∫
|x|<1

x
(
1 − ebx)

π(dx)+
∫
|x|>1

xebxπ(dx) < 0.

Furthermore, under the new measure Q the process

1

Xt

= Y−b
t exp

(
ρ(b)

∫ t

0

ds

Ys

)

is a true martingale, where now (ξt )t≥0 has characteristic exponent �̃ with

�̃(u)=�(u− ib)−�(−ib).

4. Application to financial bubbles I: Decomposition formulas. In this sec-
tion, we apply our results to option pricing in the presence of strict local mar-
tingales. For this, we assume that the following standing assumption (S) holds
throughout the entire section:

(S) X is assumed to be a càdlàg strictly positive local martingale on (�,F,

(Ft )t≥0,P), whose filtration is the right-continuous augmentation of a standard
system and F = ∨

t≥0 Ft . We assume that X0 = 1 and set τX
n = inf{t ≥ 0|Xt >

n} ∧ n for all n ∈ N and τX = limn→∞ τX
n . Furthermore, we denote by Q any

extension to (�,F) of the measure associated with X, defined in Theorem 2.12.

We consider a financial market model which satisfies the NFLVR property as
defined in [7]. We denote by P an equivalent local martingale measure (ELMM).
Assuming that the interest rate equals zero, we interpret X as the (discounted)
stock price process, which is a local martingale under P. In this context, the ques-
tion of whether X is a strict local or a true P-martingale determines whether there
exists a stock price bubble. If X is a strict local P-martingale, the fundamental
value of the asset (given by the conditional expectation) deviates from its actual
market price X. Several authors (cf., e.g., [5, 21, 22, 30]) have interpreted this as
the existence of a stock price bubble, which we formally define as follows.
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DEFINITION 4.1. With the previous notation, the asset price bubble for the
stock price process X between time t ≥ 0 and time T ≥ t is equal to the Ft -
measurable random variable

γX(t, T ) :=Xt −EP(XT |Ft ).

REMARK 4.2. For t = 0, we recover the ‘default’ function γX(0, T ) = X0 −
EPXT of the local martingale X, which was introduced in [11]. Here, the term ‘de-
fault’ refers to the locality property of X and measures its failure of being a mar-
tingale. In [10, 11], the authors derive several expressions for the default function
in terms of the first hitting time, the local time and the last passage time of the
local martingale.

REMARK 4.3. Note that the above definition of a bubble depends on the mea-
sure P, which may be viewed as the subjective valuation measure of a certain
economic agent. From the agent’s point of view, the asset price contains a bubble.
Only in a complete market, that is, if and only if P is the unique ELMM, the notion
of a bubble becomes universal without any element of subjectivity.

In Proposition 7 of [30], the price of a nonpath-dependent option written on
a stock, whose price process is a (strict) local martingale, is decomposed into a
“normal” (“nonbubble”) term and a default term. In the following, we give an
extension of this theorem to a certain class of path-dependent options. For this, let
us introduce the following notation for all k ∈N:

Rk+ = {
x ∈Rk :xl ≥ 0, l = 1, . . . , k

}
, Rk++ = {

x ∈Rk :xl > 0, l = 1, . . . , k
}
.

THEOREM 4.4. Let 0 ≤ t1 < t2 < · · · < tn < ∞ and consider a Borel-
measurable nonnegative function h :Rn++ → R+. Define the function g(x) :=
xn · h( 1

x1
, . . . , 1

xn
) for all x = (x1, . . . , xn) ∈Rn++. Then

EPh(Xt1, . . . ,Xtn)= EQ
(
g

(
1

Xt1

, . . . ,
1

Xtn

)
1{τX>tn}

)
.

Now suppose that the following limits exist in R+ for yi ∈R++, i = 1, . . . , n− 1:

lim|z|→0
g(y1, . . . , yk; z1, . . . , zn−k) =: ηk(y1, . . . , yk), k = 1, . . . , n− 1,

lim|z|→0
g(z1, . . . , zn) =: η0.

Define g :A→R+ as the extension of g from Rn++ to A⊂Rn+, where A is defined
as A := {x ∈Rn+ : if xk = 0 for some k = 1, . . . , n, then xl = 0 ∀l ≥ k}. Then

EPh(Xt1, . . . ,Xtn)= EQg

(
1

Xt1

, . . . ,
1

Xtn

)
−

n−1∑
k=0

EQ(
1{tk<τX≤tk+1} · ηk

(
Xk)),(3)

where we set t0 = 0 and Xk = ( 1
Xt1

, . . . , 1
Xtk

) for k = 1, . . . , n− 1, X0 ≡ 0.
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In particular, if ηk(·)≡ ck, k = 1, . . . , n− 1, are constant, then

EPh(Xt1, . . . ,Xtn)= EQg

(
1

Xt1

, . . . ,
1

Xtn

)
−

n−1∑
k=0

ck · Q
(
tk < τX ≤ tk+1

)
.(4)

PROOF. First, note that

1{τX>tn} = 1{τX>t1}1{τX>t2} · · ·1{τX>tn−1}1{τX>tn}.

Using the change of measure dP|Ftn
= 1

Xtn
dQ|Ftn

on {τX > tn}, we deduce

EPh(X)

= EQ
(
g

(
1

X

)
1{τX>tn}

)

= EQ
(
g

(
1

X

)
1{τX>t1} · · ·1{τX>tn}

)

= EQ
(
1{τX>t1}E

Q
(
1{τX>t2} · · ·

×EQ
(
1{τX>tn−1}E

Q
(
1{τX>tn}g

(
1

X

)∣∣∣Ftn−1

)∣∣∣Ftn−2

)
· · ·

∣∣∣Ft2

)∣∣∣Ft1

))
.

Because on {τX > tn−1}, we have

EQ
(
1{τX>tn}g

(
1

X

)∣∣∣Ftn−1

)

= EQ
(
g

(
1

X

)∣∣∣Ftn−1

)
−EQ(

1{tn−1<τX≤tn}ηn−1
(
Xn−1)|Ftn−1

)
,

it follows that

EPh(X) = EQ
(
1{τX>t1}E

Q
(
1{τX>t2} · · ·

×EQ
(
1{τX>tn−2}E

Q
(
1{τX>tn−1}g

(
1

X

)∣∣∣Ftn−2

)
· · ·

∣∣∣Ft1

))

−EQ(
1{τX>t1}1{τX>t2} · · ·1{τX>tn−1}1{tn−1<τX≤tn}ηn−1

(
Xn−1))

.

Similarly, on {τX > tn−2} we have

EQ
(
1{τX>tn−1}g

(
1

X

)∣∣∣Ftn−2

)

= EQ
(
g

(
1

X

)∣∣∣Ftn−2

)
−EQ(

1{tn−2<τX≤tn−1}ηn−2
(
Xn−2)|Ftn−2

)
,
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and we deduce that

EPh(X) = EQ
(
1{τX>t1}E

Q
(
1{τX>t2} · · ·EQ

(
1{τX>tn−2}g

(
1

X

)∣∣∣Ftn−3

)
· · ·

∣∣∣Ft1

))

−EQ(
1{tn−2<τX≤tn−1}ηn−2

(
Xn−2))−EQ(

1{tn−1<τX≤tn}ηn−1
(
Xn−1))

.

Iterating this procedure results in

EPh(X) = EQ
(
1{τX>t1}g

(
1

X

))
−

n−1∑
k=1

EQ(
1{tk<τX≤tk+1}ηk

(
Xk))

= EQg

(
1

X

)
−EQ(1{τX≤t1}η0)−

n−1∑
k=1

EQ(
1{tk<τX≤tk+1}ηk

(
Xk)).

