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A POLYNOMIAL TIME APPROXIMATION SCHEME FOR
COMPUTING THE SUPREMUM OF GAUSSIAN PROCESSES1

BY RAGHU MEKA

Microsoft Research

We give a polynomial time approximation scheme (PTAS) for computing
the supremum of a Gaussian process. That is, given a finite set of vectors V ⊆
R

d , we compute a (1+ε)-factor approximation to EX←N d [supv∈V |〈v,X〉|]
deterministically in time poly(d) · |V |Oε(1). Previously, only a constant factor
deterministic polynomial time approximation algorithm was known due to
the work of Ding, Lee and Peres [Ann. of Math. (2) 175 (2012) 1409–1471].
This answers an open question of Lee (2010) and Ding [Ann. Probab. 42
(2014) 464–496].

The study of supremum of Gaussian processes is of considerable impor-
tance in probability with applications in functional analysis, convex geome-
try, and in light of the recent breakthrough work of Ding, Lee and Peres [Ann.
of Math. (2) 175 (2012) 1409–1471], to random walks on finite graphs. As
such our result could be of use elsewhere. In particular, combining with the
work of Ding [Ann. Probab. 42 (2014) 464–496], our result yields a PTAS
for computing the cover time of bounded-degree graphs. Previously, such al-
gorithms were known only for trees.

Along the way, we also give an explicit oblivious estimator for semi-
norms in Gaussian space with optimal query complexity. Our algorithm and
its analysis are elementary in nature, using two classical comparison inequal-
ities, Slepian’s lemma and Kanter’s lemma.

1. Introduction. The study of supremum of Gaussian processes is a major
area of study in probability and functional analysis as epitomized by the cele-
brated majorizing measures theorem of Fernique and Talagrand; see Ledoux and
Talagrand (1991), Talagrand (2005) and references therein. There is by now a rich
body of work on obtaining tight estimates and characterizations of the supremum
of Gaussian processes with several applications in analysis Talagrand (2005), con-
vex geometry Pisier (1999) and more. Recently, in a striking result, Ding, Lee and
Peres (2012) used the theory to resolve the blanket time conjectures of Winkler
and Zuckerman (1996).

Ding, Lee and Peres (2012) used the powerful Dynkin isomorphism theory and
majorizing measures theory to establish a structural connection between the cover
time (and blanket time) of a graph G and the supremum of a Gaussian process
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associated with the Gaussian Free Field on G. They then use this connection to
resolve the Winkler–Zuckerman blanket time conjectures and to obtain the first
deterministic polynomial time constant factor approximation algorithm for com-
puting the cover time of graphs. This latter result resolves an old open question of
Aldous and Fill (1994).

Besides showing the relevance of the study of Gaussian processes to discrete
combinatorial questions, the work of Ding, Lee and Peres gives evidence that
studying Gaussian processes could even be an important algorithmic tool; a less
investigated aspect in the rich literature on Gaussian processes in probability and
functional analysis. Here we address the corresponding computational question di-
rectly, which given the importance of Gaussian processes in probability, could be
of use elsewhere. In this context, the following question was asked by Lee (2010)
and Ding (2014).2

QUESTION 1.1. For every ε > 0, is there a deterministic polynomial time
algorithm that, given a set of vectors v1, . . . , vm ∈ R

d , computes a (1 + ε)-factor
approximation to EX←N d [supi |〈vi,X〉|].3

There is a simple randomized algorithm for the problem: sample a few Gaussian
vectors and output the median supremum value for the sampled vectors. This, how-
ever, requires O(d logd/ε2) random bits. Using Talagrand’s majorizing measures
theorem, Ding, Lee and Peres give a deterministic polynomial time O(1)-factor
approximation algorithm for the problem. This approach is inherently limited to
not yield a PTAS as the majorizing measures characterization is bound to lose a
universal constant factor. Here we give a PTAS for the problem thus resolving the
above question.

THEOREM 1.2. For every ε > 0, there is a deterministic algorithm that, given
a set of vectors v1, . . . , vm ∈ R

d , computes a (1 + ε)-factor approximation to

Ex←N d [supi |〈vi, x〉|] in time poly(d) · mÕ(1/ε2).

