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LIMITING GEODESICS FOR FIRST-PASSAGE PERCOLATION
ON SUBSETS OF Z2

BY ANTONIO AUFFINGER, MICHAEL DAMRON1 AND JACK HANSON2

University of Chicago, Princeton University and Princeton University

It is an open problem to show that in two-dimensional first-passage per-
colation, the sequence of finite geodesics from any point to (n,0) has a limit
in n. In this paper, we consider this question for first-passage percolation on
a wide class of subgraphs of Z2: those whose vertex set is infinite and con-
nected with an infinite connected complement. This includes, for instance,
slit planes, half-planes and sectors. Writing xn for the sequence of bound-
ary vertices, we show that the sequence of geodesics from any point to xn

has an almost sure limit assuming only existence of finite geodesics. For
all passage-time configurations, we show existence of a limiting Busemann
function. Specializing to the case of the half-plane, we prove that the limit-
ing geodesic graph has one topological end; that is, all its infinite geodesics
coalesce, and there are no backward infinite paths. To do this, we prove in
the Appendix existence of geodesics for all product measures in our domains
and remove the moment assumption of the Wehr–Woo theorem on absence
of bigeodesics in the half-plane.

1. Introduction. First-passage percolation may be regarded as a family of
models, each of which yields a random pseudo-metric on a graph. It was intro-
duced by Hammersley and Welsh [11] as a model for the passage of a fluid through
a porous medium and it has provided many interesting problems to the probabil-
ity and statistical physics community. It also has links to classical physics through
disordered Ising models [8, 14] and to mathematical biology through the study of
spread of infections and competition models [18].

The main goal is to understand the (properly scaled) random geometry induced
by the pseudo-metric. This has been achieved in two (not necessarily unrelated)
ways: first, by studying the asymptotics and fluctuations of the distance function
between two points of diverging graph distance; second, by understanding the
structure of finite or infinite geodesics, length minimizing paths in this pseudo-
metric. This paper addresses questions in the latter group.

The study of geodesics in first-passage percolation starts with Newman [16],
Licea–Newman [15] and Wehr [19]. It was conjectured that every semi-infinite
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geodesic should have an asymptotic direction and all such geodesics with a given
fixed direction should merge. These statements were established in [15, 16] under
certain strong assumptions on the limit shape, the t → ∞ scaling limit of the ran-
dom ball of size t of the origin. Although natural and expected, these assumptions
have not been verified.

The analysis of geodesics continues with the work of Häggström–Pemantle [10],
Garet–Marchand [9], Hoffman [12, 13], Damron–Hochman [7] and Auffinger–
Damron [2]. They establish existence of a wide class of first-passage percola-
tion processes with infinitely many disjoint infinite one-sided geodesics. All these
results explored-known properties of the limit shape or a particular choice of
passage-time distribution. Under minimal assumptions, however, Damron–Hanson
[6] recently proved some forms of Newman’s conjectures. They establish almost-
sure coalescence of distributional limits of geodesics and nonexistence of certain
infinite backward paths. Despite these advances, it is still an open problem to
show that in two dimensions, the sequence of finite geodesics from any point to
the points (n,0) has a limit.

In this manuscript, we consider this question on infinite subgraphs of Z2.
Assuming only existence of finite geodesics, we show that sequences of finite
geodesics from any point to boundary points have almost sure limits. Our method
is motivated by the “paths crossing” trick of Alm and Wierman [1]. In the case
of the half-plane, we prove the limiting geodesic graph has one topological end;
that is, all its infinite geodesics coalesce and there are no backward infinite paths.
To our knowledge, this is the first time that limiting geodesics are shown to exist
under minimal assumptions on the passage times.

We close this section by commenting on limitations of our arguments and spec-
ulations for further advances. The crucial use of the boundary is to allow the paths
crossing argument of Claim 2.2. In the full plane, this is not possible. Even if one
leaves the boundary, taking, for example, (0, n) in the upper half-plane, this argu-
ment breaks down. Furthermore, the analysis of half-plane geodesics in this paper
heavily uses horizontal translation invariance of the passage-time distribution. This
is required to apply the ergodic theorem at several points throughout the arguments.
So in many other domains (e.g., quarter planes or sectors) we do not know if the
geodesics constructed here coalesce, although it is reasonable to expect them to.

1.1. Outline of the paper. In the rest of the Introduction, we give the precise
definition of the model, and we state the main theorems of the paper. In Section 2
we establish, without any assumption on the passage times, existence of limits
for Busemann functions. Under the hypothesis of existence of finite geodesics, in
Section 3, we prove existence of the limiting geodesic graph. In Section 4, we
show that in the upper half-plane, this limiting graph has one end, establishing
coalescence of any pair of its infinite geodesics. We finish the paper with three Ap-
pendices. In Appendix A, we give an alternate characterization of our domains.
Appendix B proves the existence of finite geodesics for all product measures.
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Appendix C extends the Wehr–Woo theorem [20] on absence of doubly infinite
geodesics in the half-plane to more general measures.

1.2. Definitions. Let (Z2,E2) denote the square lattice with nearest-neighbor
edges. We consider first-passage percolation on particular infinite subsets of this
graph. Let V ⊆ Z2 be a connected [in (Z2,E2)] infinite set whose complement
is also connected and infinite. Write E for the set of edges with both endpoints
in V . We will need the graph dual to the square lattice, the vertex set of which is
(Z2)∗ = Z2 + (1/2,1/2) and the edge set of which is (E2)∗ = E2 + (1/2,1/2).
The edge e∗ is said to be dual to e ∈ E2 if it bisects e. We prove in Appendix A
that there exists some path of dual edges

ϒ = (
e∗
i

)
i∈Z(1)

which does not (vertex) self-intersect and such that (V ,E) is one of the two com-
ponents of the graph formed from (Z2,E2) by removing the edges (ei) dual to
those edges (e∗

i ).

Let vi be the endpoint of ei that lies in V.(2)

Note that while ϒ is not self-intersecting, a particular vi may appear multiple times
(at most 3 times).

We do first-passage percolation in (V ,E) by setting � = [0,∞)E and denoting
a typical element of � by ω = (ωe)e∈E . For x, y ∈ V , a path from x to y in V is a
sequence of alternating vertices and edges

x = w0, e0,w1, . . . ,wn−1, en−1,wn = y

such that for all i, ei = {wi,wi+1} ∈ E. Clearly a path is uniquely determined by
its sequence of vertices or its sequence of edges, so we will at times refer to it in
one of these ways. We will write γ :x � y to denote that γ is a path from x to y.
We will use ‖ · ‖1 to denote the l1 norm.

