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GIBBS MEASURES ON PERMUTATIONS OVER
ONE-DIMENSIONAL DISCRETE POINT SETS1

BY MAREK BISKUP AND THOMAS RICHTHAMMER

UCLA and Universität Hildesheim

We consider Gibbs distributions on permutations of a locally finite in-
finite set X ⊂ R, where a permutation σ of X is assigned (formal) energy∑

x∈X V (σ(x) − x). This is motivated by Feynman’s path representation of
the quantum Bose gas; the choice X := Z and V (x) := αx2 is of principal in-
terest. Under suitable regularity conditions on the set X and the potential V ,
we establish existence and a full classification of the infinite-volume Gibbs
measures for this problem, including a result on the number of infinite cycles
of typical permutations. Unlike earlier results, our conclusions are not limited
to small densities and/or high temperatures.

1. Introduction.

1.1. Motivation. One of the principal difficulties underlying quantum statisti-
cal mechanics is the noncommutative nature of the relevant observables. For some
systems, the said difficulty can sometimes be reduced by developing a suitable
classical, and often probabilistic, representation of the problem at hand. Interest-
ingly, this can be done for quite a few examples of interest, namely, the quantum
rotator, the quantum Heisenberg model, the Ising model in a transversal field and,
most notably, the Bose gas. The classical representation is still hard to analyze, but
some results often follow. See Tóth [22] and Aizenman and Nachtergaele [3] for
early studies of such representations.

In this paper we take up a model that is derived from the classical represen-
tation of interacting Bose gas. This representation is originally due to Feynman
[10] to whom it served as a mathematical tool for the analysis of the onset of
Bose–Einstein condensation in 4

2He. Feynman’s representation yields a model on
N classical particles in positions x1, . . . , xN ∈ R

d that are given the weight∑
σ∈�X

∫
W

β,σ
X (dB)

(1.1)

× exp
{
− ∑

x∈X

V
(
σ(x) − x

) − ∑
1≤i<j≤N

∫ β

0
w

(
B

(i)
t − B

(j)
t

)
dt

}
.
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Here X := {x1, . . . , xN } is the set of all particles, �X is the set of all permutations
of X (i.e., all one-to-one maps of X onto X), β is (twice) the inverse tempera-
ture and V (x) := 1

2β
|x|2 so that the first sum in the exponent yields independent

Gaussian factors. The probability measure W
β,σ
X is over collections of independent

Brownian bridges B := (B
(i)
t : 0 ≤ t ≤ β,1 ≤ i ≤ N), where the ith bridge starts at

xi and terminates at σ(xi). The function w :Rd → R is the two-body interaction
potential between the bosons. The a priori measure on the positions x1, . . . , xN

is Lebesgue over a finite set; integrating the weight (1.1) defines the normalizing
constant called the partition function.

A natural first case to explore is that of no interaction, that is, w := 0. Averaging
the positions over, say, a torus can then be exactly carried out with the help of
Fourier representation and the sum over permutations can then also be performed.
An outcome of this, envisioned already by Feynman [10], is as follows: For d =
1,2, any finite density of particles and any β > 0, a typical σ will decompose
entirely into finite cycles (i.e., of sizes not growing with N ). On the other hand, for
d ≥ 3 and each β > 0 there is a critical density above which a particle is contained
in a cycle of length of order N with positive probability. A mathematical proof of
this has been given only recently by Sütő [20, 21]; the critical density turns out to
coincide with that for the appearance of the Bose–Einstein condensate.

It has subsequently been observed by Betz and Ueltschi [8] that a similar cal-
culation to the one just mentioned can be carried out for V (x) = |x|2 replaced by
more general potential functions. The principal next challenge from the mathemat-
ics point of view is thus to either allow for nonzero interactions, w �= 0, or to drop
the integration over the positions xi . The former choice is that of the prime interest
for physics; unfortunately, at this moment we do not see any tangible way to tackle
it. The latter option is nonetheless interesting as well; it leads to natural measures
on partitions of point sets in R

d . This motivation was the basis of an earlier article
of Fichtner [11]. More recently, Gandolfo, Ruiz and Ueltschi [12] and Betz and
Ueltschi [8] proposed a similar model with the particles placed at the vertices of
the integer lattice Z

d .

1.2. Main questions. We will henceforth focus on the latter case and formalize
it as the following problem: For a given locally-finite set X ⊂ R

d of positions and
a potential function V :Rd →R, we wish to consider a probability measure μ that
is formally given by

μ
({σ }) = 1

Z
exp

(
− ∑

x∈X

V
(
σ(x) − x

))
, σ ∈ �X.(1.2)

If X is finite, this corresponds to the measure arising from (1.1) with w := 0. If X is
infinite, the expression (1.2) is generally ill defined. In order to extend it to infinite
volume (i.e., infinite number of particles), one either has to appeal to limits—an
approach previously used in this context by Fichtner [11] and Gandolfo, Ruiz and
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Ueltschi [12]—or go directly by prescribing infinite-volume Gibbs measures via a
family of specifications (Georgii [13]). This will be our choice, so the first question
to ask is:

(1) Can we define a consistent family of specifications of the form (1.2)?

As we will see later, already this represents a departure from the standard theory.
Naturally, one thus immediately adds:

(2) Under what conditions are there (infinite-volume) Gibbs measures for the
specifications defined in (1)?

In an approach via limits from finite volume, this boils down to controlling
tightness—the issue is that in the limiting measure, no points get mapped to/from
infinity. This has, so far, only been accomplished under the assumption of low
density/high temperature (cf. conditions (V.3) or (5.8) in Fichtner [11]) or for in-
teraction with a finite-range cutoff (Betz and Ueltschi [8], page 478). In addition,
all of this is only for the free boundary condition (Fichtner [11], Theorems 2.2
and 3.1).

NOTE. When this manuscript was very near its completion, Betz [7] posted a
proof of tightness for the measures with periodic boundary conditions over X :=
Z

d in all d ≥ 1 assuming the summability condition of the kind
∑

x∈Zd e−δV (x) <

∞ for some δ ∈ (0,1).

Once the setting for Gibbs theory is fixed, the natural follow-up questions con-
cern the structure of the permutations that are typical samples from these mea-
sures:

(3) Characterize the Gibbs measures that are trivial on the tail sigma field (i.e.,
the extremal Gibbbs measures).

(4) Under what conditions does σ contain finite cycles only, and when do infi-
nite cycles occur with positive probability?

The mathematical results that are available at present all pertain to the regime of
low densities/high temperatures: the measure defined by the free boundary condi-
tion contains only finite cycles almost surely (Fichtner [11], Theorem 3.2). Inter-
esting numerical simulations were performed by Gandolfo, Ruiz and Ueltschi [12]
and Grosskinsky, Lovisolo and Ueltschi [15] of the model with X := Z

d (the inte-
ger lattice) and V (x) := α|x|2. These indicated a similar dichotomy as for the ideal
Bose gas: only microscopic (finite) cycles in dimensions d = 1,2 and macroscopic
cycles in d = 3 for β := 2

α
sufficiently large.

The principal goal of this paper is to answer the above questions in the case
of one-dimensional point sets, X ⊂ R, subject to natural homogeneity conditions,
and a fairly rich class of potentials V . Explicitly, we show how to define Gibbs
specifications, establish the existence of a family of Gibbs measures and prove
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that the extremal ones are in one-to-one correspondence with an integer parameter
called the flow. This is the quantity whose absolute value gives the (a.s.-constant)
number of infinite cycles while its sign tells us their asymptotic direction (it turns
out that all infinite cycles necessarily “flow” in the same direction).

1.3. Further related work. Apart from the above mentioned works that are
focused on the connection to the Bose gas, there are numerous other studies of
combinatorial nature that deal with similar problems. One line of research con-
cerns compositions of random transpositions (e.g., Schramm [19], Berestycki and
Durrett [6], Berestycki [4, 5]); these pertain to situations without underlying geom-
etry. Another direction concerns the random stirring process where transpositions
“arrive” randomly but only over edges of an underlying graph. For the graph being
an infinite regular tree, progress has recently been made concerning the existence
and uniqueness of a transition from a regime without infinite cycles to a regime
with infinite cycles (Hammond [16, 17]). A recent review by Golschmidt, Ueltschi
and Windridge [14] gives further connections between the combinatorial models
and quantum systems.

There are also several alternative approaches to statistical mechanics of Bose
gases to the one proposed by Feynman. Recently, much progress has been achieved
in the analysis of the so-called Gross–Pitaievski limit; this density-function ap-
proach is summarized in the monograph by Lieb, Seiringer, Solovej and Yngvason
[18]. Other studies were put forward that expand on the ideas of Bogoliubov [9];
see, for instance, a review article by Zagrebnov and Bru [24]. The jury is still out
on which of these approaches is best suited for understanding the physics, although
some connection of the present problem to the others has also been made; see, for
example, Ueltschi [23] and the work of Adams, Bru and König [1, 2].

1.4. Outline. The remainder of the paper is organized as follows: In the next
section we define a suitable notion of Gibbs measures for a given set of points
X and potential V satisfying suitable assumptions. We introduce the main con-
cepts for our analysis and formulate a series of lemmas containing our findings
for Gibbs measures in the given context, concluding with a summarizing theorem.
The following sections contain the proofs for these results.

2. Definitions and results. Here we develop the mathematical framework of
our problem and give statements of the results. Our approach is based on the theory
of Gibbs measures but, since we work in a somewhat nonstandard setting, we will
be rather pedantic in introducing all necessary notation.