�

REMARK 4.5. The sum following the minus sign in the above decompositions
(3) and (4) will be called the default term. This is motivated by the following
observation:

γX(t, T ) = Xt −EP(XT |Ft )=Xt −Xt · Q
(
τX > T |Ft

)
(5)

= Xt · Q
(
τX ≤ T |Ft

)
P-a.s.

Here, the second equality in (5) is justified by the following calculation, valid for
any Ft -measurable set A:

EP(1AXT ) = Q
(
A,τX > T

) = Q
(
A,τX > t, τX > T

)
= EQ(

1{A,τX>t}Q
(
τX > T |Ft

))
= EP(

1AXt · Q
(
τX > T |Ft

))
P-a.s.

Taking expectations with respect to P in (5) yields

EPγX(t, T ) = EP(
Xt · Q

(
τX ≤ T |Ft

)) = EQ(
1{τX>t}Q

(
τX ≤ T |Ft

))
= Q

(
t < τX ≤ T

)
.

Thus, the default term is directly related to the expected bubble of the underlying. It
measures how much the failure of the martingale property by X affects the option
price. If X is a true martingale, it will equal zero.

The convergence conditions that must be fulfilled in Theorem 4.4 may seem to
be rather strict. However, below we give a few examples of options which satisfy
those conditions.

EXAMPLE 4.6. Let us consider a modified call option with maturity T and
strike K , where the holder has the option to reset the strike value to the current
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stock price at certain points in time t1 < t2 < · · · < tn < T , that is, the payoff
profile of the option is given by

H(X)= (
XT − min(K,Xt1,Xt2, . . . ,Xtn)

)+
.

With the notation in Theorem 4.4 and setting tn+1 = T , it follows that

η0 = η1 = · · · = ηn = 1

and the option value can be decomposed as

EPh(X) = EQ
(

1 − 1

XT

· min(K,Xt1, . . . ,Xtn)

)+
−

n∑
k=0

Q
(
tk < τX ≤ tk+1

)

= EQ
(

1 − 1

XT

· min(K,Xt1, . . . ,Xtn)

)+
− γX(0, T ).

Therefore, this modified call option has the same default as the normal call option
(cf. equation (14) in [30]).

EXAMPLE 4.7. Let us consider a call option on the ratio of the stock price at
times T and S ≤ T with strike K ∈R+, that is,

h(X)=
(

XT

XS

−K

)+

for S < T ∈R+. In this case,

η0 = 0, η1(y)= y

and the decomposition of the option value is given by

EPh(X)= EQ
(

1

XS

− K

XT

)+
−EQ

(
1{S<τX≤T }

1

XS

)
.

EXAMPLE 4.8. A chooser option with maturity T and strike K entitles the
holder to decide at time S < T , whether the option is a call or a put. He will choose
the call, if its value is as least as high as the value of the put option with strike K

and maturity T at time S. However, in the presence of asset price bubbles, that is,
when the underlying is a strict local martingale, put-call-parity does not hold, but
instead we have

EP(
(XT −K)+|FS

)−EP(
(K −XT )+|FS

) = EP(XT |FS)−K.

Therefore, the payoff of the chooser option equals

h(XS,XT )= (XT −K)+1{EP(XT |FS)≥K} + (K −XT )+1{EP(XT |FS)<K}.
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Let us assume that X is Markovian. Then we can express EP(XT |FS) as a function
of XS , say EP(XT |FS)=m(XS), and the limits defined in Theorem 4.4 exist, if m

is monotone for large values, and equal

η1(y)= 1{m(1/y)≥K}, η0 = lim
x→∞1{m(x)≥K}.

Thus, the value of the chooser option can be decomposed as

EPh(XS,XT ) = EQ
(

h(XS,XT )

XT

)
− Q

(
m(XS)≥K,S < τX ≤ T

)
− lim

x→∞1{m(x)≥K}Q
(
τX ≤ S

)
.

If X is the reciprocal of a BES(3)-process under P, it is calculated in Section 2.2.2
in [5] that

m(XS)= EP(XT |XS)=XS

(
1 − 2�

(
− 1

XS

√
T − S

))
.

Therefore,

lim
x→∞m(x) = lim

x→∞EP(XT |XS = x)= lim
x→∞2ϕ

(
− 1

x
√

T − S

)
1√

T − S

=
√

2√
π(T − S)

and

η1(y)= 1{1/y(1−2�(−y/
√

T−S))≥K}, η0 = 1{√2/
√

π(T−S)>K}.

REMARK 4.9. Here, we take the approach of valuating options by risk-neutral
expectations. While there may be other approaches, risk-neutral expectations do
not create arbitrage in the market, even though the stock itself is not priced that
way. Indeed, P remains an ELMM in the enlarged market also after adding any as-
set Vt = EP[H |Ft ], t ≤ T , for some integrable H ∈FT . Interestingly, by choosing
H = XT we may have V0 < X0 (in the case where X is a strict local martingale).
But it is impossible to short X and take a long position on V all the way up to T

because of credit constraints, therefore, NFLVR is not violated.

In the following, we give another extension of Proposition 7 in [30] to Barrier
options, that is, we allow the options to be knocked-in or knocked-out by passing
some pre-specified level.

THEOREM 4.10. Consider any nonnegative Borel-measurable function h :
R++ → R+ and define g(x) = x · h( 1

x
) for x > 0. Suppose that limx→0 g(x) =:

η < ∞ exists and denote by g :R+ → R+ the extension of g with g(0) = η. De-
fine m̂X

T := mint≤T Xt , mX
T := maxt≤T Xt as well as T X

a := inf{t ≥ 0 :Xt ≤ a} for



1846 C. KARDARAS, D. KREHER AND A. NIKEGHBALI

a ∈ R+. Then for any bounded stopping time T and for any real numbers D ≤ 1
and F ≥ 1:

EP(
h(XT )1{m̂X

T ≤D}
) = EQ

(
g

(
1

XT

)
1{m̂X

T ≤D}
)
− η · Q

(
T X

D < τX ≤ T
)
,(DI)

EP(
h(XT )1{m̂X

T ≥D}
) = EQ

(
g

(
1

XT

)
1{m̂X

T ≥D}
)
− η · Q

(
T X

D =∞, τX ≤ T
)
,(DO)

EP(
h(XT )1{mX

T ≥F }
) = EQ

(
g

(
1

XT

)
1{mX

T ≥F }
)
− η · Q

(
τX ≤ T

)
,(UI)

EP(
h(XT )1{mX

T ≤F }
) = EQ

(
g

(
1

XT

)
1{mX

T ≤F }
)
.(UO)

Before proving the theorem, we remark that the result is intuitively reasonable
because the default only plays a role if the option is active. Especially note that
the default term for Up-and-Out options (UO) is equal to zero, since in this case

we can replace X by the uniformly integrable martingale Xτ̃X
F+1 in the definition

of the option’s payoff function, where τ̃ X
a := inf{t ≥ 0 :Xt > a} for any a ≥ 1.

PROOF OF THEOREM 4.10. Keeping in mind that D ≤ 1 and F ≥ 1, it follows
from the absolute continuity relationship between P and Q that

EP(
h(XT )1{m̂X

T ≤D}
) = EQ

(
g

(
1

XT

)
1{τX>T,m̂X

T ≤D}
)
= EQ

(
g

(
1

XT

)
1{τX>T≥T X

D }
)

= EQ
(
g

(
1

XT

)
1{m̂X

T ≤D}
)
− η · Q

(
T X

D ≤ T , τX ≤ T
)

= EQ
(
g

(
1

XT

)
1{m̂X

T ≤D}
)
− η · Q

(
T X

D < τX ≤ T
)
.