The resulting passage time is written τ . That is, τ(γ ) = ∑
e∈γ ωe is the passage

time of a finite path γ in (V ,E) and τ(x, y) = infγ : x�y τ (γ ) is the passage time
between x and y in V . As defined, τ is a pseudo-metric. A geodesic from x to y

is a path γ :x � y in (V ,E) such that τ(γ ) = τ(x, y). Note that if there exists
a geodesic between some pair of points, there is at least one vertex self-avoiding
geodesic.

We will define (for x and y elements of V ) the Busemann function

Bn(x, y) = τ(x, vn) − τ(y, vn).

1.3. Main results.

1.3.1. Arbitrary (V ,E). The first result shows that asymptotic limits of the
(Bn) exist under no assumptions on ω. That is, it holds for all passage-time con-
figurations.
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THEOREM 1.1. For any x, y ∈ V and ω ∈ �,

B(x, y) := lim
n→∞Bn(x, y) exists.(3)

REMARK 1.2. We strongly believe that Busemann limits exist in wide gener-
ality (in particular, even in the full-plane), but we do not have a proof. That is, we
expect that for any θ ∈ [0,2π) and any sequence (xn) of vertices in Z2 such that
argxn → θ with xn → ∞, the limit τ(x, xn) − τ(y, xn) exists almost surely for
x, y ∈ Z2.

For the second result we consider a measure P on � (with the product Borel
sigma algebra) that admits geodesics; that is,

P(∃ a geodesic γ :x � y) = 1 for all x, y ∈ V.

Under this condition we can associate to almost every ω ∈ � and each n ∈ Z a
geodesic graph Gn = Gn(ω). This is a directed graph with vertex set V built from
a configuration ηn = ηn(ω) from the space {0,1} 	E , where 	E is the set of directed
edges corresponding to E,

	E = {
(x, y) : {x, y} ∈ E

}
.

The definition of ηn is as follows. We set ηn((x, y)) = 1 if {x, y} is in a
geodesic from some vertex in V to vn and τ(x, vn) ≥ τ(y, vn). Otherwise we set
ηn((x, y)) = 0. The graph Gn is then induced by its directed edge set, the set of e

such that ηn(e) = 1.
We say that ηn → η ∈ {0,1} 	E if for each e ∈ 	E, ηn(e) → η(e). In this case we

write Gn →G, where G is the directed graph corresponding to η.

THEOREM 1.3. Suppose that P admits geodesics. Then with probability one,
(Gn) converges to a graph G. Each directed path in G is a geodesic.

1.3.2. On the half-plane H. Taking the vertex set V = VH = {(x1, x2) ∈
Z2 :x2 ≥ 0} and EH the induced set of edges, we can analyze first-passage percola-
tion more closely on H= (VH ,EH ), taking advantage of translation invariance of
standard measures. The relevant space is �H = [0,∞)EH and we define a family
of translation operators {Tx :x ∈ VH } on �H by

(Txω)e = ωe+x,

where if e = {v,w} then e + x = {v + x,w + x}.
For the results in this section we will consider a probability measure P satisfying

one of two assumptions, labeled (A) and (B) below. Assumption (B) includes the
upward finite energy property from [6]:
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DEFINITION 1.4. Given an edge set E′, a Borel probability measure P on
[0,∞)E

′
satisfies the upward finite energy property if for each e ∈ E′ and λ such

that P(ωe ≥ λ) > 0, we have

P(ωe ≥ λ|ω̌) > 0 almost surely.

In the definition we have used the notation ω = (ωe, ω̌), where ω̌ = (ωf :f �= e).
The assumptions we need are:

(A) P is a product measure with continuous marginals, or
(B) P is the restriction to [0,∞)EH of a Borel probability measure P̂ on

[0,∞)E
2

that satisfies the upward finite energy property and the assumptions of
Hoffman [13]:

(a) P̂ is ergodic relative to the translations Tx for x ∈ Z2;
(b) P̂ has all the symmetries of Z2;
(c)

∫
ω2+α

e dP̂ < ∞ for some α > 0;
(d) P̂ has unique passage times: with probability one, no two (edge) nonempty

distinct paths have the same passage time and
(e) the limiting shape for P̂ is bounded.

Under parts (a)–(c) of assumption (B), Kingman’s theorem implies that if we
write τ ′ for the passage time in Z2, then for each y ∈ Z2, the limit g(y) =
limn→∞ τ ′(0, ny)/n exists almost surely and in L1. Part (b) is required for the
geodesic graph to be a forest. This is used several times in the final arguments. So
our arguments do not apply, for instance, to geometric weights. Part (e) of assump-
tion (B) is then the statement that infy �=0

g(y)
‖y‖1

> 0.
Under either of these assumptions, one can show that P admits geodesics. Un-

der (A), we show it in Appendix B for general graphs (V ,E) considered in this
paper. Under (B) it follows from the shape theorem proved by Boivin [3] and
boundedness of the limit shape. This means we can use the results from the pre-
vious subsection. For the statement of the main theorem, we use the shorthand
x → y for vertices x, y in a directed graph 	G if there is a directed path from x to y

in 	G.

THEOREM 1.5. Assume (A) or (B). Writing xn = (n,0), the geodesic graphs
(Gn) converge almost surely to a directed graph G with the following properties:

(1) each vertex in VH has out-degree 1;
(2) viewed as an undirected graph, G has no circuits;
(3) for each x ∈ VH , the backward cluster Bx = {y ∈ VH :y → x} is finite;
(4) writing �x for the unique self-avoiding infinite directed path in G start-

ing from x, for all x, y ∈ VH , �x and �y coalesce. That is, their edge symmetric
difference is finite.
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REMARK 1.6. It is an important problem to show that the geodesics con-
structed above have direction e1. We believe this is true; however, we cannot
prove it.

2. Existence of Busemann limits. The main goal of this section is prove The-
orem 1.1. We begin with x, y ∈ {vi}i∈Z, defined in (2).

PROPOSITION 2.1. For any x, y ∈ {vi}i and ω ∈ �, the limit in (3) exists.
Moreover, the convergence is monotone.