2.1. Permutations on point sets and their flow. Our aim is to construct a mea-
sure of form (1.2) on permutations on a given countably-infinite set of points
X ⊂ R. One may want to think of a regular point set such as the set of all inte-
gers Z, but at this point we only assume that X is:
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(i) locally finite (i.e., any bounded subset of X is finite) and
(ii) bi-infinite (i.e., X is unbounded from above and below).

In order to be able to identify particular points of X with respect to a given position,
we use the following notation: For a ∈ R and n ≥ 1 let an, a−n be the unique points
of X such that #((a, an]∩X) = n = #([a−n, a)∩X), where #(A) is our notation for
the cardinality of A. In other words, an, a−n are the nth point of X lying (strictly)
to the right and left of a, respectively. If a ∈ X we also write a0 := a. We set
�c := X \� for � ⊂ X, and write �� X if � is a finite subset of X. We will also
write

X� :=
{
x0 + x1

2
:x ∈ X

}
(2.1)

to denote the dual set of points of X.
The configuration space �X is the set of all permutations (i.e., bijections) on X.

For given σ ∈ �X it will be useful to think of a pair (x, σ (x)) with x ∈ X as a
jump from x to σ(x) with the notation

x → y :⇔ σ(x) = y,
(2.2)

x ↔ y :⇔ σ(x) = y or σ(y) = x.

We will say that (x, σ (x)) is a jump over a ∈ R if x < a < σ(x) or σ(x) < a < x,
and it is a jump to the right, respectively, left if σ(x) > x, respectively, σ(x) < x.
The quantity |σ(x) − x| will be referred to as the length of the jump.

An important tool in our analysis will be the flow Fa(σ ) of a permutation σ

through a ∈ X�. To define this object, we set

F+
a (σ ) := #

{
x ∈ X :x < a < σ(x)

}
,

(2.3)
F−

a (σ ) := #
{
x ∈ X :σ(x) < a < x

}
and define

Fa(σ ) :=
{

F+
a (σ ) − F−

a (σ ), if F+
a (σ ),F−

a (σ ) < ∞,
∞, otherwise.

(2.4)

As we will see, the formal (second) value is a proviso that will turn out to be
irrelevant for the typical permutations to be considered later. A key fact is that
Fa(σ ) does not depend on a:

LEMMA 2.1. For locally finite X and σ ∈ �X , Fa(σ ) has the same value for
all a ∈ X�.

Therefore, we may (and will) drop a from the notation and define F :�X →
Z∪ {∞} to be the common value of Fa for all a ∈ X�.

Every permutation σ ∈ �X can be decomposed into disjoint cycles, some of
which may be infinite. If x ∈ X belongs to an infinite cycle and σn(x) → −∞ for
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n → −∞ and σn(x) → ∞ for n → ∞, we say that the cycle is going from −∞
to ∞. Similarly we may have cycles going from ∞ to ∞, −∞ to −∞, ∞ to −∞.
If one or both of the above limits do not exist, we say that the infinite cycle is
indeterminate. Not too surprisingly, the value of the flow gives some information
on the number of such infinite cycles:

LEMMA 2.2. Assume that X is locally finite. Any σ ∈ �X with F(σ) =: n ∈ Z

does not have indeterminate infinite cycles, and it has at least |n| infinite cycles
from −∞ to ∞ if n > 0 and at least |n| infinite cycles from ∞ to −∞ if n < 0.

We note that this lemma still leaves the possibility of having additional infinite
cycles that do not contribute to the flow, for example, an infinite cycle from ∞ to
∞ or a pair of cycles, one from −∞ to ∞ and one from ∞ to −∞. These will be
effectively ruled out in Theorem 2.15.

2.2. Energy of permutations. The energy of a permutation σ will be defined
in terms of a given potential function V :R → R. The most interesting choice is
V (x) := αx2 for α > 0, but for now we will only assume V to be symmetric
[V (x) = V (−x) for all x ∈ R] and strictly convex. The formal Hamiltonian

H(σ) := ∑
x∈X

V
(
σ(x) − x

)
(2.5)

does not converge to a finite limit for most permutations σ . As usual this problem
can be avoided by considering a local version of the energy for a given boundary
configuration. For � �X we define a compatibility relation ∼� between configu-
rations σ ∈ �X and η ∈ �X by setting

σ ∼� η :⇔ ∀x ∈ �c :σ(x) = η(x), σ−1(x) = η−1(x).(2.6)

In particular, if σ ∼� η, then σ maps � ∩ η−1(�) = � ∩ σ−1(�) bijectively onto
� ∩ η(�) = � ∩ σ(�). The Hamiltonian of σ ∈ �X in �� X is defined by

H�(σ) := ∑
x∈σ−1(�)∩�

V
(
σ(x) − x

)
.(2.7)

As usual, a configuration will be called a ground state of H if its energy is smaller
than that of any local perturbation thereof:

DEFINITION 2.3. τ ∈ �X is said to be a ground state of H if and only if

H�(τ) ≤ H�(σ) for all �� X and all σ ∼� τ.(2.8)

It turns out that the ground states can be explicitly described:
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LEMMA 2.4. If X is locally finite and bi-infinite, and V is strictly convex, then
the ground states of H form the set {τn :n ∈ Z}, where τn is the n-shift permutation
defined by

τn(x) := xn for all x ∈ X.(2.9)

Note that the ground states {τn :n ∈ Z} are precisely the increasing bijections
of X. [We say that σ is strictly increasing if x < y implies σ(x) < σ(y).] More-
over, they are completely parametrized by their flow, F(τn) = n, which (as we will
see later) will be true even for the Gibbs measures. The proof of Lemma 2.4 and
many of the following results rely on the energy comparison of a permutation and
its perturbation at exactly two points:

DEFINITION 2.5. For x, y ∈ X and σ ∈ �X , we define σxy ∈ �X by setting

σxy(x) := σ(y), σxy(y) := σ(x),
(2.10)

σxy(z) := σ(z) for all z �= x, y.

We will sometimes refer to the transformation σ �→ σxy as a swap. Note that,
for x, y, σ (x), σ (y) ∈ �� X we have σxy ∼� σ and

H�(σ) − H�(σxy)
(2.11)

= V
(
σ(x) − x

) + V
(
σ(y) − y

) − V
(
σ(x) − y

) − V
(
σ(y) − x

)
.

This relation is the reason why strict convexity of V is crucial for the validity of
Lemma 2.4.

2.3. Specifications and Gibbs measures. We continue to suppose that X and
V satisfy the above assumptions. Before defining Gibbs measures on �X , we need
to impose topological and measurable structures on �X . We endow �X with the
smallest topology under which all the projections

σ �→ P +
x (σ ) := σ(x) and σ �→ P −

x (σ ) = σ−1(x) (x ∈ X)(2.12)

are continuous. [Identifying σ with (σ (x), σ−1(x))x∈X this topolgy on �X co-
incides with the product of the discrete topologies on X × X.] This topology is
metrizable, for example, by

d(σ, η) := inf
{
2−r :σ = η and σ−1 = η−1 on X ∩ [−r, r]},(2.13)

and �X is thus a complete separable metric space.
Let FX := σ(P +

x ,P −
x :x ∈ X) denote the Borel-σ -algebra on �, and for � ⊂ X

we use

F� := σ
(
P +

x ,P −
x :x ∈ �

)
(2.14)



GIBBS MEASURES ON PERMUTATIONS 905

to denote the σ -algebra of events depending on � only. A function f :�X → R

is called local if it is measurable with respect to F� for some � � X; an event is
called local if its indicator is a local function. Since every local event is open and
closed, every local function is continuous. As usual we can use these to define

T := ⋂
��X

F�c,(2.15)

the tail-σ -algebra of all events that do not depend on what a permutation looks like
on any bounded set.

In order to construct (infinite volume) Gibbs measures for the above Hamilto-
nian H , we will use the method of specifications. Here, the specification corre-
sponding to boundary configuration η ∈ �X and volume � � X is the discrete
probability measure γ�(·|η) on (�X,FX) defined by

γ�

({σ }|η) := 1

Z�(η)
e−H�(σ)1{σ∼�η},

(2.16)
where Z�(η) := ∑

σ :σ∼�η

e−H�(σ).

We note that Z�(η) > 0 (since σ := η gives a nonzero contribution) and Z�(η) <

∞ (since only finitely many permutations are ∼�-compatible to η if � is finite).
Obviously, η �→ γ�(A|η) is measurable for each A ∈ FX .

DEFINITION 2.6. A Gibbs measure μ with respect to the above Hamiltonian
H is a probability measure on (�X,FX) that is compatible with all specifications:

Eμ

(
γ�(A|·)) = μ(A) for all A ∈FX and all ��X,(2.17)

where Eμ denotes expectation with respect to μ. We will write G to denote the set
of all Gibbs measures for the (implicit) Hamiltonian H .

REMARK 2.7. Our setup differs from that in Georgii [13], which is versed in
terms of spin systems. Such a description is permissible in our case as well. A nat-
ural attempt would be to proclaim σ(x) to be an X-valued spin at x, but that choice
does not lead to quasilocal specifications. Taking a pair of values (σ (x), σ−1(x))

for the spin at x solves the quasilocality problem, but only at the cost of introducing
hard-core restrictions.