Our approach uses some classical comparison inequalities in convex geometry.
To the best of our knowledge these inequalities have not been used before in the
context of algorithm design.

2We remark that Lee (2010) and Ding (2014) actually ask for an approximation to
EX←N d [supi〈vi,X〉]. However, this formulation results in a somewhat artificial asymmetry,
and for most interesting cases these two are essentially equivalent: if EX←N d [supi〈vi,X〉] =
ω(maxi ‖vi‖2), then EX←N d [supI |〈vi ,X〉|] = (1 + o(1))EX←N d [supi〈vi,X〉]. We shall over-
look this distinction from now on.

3Throughout, N denotes the univariate Gaussian distribution with mean 0 and variance 1, and for a
distribution D, X ←D denotes a random variable with distribution D. By a α-factor approximation
to a quantity Z > 0, we mean a number p such that p ≤ Z ≤ αp.
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We explain our result on estimating semi-norms with respect to Gaussian mea-
sures mentioned in the abstract in Section 2.2.

We next discuss some applications of our result to computing cover times of
graphs as implied by the works of Ding, Lee and Peres (2012) and Ding (2014).

1.1. Application to computing cover times of graphs. The study of random
walks on graphs is an important area of research in probability, algorithm design,
statistical physics and more. As this is not the main topic of our work, we avoid
giving formal definitions and refer the readers to Aldous and Fill (1994), Lovász
(1993) for background information.

Given a graph G on n-vertices, the cover time, τcov(G), of G is defined as the
expected time a random walk on G takes to visit all the vertices in G when starting
from the worst possible vertex in G. Cover time is a fundamental parameter of
graphs and is extensively studied. Algorithmically, there is a simple randomized
algorithm for approximating the cover time—simulate a few trials of the random
walk on G for poly(n) steps, and output the median cover time. However, without
randomness the problem becomes significantly harder. This was one of the moti-
vations of the work of Ding, Lee and Peres (2012) who gave the first deterministic
constant factor approximation algorithm for the problem, improving on an earlier
work of Kahn et al. (2000) who obtained a deterministic O((log logn)2)-factor
approximation algorithm. For the special case of trees, Feige and Zeitouni (2009)
gave a FPTAS.

Ding, Lee and Peres also conjectured that the cover time of a graph G (satis-
fying a certain reasonable technical condition) is asymptotically equivalent to the
supremum of an explicitly defined Gaussian process, the Gaussian Free Field on G.
However, this conjecture though quite interesting on its own, is not enough to give
a PTAS for cover time; one still needs a PTAS for computing the supremum of the
relevant Gaussian process. Our main result provides this missing piece, thus re-
moving one of the obstacles in their posited strategy to obtain a PTAS for comput-
ing the cover time of graphs. Recently, Ding (2014) showed the main conjecture of
Ding, Lee and Peres to be true for bounded-degree graphs and trees. Thus, combin-
ing his result [see Theorem 1.1 in Ding (2014)] with Theorem 1.2, we get a PTAS
for computing cover time on bounded-degree graphs with τhit(G) = o(τcov(G)).4

As mentioned earlier, previously, such algorithms were only known for trees; see
Feige and Zeitouni (2009).

2. Outline of algorithm. The high level idea of our PTAS is as follows.
Fix the set of vectors V = {v1, . . . , vm} ⊆ R

d and ε > 0. Without loss of gen-
erality suppose that maxv∈V ‖v‖2 = 1. We first reduce the dimension of V by

4The hitting time τhit(G) is defined as the maximum over all pairs of vertices u,v ∈ G of the
expected time for a random walk starting at u to reach v. See the discussion in Ding (2014) for why
this is a reasonable condition.
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projecting V onto a space of dimension of O((logm)/ε2) á la the classical
Johnson–Lindenstrauss lemma (JLL). We then give an algorithm that runs in time
polynomial in the number of vectors but exponential in the underlying dimen-
sion. Our analysis relies on two comparison inequalities, Fernique–Slepian lemma
[Slepian (1962)] for the first step and Kanter’s lemma [Kanter (1977)] for the sec-
ond step. We discuss these modular steps below.