PROOF. We assume that x = vi and y = vj for i < j , and we let ε > 0. Fix any
n2 > n1 > j such that vn1 �= vn2 . We can now choose vertex self-avoiding paths
γ :x � vn1 and γ ′ :y � vn2 to satisfy

τ(γ ) ≤ τ(x, vn1) + ε and τ
(
γ ′) ≤ τ(y, vn2) + ε.

Form a continuous path β (in R2) by taking γ , adjoining half of the edge en1 ,
adjoining the segment of ϒ [recall the definition from (1)] between e∗

n1
and e∗

i ,
and then finally appending half of the edge ei , to form a continuous circuit based
at x. Since this circuit is a Jordan curve, it separates R2 into an interior and an
exterior. See Figure 1 for an illustration of β .

Our first observation is that either y ∈ β or y is in the interior of β (and in fact,
y ∈ β only if y ∈ γ ). The reason is that y is an endpoint of one of the ei ’s, which
must cross β . Since the other endpoint of this edge is in V c, it cannot be in the
interior of β (or on β). The Jordan curve theorem implies that these endpoints are
in different components, and thus if y /∈ β , it must be in the interior of β . We make
the following claim:

CLAIM 2.2. γ ′ ∩ γ contains a vertex of Z2.

FIG. 1. Construction of the Jordan curve β . It consists of the right path γ , two half-edges connect-
ing γ to the left path, which is a segment of ϒ between vn1 and x.
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To show the claim, we first prove that vn2 is either on β or in the exterior
of β . Accordingly, assume vn2 is not on β . Notice that neither endpoint of en2 can
touch β . Furthermore the edge en2 cannot intersect β because e∗

n2
is not contained

in β . Therefore both endpoints are in the same component of the complement of β

and since the other one is in V c, they must be in the exterior of β .
Now, considering γ ′ as a continuous plane curve, we note that γ ′ must inter-

sect β (since it has to reach vn2 , which is not in the interior of β), but it cannot
intersect ϒ . Therefore, it must intersect γ ; this intersection must happen at a ver-
tex, though it may of course also happen at one or more edges. This proves the
claim.

We will complete the existence proof for the limit in (3) by showing that
Bn(x, y) is monotone in n for fixed x and y. Let n1 and n2 be as above. For
any path σ : a � b and c ∈ σ write σ |c for the segment of σ from the first meeting
of c onward and σ |c for the segment of σ to the first meeting of c. Then letting w

be a point in γ ′ ∩ γ ,

τ(x, vn2) + τ(y, vn1) ≤ [
τ
(
γ |w) + τ

(
γ ′|w)] + [

τ
(
γ ′|w) + τ(γ |w)

]
= [

τ
(
γ |w) + τ(γ |w)

] + [
τ
(
γ ′|w) + τ

(
γ ′|w)]

= τ(γ ) + τ
(
γ ′) ≤ τ(x, vn1) + τ(y, vn2) + 2ε.

Taking ε → 0,

τ(x, vn2) + τ(y, vn1) ≤ τ(x, vn1) + τ(y, vn2).(4)

We can rearrange the terms in (4) to find that

Bn2(x, y) ≤ Bn1(x, y).

Since Bn(x, y) is a sequence bounded below by −τ(x, y), limBn(x, y) exists. �

We now move on to general x, y ∈ V and prove the limit in (3) exists. We will
need a few geometric notions. Let α denote the vertex set of a finite, connected
subgraph of (V ,E) which contains some vi . Denote by (V ′,E′) the graph formed
by setting V ′ = V \ α and letting E′ be formed from E by removing every edge
with an endpoint in α. The graph (V ′,E′) may have multiple components, but
the following claim allows us to find a single component defining the Busemann
function.

CLAIM 2.3. There exists a component (�V , �E) of (V ′,E′) and an M < ∞
such that, for all n > M , vn ∈ �V . Moreover, (�V , �E) is formed from (Z2,E2) by the
removal of edges dual to a doubly infinite, self-avoiding path �ϒ in the dual lattice.

PROOF. Note that if vn �= vn+1, then there exists a path in (V ,E) between vn

and vn+1 of Euclidean length at most two. Since ‖vn‖1 → ∞, we can choose M

such that

dist
({vn}n>M,α

) ≥ 2,
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FIG. 2. Removal of the vertex set α from V . The enlarged squares represent α and the dotted path
is the segment of �ϒ that does not lie in ϒ . The vertices v̄j for j ∈ J are drawn neighboring the
dotted path on the right.

where dist(·, ·) is the (V ,E) graph distance. Then {vn}n>M must all lie in one
component of (V ′,E′), which we denote by (�V , �E).

It remains to show that (�V , �E) can be formed from (Z2,E2) by cutting along a
doubly infinite, loop-free dual path �ϒ . By Proposition A.1 in Appendix A, it suf-
fices to show that both �V and Z2 \ �V are infinite and connected (as subsets of Z2).
Both claims are true for �V . Moreover, Z2 \ �V is infinite, since it contains V c. Be-
cause α is connected and contains a point of {vi}i , we see that Z2 \ �V is connected;
it consists of the union of α, V c and the sites of V which were only reachable from
the large vn’s via sites of α; see Figure 2. Therefore, by the above, the dual edge
boundary between �V and Z2 \ �V is a doubly infinite self-avoiding dual path, prov-
ing the claim. �

We note that, by Proposition 2.1 and the linearity of the Busemann function, we
need only prove the existence of the limit in (3) when y /∈ {vi}i but x is some vm

(which can be chosen as a function of y). Fix y, and denote by α the vertex set of
some (vertex self-avoiding, finite) path in (V ,E) which starts at a vertex adjacent
to y and ends at a vertex vm ∈ {vi}i . Form the graph (�V , �E) as in Claim 2.3; denote
by �ϒ the doubly-infinite dual path whose existence is established in the claim, and
define {v̄i}i analogously to {vi}i . We may choose an orientation of {v̄i}i such that
the following holds. There exists κ ∈ Z such that for all large n, vn = v̄n+κ .