2.4. Conditions on the point set and the potential. In order to show the ex-
istence (and discuss further properties) of Gibbs measures, we have to impose
conditions on X and V that are stronger than those considered so far. We did not
aim at finding the most general conditions under which our results hold, but rather
gave conditions under which the proofs remain transparent and which still include
the main examples of interest.
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For the formulation of the conditions on X we introduce constants that control
the spacings between the points of �(a,n) := {a−|n|−1, . . . , a|n|+1}, (n ∈ Z) and
the growth rate of the number of particles of X as seen from a:

cX
s (a, n) := min

{
c ≥ 1 :

consecutive points of �(a,n)

keep distances ∈ [
c−1, c

]
}

(2.18)

and

cX
g (a) := inf

{
c ≥ 0 : #{x ∈ X : 0 < |x − a| ≤ t} ≤ ct for all t > 0

}
.(2.19)

(The subindices “s,” resp., “g” stand for “separation,” resp., “growth.”) Below we
will consider the following, progressively restrictive, properties of X ⊂ R (and
n ≥ 0):

(X1) X is locally finite and bi-infinite (just as before).
(X2) cX

g (a) < ∞ for some a ∈ R.
(Xn) For some cn < ∞, bi-infinitely many points a ∈ X� satisfy

cX
s (a, n) ≤ cn and cX

g (a) ≤ cn.(2.20)

We note that X := Z satisfies the given conditions [since cZs (a, n) = 1 and cZg (a) =
2 for all a ∈ X�], but the conditions also allow for point sets such that the distance
of consecutive points is not bounded from above or below. In paricular, we can
consider point sets produced by a Poisson point process or other rather general
shift-invariant processes:

LEMMA 2.8. Consider a point process (i.e., an N ∪ {∞}-valued random
purely-atomic Borel measure) X on R that has the following properties:

(1) X (R) = ∞ a.s. but EX (A) < ∞ for any compact A ⊂ R.
(2) X is simple, that is, a.s. no two points of X coincide.
(3) The law of X is invariant and ergodic under the map x �→ x + 1.

Then the set of points corresponding to a.e. sample of X satisfies (X1) and (Xn)
for all n ∈ Z.

Concerning the potential function V :R → R, we will consider the following
properties:

(V1) V is symmetric and strictly convex (just as before).
(V2) V satisfies the following growth condition: For all d > 0 we have

ψd(x) := V (x) + V (0) − 2V ((x + d)/2)

x logx
→ ∞ for x → ∞.(2.21)

We note that V (x) := α|x|1+ε satisfies both (V1) and (V2) for all α > 0 and all
ε > 0. In particular, this includes the most interesting case V (x) := αx2 for α > 0.
Linearly growing potentials, for example, V (x) := α|x|, satisfy neither (V1) nor
(V2), and indeed we are unable to extend our conclusions to these cases.
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2.5. Existence of Gibbs measures. We note that without any assumptions on V

it may be the case that there are no Gibbs measures. This can already be seen when
V := 0, which corresponds to the physically interesting case of zero temperature
(i.e., α := 0).

LEMMA 2.9. For infinite X and V := 0 we have G = ∅.

On the other hand, existence can be shown under the conditions introduced in
the previous section. At this point the weaker condition (X2) is sufficient.

LEMMA 2.10. Let X and V satisfy (X1), (X2) and (V1), (V2), respectively.
For every n ∈ Z there is μ ∈ G such that μ(F = n) = 1.

So there are in fact many Gibbs measures, at least one for each value of the flow.
In all cases the flow is finite and this turns out to be no accident:

LEMMA 2.11. Let X and V satisfy (X1), (X2) and (V1), (V2), respectively.
Then F is T -measurable and finite μ-a.s. for every μ ∈ G.

As in the classical Gibbs measure theory, G is a closed convex set. Its extremal
elements are called extremal Gibbs measures, and they are precisely those that
trivialize on the tail sigma algebra T . Consequently, every Gibbs measure can
be decomposed into extremal Gibbs measures by conditioning on T . The previ-
ous lemma implies that F is a.s. constant with respect to every extremal Gibbs
measure. We may thus filter the Gibbs measures according to the flow and focus
attention on sets

Gn := {
μ ∈ G :μ(F = n) = 1

}
.(2.22)

A key challenge now is to relate the value of the flow to the number of infinite
cycles.

2.6. Infinite cycles and classification of Gibbs measures. Our analysis of infi-
nite cycles requires introduction of an additional technical tool, called a cut. This
is defined as follows:

DEFINITION 2.12. Let σ ∈ �X be a permutation with flow F(σ) =: n ≥ 0
and a ∈ X�. Then a is called a cut for σ if F+

a (σ ) = n [and so F−
a (σ ) = 0] and σ

contains the following n jumps

a−n → a1, . . . , a−1 → an.(2.23)

For n < 0 similar notions are defined by reversing the directions of the jumps.
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The cuts are helpful for the following reason: If a is a cut for σ , then σ

cannot have cycles jumping over a apart from the |n| infinite ones described in
Lemma 2.2. In particular, we can make the following conclusions:

LEMMA 2.13. Let X, V and n ∈ Z satisfy (X1), (Xn) and (V1), (V2), and let
μ ∈ Gn. Then:

(a) there are bi-infinitely many cuts for μ-a.e. permutation, and
(b) μ-a.e. permutation has exactly |n| infinite cycles.

A duplication argument yields a uniqueness result. For this we call a ∈ X� a cut
for a pair of permutations (σ, σ ′) if it is a cut for both σ and σ ′.

LEMMA 2.14. Let X, V and n ∈ Z satisfy (X1), (Xn) and (V1), (V2), and let
μ,μ′ ∈ Gn. Then:

(a) there are bi-infinitely many cuts for μ ⊗ μ′-almost every pair of permuta-
tions, and

(b) μ = μ′.

We conclude this section by collecting all of our previous findings and thus
providing a complete description of the set of all Gibbs measures.

THEOREM 2.15. Let X, V and n ∈ Z satisfy (X1), (Xn) and (V1), (V2). Then
the following holds:

(a) Gn contains a single Gibbs measure μn;
(b) μn-a.e. permutation has exactly |n| infinite cycles;
(c) for any η ∈ � with F(η) = n and any sequence of increasing subsets � ↑ X,

μn is the weak limit of specifications γ�(·|η).

In particular, if (Xn) is satisfied for every n ∈ Z [and (V1), (V2) hold], then

G =
{∑

n∈Z
cnμn : cn ≥ 0,

∑
n

cn = 1
}
.(2.24)

We finish with a few remarks:

REMARK 2.16. As already mentioned, our assumptions on V are by far not
optimal. In fact, we believe that a majority of our results—that is, with the ex-
ception of the characterization of ground states in Lemma 2.4—carry over when
V :R → R is perturbed by adding a continuous, even function that decays suffi-
ciently fast to zero at infinity.
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REMARK 2.17. Our main theorem states that the specifications γ�(·|η) have
a weak limit along volumes increasing to X for any boundary condition η that has
a finite flow. If η has infinite flow, this is not necessarily the case. To illustrate dif-
ferent behaviors we give two examples, assuming that (V1) and (V2) are satisfied
and that X := Z for simplicity.

EXAMPLE 1. Let η ∈ �Z be defined by η(0) := 0 and η(x) := x +2px , where
px is the maximal power of 2 dividing |x|. Writing x := (2n + 1)2k for x �= 0 and
some n ∈ Z and k ∈ N, we get η(x) = (2n + 3)2k and so η is a permutation.
It is easy to check that η has infinitely many cycles from −∞ to ∞. Here an
argument underlying the proof of Lemma 5.1 can be used to show that for all
x, y ∈ Z we have γ�(x → y|η) → 0 whenever � ↑ Z. (Indeed, with increasing �

there is an increasing number of jumps over [x, y] with both endpoints in �; any
of these can be swapped with the jump x → y while gaining energy.) So in this
case no sequence of specifications (with � ↑ Z) is tight and no weak limits can be
extracted.

EXAMPLE 2. Let η ∈ �Z be defined by η(x) := −x for all x ∈ Z. Then η has
infinite flow, but no infinite cycles. Since the restriction of γ�(·|η) to � ∩ (−�) is
the same as γ�∩(−�)(·|τ0), here we have γ�(·|η) → μ0 weakly whenever � ↑ X.

REMARK 2.18. The one-dimensional nature of the underlying set X has been
crucial for our reasoning, mainly due to the concept of the flow. Utilizing this con-
cept we are able to show that for any given jump of sufficient length it is possible to
find another jump such that the corresponding swap (see Definition 2.5) decreases
the energy significantly. In two dimensions it is not clear how to define a useful
quantity analogous to the flow, and indeed the idea of reducing the energy by a
suitable swap fails: If a long jump is entirely surrounded by jumps of the same
length and in the same direction, swapping this jump with another one may in fact
increase the energy. As a consequence our technique does not even give existence
of Gibbs measures in two or more dimensions.

3. Proofs: Preliminary observations. We are now ready to commence the
exposition of the proofs. Here we begin with some preliminary observations. Cer-
tain technical aspects that feed into the main arguments are then discussed in Sec-
tion 4; the main results are proved in Sections 5 and 6. This section gives the proofs
of Lemmas 2.1, 2.2, 2.4 and 2.8.

3.1. Permutations and their flow. We begin by giving the proofs of the lemmas
dealing with existential facts and properties of the flow of a permutation.