2.1. Dimension reduction. We project the set of vectors V ⊆R
d to R

k for k =
O((logm)/ε2) to preserve all pairwise (Euclidean) distances within a (1 + ε)-fac-
tor as in the Johnson–Lindenstrauss lemma (JLL). We then show that the expected
supremum of the projected Gaussian process is within a (1 + ε) factor of the orig-
inal value. The intuition is that the supremum of a Gaussian process, though a
global property, can be controlled by pairwise correlations between the variables.
To quantify this, we use Slepian’s lemma, that helps us relate the supremum of two
Gaussian processes by comparing pairwise correlations. Finally, observe that using
known derandomizations of JLL, the dimension reduction can be done determin-
istically in time poly(d,m,1/ε); see Engebretsen, Indyk and O’Donnell (2002),
Sivakumar (2002).

Thus, to obtain a PTAS it would be enough to have a deterministic algorithm
to approximate the supremum of a Gaussian process in time exponential in the
dimension k = O((logm)/ε2). Unfortunately, a naive argument by discretizing
the Gaussian measure in R

k leads to a run-time of at least kO(k); which gives a
mO((log logm)/ε2) algorithm. This question was recently addressed by Dadush and
Vempala (2012), who needed a similar sub-routine for their work on computing
M-Ellipsoids of convex sets and give a deterministic algorithm with a run-time of
(logk)O(k). We resolve this question fully by giving an optimal oblivious estimator
for norms in Gaussian space, which when combined with the dimension reduction
step gives a PTAS for computing the supremum.

2.2. Oblivious estimators for semi-norms. Let ϕ :Rk → R+ be a semi-norm,
that is, ϕ is homogeneous and satisfies triangle inequality. For normalization pur-
poses, we assume that 1 ≤ Ex←N k [ϕ(x)] and that the Lipschitz constant of ϕ is
at most kO(1). This is satisfied in most reasonable cases. Note that the supremum
function ϕV (x) = supv∈V |〈v, x〉| satisfies these conditions. Our goal will be to
compute a (1 + ε)-factor approximation to Ex←N k [ϕ(x)] in time 2Oε(k).

THEOREM 2.1. For every ε > 0, there exists a deterministic algorithm run-
ning in time (1/ε)O(k) and space poly(k,1/ε) that computes a (1 + ε)-factor ap-
proximation to EX←N k [ϕ(X)] using only oracle access to ϕ.

Our algorithm has the additional property of being an oblivious linear estima-
tor: the set of query points does not depend on ϕ, and the output is a positive
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weighted sum of the evaluations of ϕ on the query points. Further, the construc-
tion is essentially optimal as any such oblivious estimator needs to make at least
(1/ε)�(k) queries; see Section 7. In comparison, the previous best bound of Dadush
and Vempala [Dadush and Vempala (2012)] needed ((logk)/ε)O(k) queries.

A natural first approach to compute EX←N k [ϕ(X)], would be to first discretize
the one-dimensional Gaussian distribution with a constant granularity δ = f (ε) to
get a distribution μ and then evaluate the expectation with respect to the product
distribution μk . We will show that this seemingly naive approach in fact does very
well, giving an error bound that does not depend on the dimension k. We do so by
using a classical comparison inequality—Kanter’s lemma—that allows us to “lift”
a simple estimator for the univariate case to the multi-dimensional case.

More concretely, we first construct a symmetric distribution μ on R that has
a simple piecewise flat graph and sandwiches the one-dimensional Gaussian dis-
tribution in the following sense. Let ν be a “shrinking” of μ defined to be the
probability density function (p.d.f.) of (1 − ε)x for x ← μ. We show that if μ has
granularity about ε3/2, then, for every symmetric interval I ⊆ R, μ(I) ≤ N (I ) ≤
ν(I ).

Kanter’s lemma [Kanter (1977)] then says that for p.d.f.’s μ,ν as above that
are in addition unimodal, the above relation carries over to the product distribu-
tions μk, νk : for every symmetric convex set K ⊆ R

k , μk(K) ≤ N k(K) ≤ νk(K).
This last inequality immediately implies that semi-norms cannot distinguish be-
tween μk and N k : for any semi-norm ϕ, Eμk [ϕ(x)] = (1 ± ε)EN k [ϕ(x)]. We then
suitably prune the distribution μk to have small support and prove Theorem 4.1.