This proves the formula for the Down-and-In barrier option (DI). The other three
formulas can be proven in a similar way by noting that

Q
(
τX ≤ T < T X

D

) = Q
(
τX ≤ T ,T X

D =∞)
,

Q
(
τ̃ X
F ≤ T , τX ≤ T

) = Q
(
τX ≤ T

)
,

Q
(
τX ≤ T < τ̃X

F

) = 0. �

REMARK 4.11. Above we used the risk-neutral pricing approach to calculate
the value of some options written on a stock which may have an asset price bubble,
as suggested by the first fundamental theorem of asset pricing. The derived decom-
positions show that there is an important difference in the option value depending
on whether the underlying is a strict local or a true martingale under the risk-neutral
measure, which is reflected in the default term. Even though we do not create ar-
bitrage opportunities when pricing options by their fundamental values calculated
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above, several authors have suggested to “correct” the option price to account for
the strictness of the local martingale (cf., e.g., [2, 20–22, 26]). In [2], the price of a
contingent claim is defined as the minimal super-replicating cost under both mea-
sures P and Q corresponding to two different currencies, where the process X is
interpreted as the exchange rate between them. While the authors of [20–22] work
under the additional No Dominance assumption, which is strictly stronger than
NFLVR, and allow for bubbles in the option prices within this framework, in [26]
the following pricing formulas for European and American call options written on
(continuous) X with strike K and maturity T are suggested:

Cstrict
E (K,T ) := lim

n→∞EP(XT∧σn −K)+,

Cstrict
A (K,T ) := sup

σ∈T0,T

lim
n→∞EP(Xσ∧σn −K)+

for some localizing sequence (σn)n∈N of the (strict) local martingale X. It is proven
in [26] that these definitions are independent of the chosen localizing sequence
and that Cstrict

E = Cstrict
A . However, a generalization of this definition to any other

option h(·) on X with maturity T is problematic: the independence of the chosen
localizing sequence (σn)n∈N is not true in general, so one may have to choose
σn = τX

n as defined above. Moreover, in general limn→∞EPh(X
σn

T ) may not be
well defined and equal to EPh(XT ), even when X is a true martingale, as the
following example shows.

EXAMPLE 4.12. Suppose that (log(Xt)+ t/2)t≥0 is a Brownian motion, that
is, X is a geometric Brownian motion, and consider the claim h(XT ) with contin-
uous payoff function

h(x)= ∑
n∈N

1{n−an≤x≤n+an}fn

(
n− n|x − n|

an

)
with fn(z)= 1

P(τX
n ≤ 1)

· z

n
,

where each an ∈ (0,1) is chosen small enough such that

2n2 · P(n− an ≤X1 ≤ n+ an)≤ P
(
τX
n ≤ 1

)
.

Let us set T = 1 and σn = τX
n for all n ∈N. In this case,

EPh(X1∧τX
n
)≥ P

(
τX
n ≤ 1

)
fn(n)= 1, n ∈N,

but

EPh(X1) ≤
∑
n∈N

P(n− an ≤X1 ≤ n+ an)fn(n)

≤ ∑
n∈N

P(τX
n ≤ 1)

2n2 · fn(n)= π2

12
< 1.
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Since in this example there are no asset price bubbles, it does not seem correct
to trade the option for a price which differs from its fundamental value. There-
fore, in the case where we have a decomposition of the fundamental option value
as above or more generally as proven in Theorem 4.4, this suggests that the most
sensible approach to correct the option value for bubbles in the underlying is to
set the default term equal to zero. Equivalently, we can also set τX equal to infin-
ity under the measure Q. This even gives a way of correcting the option value for
stock price bubbles in the general case, where a decomposition formula may not
be available, leaving open the question of why this should give an arbitrage-free
pricing rule. By doing so, we would basically treat the price process as if it were
a true martingale. However, we want to emphasize that it is not necessary to cor-
rect the price at all, since the fundamental value gives an arbitrage-free price as
explained in Remark 4.9.

5. Relationship between P and Q. In the following, we study the relationship
between the original measure P and the measure Q in more detail. We suppose that
assumption (S) is valid throughout the entire section.

LEMMA 5.1. Set X = X̃, that is, Xt =∞ on {t ≥ τX}. Then, Q(X∞ =∞)=
1 ⇔ P(X∞ = 0)= 1.

PROOF. Since X is a P-super-martingale and 1
X

a Q-martingale, both converge
and, therefore, X∞ is almost surely well defined under both measures.

⇐: Assume that P(X∞ = 0) = 1. Because 1/X is a Q-martingale, we have by
Fatou’s lemma for all u > 0,

EQ
(

1

X∞
1{τX>t,Xt>u}

)
≤ lim inf

n→∞ EQ
(

1

Xt+n

1{τX>t,Xt>u}
)

= EQ
(

1

Xt

1{τX>t,Xt>u}
)

= P(Xt > u).

By dominated convergence for t →∞,

EQ
(

1

X∞
1{τX=∞,X∞>u}

)
≤ P(X∞ ≥ u)= 0 ∀u > 0.

This implies that

EQ
(

1

X∞
1{τX=∞,X∞>0}

)
= 0.

Since 1
X

is a Q-martingale,

EQ
(

1

X∞

)
≤ EQ

(
1

Xt

)
= 1.
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Thus, Q(X∞ = 0)= 0 and

EQ
(

1

X∞
1{τX=∞}

)
= 0 ⇔ 1

X∞
1{τX=∞} = 0 Q-a.s.

Since 1
X∞1{τX<∞} = 0, it follows that 1

X∞ = 0 Q-almost surely.
⇒: Assume that Q(X∞ =∞)= 1. Because X is a P-super-martingale, we have

EPX∞ ≤ EPXt ≤ 1

and

EP(X∞1{Xt<k})≤ EP(Xt1{Xt<k})= Q
(
t < τX,Xt < k

) = Q(Xt < k) ∀k ≥ 0.

For t →∞ by dominated convergence then

EP(X∞1{X∞<k})≤ Q(X∞ < k)= 0 ∀k ≥ 0.

This implies that X∞1{X∞<k} = 0 P-a.s. for all k ≥ 0. Therefore, P(X∞ ∈
{0,∞}) = 1. Since EP(X∞) ≤ 1, it follows that P(X∞ = ∞) = 0, and thus
X∞ = 0 P-almost surely. �

Until here, we have only considered the behaviour of the local P-martingale X

under Q. But how do other processes change their behaviour, when passing from
P to Q? This question is of particular interest, since we want to apply our results
to the pricing of options written on more than one underlying stock. Let us assume
that besides X there exists another process Y on (�,F, (Ft )t≥0,P). For all n ∈N

we set τY
n = inf{t ≥ 0 :Yt > n}∧n and τY = limn→∞ τY

n . Note that in what follows
we identify Y with the process Ỹ defined above.

LEMMA 5.2. Let Y be a nonnegative càdlàg local P-martingale. Then
Q(τX ≤ τY )= 1.

PROOF.

Q
(
τY < τX) = lim

n→∞Q
(
τY < τX

n

) = lim
n→∞EP(XτX

n
1{τY <τX

n })= 0. �

Moreover, we introduce condition (T): Q(τX = τY <∞)= 0.
Clearly, (T) is always fulfilled if X is a true martingale. Moreover, condition (T)

also holds, if X and Y are independent under P. Indeed, in this case for every n ∈N

Q
(
τY = τX < n

)
= lim

m→∞Q
(
τY
m < τX < n

) = lim
m→∞ lim

k→∞Q
(
τY
m < τX

k < n
)

= lim
m→∞ lim

k→∞EP(XτX
k
1{τY

m<τX
k <n})≤ lim

m→∞ lim
k→∞EP(XτX

k
1{τY

m<n})

= lim
m→∞ lim

k→∞EPXτX
k
· P

(
τY
m < n

) = lim
m→∞P

(
τY
m < n

) = 0.
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However, in general it is hard to check condition (T), since it requires some
knowledge of the joint distribution of τX

n and τY
m for n,m large.