PROOF OF LEMMA 2.1. Let σ ∈ �X . It suffices to show that Fa(σ ) = Fb(σ )

whenever a < b ∈ X� with only one point x ∈ X in between. Then every jump
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except the one to and the one from x contributes to F+
a (σ ) and F+

b (σ ) exactly
the same way [and likewise for F−

a (σ ) and F−
b (σ )]. This already implies that

Fa(σ ) = ∞ if and only if Fb(σ ) = ∞. The jumps to and from x decompose into
five cases: (1) σ(x) = x, (2) σ−1(x) < x < σ(x), (3) σ(x) < x < σ−1(x), (4) x >

σ−1(x), σ (x) and (5) x < σ(x), σ−1(x). In each of these it is easy to check that
the contribution of the combined jumps to Fa(σ ) is the same as the one to Fb(σ ).
Thus Fa(σ ) = Fb(σ ) as desired. �

PROOF OF LEMMA 2.2. Pick σ ∈ �X with n := F(σ) finite, and let x ∈ X be
such that {σk(x) :k ∈ Z} is an infinite cycle. Since X is locally finite, and σk(x)

are all distinct, σk(x) eventually leaves every bounded interval for both k → ±∞.
Moreover, as Fa(σ ) = n for any a ∈ X�, the sequence σk(x) can jump over a at
most finitely many times and σk(x)−a changes sign only finitely often. Hence, the
limits of σk(x) as k → ±∞ exist in {±∞}. This rules out indeterminate infinite
cycles.

In order to compare the number of infinite cycles of σ with n = Fa(σ ), consider
all cycles of σ and note that finite cycles, cycles from ∞ to ∞ and cycles from
−∞ to −∞ do not contribute to Fa(σ ) since they jump over a equally (finitely)
often to the left and to the right. Cycles from −∞ to ∞ contribute 1 to Fa(σ ) since
they jump to the right one more times than to the left. Similarly, cycles from ∞
to −∞ contribute −1 to Fa(σ ). It follows that there have to be at least |n| infinite
cycles of the same orientation as the sign of n. �

3.2. Ground states. Using the local perturbation from Definition 2.5 we easily
get the following monotonicity result for local minima of the energy:

LEMMA 3.1. Let X be locally finite and V be strictly convex. Let � � X and
σ ∈ �. The minimum min{H�(τ) : τ ∼� σ } is attained at the unique τ ∼� σ such
that τ :� ∩ σ−1(�) → � ∩ σ(�) is a (strictly) increasing function.

PROOF. There are only a finite number of permutations τ with τ ∼� σ and so
the minimum of H� is attained. Moreover, any τ ∼� σ maps � ∩ σ−1(�) = � ∩
τ−1(�) bijectively onto �∩ σ(�) = �∩ τ(�) and it coincides with σ elsewhere.
If τ :� ∩ σ−1(�) → � ∩ σ(�) is not an increasing function, there are x, y ∈
� ∩ τ−1(�) such that x < y and τ(x) > τ(y). As x, y, τ (x), τ (y) ∈ �, we have
τxy ∼� τ ∼� σ . We also note that

H�(τ) − H�(τxy)
(3.1)

= V
(
τ(x) − x

) + V
(
τ(y) − y

) − V
(
τ(x) − y

) − V
(
τ(y) − x

)
> 0,

where the inequality follows from the strict convexity of V and the assumed or-
dering of x, y, τ(x) and τ(y); see Lemma 4.2. Thus H� does not take its mini-
mum at a nonincreasing τ . The minimizing τ is unique because it is a bijection of
� ∩ σ−1(�) onto � ∩ σ(�), and is determined by σ elsewhere. �
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PROOF OF LEMMA 2.4. First, τn is a ground state by Lemma 3.1, since τn is
increasing on � ∩ τ−1

n (�) for every � � X. On the other hand, if τ �= τn for all
n, then τ is not increasing; that is, there are x, y such that x < y and τ(x) > τ(y).
Considering � � X such that x, τ (x), y, τ (y) ∈ �, Lemma 3.1 shows that H�(τ)

is not minimal and so τ is not a ground state. �

3.3. Point sets arising from point processes. Here we show that samples from
point processes fulfilling the premises of Lemma 2.8 automatically satisfy the re-
quirements (X1) and (Xn) for any n ∈ Z. Recall that a point process X on R

is a random purely-atomic N ∪ {∞}-valued Borel measure on R. Assuming that
compact sets receive finite mass almost surely, X can be interpreted as a sum of
unit point masses. If, furthermore, no points are degenerate a.s., which technically
means that X ({x}) ∈ {0,1} for every x, then samples from X can be identified
with point sets.

PROOF OF LEMMA 2.8. Let us first prove (X1). Condition (1) ensures that X
is locally finite a.s. Since also X (R) = ∞ a.s., X contains infinitely many points
a.s. We cannot have X ([0,∞)) < ∞ with a positive probability, because the shift

invariance of the law of X would also imply X ([−L,∞))
law= X ([0,∞)) < ∞

with the same probability for all L ∈ N and, taking L → ∞, also X (R) < ∞ with
the same probability, in contradiction with (1). Similarly X ((−∞,0]) = ∞, and
we conclude that (X1) holds a.s.

Moving over to (Xn), we fix n ∈ N, pick constants K1,K2 and introduce the
events

A
(1)
k :=

{
sup
�≥1

X ([k − �, k + �))

�
≤ K1

}
and A

(2)
k := {

cX
s (k, n) ≤ K2

}
(3.2)

for k ∈ Z. We claim that K1,K2 can be chosen so large that each of these events
has probability in excess of 1

2 . For the first we observe that X ([k−�,k+�))
2�

→
EX ([k, k + 1)) a.s. by the Birkhoff pointwise ergodic theorem (using the addi-
tivity of X and shift-ergodicity of the law of X ) and the limit is finite by assump-
tion (1). For the second we note that a.s. there are n + 1 points of X to the right
of k and n + 1 points to the left of k since X is bi-infinite, and together with the
nondegeneracy of points from condition (2) this implies that the distances between
the points of �(k,n) are positive and finite.

Now set Ak := A
(1)
k ∩ A

(2)
k and note that Ak has positive probability. So, by

ergodicity and the Birkhoff Theorem again, Ak occurs at bi-infinitely many—in
fact, a positive density of—k’s almost surely. Suppose Ak occurs and set ak :=
k1+k−1

2 if k /∈ X and ak := k1+k0
2 if k ∈ X so that ak ∈ X �. We observe that

cX
s (ak, n) ≤ K2 by containment in Ak , so it suffices to bound cX

g (ak). Since |k −
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ak| ≤ K2
2 we have

#
{
x ∈ X : |x − ak| ≤ t

} ≤ #
{
x ∈ X : |x − k| ≤ t + K2

2

}
(3.3)

≤
(
t + K2

2
+ 1

)
K1

using containment in Ak . Thus for t ≥ 1
2K2

we can estimate

1

t
#
{
x ∈ X : 0 < |x − a| ≤ t

} ≤ t + K2/2 + 1

t
K1

(3.4)

≤ 2K2

(
1

2K2
+ K2

2
+ 1

)
K1

using monotonicity. For t < 1
2K2

the expression on the left is 0 by the lower bound

on the gap between successive points. This shows cX
g (ak) ≤ 2K2(

1
2K2

+ K2
2 +

1)K1. These bounds apply at bi-infinitely many a ∈ X �, so the condition (Xn) is
successfully verified. �

4. Technical issues. In this section we collect some straightforward conse-
quences of our assumptions on X and V . Then we proceed to discuss how to
obtain energy estimates and how these can be converted to bounds on probabilities
of events.

4.1. Consequences of our assumptions. As the set X will be always clear from
the context, we will henceforth write cs(a, n) for cX

s (a, n). We note that, for any
discrete bi-infinite X ⊂ R, automatically cs(a, n) < ∞, since this quantity is de-
termined by only finitely many nonzero and finite distances. We also observe that
(X1) and (X2) imply that cg(a) < ∞ for every a ∈ R.

LEMMA 4.1. If cg(a) < ∞ and f : [0,∞) → [0,∞) is nonincreasing, then

∑
x∈X : x>a

f (x − a) ≤ cg(a)

∫ ∞
0

ds f (s),

(4.1) ∑
x∈X : x<a

f (a − x) ≤ cg(a)

∫ ∞
0

ds f (s)

and
∑

x,y∈X:x<a<y

f (y − x) ≤ cg(a)2
∫ ∞

0
ds sf (s).(4.2)
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PROOF. For the first estimate we note n ≤ cg(a)(an−a) by definition of cg(a),
so ∑

x∈X:x>a

f (x − a) = ∑
n>0

f (an − a)

≤ ∑
n>0

f

(
n

cg(a)

)
(4.3)

≤
∫ ∞

0
ds f

(
s

cg(a)

)
= cg(a)

∫ ∞
0

dx f (x)

using the assumed monotonicity of f , integral comparison for monotone sums and
the substitution x := s/cg(a). The second estimate is obtained similarly; the third
can be obtained by first using the first estimate for the sum over y and then the
second estimate for the sum over x to get∑

x,y∈X:x<a<y

f (y − x) ≤ cg(a)2
∫ ∞

0
dx

∫ ∞
0

dy f (x + y).(4.4)

The result follows by substituting s := x + y. �

Now we turn to properties of the potential function V :

LEMMA 4.2. Suppose V :R→R is strictly convex and symmetric. Then

V is strictly increasing in [0,∞).(4.5)

In addition, for all t1 < s1 ≤ s2 < t2 ∈ R such that s1 + s2 = t1 + t2 we have

V (t1) + V (t2) − V (s1) − V (s2)
(4.6)

≥ 2
t2 − s2

t2 − t1

(
V (t2) + V (t1) − 2V

(
t1 + t2

2

))

and thus, in particular,

V (t1) + V (t2) − V (s1) − V (s2) > 0.(4.7)

PROOF. The first conclusion is trivial. For (4.6), comparing the slopes of se-
cant lines yields

V (s1) − V (t1)

s1 − t1
≤ V ((t1 + t2)/2) − V (t1)

(t2 − t1)/2
(4.8)

≤ V (t2) − V ((t1 + t2)/2)

(t2 − t1)/2
≤ V (t2) − V (s2)

t2 − s2
.