Our main result, Theorem 1.2, follows by first reducing the dimension as in
the previous section and applying Theorem 4.1 to the semi-norm ϕ :Rk → R+,
ϕ(x) = supi |〈ui, x〉| for the projected vectors {u1, . . . , um}.

3. Dimension reduction. The use of JLL type random projections for esti-
mating the supremum comes from the following comparison inequality for Gaus-
sian processes. We call a collection of real-valued random variables {Xt }t∈T

a Gaussian process if every finite linear combination of the variables has a nor-
mal distribution with mean zero. We refer the reader to Corollary 3.14 and the
following discussion in Ledoux and Talagrand (1991) for reference.

THEOREM 3.1 (Fernique–Slepian lemma). Let {Xt }t∈T and {Yt }t∈T be two
Gaussian processes such that for every s, t ∈ T , E[(Xs − Xt)

2] ≤ E[(Ys − Yt )
2].

Then, E[supt |Xt |] ≤ E[supt |Yt |].

We also need a derandomized version of the Johnson–Lindenstrauss lemma.

THEOREM 3.2 [Engebretsen, Indyk and O’Donnell (2002)]. For every ε > 0,
there exists a deterministic (dm2(logm + 1/ε)O(1))-time algorithm that given
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vectors v1, . . . , vm ∈ R
d computes a linear mapping A :Rd → R

k for k =
O((logm)/ε2) such that for every i, j ∈ [m], ‖vi − vj‖2 ≤ ‖A(vi) − A(vj )‖2 ≤
(1 + ε)‖vi − vj‖2.

Combining the above two theorems immediately implies the following.

LEMMA 3.3. For every ε > 0, there exists a deterministic (dm2(logm +
1/ε)O(1))-time algorithm that given vectors v1, . . . , vm ∈ R

d computes a linear
mapping A :Rd →R

k for k = O((logm)/ε2) such that

E
x←N d

[
sup

i

∣∣〈vi, x〉∣∣] ≤ E
y←N k

[
sup

i

∣∣〈A, (vi), y
〉∣∣]

(3.1)
≤ (1 + ε) E

x←N d

[
sup

i

∣∣〈vi, x〉∣∣].
PROOF. Let V = {v1, . . . , vm} ∪ {−v1, . . . ,−vm}, and let {Xv}v∈V be the

Gaussian process where the joint distribution is given by Xv ≡ 〈v, x〉 for x ← N d .
Then Ex←N d [supi |〈vi, x〉|] = E[supv Xv].

Let A :Rd → R
k be the linear mapping as given by Theorem 3.2 applied to V .

Let {Yv}v∈V be the “projected” Gaussian process with joint distribution given by
Yv ≡ 〈A, (v), y〉 for y ← N k . Then Ey←N k [supi |〈vi, y〉|] = E[supv Yv].

Finally, observe that for any u, v ∈ V ,

E
[
(Xu − Xv)

2] = ‖u − v‖2
2 ≤ ∥∥A(u) − A(v)

∥∥2
2

= E
[
(Yu − Yv)

2] ≤ (1 + ε)2
E

[
(Xu − Xv)

2]
.

Combining the above inequality with Lemma 3.1 applied to the pairs of pro-
cesses ({Xv}v∈V , {Yv}v∈V ) and ({Yv}v∈V , {(1 + ε)Xv}v∈V ) it follows that

E

[
sup
v

|Xv|
]
≤ E

[
sup
v

|Yv|
]
≤ E

[
sup
v

(1 + ε)|Xv|
]
= (1 + ε)E

[
sup
v

|Xv|
]
.

The lemma now follows. �

4. Oblivious estimators for semi-norms in Gaussian space. In the previous
section we reduced the problem of computing the supremum of a d-dimensional
Gaussian process to that of a Gaussian process in k = O((logm)/ε2)-dimensions.
Thus it suffices to have an algorithm for approximating the supremum of Gaussian
processes in time exponential in the dimension. We will give such an algorithm
that works more generally for all semi-norms.