If τ̄ and �Bn are the passage times and Busemann functions in (�V , �E) (defined in
the obvious way), then

�B(v̄i, v̄j ) = lim
n→∞

�Bn(v̄i, v̄j )(5)

exists for all i and j by Proposition 2.1.
Denote by J ⊆ Z the finite set of indices such that v̄j is at Euclidean distance

one from α. Note that y is adjacent to some vertex of α; therefore, if y ∈ �V , then
y = v̄j for some j ∈ J . We will want to apply the following lemma to both z = y

and z = vm:
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LEMMA 2.4. Let z ∈ V be such that either z ∈ {v̄j : j ∈ J } or z /∈ �V . Then

τ(z, vn) = min
j∈J

{
τ(z, v̄j ) + τ̄ (v̄j , vn)

}
.(6)

PROOF. Let ε > 0 and j ∈ J . Then find paths γ : z � v̄j in (V ,E) and
γ̄ : v̄j � vn in (�V , �E) such that τ(γ ) ≤ τ(z, v̄j ) + ε and τ̄ (γ̄ ) ≤ τ̄ (v̄j , vn) + ε.
Build a path σ : z � vn in (V ,E) by concatenating γ with γ̄ . Then

τ(z, vn) ≤ τ(σ ) = τ(γ ) + τ̄ (γ̄ ) ≤ τ(z, v̄j ) + τ̄ (v̄j , vn) + 2ε.

Taking ε → 0 and a minimum over j ∈ J gives the inequality ≤ in (6).
To prove the other inequality, let σ : z � vn in (V ,E) be a path such that τ(σ ) ≤

τ(z, vn)+ε. The path σ must have a terminal segment γ̄ which lies in (�V , �E) from
some v̄j0 to vn—this terminal segment may be equal to the singleton {vn}. Write
γ for the segment of σ from z to the last meeting of v̄j0 . Then

min
j∈J

{
τ(z, v̄j ) + τ̄ (v̄j , vn)

} ≤ τ(z, v̄j0) + τ̄ (v̄j0, vn)

≤ τ(γ ) + τ̄ (γ̄ ) = τ(σ ) ≤ τ(z, vn) + ε.

Taking ε → 0 proves (6). �

So, defining

ϕj (z, n) := τ(z, v̄j ) + τ̄ (v̄j , vn) − τ̄ (v̄1, vn),

we see that τ(z, vn) = τ̄ (v̄1, vn) + minj∈J ϕj (z, n). Moreover,

lim
n→∞ϕj (z, n) =: ϕj (z)

exists by (5), and therefore so does

lim
n→∞

[
τ(z, vn) − τ̄ (v̄1, vn)

]
.(7)

Finally, we can use the above to show convergence of Bn(y, vm) as n → ∞.
Write

lim
n→∞Bn(y, vm) = lim

n→∞
[
τ(y, vn) − τ(vm, vn)

]
= lim

n→∞
[
τ(y, vn) − τ̄ (v̄1, vn) + τ̄ (v̄1, vn) − τ(vm, vn)

]
= lim

n→∞
[
τ(y, vn) − τ̄ (v̄1, vn)

] − lim
n→∞

[
τ(vm, vn) − τ̄ (v̄1, vn)

]
.

Using (7) with z = y and z = vm completes the proof.

3. Geodesic limits. Our aim in this section is to prove Theorem 1.3. We begin
with general properties of geodesic graphs from [6].
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3.1. Geodesic graphs. We will show that the geodesic graph is in fact a union
of geodesics with the appropriate directions. Moreover, under the assumption of
unique passage times, it is a directed forest.

PROPOSITION 3.1. Assume P admits geodesics.

(1) Almost surely, every finite directed path in Gn is a geodesic. It is a subpath
of a geodesic ending in vn.

(2) Assume P has unique passage times. Then each x ∈ V \ {vn} has out-
degree 1 in Gn. Furthermore viewed as an undirected graph, Gn has no circuits.

PROOF. Let γ be a directed path in Gn and write the (directed) edges of γ

in order as e1, . . . , ek . Write J ⊆ {1, . . . , k} for the set of j such that the path
γj induced by e1, . . . , ej is a subpath of a geodesic from some vertex to vn. We
will show that k ∈ J . By construction of Gn, the edge e1 is in a geodesic from
some point to vn. Furthermore, if e1 = (x, y), then τ(x, vn) ≥ τ(y, vn) because
ηn(e1) = 1, so if these passage times are not equal, e1 must be traversed from x

to y in this geodesic, giving 1 ∈ J . If they are equal, then ω{x,y} = 0 and 1 ∈ J as
well.

Now suppose that j ∈ J for some j < k; we will show that j + 1 ∈ J . Take σ

to be a geodesic from a point z to vn which contains γj as a subpath. Write σ ′ for
the segment of the path from z to the far endpoint wj of ej (i.e., we terminate σ

directly after traversing the path γj for the first time). The edge ej+1 is also in Gn

so it is in a geodesic from some point to vn. If we write σ̂ for the piece of this
geodesic from its first meeting of wj to vn, we claim that the concatenation of σ ′
with σ̂ is a geodesic from z to vn. To see this,

τ(z, vn) = ∑
e∈σ ′

ωe + ∑
e∈σ\σ ′

ωe = ∑
e∈σ ′

ωe + ∑
e∈σ̂

ωe.

The last equality holds since both σ̂ and the segment of σ from wj to vn are
geodesics, so they have equal passage time. Hence j + 1 ∈ J , and we are done
with the first item.

For the second item, assume that P has unique passage times so that in particu-
lar, almost surely, no edges have passage time 0. Therefore if a directed edge is in
a geodesic from a point to vn, it must be traversed in this direction. Note that from
each vertex v ∈ V \ {vn} there is at least one geodesic from v to vn. The first edge
of this geodesic is pointed away from v, so v has an out-degree of at least one.
Assuming v has an out-degree of at least two, then we write e1 and e2 for two such
directed edges. By the first item, there are two geodesics, γ1 and γ2, to vn such that
ei ∈ γi for i = 1,2. If either of these paths returned to v, then there would exist a
finite path with passage time zero, contradicting unique passage times. So the por-
tions of the γi’s from v to vn have distinct edge sets and therefore have different
passage times. This contradicts both being geodesics.
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We finish by arguing for the absence of circuits. If there is a circuit in the undi-
rected version of Gn, then by virtue of each vertex having out-degree one, this is
a directed circuit and thus a geodesic. But then it has passage time zero, a contra-
diction. �

3.2. Proof of Theorem 1.3. The second statement of the theorem follows di-
rectly from the previous section: each directed path in Gn is a geodesic. So we
prove the first statement and show that for each directed edge (x, y) in 	E, with
probability one the value of ηn((x, y)) is eventually constant. Fix x ∈ V and
choose m ∈ N such that, defining [with d(·, ·) the graph distance in (V ,E)]

Sm = {
w ∈ V :d(x,w) ≤ m

}
,

∂Sm = {
w ∈ V :d(x,w) = m + 1

}
,

we have Sm ∩ {vi}i �= ∅. Setting α = Sm, we may apply Claim 2.3 to find (�V , �E),
a component of the graph generated by removing α from (V ,E) containing vn for
all large n. As before, it can be alternatively created by cutting (Z2,E2) along a
doubly infinite self-avoiding dual path �ϒ . As in the last section, we will decorate
expressions with an overline when they are meant for the model in (�V , �E) (e.g., τ̄ ).
For the remainder, we also fix ω ∈ � such that for each x, y ∈ V , there is a geodesic
from x to y.