The bound follows by estimating the difference of the outer terms against the dif-
ference of the inner terms and invoking t2 − s2 = s1 − t1. �
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If V satisfies (V2), it will be convenient to denote cψ(d,N) := sup{x ∈
R :ψd(x) < N}. Then

ψd(x) ≥ N for all x ≥ cψ(d,N).(4.9)

This relation will be quite useful in what follows.

4.2. Energy estimates. Many of the following results rely on energy estimates,
comparing a permutation σ with jumps v → w,y → z to the swapped configura-
tion σvy . The following estimate will be helpful:

LEMMA 4.3. Suppose V :R → R is strictly convex and even. Let � � X and
v,w,y, z ∈ � and suppose that y′, z′ ∈ R are such that v < y′ ≤ z′ < w, y′ ≤ y

and z ≤ z′. If σ ∈ �X contains jumps v → w, y → z, then

H�(σ) − H�(σvy) ≥ 2 min
{
y′ − v,w − z′}ψz′−y′(w − v) log(w − v).(4.10)

PROOF. Let �H := H�(σ) − H�(σvy) denote the energy difference to be
estimated. Then

�H = V (w − v) + V (z − y) − V (z − v) − V (w − y)

≥ V (w − v) + V
(
z − y′) − V (z − v) − V

(
w − y′)(4.11)

≥ V (w − v) + V
(
z′ − y′) − V

(
z′ − v

) − V
(
w − y′),

where for the inequalities we used (4.7) along with w − y, z − y ′ ∈ [z − y,w − y′]
and z − v, z′ − y′ ∈ [z − y′, z′ − v]. Since z′ − v,w − y′ ∈ [z′ − y′,w − v] we now
use (4.6) to obtain

�H ≥ 2
min{y′ − v,w − z′}
w − v − (z′ − y′)

(4.12)

×
(
V (w − v) + V

(
z′ − y′) − 2V

(
w − v + z′ − y′

2

))
.

Since the terms in the large parentheses nonnegative, we now estimate

min{y′ − v,w − z′}
w − v − (z′ − y′)

≥ min{y′ − v,w − z′}
w − v

(4.13)

and then apply V (z′ − y′) ≥ V (0), as implied by (4.5), to obtain (4.10). �

If we only have control over one jump v → w of a permutation σ , we need to
find a suitable second jump y → z to make the above energy estimate work. This
is achieved by the following:

LEMMA 4.4. Let a ∈ R and let σ ∈ �X with |F(σ)| =: n ∈ N contain a jump
(v,w) over a1, . . . , an to the right. Then σ contains a jump (y, z) such that y ≥ a1
and z ≤ an.
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PROOF. We consider the n jumps starting from a1, . . . , an. If one of them does
not jump over b := 1

2(an + an+1) ∈ X�, it is of the desired type. Otherwise all of
them jump over b to the right. Together with the jump (v,w) this gives F+

b ≥ n+1,
and thus F−

b ≥ 1; that is, there is a jump over b to the left, as desired. �

We note that, thanks to the reflection symmetry, versions of the above lemmas
hold also for jumps to the left.

4.3. General facts from Gibbs measure theory. Here we review some tech-
niques from the theory of Gibbs measures. Most of these are well known; our aim
is to have these presented in one block for easier later reference. We start with the
general fact that, in the context of Gibbs measures, energy estimates yield proba-
bilistic bounds:

LEMMA 4.5. Let � � X, η ∈ �, A,A′ ∈ F , c ∈ R and N ≥ 0. Suppose that
for every σ ∈ A with σ ∼� η, we can find a σ ′ ∈ A′ with σ ′ ∼� η such that
H�(σ ′) − H�(σ) ≤ c and every σ ′ can be attributed to at most N distinct σ .
Then

γ�(A|η) ≤ Necγ�

(
A′|η)

.(4.14)

In particular, for A′ := � and N := 1, which requires σ �→ σ ′ to be injective, we
get γ�(A|η) ≤ ec.

PROOF. Using the two assumptions we get∑
σ∈A:σ∼�η

e−H�(σ) ≤ ec
∑

σ∈A:σ∼�η

e−H�(σ ′) ≤ Nec
∑

σ ′∈A′:σ ′∼�η

e−H�(σ ′).(4.15)

Dividing both sides by Z�(η) gives a corresponding inequality for the specifica-
tions. �

An estimate of specification probabilities such as the one obtained in Lemma 4.5
implies a corresponding estimate of probabilities:

LEMMA 4.6. Let A,A′ ∈ F , c > 0 and suppose that for every η ∈ � we have
γ�(A|η) ≤ cγ�(A′|η) for all sufficiently large � � X (where “large” is allowed
to depend on η). Then μ(A) ≤ cμ(A′) for all μ ∈ G.

PROOF. By the definition of Gibbs measure, for any increasing sequence of
finite �m ↑ X we have

cμ
(
A′) − μ(A) = lim

m→∞Eμ

(
cγ�m

(
A′|·) − γ�m(A|·))

(4.16)
≥ Eμ

(
lim inf
m→∞

(
cγ�m

(
A′|·) − γ�m(A|·))) ≥ 0,

where we used Fatou’s lemma to get the middle inequality. �
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Our next observation is that Gibbs measures can be obtained as weak limits of
specifications.

LEMMA 4.7. Let �,�′ � X. For every F�′ -measurable function f , the ex-
pectation γ�(f |η) is a F�∪�′ -measurable, and thus continuous, function of η.

PROOF. Let η ∈ �. The partition function can be written as

Z�(η) = ∑
σ :σ∼�η

e−H�(σ) = ∑
σ ′

e−∑
x V (σ ′(x)−x),(4.17)

where the exterior sum extends over all bijections σ ′ :�∩η−1(�) → �∩η(�) and
the interior sum is over all x ∈ �∩η−1(�). Thus Z�(η) depends on η only through
η(�) and η−1(�), and thus is F�-measurable. The measurability of γ�(f |η) fol-
lows similarly. �

LEMMA 4.8. Let η ∈ � and �m � X (m ≥ 1) be such that γ�m(·|η) converges
weakly, as m → ∞, to some probability measure μ. Then μ ∈ G.

PROOF. Since the specifications are consistent, for every local event A and
�� X we have

Eμγ�(A|·) = lim
m→∞Eγ�m(·|η)γ�(A|·) = lim

m→∞γ�m(A|η) = μ(A)(4.18)

since both 1A and γ�(A|·) are local and thus continuous functions. This proves
equality of μ with the measure on the extreme left for A local; an extension to
general events is unique thanks to, for example, the π -λ theorem. �

5. Proofs: Existence. In this section we address a.s. finiteness of the flow in
all Gibbs measures, nonexistence of Gibbs measures in the absence of interac-
tions and tightness of the family of specifications leading to the proof of existence
of Gibbs measures. In particular, we provide formal proofs of Lemmas 2.9, 2.10
and 2.11. We assume throughout that X and V satisfy (X1), (V1) and (V2); all
other assumptions will be mentioned explicitly whenever needed.

5.1. Finiteness of the flow. We begin by proving Lemma 2.11. First we dismiss
the issue of measurability:

PROOF OF LEMMA 2.11, TAIL MEASURABILITY. In order to show that F

is T -measurable, let a ∈ X� and �a := {x ∈ X :x > a}. Based on its definition,
F+

a is measurable with respect to σ({P −
x :x ∈ �a}) and F−

a is measurable with
respect to σ({P +

x :x ∈ �a}). Since F is, modulo a proviso when both F±
a = ∞,

the difference F+
a −F−

a , it follows that also F is F�a -measurable. Since this holds
for all a, we get that F is T -measurable. �
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To show that F is finite μ-a.s. for every Gibbs measure, we have to prove that
long jumps are unlikely. This follows from a suitable energy estimate for permu-
tations having two nested jumps.

LEMMA 5.1. Let x, y ∈ X obey x ≤ y and let μ ∈ G. Then there is an l0 =
l0(y − x) ≥ 0 such that

μ(x → y, v → w) ≤ 1

|w − v|5(5.1)

holds for all v,w ∈ X that obey v ≤ x − 1, w ≥ y + 1 and w − v ≥ l0.

PROOF. For x, y, v,w as above, set l0 := cψ(y − x,3) where cψ is as in (4.9).
Let η ∈ �X and pick � � X such that x, y, v,w ∈ �. Let σ ∼� η be such that
σ(x) = y and σ(v) = w. By our choice of � we have σvx ∼� σ and the energy
estimate (4.10) implies

H�(σ) − H�(σvx)

≥ 2 min{x − v,w − y}ψy−x(w − v) log(w − v)(5.2)

≥ 5 log(w − v)

thanks to our choice of l0. We also note that σvx uniquely determines σ for given
x, y, v,w. By Lemma 4.5 we thus get

γ�(x → y, v → w|η) ≤ 1

|w − v|5 .(5.3)

The conclusion follows by integrating with respect to μ. �

LEMMA 5.2. Suppose that a ∈ X� satisfies cg(a) < ∞. Then every μ ∈ G
obeys μ(F+

a = ∞) = 0.