Let ϕ :Rk →R+ be a semi-norm. That is, ϕ satisfies the triangle inequality and
is homogeneous. For normalization purposes we assume that 1 ≤ EN k [ϕ(X)] and
the Lipschitz constant of ϕ is at most kO(1).
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THEOREM 4.1. For every ε > 0, there exists a set S ⊆ R
k with |S| =

(1/ε)O(k) and a function p :Rk → R+ computable in poly(k,1/ε) time such that
the following holds. For every semi-norm ϕ :Rk →R+,

(1 − ε)

(∑
x∈S

p(x)ϕ(x)

)
≤ E

X←N k

[
ϕ(X)

] ≤ (1 + ε)

(∑
x∈S

p(x)ϕ(x)

)
.

Moreover, successive elements of S can be enumerated in poly(k,1/ε) time and
O(k log(1/ε)) space.

Theorem 2.1 follows immediately from the above.

PROOF OF THEOREM 2.1. Follows by enumerating over the set S and com-
puting

∑
x∈S p(x)ϕ(x) by querying ϕ on the points in S. �

We now prove Theorem 4.1. Here and henceforth, let γ denote the p.d.f. of the
standard univariate Gaussian distribution. Fix ε > 0, and let δ > 0 be a parameter
to be chosen later. Let μ ≡ μδ be the p.d.f. which is a piecewise-flat approximator
to γ obtained by spreading the mass γ gives to an interval I = [iδ, (i +1)δ) evenly
over I . Formally, μ(z) = μ(−z) and for z > 0, z ∈ [iδ, (i + 1)δ),

μ(z) = γ ([iδ, (i + 1)δ))

δ
.(4.1)

Clearly, μ defines a symmetric distribution on R. We will show that for δ � ε suffi-
ciently small, semi-norms cannot distinguish the product distribution μk from N k :

LEMMA 4.2. Let δ = (2ε)3/2. Then, for every semi-norm ϕ :Rk →R,

(1 − ε) E
X←μk

[
ϕ(X)

] ≤ E
Z←N k

[
ϕ(Z)

] ≤ E
X←μk

[
ϕ(X)

]
.

We first prove Theorem 4.1 assuming the above lemma, whose proof is deferred
to the next section.

PROOF OF THEOREM 4.1. Let μ̂ be the symmetric distribution supported on
δ(Z+ 1/2) with p.d.f. defined by

μ̂
(
δ(i + 1/2)

) = μ
([

iδ, (i + 1)δ
))

for i ≥ 0. Further, let X ← μk , X̂ ← μ̂k , Z ← N k .
We claim that E[ϕ(X̂)] = (1 ± ε)E[ϕ(Z)]. Let Y be uniformly distributed on

[−δ, δ]k and observe that random variable X ≡ X̂ + Y in law. Therefore,

E
[
ϕ(X)

] = E
[
ϕ(X̂ + Y)

] = E
[
ϕ(X̂)

] ±E
[
ϕ(Y )

]
= E

[
ϕ(X̂)

] ± δE
[
ϕ(Y/δ)

]
(4.2)

= E
[
ϕ(X̂)

] ± δ E
Z′∈u[−1,1]k

[
ϕ

(
Z′)]

= E
[
ϕ(X̂)

] ± δE
[
ϕ(Z)

]
(Lemma 5.7).
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Thus, by Lemma 4.2,

E
[
ϕ(X̂)

] = (
1 ± O(ε)

)
E

[
ϕ(Z)

]
.(4.3)

We next prune μ̂k to reduce its support. Define p :Rk → R+ by p(x) = μ̂k(x).
Clearly, p(x) being a product distribution is computable in poly(k,1/ε) time.

Let S = (δ(Z + 1/2))k ∩ B2(3
√

k), where B2(r) ⊆ R
k denotes the Euclidean

ball of radius r . As ϕ has Lipschitz constant bounded by kO(1), a simple calculation
shows that throwing away all points in the support of X̂ outside S does not change
E[ϕ(X̂)] much. It is easy to check that for x /∈ S, p(x) ≤ exp(−‖x‖2

2/4)/(2π)k/2.
Therefore,

E
[
ϕ(X̂)

] = ∑
x

p(x)ϕ(x) = ∑
x∈S

p(x)ϕ(x) + ∑
x /∈S

p(x)ϕ(x)

= ∑
x∈S

p(x)ϕ(x) ± ∑
x /∈S

exp(−‖x‖2
2/4)

(2π)k/2 · (
kO(1)‖x‖2

)
(4.4)

= ∑
x∈S

p(x)ϕ(x) ± o(1).