If X and Y are assumed to be càdlàg processes under P, they are also almost
surely càdlàg under Q before time τX because P and Q are equivalent on every
FτX

n
. Furthermore, since 1

X
is a Q-martingale, it does not explode and, therefore,

Xt− �= 0 and Xt �= 0 Q-almost surely for all t ≥ 0. Thus, the process Z := Y
X

does also have almost surely càdlàg paths before time τX . Since from time τX on
everything is constant, the only crucial question is whether Z = Y

X
has a left-limit

at τX .

LEMMA 5.3. Let Y be a nonnegative local P-martingale. Then Zt :=
( Yt

Xt
)0≤t<τX is a local martingale on (�,FτX−, (Ft∧τX−)t≥0,Q). Furthermore,

setting Zt := Z̃t and Xt = ∞ on {t ≥ τX} is the unique way to define Z and
X after time τX such that 1

X
and Z remain nonnegative càdlàg local martin-

gales on [0,∞) for all possible extensions of the measure Q from FτX− to
F = ∨

t≥0 Ft .

PROOF. First, we show that Z = Y
X

is a local Q-martingale on
⋃

n∈N[0, τX
n ]

with localizing sequence (τY
n ∧ τX

n )n∈N. Indeed, we have for all t ≥ 0 and n ∈N,

EQ(ZτY
n ∧τX

n
|Ft ) = EQ

( YτY
n ∧τX

n

XτY
n ∧τX

n

∣∣∣Ft

)
= EP

( YτY
n ∧τX

n

Xt∧τY
n ∧τX

n

∣∣∣Ft

)
= Yt∧τY

n ∧τX
n

Xt∧τY
n ∧τX

n

= Zt∧τY
n ∧τX

n

and by Lemma 5.2 we know that τX
n ∧ τY

n → τX Q-almost surely. Since Z is a
nonnegative local super-martingale up to time τX , we can apply Fatou’s lemma
twice with s ≤ t :

Z̃s = lim inf
u→τX,u<τX,u∈Q

Zs∧u = lim inf
u→τX,u<τX,u∈Q

lim
n→∞Zs∧u∧τX

n ∧τY
n

≥ lim inf
u→τX,u<τX,u∈Q

lim
n→∞EQ(Zt∧u∧τX

n ∧τY
n
|Fs)≥ lim inf

u→τX,u<τX,u∈Q
EQ(Zt∧u|Fs)

≥ EQ
(

lim inf
u→τX,u<τX,u∈Q

Zt∧u|Fs

)
= EQ(Z̃t |Fs),

where the second inequality is due to the fact that EQ(Zt∧u∧τX
n ∧τY

n
|Fs) ≥

EQ(Zt∧u|Fs) by the super-martingale property. By the convergence theorem for
positive super-martingales, we conclude that Z̃τX− = ZτX− exists Q-almost surely
in R+. To see that Z̃ is indeed a local martingale and not only a super-martingale,
we show that Z̃τZ

n is a uniformly integrable martingale for all n ∈ N, where
τZ
n = inf{t ≥ 0|Zt > n} ∧ n. Since Z̃ is a nonnegative super-martingale, it is suffi-
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cient to prove that the expectation of Z̃τZ
n is constant:

EQZ̃τZ
n
= EQ(Z̃τZ

n
1{τZ

n <τX} + Z̃τZ
n
1{τZ

n ≥τX})

= lim
m→∞EQ(ZτZ

n
1{τZ

n <τX
m∧τY

m })+EQ(Z̃τX−1{τZ
n ≥τX})

= lim
m→∞EQ(ZτX

m∧τY
m
1{τZ

n <τX
m∧τY

m })+EQ
(

lim
m→∞ZτX

m∧τY
m
1{τZ

n ≥τX}
)

= lim
m→∞EQZτX

m∧τY
m
− lim

m→∞EQ(ZτX
m∧τY

m
1{τX>τZ

n ≥τX
m∧τY

m })=Z0.

To prove the uniqueness of the extension of Z for all possible extensions of Q to
F , define for all n ∈ N, τZ

n = inf{t ≥ 0 :Zt > n}, where Z is an arbitrary càdlàg
extension of (Zt )t<τX . Then (τZ

n )n∈N is a localizing sequence for Z for all possible
extensions of Q. Fix one of these extensions and call it Q0. We have

EQ0(
Z

τZ
n

t |Fs

) =Z
τZ
n

s ∀n ∈N.

Now for fix n ∈N define the new measure Qn on F via

dQn

dQ0 = ZτZ
n

Z
τZ
n

τX−
.

Note that Qn is also an extension of Q from FτX− to F . Furthermore, for all ε ≥ 0,

Z
τZ
n

τX− = EQn(
Z

τZ
n

τX+ε
|FτX−

) = EQ0
( ZτZ

n

Z
τZ
n

τX−
·ZτZ

n

τX+ε

∣∣∣FτX−
)

= EQ0
((Z

τZ
n

τX+ε
)2

Z
τZ
n

τX−

∣∣∣FτX−
)
,

because Z
τZ
n must also be a uniformly integrable martingale under Qn. There-

fore, Z
τZ
n and (Z

τZ
n )2 are both Q0-martingales after time τX−, which implies that

Zε+τX = ZτX− for all ε ≥ 0. Thus, Z ≡ Z̃ is uniquely determined. �

As usual to simplify notation, we will identify Z with the process Z̃ in the
following.

REMARK 5.4.

• Note that if condition (T) is satisfied, then ZτX = ZτX− = 0 on {τX < ∞}
Q-almost surely.

• Even though we proved that ZτX− exists Q-a.s. and also XτX− is well defined,
this does not allow us to infer any conclusions about the set {YτX− exists in R+}
in general.
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• For our purposes it is sufficient that local Q-martingales are càdlàg almost every-
where, since we are only interested in pricing and do not deal with an uncount-
able number of processes. One should, however, have in mind that in order to
have everywhere regular paths some kind of augmentation is needed (cf. [23]).

REMARK 5.5. If �= C′(R+,R
2
+) is the path space introduced in Lemma 2.6,

(X,Y ) is the coordinate process, and (F̃t )t≥0 is the canonical filtration generated
by (X,Y ), then under the assumptions of Lemma 5.3 we can extend Q to F =∨

t≥0 Ft such that

Q
(
ω1(t)=∞,ω2(t)= ω2

(
τX−) ∀t ≥ τX) = 1.

LEMMA 5.6. Let Y be a nonnegative local P-martingale and set Z := Y
X

.

(1) If X is a P-martingale, then Z is a strict local Q-martingale if and only if Y is
a strict local P-martingale.

(2) Assume that X is a strict local P-martingale. Then:

(a) If Y is a P-martingale, then Z is a Q-martingale and ZτX = 0 on {τX <

∞}.
(b) If Z is a strict local Q-martingale or Z is a Q-martingale with Q(τX <

∞,ZτX > 0) > 0, then Y is a strict local P-martingale.
(c) If Z is a Q-martingale and if condition (T) holds, then Y is a P-

martingale.
(d) If Y is a strict local P-martingale and if condition (T) holds, then Z is

a strict local Q-martingale.

PROOF.

(1) This is obvious, because Q and P are locally equivalent, if X is a true
P-martingale.