PROOF. Any σ ∈ �X such that F+
a (σ ) = ∞ contains a jump (x, y) with x <

a < y. Fix l0 ≥ 0 as in the previous lemma. In addition, for any l > 0, σ also
contains a jump (v,w) such that v ≤ x − 1, w ≥ y + 1 and w − v ≥ l, l0. (This is
because only finitely many jumps can start or end in a given finite set.) A union
bound and Lemma 5.1 then give

μ
(
F+

a = ∞) ≤ ∑
x,y,v,w∈X

v+1≤x<a<y≤w−1:
w−v≥l,l0

μ(x → y, v → w)

(5.4)

≤ ∑
x,y,v,w∈X

v<x<a<y<w:
w−v≥l

1

|w − v|5 .
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We first sum over x and y using #{x ∈ X :v < x < a} ≤ cg(a)(a − v) ≤ cg(a)(w −
v) and similarly for {y ∈ X :a < y < w}. In order to sum over v and w we use
(4.2) with the result

μ
(
F+

a = ∞) ≤ ∑
v<a<w:w−v≥l

cg(a)2

|w − v|3 ≤ ∑
v<a<w

cg(a)2

max{|w − v|, l}3

(5.5)

≤ cg(a)4
∫ ∞

0
ds

s

max{s, l}3 = 3cg(a)4

2l
.

As l can be arbitrarily large, we are done. �

PROOF OF LEMMA 2.11, A.S. FINITENESS. Let μ ∈ G. Since (V1), (V2) and
(X1), (X2) are assumed, all previous derivations are at our disposal. The previous
lemma gave μ(F+

a = ∞) = 0 and, thanks to obvious symmetry considerations and
the fact that cg(a) is defined symmetrically, we similarly have μ(F−

a = ∞) = 0.
Therefore, the flow is finite μ-a.s., as desired. �

5.2. No Gibbs measures without interaction. Here we address the fact that, in
the absence of “interactions” the set of Gibbs measures is empty.

PROOF OF LEMMA 2.9. Assume V := 0 and suppose that there is some μ ∈ G.
Fix x, y ∈ X, let N ∈ N and pick η ∈ �. Let �N � X be such that x, y ∈ �N and
#�N ≥ N . For any finite � � X that obeys �N ∪ η(�N) ∪ η−1(�N) ⊂ � we
observe that, since γ�(·|η) is the uniform distribution on all σ ∼� η and σ(x) can
be any point of �N with equal probability,

γ�(x → y|η) = 1

|�N | ≤ 1

N
.(5.6)

By Lemma 4.6 this implies μ(x → y) ≤ 1
N

and, since N was arbitrary, μ(x →
y) = 0 for all y ∈ X, a contradiction. Hence G = ∅ after all. �

5.3. Existence of Gibbs measures. Now assuming (X2) in addition to condi-
tions (X1), (V1) and (V2), we proceed to establish Lemma 2.10 dealing with exis-
tence of Gibbs measures. Not unexpectedly, this will be done by proving tightness
for sequences of specifications over increasing volumes. We begin by deriving an
estimate on the probability of a long jump.

LEMMA 5.3. Let η ∈ �X be such that |F(η)| =: n ∈ N, and fix x ∈ X. There
are �0 � X and l0 ∈ R (both depending on n,x only) such that for all � with
�0 ⊂ �� X and all v,w ∈ X with v ≤ x ≤ w and w − v ≥ l0 we have

γ�(v ↔ w|η) ≤ 2

|w − v|3 .(5.7)
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PROOF. Let �0 � X be so large that it contains all jumps of η to, from and
over any point of the set {xi :−n ≤ i ≤ n}. This is possible because η has only
finitely many jumps over these points, in light of finiteness of F(η). Define, as-
suming (V1) and (V2),

l0 := max
{
xn − x−n + 1, cψ

(
xn − x−n,2cs(x, n)

)}
,(5.8)

and suppose that v,w ∈ X are such that v ≤ x ≤ w and w − v ≥ l0. Note that if
� obeys �0 ⊂ � � X and if σ ∼� η is such that σ(v) = w, the definition of l0
implies w > xn or v < x−n. We will only consider the first case (the other one can
be done similarly).

By Lemma 4.4 we can choose y, z ∈ X such that σ(y) = z and y ≥ x1 and
z ≤ xn hold. Then y, z, v,w ∈ �0 and so y, z, v,w ∈ �. It follows that σvy ∼�

σ ∼� η, and we can use the energy estimate (4.10) from Lemma 4.3 to obtain

H�(σ) − H�(σvy)

≥ 2 min{x1 − v,w − xn}ψxn−x1(w − v) log(w − v)(5.9)

≥ 2

cs(x, n)
ψxn−x−n(w − v) log(w − v) ≥ 3 log(w − v).

We also note that σvy uniquely determines σ for given v,w [since σ−1
vy (w) = y].

By Lemma 4.5 we thus get γ�(v → w|η) ≤ 1
|w−v|3 , as desired, and by symmetry

we get the same estimate for jumps w → v to the left. �

LEMMA 5.4. Suppose η ∈ �X obeys |F(η)| < ∞, and let �m � X be sets
such that �m ↑ X for m → ∞. Then {γ�m(·|η)}m≥1 is tight.

PROOF. Let ε > 0 and choose a(x) > 0 such that
∑

x∈X a(x) ≤ 1. For x ∈ X

let

Kf (x) := {
σ ∈ �X :

∣∣x − σ(x)
∣∣, ∣∣x − σ−1(x)

∣∣ ≤ f (x)
}
,(5.10)

where f (x) ≥ 0 is chosen so that the following holds true: First we need f (x) ≥
l0, where l0 = l0(n, x) with n := |F(η)| are as in previous lemma. Next we will
require that

f (x) ≥
√

6cg(x)

εa(x)
(5.11)

and also

γ�m

(
Kf (x)c|η) ≤ εa(x)(5.12)

for every m such that �m �⊃ �0, where �0 = �0(x, η) is from the previous lemma.
The latter is possible since there are only finitely many such �m and Kf (x) ↑ �X
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for f (x) → ∞. For m such that �m ⊃ �0(x, η) and w ≥ x such that w−x ≥ f (x)

we can use Lemma 5.3 to estimate γ�m(x ↔ w|η) ≤ 2
|w−v|3 , and using (4.1) gives

∑
w>x+f (x)

2

(w − x)3 ≤ ∑
w>x

2

max{w − x,f (x)}3

(5.13)

≤
∫ ∞

0
ds

2cg(x)

max{s, f (x)}3 = 3cg(x)

f (x)2 .

By symmetry we have the same estimate for jumps from and to x from the left.
Due to the choice of f (x) and the definition of Kf (x), the bound (5.12) thus holds
for all m ≥ 1.

Now set Kf := ⋂
x∈X Kf (x) and note that

γ�m

(
Kc

f |η) ≤ ∑
x

γ�m

(
Kf (x)c|η) ≤ ∑

x

εa(x) ≤ ε(5.14)

for all m ≥ 1. Since Kf is compact, which can be seen by a diagonal argument us-
ing the completeness of �X , we obtain tightness for the sequence {γ�m(·|η)}m≥1.

�

Our last item of concern is whether or not subsequential limits of specifications
are Gibbs measures with the correct value of the flow.

LEMMA 5.5. Let η ∈ �X such that n := F(η) ∈ Z. Let �m � X be sets such
that �m ↑ X and such that γ�m(·|η) converges, as m → ∞, weakly to a probability
measure μ. Then μ ∈ Gn.

PROOF. Lemma 4.8 ensures μ ∈ G and so we only have to show that μ(Fa =
n) = 1 for some a ∈ X�. For this it is convenient to define a localized version of
the flow: For a given l ≥ 0 let F l,±

a (σ ) be the analogues of the quantities F±
a (σ ),

respectively, but counting only jumps over a of length at most l. (The specific
choice of “length” is not important here, one can, e.g., use Euclidean distance.)
Define F l

a(σ ) := F l,+
a (σ ) − F l,−

a (σ ), where no provisos are necessary because all
quantities are finite. Although F l

a(σ ) may, unlike Fa(σ ), depend on a, we have∣∣Fa(σ )
∣∣ < ∞ ⇒ F l

a(σ ) −→
l→∞Fa(σ ).(5.15)

This is because the finiteness of Fa(σ ) implies that all jumps over a have a
bounded length (depending only on σ ).

Returning to the main line of the proof, we note that∣∣μ(Fa = n) − 1
∣∣ = ∣∣μ(Fa = n) − γ�m(Fa = n|η)

∣∣
≤ μ

(
Fa �= F l

a

) + γ�m

(
F l

a �= Fa|η)
(5.16)

+ ∣∣μ(
F l

a = n
) − γ�m

(
F l

a = n|η)∣∣.
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If Fa(σ ) �= F l
a(σ ), then σ contains a jump to, from or over x := a1 of length ≥ l,

so if m and l are sufficiently large (depending on η, a only), Lemma 5.3 and (4.1)
give

γ�m

(
Fa �= F l

a|η
) ≤ ∑

v<a<w:w−v≥l

γ�m(v ↔ w|η)

≤ ∑
v<a<w:w−v≥l

2

(w − v)3

(5.17)

≤ ∑
v<a<w

2

max{l,w − v}3

≤
∫ ∞

0
ds

2cg(a)2s

max{l, s}3 = 3cg(a)2

l
.