For each ζ ∈ Tm := ∂Sm ∩ �V , and n such that vn ∈ �V , we define the quantity

fn(ζ ) = τ(x, ζ ) + τ̄ (ζ, vn).(8)

Let mn be the set of minimizers of fn.

LEMMA 3.2. There exists m ⊂ Tm such that mn =m for all large n.

PROOF. First, note that Tm ⊂ {v̄i}i . Therefore by Proposition 2.1, for
ζ, ζ ′ ∈ Tm,

fn(ζ ) − fn

(
ζ ′) = τ(x, ζ ) + τ̄ (ζ, vn) − τ

(
x, ζ ′) − τ̄

(
ζ ′, vn

)
= τ(x, ζ ) − τ

(
x, ζ ′) + �Bn

(
ζ, ζ ′)

is eventually monotone. Suppose that ζ ∈ Tm satisfies ζ /∈mn for infinitely many n.
Then we can find ζ ′ such that fn(ζ ) − fn(ζ

′) > 0 for infinitely many n. By mono-
tonicity this means that actually fn(ζ )−fn(ζ

′) > 0 for all large n and thus ζ /∈ mn

for all large n. This also implies that if ζ ∈ mn for infinitely many n, then ζ ∈ mn

for all large n, completing the proof. �

Given this lemma, the theorem will follow once we show that ηn((x, y)) = 1 if
and only if {x, y} is in a geodesic from x to a vertex of mn. Note that Tm is equal to
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the set of vertices in �V at Euclidean distance one from Sm. Applying Lemma 2.4
with z = x, any ζ ∈ Tm satisfies

ζ ∈ mn if and only if fn(ζ ) = τ(x, vn).

So suppose first that ηn((x, y)) = 1; then {x, y} is in a geodesic γ from x to vn.
γ has a last intersection ζ with Tm. Then the segment γ̄ of γ from this intersection
to vn has

τ(ζ, vn) = τ(γ̄ ) ≥ τ̄ (ζ, vn).

But τ̄ (ζ, vn) ≥ τ(ζ, vn), so τ(γ̄ ) = τ̄ (ζ, vn). Therefore

τ(x, vn) = τ(γ ) = τ(x, ζ ) + τ(γ̄ ) = τ(x, ζ ) + τ̄ (ζ, vn) = fn(ζ ),

giving ζ ∈ mn. Furthermore the segment of γ up to the last intersection with ζ is
a geodesic from x to ζ that contains {x, y}.

Conversely, suppose that {x, y} is in a geodesic γ1 from x to a vertex ζ of mn;
we will show that ηn((x, y)) = 1. Choose γ2 as any geodesic from ζ to vn. Con-
catenate them to form a path γ from x to vn. We compute

τ(γ ) = τ(γ1) + τ(γ2) = τ(x, ζ ) + τ(ζ, vn) ≤ τ(x, ζ ) + τ̄ (ζ, vn) = fn(ζ ).

However since ζ ∈ mn, fn(ζ ) = τ(x, vn), so τ(γ ) ≤ τ(x, vn). The opposite in-
equality holds because γ :x � vn, so γ is a geodesic from x to vn. It remains
to show that τ(x, vn) ≥ τ(y, vn). But this holds because y appears in γ after the
first appearance of x. Therefore if we write σ for the segment of γ from the first
intersection with y to vn, then

τ(x, vn) = τ(γ ) ≥ τ(σ ) = τ(y, vn).

4. Geodesics graphs on H. In this section we prove Theorem 1.5. Because P

admits geodesics, Theorem 1.3 implies that the sequence of graphs (Gn) converge
almost surely to a directed graph G, each of whose directed paths is a geodesic.
As P also has unique passage times, Proposition 3.1 states that each vertex of Gn

has out-degree one and there are no undirected circuits, so these same properties
survive in the limit for G. The finiteness of backward clusters is a consequence
of nonexistence of bigeodesics in the half-plane, proved by Wehr and Woo [20].
Unfortunately this result was only proved under (A) with the additional assumption
Eωe < ∞, so we provide a proof in Appendix C under either (A) or (B).

This section is devoted to showing coalescence of directed paths in G. Because
each vertex in GH has an out-degree of one, it suffices to show that each �v and �w

(defined in the statement of Theorem 1.5) share a vertex. The main difficulty will
be proving this statement for all v,w on the first coordinate axis; that is, the set L0,
where

for k ∈N∪ {0}, Lk := {
(x, k) :x ∈ Z

}
.

To see why this implies coalescence for all paths, assume we have proved this
statement, and note that it suffices then to show that for all v,w ∈ VH with w ∈ L0,
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the geodesics �v and �w coalesce. Write v = (v1, v2) and consider the set

L̃v = {
(v1, y) ∈ VH : 0 ≤ y ≤ v2

}
.

With probability one, for each v′ ∈ L̃v , the backward cluster Bv′ is finite. Thus we
can find m,n ∈ Z with m < v1 < n such that for all v′ ∈ L̃v , both points (m,0)

and (n,0) are not in Bv′ . This means in particular that �(m,0) and �(n,0) cannot
intersect L̃v and, since they coalesce, they must meet “above” v. In other words,
v is in the bounded component of VH \ (�(m,0) ∪ �(n,0)) (viewing these paths
only as their vertex sets). By planarity, �v must intersect �(m,0). Because �(m,0)

coalesces with �w , this completes the proof.
So we move to proving coalescence starting from the first coordinate axis. We

will prove by contradiction, so assume either (A) or (B) but that

with positive probability, there are vertices v,w ∈ L0 with �v ∩ �w = ∅.(9)

4.1. Estimates on density of disjoint geodesics.

4.1.1. Definitions. For each k ∈N∪{0} and m,n ∈ Z with m < n define N
(k)
m,n

as the largest number N such that we can find vertices v1, . . . , vN ∈ [m,n] × {k}
such that:

(a) �v1, . . . ,�vN
are pairwise disjoint, and

(b) for all i, �vi
∩ [L0 ∪ · · · ∪ Lk] = {vi}.