(2) First note that

EPY0 = EQZ0 ≥ EQZt = EQ(Zt1{t<τX})+EQ(Zt1{t≥τX})

= EQ
(

Yt

Xt

1{t<τX}
)
+EQ(ZτX1{t≥τX})

= EPYt +EQ(ZτX1{t≥τX})≥ EPYt .

(a) Since Y is a positive local P-martingale, we have

Y is a true P-martingale

⇔ EPYt = EPY0 for all t ≥ 0,

⇔ EQZt = EQZ0 for all t ≥ 0,ZτX1{τX<∞} = 0 Q-a.s.
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(b) Follows from (a).
(c) If (T) holds, ZτX = 0 on {τX < ∞} Q-almost surely; cf. Remark 5.5.

Therefore, since Z is a Q-martingale, the above inequality turns into an equal-
ity and Y is a true P-martingale.

(d) Follows from (c). �

EXAMPLE 5.7 (Continuation of Example 3.1.2). For the following example,

we work on the path space C′(R+,R
2
+) with (X,Y ) denoting the coordinate pro-

cess and (Ft )t≥0 being the right-continuous augmentation of the canonical filtra-
tion generated by the coordinate process. Remember from Example 3.1.2 that for
σ(x) locally bounded and bounded away from zero for x > 0, σ(0) = 0, the local
P-martingale

dXt = σ(Xt) dWt, X0 = 1,

is strictly positive whenever ∫ 1

0

x

σ 2(x)
dx =∞,

and under Q with dP
dQ |Ft = 1

Xt
the reciprocal process is a true martingale with

decomposition

d

(
1

Xt

)
=−σ(Xt)

X2
t

dWQ
t = σ

(
1

Xt

)
dWQ

t

for the Q-Brownian motion WQ
t = Wt − ∫ t

0
σ(Xs)

Xs
ds defined on the set {t < τX}

and σ(y) := −y2 · σ( 1
y
).

Now let us assume that Y is also a local martingale under P with dynamics

dYt = γ (Yt ) dBt ,

where γ fulfills the same assumptions as σ and B is another P-Brownian motion
such that 〈B,W 〉t = ρt . Then Y

X
is a Q-local martingale with decomposition

d

(
Yt

Xt

)
= γ (Yt )

Xt

dBQ
t + Ytσ

(
1

Xt

)
dWQ

t ,

where BQ is a Q-BM defined up to time τX such that 〈BQ,WQ〉t = ρt on {t < τX}.

6. Application to financial bubbles II: Last passage time formulas. In Sec-
tion 4, we have seen how one can determine the influence bubbles have on option
pricing formulas through a decomposition of the option value into a “normal” term
and a default term (cf. Theorems 4.4 and 4.10). However, this approach only works
well for options written on one underlying. It is rather difficult to give a universal
way of how to determine the influence of asset price bubbles on the valuation of
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more complicated options and we will not do this here in all generality. Instead,
we will do the analysis for a special example, the so called exchange option, which
allows us to connect results about last passage times with the change of measure
that was defined in Section 2.2.

Again we suppose that assumption (S) holds throughout the entire section.
In addition, we assume that there exists another strictly positive process Y on
(�,F, (Ft )t≥0,P), which is also a local P-martingale. Furthermore, in the fol-
lowing we will assume that X and Y are continuous. As in Section 5, we define
Z := Y

X
, which is a local Q-martingale.

6.1. Exchange option. With the interpretation of X and Y as two stock price
processes and assuming an interest rate of r = 0, we can define the price of a Eu-
ropean exchange option with strike K ∈R+ (also known as the ratio of notionals)
and maturity T ∈R+ as

E(K,T ) := EP(XT −KYT )+.

The corresponding price of the American option is given by

A(K,T ) := sup
σ∈T0,T

EP(Xσ −KYσ )+,

where T0,T is the set of all stopping times σ , which take values in [0, T ]. Let us de-
fine the last passage time ρK := sup{t ≥ 0|Zt = 1

K
}, where as usual the supremum

of the empty set is equal to zero. In the next theorem, the prices of the European
and American exchange option are expressed in terms of the last passage time ρK

in the spirit of [33].

THEOREM 6.1. For all K,T ≥ 0, the prices of the European and American
exchange option are given by

E(K,T ) = EQ(
(1 −KZτX)+1{ρK≤T <τX}

)
,

A(K,T ) = EQ(
(1 −KZτX)+1{ρK≤T }

)
.

PROOF. Assume σ ∈ T0,T . As seen above, Z = Y
X

is a nonnegative local Q-
martingale, thus a supermartingale, which converges almost surely to Z∞ = ZτX .
From Corollary 3.4 in [3], respectively Theorem 2.5 in [33] we have the identity(

1

K
−Zσ

)+
= EQ

((
1

K
−ZτX

)+
1{ρK≤σ }

∣∣∣Fσ

)
.(6)

Multiplying the above equation with the Fσ -measurable random variable
K1{τX>σ } and taking expectations under Q yields

EQ(
(1 −KZσ )+1{τX>σ }

) = EQ(
(1 −KZτX)+1{ρK≤σ<τX}

)
.
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Changing the measure via dP|Fσ = 1
Xσ

dQ|Fσ , we obtain

EP(Xσ −KYσ )+ = EP(
1{τX>σ }Xσ(1 −KZσ )+

)
(7)

= EQ(
(1 −KZτX)+1{ρK≤σ<τX}

)
,

since 1{τX>σ } = 1 P-almost surely. Taking σ = T the formula for the European
option is proven. For the American option value we note that in the proof of The-
orem 1.4 in [1] it is shown that

A(K,T )= lim
n→∞EP

(
YτX

n ∧T

(
1

ZτX
n ∧T

−K

)+)
= lim

n→∞EP(XτX
n ∧T −KYτX

n ∧T )+.

Setting σ = τX
n ∧ T in equality (7), it follows that

A(K,T )

= lim
n→∞EP(XτX

n ∧T −KYτX
n ∧T )+ = lim

n→∞EQ(
(1 −KZτX)+1{ρK≤τX

n ∧T <τX}
)

= lim
n→∞EQ(

(1 −KZτX)+1{ρK≤τX
n ∧T }

) = EQ(
(1 −KZτX)+1{ρK≤τX∧T }

)
= EQ(

(1 −KZτX)+1{ρK≤T }
)
,

where the last equality follows from the fact that ZτX = 1
K

on {ρK > τX} =
{ρK =∞}. �

REMARK 6.2. Assume that Q(τX <∞)= 1, that is, EPXt
t→∞−→ 0. If we take

Y ≡ 1 in the above theorem, we get the formula for the standard European call
option expressed as a function of the last passage time of X as it can be found
in [37] for the special case of Bessel processes or in [24]:

E(K,T )= Q
(
ρK ≤ T < τX)

.(8)

More generally, for arbitrary Y formula (8) is still true, if (T) holds and Q(τX <

∞)= 1.

REMARK 6.3. We can also express the price of a barrier exchange option in
terms of the last passage time of Z at level 1

K
as done in Theorem 6.1 for exchange

options without barriers. For example, in the case of the Down-and-In exchange
option we simply have to multiply equation (6) with the Fσ -measurable random
variable 1{m̂X

σ ≤D}.

We now analyze a few special cases of Theorem 6.1 in more detail:

(1) X is a true P-martingale.
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If X is a true P-martingale, the price process for X exhibits no asset price bub-
ble. Then, regardless of whether the stock price process Y has an asset price bubble
or not, we know that Q is locally equivalent to P and Q(τX =∞)= 1. Therefore,

E(K,T )=A(K,T )= EQ(
(1 −KZ∞)+1{ρK≤T }

)
and the European and American exchange option values are equal. For Y ≡ 1, this
formula is well known (cf. [33]).