Since {F l
a = n} is a local event and thus its indicator is a continuous function, we

definitely have γ�m(F l
a = n|η) → μ(F l

a = n) as m → ∞, so letting m → ∞ in
(5.16) yields

∣∣μ(Fa = n) − 1
∣∣ ≤ μ

(
Fa �= F l

a

) + 3cg(a)2

l
,(5.18)

once l is sufficiently large. Since μ ∈ G, Lemma 2.11 implies |Fa| < ∞ μ-a.s. and
so, by (5.15), also F l

a → Fa μ-a.s. as l → ∞. In particular, μ(Fa �= F l
a) → 0 in

this limit as well and so the claim follows by taking l → ∞. �

PROOF OF LEMMA 2.10. This is now a direct consequence of the three pre-
ceding lemmas. �

6. Proofs: Infinite cycles and uniqueness. In this final section we develop
the desired level of control over the number of infinite cycles in permuatations
sampled from a Gibbs measure. The key notion is that of a cut, introduced in
Definition 2.12. Cuts will allow us to give full classification of all Gibbs measures
leading to the proof of Theorem 2.15. Naturally, we will also provide formal proofs
of Lemmas 2.13 and 2.14. Throughout this section we assume the validity of (V1),
(V2), (X1) and (Xn), where n will be clear from context.

6.1. Pre-cuts. As already mentioned, cuts permit us to control the exact num-
ber of infinite cycles crossing over a given point of X�. In order to exercise this
control throughout X�, we need to identify a bi-infinite sequence of cuts in a.e.
permutation. This will be achieved by relaxing to the notion of k-pre-cut, defined
as follows:

DEFINITION 6.1. For k ∈ N, σ ∈ �X and n := F(σ) ∈ Z, the point a ∈ X� is
called a k-pre-cut for σ if all jumps of σ over a, from a−n, . . . , a−1 or to a1, . . . , an

are completely contained in {a−k, . . . , ak}.
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The role of k-pre-cuts is that of candidates for k-cuts, since any k-pre-cut a can
be made into a cut by modifying the permutation locally near a.

In this section we prepare the proof of Lemma 2.13 by showing that, in a.e.
permutation, there are sufficiently many k-pre-cuts. Let n ≥ 0 be fixed throughout
this section, and let cn be a sequence sufficiently large that cn ≥ n + 1 and such
that

X�
n := {

a ∈ X� : cs(a, n) ≤ cn, cg(a) ≤ cn

}
,(6.1)

is bi-infinite. The latter is possible in light of condition (Xn). Let k be the smallest
natural number such that

k ≥ max
{
n + 1, cncψ(ncn,2cn), cncψ(0,2cn) + nc2

n,24c3
n,33nc2

n + 1
}
.(6.2)

We first consider possible configurations in which a point a ∈ X� is not a k-pre-
cut. For this we call a jump v → w (with v,w ∈ X, of course) a-relevant, if it is a
jump over a that is going either from a−n, . . . , a−1 or to a1, . . . , an.

LEMMA 6.2. Let μ ∈ Gn, a ∈ X�
n and k as above. For � ⊂ X let C(�,a) be

the event that all a-relevant jumps are contained in � and let B ∈ F�c . Then for
all a-relevant jumps v → w (v,w ∈ X) that are not contained in {a−k, . . . , ak} we
have

μ
(
C(�,a) ∩ B ∩ {v → w}) ≤ 1

|w − v|3 μ(B).(6.3)

The proof is easier to present when we deal separately with the case when the
said jump v → w is to the right and to the left.

PROOF OF LEMMA 6.2, THE CASE w > v. Here we suppose that w > v which
means that v → w is a jump to the right. In this case, either v < a < ak < w or
v < a−k < a < w. From these two possibilities we will address only the former
since the latter is quite analogous.

Let η ∈ �X be such that F(η) = n. Let �0 � X be so large that it contains all
jumps of η over a or to a1, . . . , an [which is possible since F(η) is finite], and
let � � X be such that �0 ⊂ �. Suppose σ ∼� η is such that σ(v) = w and σ ∈
C(�,a) ∩ B . By Lemma 4.4 we can find a jump y → z such that y ≥ a1, z ≤ an.
Thanks to the containment �0 ⊂ � we have v,w,y, z ∈ �, so σvy ∼� σ ∼� η and
the energy estimate from Lemma 4.3 (with y′ := a1 and z′ := an) gives

H�(σ) − H�(σvy) ≥ 2 min{a1 − v,w − an}ψan−a1(w − v) log(w − v)
(6.4)

≥ 2

cn

ψncn(w − v) log(w − v) ≥ 3 log(w − v).

Here in the second bound we used that a ∈ X�
n in order to estimate minimal and

maximal distances against cn and then applied the natural monotonicity of d �→
ψd(x). The last inequality holds because w − v ≥ ak − a ≥ k

cn
≥ cψ(ncn,2cn).
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Note that for σ ∈ C(�,a) we have v,w,y, z ∈ �, so σ ∈ B implies σvy ∈ B .
The swapped permutation σvy uniquely determines σ for given v,w [since
σ−1

vy (w) = y]. By Lemma 4.5 we thus get

γ�

(
C(�,a) ∩ B ∩ {v → w}|η) ≤ 1

|w − v|3 γ�(B|η).(6.5)

As this holds for all � large, Lemma 4.6 implies the desired estimate. �

PROOF OF LEMMA 6.2, THE CASE v > w. Now suppose that v → w is a
jump to the left, that is, either w ≤ an < ak < v or w < a−k < a−n ≤ v. We will
henceforth assume the former as the latter can be dealt with similarly.

Let η ∈ �X such that F(η) = n. Let b := 1
2(an + an+1) ∈ X� and let �0 � X

be so large that it contains all jumps of η over b [which is possible since F(η) is
finite], and let again � � X obey �0 ⊂ �. Let σ ∼� η such that σ(v) = w and
σ ∈ C(�,a)∩B . Since Fb(η) = n ≥ 0 and (v,w) is a jump over b to the left, there
are at least n+1 jumps over b to the right, so one of them, say (y, z) satisfies y ≤ a

and z ≥ an+1. By our choice of � we again have v,w,y, z ∈ �, so σvy ∼� σ ∼� η

and the energy estimate (4.10) with reversed directions gives

H�(σ) − H�(σvy)

≥ 2 min{v − a, an+1 − w}ψa−an+1(v − w) log(v − w)(6.6)

≥ 3 log |w − v|.
Here we have estimated the minimal distance by 1

cn
and used

v − w ≥ ak − an ≥ (ak − a) − (an − a) ≥ k

cn

− ncn ≥ cψ(0,2cn),(6.7)

which implies ψa−an+1(v −w) ≥ ψ0(v −w) ≥ 2cn. All estimates involving cn use
that a ∈ X�

n.
Thanks to the choice of σ ∈ C(�,a) we have z, y, v,w ∈ �, so σ ∈ B implies

σvy ∈ B . Moreover, σvy uniquely determines σ for given v,w [since σ−1
vy (w) = y].

As above, a combination of Lemmas 4.5 and 4.6 then implies the desired estimate.
�

We can now move on to the main conclusion of this subsection:

LEMMA 6.3. Let μ ∈ Gn and let Yn ⊂ X�
n be bi-infinite. Then Yn contains

bi-infinitely many k-pre-cuts μ-a.s.

PROOF. The proof proceeds by a sort of renewal argument: We examine a
subsequence of points from Yn in an ordered fashion and note that the probability
of not seeing a k-pre-cut in the first m of them decays exponentially with m. We
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will have to do this relative to any position (marked by an integer N ) and for any
number of consecutive points (marked by a natural M).

Let us now proceed with details. Fix any N ∈ Z, let M ∈ N and consider points
a1, . . . , aM ∈ Yn be such that a1 ≥ N and

(am)−n − (am−1)n+k ≥ l(m) := c2
n2m+4 for all 1 < m ≤ M.(6.8)

Let Am denote the event that am is not a k-pre-cut, set Bm := ⋂
i≤m Ai (with B0 :=

�X) and write Cm for the set of all configurations containing an am-relevant jump
that is not contained in �m−1 := {(am−1)i : i > n} (with �0 := X). Our goal is to
derive an inductive bound on μ(Bm).

We will begin by deriving a bound on μ(Cm). Fix some m with 1 ≤ m ≤ M for
the time being and simplify notation by setting a := am and a′ := am−1. We note
that

μ(Cm) ≤ ∑
v<a′

n,w>a

μ(v → w) + ∑
v>a−n,w<a′

n

μ(v → w)

(6.9)

≤ ∑
v<a<w:w−v>l(m)

2

|w − v|3 + ∑
1≤i≤n

∑
w<a′

n

1

|w − a−i |3 ,

where we have estimated each probability using Lemma 6.2 with � := X and
B := �X noting that each jump considered is a-relevant and not contained in
{a−k, . . . , ak}. In the last display the first sum can be estimated using (4.1) and
a ∈ X�

n by

∑
v<a<w:w−v>l(m)

2

|w − v|3 ≤
∫ ∞

0

c2
n2s

max{s, l(m)}3 ds ≤ 3c2
n

l(m)
≤ 1

2m+2 .(6.10)

Similarly the second sum can be estimated by

n
∑

w<a′
n

1

(a−n − w)3 ≤ ∑
w<a

n

max{a − ncn − w, l(m)}3

≤
∫ ∞

0

ncn

max{s − ncn, l(m)}3 ds

(6.11)

= ncn

(
l(m) + ncn

l(m)3 + 1

2l(m)2

)

≤ 2ncn

l(m)2 ≤ 1

2m+2 .