From equation (4.3) and the above equation, we get (recall that E[ϕ(Z)] ≥ 1)

E
[
ϕ(Z)

] = (
1 ± O(ε)

)(∑
x∈S

p(x)ϕ(x)

)
,

which is what we want to show.
We now reason about the complexity of S. First, by a simple covering argument

|S| < (1/δ)O(k),

|S| < Vol(B2(3
√

k) + [−δ, δ]k)
Vol([−δ, δ]k) = (1/δ)O(k) = (1/ε)O(k),

where for sets A,B ⊆ R
k , A + B denotes the Minkowski sum, and Vol denotes

Lebesgue volume. This size bound almost suffices to prove Theorem 4.1 except
for the complexity of enumerating elements from S. Without loss of generality as-
sume that R = 3

√
n/δ is an integer. Then, enumerating elements in S is equivalent

to enumerating integer points in the n-dimensional ball of radius R. This can be
accomplished by going through the set of lattice points in the natural lexicographic
order, and takes poly(k,1/ε) time and O(k log(1/ε)) space per point in S. �

5. Proof of Lemma 4.2. Our starting point is the following definition that
helps us compare multivariate distributions when we are only interested in volumes
of convex sets. We shall follow the notation of Ball (2001).

DEFINITION 5.1. Given two symmetric p.d.f.’s, f,g on R
k , we say that f is

less peaked than g (f � g) if for every symmetric convex set K ⊆ R
k , f (K) ≤

g(K).
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We also need the following elementary facts. The first follows from the uni-
modality of the Gaussian density and the second from partial integration.

FACT 5.2. For any δ > 0 and μ as defined by equation (4.1), μ is less peaked
than γ .

FACT 5.3. Let f,g be distributions on R
k with f � g. Then for any semi-norm

ϕ :Rk →R, Ef [ϕ(x)] ≥ Eg[ϕ(x)].
PROOF. Observe that for any t > 0, {x :ϕ(x) ≤ t} is convex. Let random

variables X ← f , Y ← g. Then, by partial integration, E[ϕ(X)] = ∫ ∞
0 ϕ′(t) ×

Pr[ϕ(X) > t]dt ≥ ∫ ∞
0 ϕ′(t)Pr[ϕ(Y ) > t]dt = E[ϕ(Y )]. �

The above statements give us a way to compare the expectations of μ and γ

for one-dimensional convex functions. We would now like to do a similar com-
parison for the product distributions μk and γ k . For this we use Kanter’s lemma
[Kanter (1977)], which says that the relation � is preserved under tensoring if the
individual distributions have the additional property of being unimodal.

DEFINITION 5.4. A distribution f on R
n is unimodal if f can be written as an

increasing limit of a sequence of distributions each of which is a finite positively
weighted sum of uniform distributions on symmetric convex sets.

THEOREM 5.5 (Kanter’s lemma [Kanter (1977)]; cf. Ball (2001)). Let μ1,μ2
be symmetric distributions on R

n with μ1 � μ2 and let ν be a unimodal distribu-
tion on R

m. Then, the product distributions μ1 × ν, μ2 × ν on R
n × R

m satisfy
μ1 × ν � μ2 × ν.

We next show that μ “sandwiches” γ in the following sense.

LEMMA 5.6. Let ν be the p.d.f. of the random variable y = (1 − ε)x for
x ← μ. Then, for δ ≤ (2ε)3/2, μ � γ � ν.

PROOF. As mentioned above, μ � γ . We next show that γ � ν. Intuitively,
ν is obtained by spreading the mass that γ puts on an interval I = [iδ, (i + 1)δ)

evenly on the smaller interval (1 − ε)I . The net effect of this operation is to push
the p.d.f. of μ closer to the origin and for δ sufficiently small the inward push from
this “shrinking” wins over the outward push from going to μ.

Fix an interval I = [−iδ(1 − ε) − θ, iδ(1 − ε) + θ ] for 0 ≤ θ < δ(1 − ε). Then

ν(I ) = ν
([−iδ(1 − ε), iδ(1 − ε)

]) + 2ν
([

iδ(1 − ε), iδ(1 − ε) + θ
])

(5.1)

= γ
([−iδ, iδ]) + 2θ · γ ([iδ, (i + 1)δ))

δ(1 − ε)
.(5.2)

We now consider two cases.
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Case 1: i ≥ (1−ε)/ε so that iδ(1−ε)+θ ≤ iδ. Then, from the above equation,

ν(I ) ≥ γ
([−iδ, iδ]) ≥ γ

([−iδ(1 − ε) − θ, iδ(1 − ε) + θ
]) = γ (I ).