Similarly, for k ∈ N let M
(k)
m,n be the largest M such that we can find v1, . . . , vM ∈

[m,n]×{k} such that (a) and (b) above hold but also (c) for all i = 1, . . . ,M , every
v ∈ L0 has �v ∩ �vi

= ∅. See Figure 3 for an illustration of these definitions.

FIG. 3. In this example N
(k)
m,n is at least 4. The arrowed paths are geodesics emanating from vertices

on the line Lk . They do not intersect each other, and they intersect Lk only at their initial points. The
nonarrowed paths are segments of geodesics starting from L0. Note that the initial points of a and b

do not contribute to the random variable M
(k)
m,n.
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LEMMA 4.1. For each k1 ∈ N ∪ {0} and k2 ∈ N, there exist deterministic
αk1, βk2 ≥ 0 such that

lim
n→∞

N
(k1)
0,n

n
= αk1 and lim

n→∞
M

(k2)
0,n

n
= βk2 almost surely and in L1(P).

We have the characterization

αk1 = inf
n∈N

EN
(k1)
0,n

n
and βk2 = inf

n∈N
EM

(k2)
0,n

n
.

Furthermore, assuming (9), α0 > 0.

PROOF. Note that for all m < n < p in Z and k1 ∈ N∪ {0}, k2 ∈ N, we have

N(k1)
m,p ≤ N(k1)

m,n + N(k1)
n,p and M(k2)

m,p ≤ M(k2)
m,n + M(k2)

n,p .

Further max{N(k1)
m,n ,M

(k2)
m,n } ≤ n − m + 1 surely, so they have finite mean, and

(N
(k1)
m,n ,M

(k2)
m,n ) has the same distribution as (N

(k1)
0,n−m,M

(k2)
0,n−m). Therefore we can

apply Kingman’s subadditive ergodic theorem to find deterministic αk1, βk2 ≥ 0
such that

1

n
N

(k1)
0,n → αk1 and

1

n
M

(k2)
0,n → βk2 almost surely and in L1(P).

Furthermore, αk1 = infn∈N EN
(k1)
0,n /n and βk2 = infn∈N EM

(k2)
0,n /n.

We claim now that under assumption (9), α0 > 0. By countability and invariance
of P under T(1,0), we can find i0 ∈ N such that P(A(1, i0)) > 0, where A(1, i0) is
the event that �(1,0) and �(i0,0) do not intersect. Note that if i1 < i2 < i3 < i4 are
integers such that �(il,0) and �(il+1,0) are disjoint for l = 1,3, then by planarity,
at least three of them must be disjoint. So the ergodic theorem implies that with
probability one, A(1, i0) ◦ T(j,0) occurs for infinitely many j and therefore we can
find 4 geodesics starting from L0 that are all disjoint. The middle two of these must
intersect L0 only finitely often. This implies that for some j0 ∈ N, P(B(1, j0)) > 0,
where B(1, j0) is the event that �(1,0) and �(j0,0) do not intersect and only touch
L0 at their initial points.

Again, by the ergodic theorem,

1

N

N∑
l=0

T l
(j0,0)1B(1,j0) → P

(
B(1, j0)

)
almost surely and in L1(P).

The reasoning given above, but applied to sets {j1, j2, . . .} of size bigger than 4,
implies that for n ∈N,

N
(0)
0,j0n

− 1 ≥
n∑

l=0

T l
(j0,0)1B(1,j0).

Dividing by j0n and taking n → ∞, we find α0 ≥ P(B(1, j0))/j0 > 0. �
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4.1.2. Lower bound on αk .

PROPOSITION 4.2. For each k ∈N, αk ≥ βk + α0.

PROOF. For the proof we need a lemma stating that any geodesic starting at L0
intersects Lk only finitely often.

LEMMA 4.3. Assume (9). For each v ∈ L0 and k ∈ N, with probability one,
the set �v ∩ Lk is finite.

PROOF. Assume that there exists k ∈ N such that with positive probability,
there exists v ∈ L0 with �v ∩ Lk infinite. By countability and invariance of P

under T(1,0),

P(B) > 0 where B = {
#(�(0,0) ∩ Lk) = ∞}

.

By Lemma 4.1, we can find N0 ∈ N such that

P
(
N

(0)
1,N0+1 > k + 2

)
> 1 − P(B)/2

and then by translation invariance, with positive P-probability, the event B ∩
{N(0)

1,N0+1 > k + 2} ∩ {N(0)
−1−N0,−1 > k + 2} occurs. However any outcome in this

event must have contradictory properties, as we now explain. Since B occurs,
�(0,0) must intersect infinitely many vertices of either Lk ∩ {(x, y) :x ≥ 0} or
Lk ∩ {(x, y) :x ≤ 0}. Let us assume the first; the subsequent argument is simi-
lar in the other case. Then �(0,0) must be disjoint from at least k + 1 different
geodesics �v1, . . . ,�vk+1 with vi ∈ L0 ∩ [1,N0 + 1] for all i, but it must intersect
some vertex (x, k) for x > N0. By planarity, the geodesics �vi

must all intersect
the set {(x, j) : 0 ≤ j ≤ k}, but then they cannot be disjoint. This is a contradiction.

�

Returning to the proof of Proposition 4.2, fix k ∈ N. For each m ∈ Z, define
dk(m) as the first coordinate of the last vertex (by the natural ordering) on �(m,0)

in the line Lk . This quantity exists almost surely by Lemma 4.3. For any a, b ∈ Z

with a < b, define the set

Xa,b = {
j ∈ Z :dk(j) ∈ [a, b]}.

We claim that for some fixed N0 ∈ N,

P
(
X−N0,n+N0 contains [0, n] for infinitely many n ∈N

) ≥ 1/2.(10)

To show this, first choose N0 ∈ N such that P(|dk(0)| ≤ N0) ≥ 3/4. Next note that
by invariance of P under T(1,0), P(dk(n) ≤ n+ N0) ≥ 3/4 for all n ∈ N. These two
events occur simultaneously with probability at least 1/2, so

P
(
dk(0) ≥ −N0 and dk(n) ≤ n + N0 for infinitely many n ∈ N

) ≥ 1/2.
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Last, observe that by planarity and the fact that if two �’s touch, they must merge,
the function m �→ dk(m) is monotonic. This implies that if dk(0) ≥ −N0 and
dk(n) ≤ n + N0, then the set X−N0,n+N0 contains [0, n].