Combining the above estimates gives μ(Cm) ≤ 1
2m+1 .

Moving over to an inductive bound on μ(Bm), here we employ Bm ⊆ Cm ∪
(Bm ∩ Cc

m). The probability of the first event has just been estimated, the second
we further decompose as

Bm ∩ Cc
m ⊆ Bm−1 ∩ C(�m−1, am) ∩ ⋃{v → w},(6.12)
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where the union is taken over all a-relevant jumps v → w that not contained in
{a−k, . . . , ak}. Since Bm−1 ∈ F�c

m−1
, Lemma 6.2 implies

μ
(
Bm ∩ Cc

m

) ≤ ∑
μ

(
Bm−1 ∩ C(�,am) ∩ {v → w})

(6.13)

≤ μ(Bm−1)
∑ 1

|w − v|3 ,

so it remains to bound the sum on the right (which is over pairs v → w as specified
above).

Every jump v → w considered is either a jump over a of length |w − v| ≥
|a±k − a| ≥ k

cn
or a jump from v > ak to w ∈ {a1, . . . , an} of length v − w =

v − a − (w − a) ≥ k
cn

− ncn or a jump from v ∈ {a−1, . . . , a−n} to w < a−k of

length v − w ≥ v − a − (w − a) ≥ k
cn

− ncn. The corresponding contributions to
the above sum can be estimated using (4.1). For the first case

∑
v<a<w:|v−w|≥k/cn

2

|w − v|3 ≤ c2
n

3

k/cn

≤ 1

8
,(6.14)

thanks to our choice of k. For the second case (and similarly for the third case)

∑
a<w<an,v>ak

1

|w − v|3 ≤ n
∑
v>ak

1

|v − a − ncn|3

≤ ncn

∫ ∞
0

1

(max{s, k/cn} − ncn)3 ds

(6.15)

= ncn

(
k/cn

(k/cn − ncn)3 + 1

2(k/cn − ncn)2

)

≤ ncn

2

k/cn − ncn

≤ 1

16
,

again by our choice of k.
Combining the above bounds we get μ(Bm ∩ Cc

m) ≤ 1
4μ(Bm−1) and thus

μ(Bm) ≤ μ(Cm) + μ
(
Bm ∩ Cc

m

) ≤ 1

4
μ(Bm−1) + 1

2m+1 ,(6.16)

for arbitrary m ≥ 1. By induction, this implies μ(BM) ≤ 1
2M . Since M ≥ 1 was

arbitrary, the μ-probability that there is no k-pre-cut right of N is zero. But N was
arbitrary (integer) too so, as a moment’s thought shows, there are infinitely many
k-pre-cuts in positive direction μ-a.s. A completely analogous argument proves
the same for negative direction as well. �
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6.2. Cuts. We now turn from pre-cuts to cuts. The way things are set up, every
pre-cut has a chance to be a cut with a uniformly positive probability. This implies
that a positive proportion of pre-cuts are actually cuts, although for us it will be
enough to show that the set of cuts is bi-infinite. Throughout we keep n ≥ 0 and k

exactly as in the previous section.

LEMMA 6.4. Let μ ∈ Gn. Then X�
n contains bi-infinitely many cuts μ-almost

surely.

PROOF. Let N ∈ Z and let Yn(N) be a an infinite subset of {x ∈ X�
n :x ≥ N}

such that between any two successive points of Yn(N) there are at least 2k points
of X. Let a1 < a2 < · · · be an enumeration of Yn(N). For M ∈ N and I ⊂ N with
|I | = M , let AM(I) denote the event that ai, i ∈ I , are the first M k-pre-cuts in
Yn(N). For i ∈ I let Ci be the event that ai is a cut and set

Bm := AM(I) ∩ Cc
1 ∩ · · · ∩ Cc

m, 0 ≤ m ≤ M.(6.17)

We again aim at estimating μ(Bm) by an exponentially decaying factor.
For fixed M , m and I , let a := am, pick η ∈ � with F(η) = n and set � :=

[a−k, ak] ∩ X. Let σ ∈ Bm−1 such that σ ∼� η. Let σ ′ ∼� η be the permutation
minimizing H�. Since a is a k-pre-cut with respect to σ , all jumps over a, to
a1, . . . , an and from a−1, . . . , a−n are contained in � and Lemma 3.1 implies that
a is a cut in permutation σ ′. We note that σ ′ ∈ Bm−1 since a change on � does not
affect the k-pre-cut-status or cut-status of the points of Yn(N) other than a = am.
As H�(σ ′) − H�(σ) ≤ 0 and as there are at most (2k)! different σ that give the
same σ ′ (we change only jumps contained within �), Lemma 4.5 implies

γ�(Bm−1|η) ≤ (2k)!γ�(Bm−1 ∩ Cm|η).(6.18)

Integrating with respect to μ gives μ(Bm−1) ≤ (2k)!μ(Bm−1 ∩ Cm), which yields

μ(Bm) = μ
(
Bm−1 ∩ Cc

m

) ≤
(

1 − 1

(2k)!
)
μ(Bm−1).(6.19)

Inductively we thus get μ(BM) ≤ (1 − 1
(2k)!)

Mμ(AM(I)). Since μ-a.s. there are
infinitely many k-pre-cuts in Yn(N), we can sum over all admissible I , and thus
get that the μ-probability to have no cuts in Yn(N) is at most (1 − 1

(2k)!)
M . Letting

M → ∞, this shows that Yn(N) contains a cut μ-a.s. Since this is true for any N ,
the set Yn contains infinitely many cuts μ-a.s. in the positive direction; the negative
direction is then handled similarly. �

We are now also able to give the following:

PROOF OF LEMMA 2.13. The last lemma proves part (a) for n ≥ 0; symmetry
then extends this to n ≤ 0. For part (b) with n ≥ 0 it remains to note that occurrence
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of a single cut restricts the number of infinite cycles from −∞ to ∞ to (exactly) n

and rules out cycles from ∞ to −∞ altogether. Having infinitely many such cuts
excludes cycles from ∞ to ∞ and −∞ to −∞ as well, so the statement in (b)
follows. The case n ≤ 0 is completely analogous by symmetry. �

6.3. Uniqueness of Gibbs measures. The sole purpose of this subsection is to
give:

PROOF OF LEMMA 2.14. Let μ, μ̃ ∈ Gn for n ≥ 0; the case of negative n is
handled by symmetry. Our principal observation is that Lemmas 6.3 and 6.4 from
the preceding subsections still hold when “μ-a.s.” is replaced by “μ⊗ μ̃-a.s.,” and
k is increased somewhat.

To see this for Lemma 6.3 we first note that μ ⊗ μ̃ is a Gibbs measure with
respect to the product specification γ�(·|η, η̃) := γ�(·|η) ⊗ γ�(·|η̃). Also, a is
(defined to be) a pre-cut, respectively, cut in (σ, σ̃ ) if and only if it is a pre-cut,
respectively, cut in both σ and σ̃ . Thus the only change to be made in the proof
is that in all probability estimates for bad jumps we have to consider two cases:
the jump is bad either for σ or for σ̃ . This leads to an additional factor of 2 in
all probability estimates. By increasing k and l(m) accordingly, this factor can be
easily absorbed.

Concerning Lemma 6.4, the only change required to the proof is that (2k)! has
to be replaced by [(2k)!]2 since we now have to take into account all possible local
rearrangements of σ and σ̃ that make a given k-precut into a cut. This does not
affect the argument and, in particular, part (a) of Lemma 2.14 thus holds.

It remains to show that μ = μ̃. Consider a cylinder event A ∈ F[−N,N] for some
N ≥ 1. Let C(a, b) be the event that a is the last cut before −N and b the first
cut after N . [Because of (a) these cuts exist a.s.] Let � := {x ∈ X :a < x < b}. We
note that

γ�

(
(A × �) ∩ C(a, b)|η, η̃

) = γ�

(
(� × A) ∩ C(a, b)|η, η̃

)
(6.20)

for all η, η̃ ∈ �. Indeed, if a or b are not cuts with respect to (η, η̃), then both sides
are 0; otherwise both boundary conditions can be replaced by τn without chang-
ing the probabilities and then the equality follows from the fact that the product
measure γ�(·|τn, τn) and the event C(a, b) are invariant under (σ, σ̃ ) �→ (σ̃ , σ ).
Integrating w.r.t. μ ⊗ μ̃, we now get

μ(A) = μ ⊗ μ̃(A × �) = ∑
a,b

μ ⊗ μ̃
(
(A × �) ∩ C(a, b)

)
(6.21)

= ∑
a,b

μ ⊗ μ̃
(
(� × A) ∩ C(a, b)

) = μ ⊗ μ̃(� × A) = μ̃(A).

Since
⋃

N∈NF[−N,N] forms a ∩-stable generator of the sigma algebra F the above
implies μ = μ̃. �
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6.4. Classification of Gibbs measures. It remains to formally present the proof
of our main result:

PROOF OF THEOREM 2.15. All conclusions except (c) follow already from
the preceding lemmas. To get also (c), let �N ↑ X be an increasing sequence of
sets and, given n ∈ Z, pick η ∈ � with F(η) = n. Combining Lemmas 5.4, 5.5 and
part (a) of the theorem we see that every subsequence of {γ�N

(·|η) :N ≥ 1} has a
subsequence converging to μn. By a standard argument, this implies γ�N

(·|η) →
μn weakly as n → ∞. [Otherwise one could find a local event A and a subse-
quence Nk such that γ�Nk

(A|η) stays away from μn(A) by a positive factor.] �
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