Case 2: i < (1−ε)/ε. Let α = (i +1)δ = δ/ε. Then, as 1−x2/2 ≤ e−x2/2 ≤ 1,

γ
(
(iδ, iδ + θ ]) ≤ θ · γ (0), γ

([
iδ, (i + 1)δ

)) ≥ δ · γ (0) · (
1 − α2/2

)
.

Therefore,

ν(I ) = γ (I ) − 2γ
((

iδ, iδ(1 − ε) + θ
]) + 2θ · γ ([iδ, (i + 1)δ))

δ(1 − ε)

≥ γ (I ) − 2γ
(
(iδ, iδ + θ ]) + 2θ · γ ([iδ, (i + 1)δ))

δ(1 − ε)

≥ γ (I ) − 2θγ (0) + 2θ · δ · γ (0) · (1 − α2/2)

δ(1 − ε)

= γ (I ) + 2θγ (0)

1 − ε
· (

ε − α2/2
) ≥ γ (I ),

for α2 ≤ 2ε, that is, if δ ≤ (2ε)3/2. �

Lemma 4.2 follows easily from the above two claims.

PROOF OF LEMMA 4.2. Clearly, μ,ν, γ are unimodal and product of uni-
modal distributions is unimodal. Thus, from the above lemma and iteratively
applying Kanter’s lemma we get μk � γ k � νk . Therefore, by Fact 5.3, for any
semi-norm ϕ,

E
μk

[
ϕ(X)

] ≥ E
γ k

[
ϕ(Y )

] ≥ E
νk

[
ϕ(X)

] = E
μk

[
ϕ

(
(1 − ε)X

)] = (1 − ε) E
μk

[
ϕ(X)

]
. �

We now prove the auxiliary lemma we used in proof of Theorem 4.1.

LEMMA 5.7. Let ρ be the uniform distribution on [−1,1]. Then, γ � ρ and
for any semi-norm ϕ :Rk →R, Eρk [ϕ(x)] ≤ Eγ k [ϕ(x)].

PROOF. It is easy to check that γ � ρ. Then, by Kanter’s lemma γ k � ρk and
the inequality follows from Fact 5.3. �

6. A PTAS for supremum of Gaussian processes. Our main theorem, The-
orem 1.2, follows immediately from Lemma 3.3 and Theorem 2.1 applied to the
semi-norm ϕ :Rk →R, defined by ϕ(x) = supi≤m |〈A, (vi), x〉|.
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7. Lower bound for oblivious estimators. We now show that Theorem 4.1
is optimal: any oblivious linear estimator for semi-norms as in the theorem must
make at least (C/ε)k queries for some constant C > 0.

Let S ⊆ R
k be the set of query points of an oblivious estimator. That is,

there exists a function f :RS+ → R+ such that for any semi-norm ϕ :Rk → R+,
f ((ϕ(x) :x ∈ S)) = (1 ± ε)EY←N k [ϕ(Y )]. We will assume that f is monotone in
the following sense: f (x1, . . . , x|S|) ≤ f (y1, . . . , y|S|) if 0 ≤ xi ≤ yi for all i. This
is clearly true for any linear estimator (and also for the median estimator). Without
loss of generality suppose that ε < 1/4.

The idea is to define a suitable semi-norm based on S: define ϕ :Rk → R by
ϕ(x) = supu∈S |〈u/‖u‖2, x〉|. It is easy to check that for any v ∈ S, ‖v‖2 ≤ ϕ(v).
Therefore, the output of the oblivious estimator when querying the Euclidean norm
is at most the output of the estimator when querying ϕ. In particular,

(1 − ε) E
Y←N k

[‖Y‖2
] ≤ f

((‖x‖2 :x ∈ S
)) ≤ f

((
ϕ(x) :x ∈ S

))
(7.1)

≤ (1 + ε) E
Y←N k

[
ϕ(Y )

]
.