The second step is to prove that

P

(
lim sup
n→∞

N
(k)
0,n − M

(k)
0,n

n
≥ α0

)
≥ 1/4.(11)

Because (N
(k)
0,n −M

(k)
0,n)/n converges almost surely to αk −βk , this suffices to com-

plete the proof of the proposition. First, given ε > 0, by Lemma 4.1, pick N1 such
that

P
(
N

(0)
0,n/n ≥ α0 − ε for all n ≥ N1

) ≥ 3/4.

On this event, for n ≥ N1, setting an = �n(α0 − ε)�, we may find x
(n)
1 , . . . , x

(n)
an

in [0, n] such that the geodesics �
(x

(n)
1 ,0)

, . . . ,�
(x

(n)
an ,0)

are pairwise disjoint.

If, in addition, the event in (10) occurs, then for infinitely many n, all of
dk(x

(n)
1 ), . . . , dk(x

(n)
an ) are in [−N0, n + N0]. Note that the geodesics emanating

from each of the points (dk(x
(n)
i ), k) are disjoint and do not intersect L0 ∪ · · · ∪Lk

except for their initial vertices. Next, choose a maximal set �̂
(n)
1 , . . . , �̂

(n)

M
(k)
−N0,n+N0

of geodesics starting in [−N0, n + N0] × {k} which are disjoint and inter-
sect L0 ∪ · · · ∪ Lk only at their initial vertices, and such that no v ∈ L0 has
�v ∩ �̂

(n)
i �= ∅ for i = 1, . . . ,M

(k)
−N0,n+N0

. Note that these �̂’s are disjoint from

the geodesics starting from the points (dk(x
(n)
i ), k). Therefore for each n ≥ N1,

with probability at least 1/4 we have N
(k)
−N0,n+N0

≥ an + M
(k)
−N0,n+N0

. Thus

P
(
N

(k)
−N0,n+N0

≥ an + M
(k)
−N0,n+N0

for infinitely many n
) ≥ 1/4.

By invariance of P under T(1,0),

P
(
N

(k)
0,n+2N0

− M
(k)
0,n+2N0

≥ an for infinitely many n
) ≥ 1/4.

Finally, as (n + 2N0)/n → 1 as n → ∞ and ε is arbitrary, (11) holds. �

4.1.3. Upper bound on αk . In this section we combine the lower bound from
last section with an upper bound to conclude that βk = 0. In what follows, we will
denote by G(x,y) the unique geodesic between x and y.

PROPOSITION 4.4. For k ∈N, αk ≤ α0. Therefore by Proposition 4.2, βk = 0.

We will couple together the upper half-plane with shifted half-planes. For any
k ∈ N we consider the shifted configuration T(0,k)ω and the unique geodesics
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G(v, (n,0)) in this configuration. Specifically, for any ω ∈ �H and v ∈ V k
H =

{(x, y) ∈ VH :y ≥ k}, we set

G(k)
n (v) = T(0,−k)

[
G

(
v − (0, k), (n,0)

)
(T(0,k)ω)

]
,(12)

where for a path γ in H we denote by T(0,−k)γ the path γ shifted up by k units.

By Theorem 1.3, there is an almost sure limit G(k)(v) = limn→∞ G
(k)
n (v).

LEMMA 4.5. Let k ∈ N. With probability one, for all v ∈ Lk , if �v ∩ [L0 ∪
· · · ∪ Lk−1] = ∅, then

�v = G(k)(v).

PROOF. Let v ∈ Lk such that �v ∩ [L0 ∪ · · · ∪ Lk−1] = ∅ and write it as
v = (v1, v2). Let σ be the nonself intersecting continuous curve obtained by con-
catenating (a) the edges of �v , (b) the vertical line segment connecting (v1,−1/2)

and v and (c) the ray {(x,−1/2) ∈ R2 :x ≥ v1}. One component of the comple-
ment of σ contains all vertices of Lk−1 to the right of v − (0,1), and the other
contains all vertices of Lk−1 to the left of v − (0,1); call the first C1 and the sec-
ond C2. Because the sequence G(v, (n,0)) converges to �v as n → ∞, there exists
N0 such that if n ≥ N0, then G(v, (n,0)) does not contain any vertices of the form
(v1, y) for y < v2. For n ≥ N0 the geodesic G(v, (n,0)) cannot contain any ver-
tices in C2. For if it did, it would start at v, go through a vertex in C2, and then
touch (n,0), a vertex in C1. Because this geodesic cannot cross {(v1, y) :y < v2},
it must cross �v and violate unique passage times.

For n ≥ N0, let wn denote the first intersection of G(v, (n,0)) with Lk−1. The
vertex vn directly before this must be in Lk , and the segment γn of G(v, (n,0))

from v to vn has all vertices in V k
H . Therefore writing vn = (an, k), we have γn =

G
(k)
an (v). Because �v does not intersect L0 ∪· · ·∪Lk−1, ‖wn‖1 → ∞. However wn

is in C1, so an → +∞. Taking n to infinity, these segments converge to G(k)(v).
However they converge to �v . �

For n ∈ N, choose r = N
(k)
0,n pairwise disjoint geodesics �v1, . . . ,�vr for

v1, . . . , vr ∈ [0, n] × {k} such that for each i = 1, . . . , r , �vi
∩ [L0 ∪ · · · ∪ Lk] =

{vi}. By Lemma 4.5, r ≤ N
(0)
0,n(T(0,k)(ω)). Therefore

N
(k)
0,n(ω)

n
≤ N

(0)
0,n(T(0,k)(ω))

n
for all n ∈ N.

Taking n → ∞ and using invariance of P under T(0,k), we find αk ≤ α0.

4.2. Deriving a contradiction. In this section we will show that assuming (9),
there exists k ≥ 1 such that βk > 0. This will contradict Proposition 4.4 and com-
plete the proof of coalescence starting from the first-coordinate axis.
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4.2.1. Lemmas for edge modification. The first lemma will let us apply an
edge modification argument. For a typical element ω and edge e ∈ EH we write
ω = (ωe, ω̌). We say an event A ⊂ �H is e-increasing if, for all (ωe, ω̌) ∈ A and
r > 0, (ωe + r, ω̌) ∈ A. The following is a weaker version of [6], Lemma 6.6, and
uses the upward finite energy property.