(2) Y is a true P-martingale.
We recall from Lemma 5.6 that in this case ZτX = 0 on {τX < ∞} Q-almost

surely. Denoting τZ
0 = inf{t ≥ 0|Zt = 0} this translates into Q(τX = τZ

0 ) = 1,
since

Q
(
τZ

0 < τX) = lim
n→∞Q

(
τZ

0 < τX
n

) = lim
n→∞EP(XτX

n
1{τZ

0 <τX
n })= 0.

Therefore,

E(K,T ) = Q
(
ρK ≤ T < τZ

0
)
,

A(K,T ) = Q
(
ρK ≤ T ∧ τX) = Q

(
ρK ≤ T ∧ τZ

0
) = Q(ρK ≤ T ),

where the last equality follows from the fact that the last passage time of the level
1
K

by Z cannot be greater than its first hitting time of 0. Note that in this case the
above formula for E(K,T ) is similar to the one for the European call option given
in [24], Proposition 7; see also [37] for the case of the reciprocal Bessel process of
dimension greater than two.

Especially, the American option premium is equal to

A(K,T )−E(K,T )

= Q(ρK ≤ T )− Q
(
ρK ≤ T < τZ

0
) = Q

(
ρK ≤ T , τZ

0 ≤ T
)

= Q
(
τZ

0 ≤ T
) = Q

(
τX ≤ T

) = γX(0, T ),

which is just the default of the local P-martingale X or, in other words, the bubble
of the stock X between 0 and T .

(3) X and Y are both strict local P-martingales: An example.
Let X and Y be the reciprocals of two independent BES(3)-processes under P

and assume that X0 = x ∈ R+, while Y0 = 1. (Note that this normalization is dif-
ferent from the previous one. However, since the density of X respectively Y is
explicitly known in this case, we can do calculations directly under P. This allows
us to point out some anomalies of the option value in the presence of strict local
martingales.)
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We apply the formula for the European call option value written on the recipro-
cal BES(3)-process from Example 3.6 in [5] and integrate over Y :

E(K,T ) =
∫ ∞

0
x

[
�

(
x − zK

xzK
√

T

)
−�

(
− 1

x
√

T

)

+�

(
1

x
√

T

)
−�

(
zK + x

xzK
√

T

)]
P(YT ∈ dz)

−K

∫ ∞
0

z

{
�

(
zK + x

xzK
√

T

)
−�

(
zK − x

xzK
√

T

)

+ x
√

T

[
ϕ

(
zK + x

xzK
√

T

)
− ϕ

(
x − zK

xzK
√

T

)]}
P(YT ∈ dz),

where

P(YT ∈ dz)= 1

z3

dz√
2πT

(
exp

(
−(1/z− 1)2

2T

)
− exp

(
−(1/z+ 1)2

2T

))
.

Since EPXT
x→∞−→ 2√

2πT
as shown in [17], the option value converges to a finite

positive value as the initial stock price X0 = x goes to infinity. Therefore, the con-
vexity of the payoff function does not carry over to the option value. This anomaly
for stock price bubbles has been noticed before by, for example, [5, 17]. We refer
for the economic intuition of this phenomenon to [17], where a detailed analysis of
stock and bond price bubbles modelled by the reciprocal BES(3)-process is done.

Furthermore, recall that by Jensen’s inequality the European exchange option
value is increasing in maturity if X and Y are true martingales. However, in our
example the option value is not increasing in maturity anymore: Indeed, because of

E(K,T ) ≤ EPXT
T→∞−→ 0 the option value converges to zero as T →∞. Taking

Y ≡ 1, this behaviour has been noticed before by, for example, [5, 17, 26, 30] and
is also directly evident from the representation of E(K,T ) in Theorem 6.1.

6.2. Real-world pricing. Here, we want to give another interpretation of The-
orem 6.1. Note that from a mathematical point of view we have only assumed that
X and Y are strictly positive local P-martingales for the result. Above we have
interpreted P as the risk-neutral probability and X,Y as two stock price processes.
Now note that we have the identity (X−KY)+ = Y( 1

Z
−K)+. This motivates the

following alternative financial setting: we take P to be the historical probability
and assume that also P(Y0 = 1) = 1. Normalizing the interest rate to be equal to
zero, the process S := 1

Z
denotes the (discounted) stock price process, while Y is

a candidate for the density of an equivalent local martingale measure (ELMM).
Since Y and X = YS are both strictly positive local P-martingales, they are P-
super-martingales and cannot reach infinity under P. Thus, S = 1

Z
is also strictly

positive under P and does not attain infinity under P either.
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As before, X and Y are both allowed to be either strict local or true P-
martingales. While the question of whether X = YS is a true martingale or not
is related to the existence of a stock price bubble as discussed earlier, the question
of whether Y is a strict local martingale or not is connected to the absence of ar-
bitrage. If Y is a uniformly integrable P-martingale, an ELMM for Z exists and
the market satisfies NFLVR. However, as shown in [13] and explained in [1], even
if Y is only a strict local martingale, a super-hedging strategy for any contingent
claim written on S exists. Therefore, the “normal” call option pricing formulas

E(K,T )= EP(
YT (ST −K)+

)
, A(K,T )= sup

σ∈T0,T

EP(
Yσ (Sσ −K)+

)
are still reasonable when Y is only a strict local martingale. This pricing method
is also known as “real-world pricing,” since we cannot work under an ELMM
directly, but must define the option value under the real-world measure (cf. [32]).
Note that if Y is a true martingale, we can define an ELMM P∗ for S on FT via
P∗|FT

= YT ·P|FT
and the market satisfies the NFLVR property until time T ∈R+.

In this case, we obtain the usual pricing formulas

E(K,T )= EP∗
(ST −K)+ respectively A(K,T )= sup

σ∈T0,T

EP∗
(Sσ −K)+.

Following [17], we can interpret the situation when Y is only a strict local mar-
tingale as the existence of a bond price bubble as opposed to the stock price bubble
discussed above. This is motivated by the fact that the real-world price of a zero-
coupon bond is strictly less than the (discounted) pay-off of one, if Y is a strict
local martingale. Of course, it is possible to make a risk-free profit in this case via
an admissible trading strategy. From Theorem 6.1, we have the following corollary.

COROLLARY 6.4. For all K,T ≥ 0, the values of the European and American
call option under real-world pricing are given by

E(K,T ) = EQ
((

1 − K

SτX

)+
1{ρS

K≤T <τX}
)
,

A(K,T ) = EQ
((

1 − K

SτX

)+
1{ρS

K≤T }
)

with ρS
K = sup{t ≥ 0|St =K}.

From the above formulas for the European and American call options, it can
easily be seen that their values are generally different, unless X = YS is a true
P-martingale (in this case τX =∞ Q-a.s.). Therefore, Merton’s no early exercise
theorem does not hold anymore (cf. also [1, 5, 21, 22]).

Furthermore, note that we have the following formula for any bounded stopping
time T :

E(K,T )= EP(XT −KYT )+ = EQ(1 −KZT )+ −EQ(
1{τX≤T }(1 −KZT )+

)
,
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where the second term equals Q(τX ≤ T ), if (T) holds. For Y ≡ 1, this decompo-
sition of the European call value is shown in [30].

Now we show that also the asymptotic behaviour of the European and American
call option is unusual, when we allow X and / or Y to be strict local P-martingales.
From the definition of the European call option value, we easily see that

lim
K→0

E(K,T )= EP(YT ST )= EPXT = Q
(
τX > T

)
, lim

K→∞E(K,T )= 0.