We will argue that the above is possible only if |S| > (C/ε)k . Let Sk−1 denote
the unit sphere in R

k . For the remaining argument, we shall view Y ← N k to be
drawn as Y = RX, where X ∈ Sk−1 is uniformly random on the sphere, and R ∈ R

is independent of X and has a Chi-squared distribution with k degrees of freedom.
Let S(ε) = ⋃

u∈S{y ∈ Sk−1 : |〈u/‖u‖2, y〉| ≥ 1 − 4ε}.
Now, by a standard volume argument, for any y ∈ Sk−1, PrX[|〈X,y〉| ≥ 1 −

4ε] < (O(ε))k . Thus, by a union bound, p = PrX[X ∈ S(ε)] < |S| · (O(ε))k . Fur-
ther, for any y ∈ Sk−1 \ S(ε), ϕ(y) < 1 − 4ε. Therefore,

E
X

[
ϕ(X)

] = Pr
[
X /∈ S(ε)

] ·E[
ϕ(X)|X /∈ S(ε)

]
+ Pr

[
X ∈ S(ε)

] ·E[
ϕ(X)|X ∈ S(ε)

]
≤ (1 − p)(1 − 4ε) + p.

Thus

E
[
ϕ(Y )

] = E
[
ϕ(RX)

] = E[R] ·E[
ϕ(X)

]
(7.2)

≤ E
[‖Y‖2

] · (
(1 − p)(1 − 4ε) + p

)
.

Combining equations (7.1) and (7.2), we get

1 − ε ≤ (1 + ε) · (
(1 − p)(1 − 4ε) + p

)
< 1 − 3ε + 2p.

As p < |S| · (O(ε))k , the above leads to a contradiction unless |S| > (C/ε)k for
some constant C > 0.



476 R. MEKA

REFERENCES

ALDOUS, D. and FILL, J. (1994). Reversible Markov chains and random walks on graphs. Available
at http://www.stat.berkeley.edu/~aldous/RWG/book.html.

BALL, K. (2001). Convex Geometry and Functional Analysis. Handbook of the Geometry of Banach
Spaces 1. North-Holland, Amsterdam. MR1863692

DADUSH, D. and VEMPALA, S. (2012). Deterministic construction of an approximate M-ellipsoid
and its applications to derandomizing lattice algorithms. In Proceedings of the Twenty-Third
Annual ACM–SIAM Symposium on Discrete Algorithms 1445–1456. SIAM, Philadelphia.
MR3205304

DING, J. (2014). Asymptotics of cover times via Gaussian free fields: Bounded-degree graphs and
general trees. Ann. Probab. 42 464–496. MR3178464

DING, J., LEE, J. R. and PERES, Y. (2012). Cover times, blanket times, and majorizing measures.
Ann. of Math. (2) 175 1409–1471. MR2912708

ENGEBRETSEN, L., INDYK, P. and O’DONNELL, R. (2002). Derandomized dimensionality reduc-
tion with applications. In Proceedings of the Thirteenth Annual ACM–SIAM Symposium on Dis-
crete Algorithms 705–712. SIAM, Philadelphia, PA.

FEIGE, U. and ZEITOUNI, O. (2009). Deterministic approximation for the cover time of trees.
Preprint. Available at arXiv:0909.2005.

KAHN, J., KIM, J. H., LOVÁSZ, L. and VU, V. H. (2000). The cover time, the blanket time, and
the Matthews bound. In 41st Annual Symposium on Foundations of Computer Science (Redondo
Beach, CA, 2000) 467–475. IEEE Comput. Soc. Press, Los Alamitos, CA. MR1931843

KANTER, M. (1977). Unimodality and dominance for symmetric random vectors. Trans. Amer.
Math. Soc. 229 65–85. MR0445580

LEDOUX, M. and TALAGRAND, M. (1991). Probability in Banach Spaces: Isoperimetry and Pro-
cesses. Springer, Berlin. MR1102015

LEE, J. (2010). Open question: Cover times and the Gaussian free field. Available
at https://tcsmath.wordpress.com/2010/12/09/open-question-cover-times-and-the-gaussian-free-
field/.

LOVÁSZ, L. (1993). Random walks on graphs: A survey. Combinatorics, Paul Erdős Is Eighty,
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