Moreover, using the last passage time formula for the American call derived above,
it follows that

lim
K→0

A(K,T )= lim
K→0

Q
(
ρS

K ≤ T
) = 1,

since Z does not explode Q-a.s., and hence S is strictly positive under Q. Similarly,
denoting ρZ

1/K = sup{t ≥ 0|Zt = 1
K
}, we get

lim
K→∞A(K,T ) = lim

K→∞Q
(
ρS

K ≤ T ,SτX =∞) = lim
K→∞Q

(
ρZ

1/K ≤ T ,ZτX = 0
)

= Q(ZτX = ZT = 0)= Q
(
T ≥ τX,ZτX = 0

)
,

which may be strictly positive and equals Q(T ≥ τX) = γX(0, T ) under (T). For
the asymptotics in T , we have

lim
T→∞E(K,T ) = EQ

((
1 − K

SτX

)+
1{τX=∞}

)
,

lim
T→∞A(K,T ) = EQ

(
1 − K

SτX

)+
,

and from the definition of the call option it is also clear that

lim
T→0

E(K,T )= lim
T→0

A(K,T )= (1 −K)+.

6.2.1. American option premium under real-world pricing. We keep the nota-
tion and interpretation introduced at the beginning of Section 6.2. However, we do
not assume that Z and/or X are continuous anymore.

LEMMA 6.5. Let h : R++ → R+ be a Borel-measurable function s.t.
limx→∞ h(x)

x
=: η exists in R+. Define g : R+ → R+ via g(x) = x · h( 1

x
) for

x > 0 and g(0)= η. We denote by E(h,T )= EP(YT h(ST )) the value of the Euro-
pean option with maturity T and payoff function h and by A(h,T ) the value of the
corresponding American option. Then

E(h,T )= EQg(ZT )−EQ(
1{τX≤T }g(ZτX)

)
.

Furthermore, if in addition h is convex with h(0)= 0, h(x)≤ x for all x ∈R+ and
η = 1, then

A(h,T )= EQg(ZT ).
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PROOF. For the European option value, we have

E(h,T ) = EP(
YT h(ST )

) = EQ(
g(ZT )1{τX>T }

)
= EQg(ZT )−EQ(

1{τX≤T }g(ZτX)
)
.

And for the American option value we get

A(h,T ) = lim
n→∞EP(

YT∧τX
n
h(ST∧τX

n
)
) = lim

n→∞EQ
(
ZT∧τX

n
h

(
1

ZT∧τX
n

))

= lim
n→∞EQg(ZT∧τX

n
)= EQg(ZT∧τX)= EQg(ZT ),

where the first equality is proven in [1] under the above stated assumptions on h

and the fourth equality follows by dominated convergence since g ≤ 1 is a bounded
and continuous function. �

Under the assumptions of Lemma 6.5, the American option premium is thus
equal to

A(h,T )−E(h,T )= EQ(
1{τX≤T }g(ZτX)

)
.

Note that Lemma 6.5 is a generalization of Theorem A1 in [5]. Indeed, if Y is
a uniformly integrable P-martingale (i.e., NFLVR is satisfied), ZτX = 0 on {τX <

∞} by part 2(a) of Lemma 5.6. Thus,

A(h,T )=E(h,T )+ g(0) · Q
(
τX ≤ T

) =E(h,T )+ γX(0, T ).

7. Multivariate strictly positive (strict) local martingales. So far the mea-
sure Q defined in Theorem 2.12 above is only associated with the local P-
martingale X in the sense that XτX

n
.P|F

τX
n
= Q|F

τX
n

for all n ∈ N and that 1
X

is

a true martingale under Q. One may now naturally wonder whether, given two (or
more) positive local P-martingales X and Y , there exists a measure Q, under which
1
X

and 1
Y

are both local (or even true) martingales. Obviously, this is the case, if
X and Y are independent under P. In this section, we will consider the case where
X and Y are continuous local P-martingales, but not necessarily independent.

THEOREM 7.1. Let (�,F, (Ft )t≥0,P) be a filtered probability space, where
(Ft )t≥0 is the right-continuous augmentation of a standard system. Assume that
X and Y are two strictly positive continuous local P-martingales with d〈X〉t =
ft dt , d〈Y 〉t = gt dt and d〈X,Y 〉t = ht dt . Suppose that for all t > 0, the stochastic
integral

Mt =
∫ t

0

(fsYs − hsXs)gs

YsXs(fsgs − h2
s )

dXs +
∫ t

0

(gsXs − hsYs)fs

YsXs(fsgs − h2
s )

dYs
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is well-defined. Denote by τ the explosion time of E(M). Then there exists a mea-
sure Q on F∞, under which 1

X̃
and 1

Ỹ
defined via

X̃t = Xt1{t<τ } + lim inf
s→τ,s<τ,s∈QXs1{τ≤t<∞},

Ỹt = Yt1{t<τ } + lim inf
s→τ,s<τ,s∈QYs1{τ≤t<∞}

are both continuous nonnegative local Q-martingales and dP|Ft = 1
E(M)t

×
1{t<τ } dQ|Ft for all t ≥ 0.

PROOF. The stochastic exponential E(M) is a continuous local P-martingale
with localizing sequence

τn := inf
{
t ≥ 0 :E(M)t > n

}∧ n.

We define a consistent family of probability measures Qn on Fτn by

dQn

dP

∣∣∣∣
Fτn

= E(M)τn, n ∈N.

Using the same trick as in the proof of Theorem 2.12, we restrict each measure Qn

to Fτn−. Since (Fτn−)n∈N is a standard system by Lemma 2.7, there exists a unique
measure Q on Fτ−, such that Q|Fτn

= Qn for all n ∈ N. For any stopping time S

and A ∈FS , we get

Q(S < τn,A)= EP(
E(M)S∧τn1{S<τn,A}

) = EP(
E(M)S1{S<τn,A}

)
.

Taking n→∞ results in

Q(S < τ,A)= EP(
E(M)S1{S<∞,A}

)
.

It follows that P is locally absolutely continuous with respect to Q before τ . We
choose an arbitrary extension of Q from Fτ− to F∞ as discussed on page 1836.
Next, according to Girsanov’s theorem applied on Fτn ,

Nt∧τn := X
τn
t − 〈

Mτn,Xτn
〉
t

= X
τn
t −

∫ t∧τn

0

(fsYs − hsXs)gs

YsXs(fsgs − h2
s )

d〈X〉s

−
∫ t∧τn

0

(gsXs − hsYs)fs

YsXs(fsgs − h2
s )

d〈X,Y 〉s

= X
τn
t −

∫ t∧τn

0

(fsYs − hsXs)gsfs + (gsXs − hsYs)fshs

YsXs(fsgs − h2
s )

ds

= X
τn
t −

∫ t∧τn

0

fs

Xs

ds
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is a local Q-martingale. We apply Itô’s formula:

1

Xt∧τn

= 1

X0
−

∫ t∧τn

0

dXs

X2
s

+
∫ t∧τn

0

d〈X〉s
X3

s

= 1

X0
−

∫ t∧τn

0

dNs

X2
s

−
∫ t∧τn

0

fs

X3
s

ds +
∫ t∧τn

0

fs

X3
s

ds = 1

X0
−

∫ t∧τn

0

dNs

X2
s

.

Thus, 1
Xτn is a local Q-martingale for all n ∈N. Since 1

X
is continuous, (τ

1/X
m )m∈N

is a localizing sequence for 1
Xτn on (�,Fτn,Q) for all n ∈N, where

τ 1/X
m := inf

{
t ≥ 0 :

1

Xt

> m

}
∧m, τ 1/X := lim

m→∞ τ 1/X
m .

Moreover, we have

Q
(
τ 1/X < τ

) = lim
n→∞Q

(
τ 1/X < τn

) = lim
n→∞EP(

E(M)τn1{τ 1/X<τn}
) = 0,

because X is strictly positive under P. Since a process which is locally a local
martingale is a local martingale itself, we conclude that 1

X
is a positive local

Q-martingale up to time τ with localizing sequence (τn ∧ τ
1/X
n )n∈N. Especially,

limn→∞ Xτn = limn→∞ X
τn∧τ

1/X
n

exists Q-almost surely. Thus, 1
X̃

is a continuous

positive Q-super-martingale and τ
1/X
n →∞ Q-almost surely. Therefore,

1 ≥ EQ
(

1

X̃
τ

1/X
n

)
= lim

m→∞EQ
(

1

X̃
τ

1/X
n ∧τm

)
≥ lim

m→∞EQ
(

1

X̃
τ

1/X
m ∧τm

)
= 1,

where the two inequalities follow by the super-martingale property. Hence, 1
X̃

is a
local Q-martingale.

For 1
Ỹ

, the claim follows by analogous calculations. �

But are 1
X̃

and 1
Ỹ

in the setting of Theorem 7.1 actually true Q-martingales or
just local Q-martingales? In general, there does not seem to be an easy answer to
this question. However, if X (resp. Y ) is a homogeneous diffusion, one can show
the following extension of the above theorem.

LEMMA 7.2. In the setting of Theorem 7.1 assume that X follows the
P-dynamics

dXt = σ(Xt) dBt

for some P-Brownian motion B , where σ(·) is locally bounded and bounded away
from zero on (0,∞) and σ(0)= 0. Then 1

X̃
is a Q-martingale, where the measure Q

is constructed in Theorem 7.1.
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PROOF. Note that, with the notation used in the proof of Theorem 7.1, up to
time τ the process N follows the dynamics

dNt = σ(Xt) dBQ
t ,

where

BQ
t := Bt −

∫ t

0

σ(Xs)

Xs

ds

is a Q-Brownian motion on [0, τ ) by Lévy’s theorem. Hence, the Q-dynamics of 1
X

up to time τ are given by

d

(
1

Xt

)
=−σ(Xt)

X2
t

dBQ
t =: σ

(
1

Xt

)
dBQ

t(9)

and we are in a situation similar to Example 3.1.2. Especially, 1
X̃

is a stopped
homogeneous diffusion under Q. Recall that since X is strictly positive under P,
we must have ∫ 1

0

x

σ 2(x)
dx =∞.

But any diffusion on an auxiliary probability space with the dynamics described in
(9) satisfies ∫ ∞

1

x

σ 2(x)
dx =

∫ 1

0

y

σ 2(y)
dy =∞

and is hence a true martingale by the criterion of [8], cf. also Example 3.1.2. Natu-
rally, any stopped diffusion with the same dynamics is a martingale as well. Since
the fact whether 1

X̃
is a true martingale or not only depends on its distributional

properties, we may therefore conclude that 1
X̃

is indeed a Q-martingale. �

REMARK 7.3. Theorem 7.1 deals with two strictly positive local P-martin-
gales. It is, however, obvious that one can get a similar result for n≥ 2 strictly pos-
itive local P-martingales. Also note that the construction in Theorem 7.1 is only
possible if the local quadratic covariation matrix of the local P-martingales is suffi-
ciently nondegenerate. Moreover, it is interesting that the statement of Lemma 7.2
contains no further restrictions on the stochastic behaviour of Y .

We briefly want to describe a different approach focusing on “conformal local
martingales” in Rd, d > 2, which is dealt with in [30].

DEFINITION 7.4. A continuous local martingale X, taking values in Rd ,
is called a conformal local martingale on (�,F, (Ft )t≥0,P), if 〈Xi,Xj 〉 =
〈X1〉1{i=j} P-almost surely for all 1 ≤ i, j ≤ d .
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In [30], the authors make the restriction that the conformal local martingale
does not enter some compact neighborhood of the origin in Rd . Using simple lo-
calization arguments as in Theorem 2.12 above, one can get rid off this assump-
tion which seems somehow inappropriate when dealing with stock price processes.
This yields the following extended version of Lemma 12 in [30]. We denote by | · |
the Euclidean norm in Rd .

THEOREM 7.5. Let (�,F, (Ft )t≥0,P) be a filtered probability space such
that (Ft )t≥0 is the right-continuous augmentation of a standard system. For d > 2,
let X = (X1, . . . ,Xd) be a conformal local P-martingale. Suppose that X0 = x0
with |x0| = 1 and define τ := inf{t ≥ 0||Xt | = 0}. Then there exists a measure Q
on F∞, such that Q|Ft ! P|Ft for all t ≥ 0 and such that

Yt :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xt

|Xt |2 , t < τ ,

lim inf
s→τ,s<τ,s∈Q

Xs

|Xs |2 , t ≥ τ

is a conformal uniformly-integrable Q-martingale.

PROOF. Note that P(τ < ∞) = 0 by Knight’s theorem because a standard d-
dimensional Brownian motion does not return to the origin almost surely for d > 2.
We define the stopping times τn := inf{t ≥ 0 : |Xt | ≤ 1

n
}. As in Lemma 11 in [30],

it follows that (|Xt∧τn |2−d)t≥0 is a uniformly integrable P-martingale for all n ∈N,
because | · |2−d is harmonic. We define a consistent family of probability measures
Qn on Fτn by

dQn

dP

∣∣∣∣
Fτn

= |Xτn |2−d, n ∈N.

Using the same trick as in the proof of Theorem 2.12, we restrict each measure Qn

to Fτn−. Since (Fτn−)n∈N is a standard system, there exists a unique measure Q
on Fτ−, such that Q|Fτn

= Qn for all n ∈N. For any stopping time S, we thus get

Q(S < τn)= EP(|Xτn |2−d1{S<τn}
) = EP(|XS |2−d1{S<τn}

)
.

Choosing S = t <∞,A ∈Ft and taking n→∞ results in

Q
(
A∩ {t < τ }) = EP(|Xt |2−d1A

)
.

Therefore, P is locally absolutely continuous to Q before τ . As explained on
page 1836 there exists an extension of Q from Fτ− to F∞, which we also denote
by Q.

From Lemma 12 in [30], we know that Xt∧τn

|Xt∧τn |2 is a conformal Qn-martingale.

Furthermore, (
EQ sup

t<τ
|Y i

t |
)2 ≤ EQ sup

t<τ
|Y i

t |2 ≤ 1, 1 ≤ i ≤ d.
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Thus, Y is a continuous uniformly integrable Q-martingale by Exercise 1.48 in
Chapter IV of [35]. Clearly, Y is also conformal. �

APPENDIX: CONDITION (P )

In Theorem 2.1, we mentioned condition (P ), which was introduced in Defini-
tion 4.1 in [29] following [31] as follows.

DEFINITION A.6. Let (�,F, (Ft )t≥0) be a filtered measurable space, such
that F is the σ -algebra generated by (Ft )t≥0 :F = ∨

t≥0 Ft . We shall say that the
property (P ) holds if and only if (Ft )t≥0 enjoys the following conditions:

• For all t ≥ 0, Ft is generated by a countable number of sets.
• For all t ≥ 0, there exists a Polish space �t , and a surjective map πt from �

to �t , such that Ft is the σ -algebra of the inverse images by πt of Borel sets
in �t , and such that for all B ∈Ft , ω ∈�, πt(ω) ∈ πt(B) implies ω ∈ B .

• If (ωn)n≥0 is a sequence of elements of � such that for all N ≥ 0,

N⋂
n≥0

An(ωn) �=∅,

where An(ωn) is the intersection of the sets in Fn containing ωn, then
∞⋂

n≥0

An(ωn) �=∅.
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