LEMMA 4.6. Let λ > 0 be such that P(ωe ≥ λ) > 0. If A ⊂ �H is e-increasing
with P(A) > 0, then

P(A,ωe ≥ λ) > 0.

PROOF. We estimate

P(A,ωe ≥ λ) = E
[
E

[
1A(ωe, ω̌)1{ωe≥λ}|ω̌]]

≥ E
[
1A(λ, ω̌)P(ωe ≥ λ|ω̌)

]
.

Because A is e-increasing, the variable 1A1{ωe≤λ} is less than or equal to the ran-
dom variable 1A(λ, ω̌). Therefore if the statement of the lemma is false, then
1A(λ, ω̌) is positive on a set of positive probability. By the upward finite en-
ergy property, P(ωe ≥ λ|ω̌) is positive almost surely, so the above estimates give
P(A,ωe ≥ λ) > 0, a contradiction. �

The second lemma is a shape theorem-type upper bound. For it, we define

λ+
0 = sup

{
λ ≥ 0 :P(ωe ≥ λ) > 0

}
.(13)

LEMMA 4.7. Suppose that λ+
0 < ∞. There exists c+ < λ+

0 such that

P
(
τ(0, x) ≤ c+‖x‖1 for all but finitely many x ∈ VH

) = 1.

PROOF. Because P has unique passage times, the marginal of ωe is not con-
centrated at a point and therefore Eωe < λ+

0 . For any x ∈ VH choose a determinis-
tic path γx : 0 � x in H with ‖x‖1 number of edges. Then

Eτ(0, x) ≤ Eτ(γx) = ‖x‖1Eωe.

We now set c+ = Eωe+λ+
0

2 and argue that this value satisfies the condition of the
lemma. The argument will be similar to the proof of the shape theorem in the full
space.

For any z ∈ Q2 with second coordinate nonnegative, let N be any natural num-
ber such that Nz ∈ VH . Then for n ∈ N, write n = � n

N
� + r , where 0 ≤ r < N and

estimate

τ(0, nz) ≤ Nλ+
0 ‖z‖1 +

�n/N�−1∑
i=0

τ(0,Nz)
(
T i

Nzω
)
.
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Divide by n and use the ergodic theorem to find

lim sup
n→∞

τ(0, nz)

n
≤ Eτ(0,Nz)

N
≤ ‖z‖1Eωe.(14)

Let �′
H be the full-probability event on which (14) holds for all z ∈ Q2 with second

coordinate nonnegative. Assume by way of contradiction that on some positive
probability event A, the lemma does not hold for the c+ fixed above. Then we can
find ω ∈ A ∩ �′

H ; we will show that this ω has contradictory properties.
Let (zn) be a sequence of vertices in VH such that ‖zn‖1 → ∞ and

τ(0, zn) > c+‖zn‖1 for all n ∈ N.

By compactness (and by restricting to a subsequence), given a positive a such that
aλ+

0 < c+ − Eωe, we can find some z ∈ Q2 with second coordinate nonnegative
and

‖z‖1 = 1 such that
∥∥∥∥ zn

‖zn‖1
− z

∥∥∥∥
1
< a for all n ∈N.

Then we can estimate

τ(0, zn) ≤ τ
(
0,‖zn‖1z

) + τ
(‖zn‖1z, zn

) ≤ τ
(
0,‖zn‖1z

) + ∥∥‖zn‖1z − zn

∥∥
1λ

+
0 .

Therefore

c+ <
τ(0, zn)

‖zn‖1
≤ τ(0,‖zn‖1z)

‖zn‖1
+

∥∥∥∥z − zn

‖zn‖1

∥∥∥∥
1
λ+

0 .

Taking limsup on the right-hand side gives c+ ≤ Eωe + aλ+
0 , a contradiction. �

The final lemma deals with spatial concentration of geodesics emanating from
the first coordinate axis. For v1, v2, v3 ∈ L0 let B(v1, v2, v3) be the event that:

(1) the geodesics �v1,�v2 and �v3 are disjoint;
(2) they intersect L0 only at their initial points;
(3) their intersection with each Lk is finite.

We will also need a subevent of B(v1, v2, v3). Let

BG(v1, v2, v3) =

⎧⎪⎪⎨⎪⎪⎩
B(v1, v2, v3) occurs and for each ε > 0,

there are infinitely many k ∈ N such that
the last intersections ζk and ζ ′

k of
�v1 and �v3 with Lk have ‖ζk − ζ ′

k‖1 < εk

⎫⎪⎪⎬⎪⎪⎭ .

LEMMA 4.8. Suppose v1 = (x1,0), v2 = (x2,0) and v3 = (x3,0) with x1 <

x2 < x3. Then P(BG(v1, v2, v3)|B(v1, v2, v3)) = 1.
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PROOF. For z ∈ L0 and k ∈ N, denote by ζk(z) the last point of intersection
of �z with Lk , which exists almost surely by Lemma 4.3. Take v = v3 − v1 and
consider

Ck(v) = {∥∥ζk(v) − ζk(0)
∥∥

1 ≥ εk
}
.

For k,n ∈ N, define X
(k)
n = ∑n−1

j=0 1Ck(v)(T(jd,0)(ω)), where d = ‖v‖1 + 1. By the
ergodic theorem, putting pk = P(Ck(v)),

X(k)
n /n → pk almost surely.(15)

As previously stated in the paper, for l ∈ Z and k ∈ N, define dk(l) as the first
coordinate of ζk(l), and note that by planarity, dk(l) is monotone in l. Therefore
for n ∈ N, the difference dk(nd) − dk(0) is at least equal to εkX

(k)
n , so

dk(nd) − nd − dk(0)

n
≥ εkX

(k)
n − nd

n
= εkX(k)

n /n − d.

Combining with (15), almost surely,

lim inf
n→∞

dk(nd) − nd − dk(0)

n
≥ εkpk − d.

Because dk(nd) − nd and dk(0) have the same distribution, (dk(nd) − nd −
dk(0))/n → 0 in probability. Therefore

pk ≤ d/(εk),

giving pk → 0. In particular, with probability one, Ck(v)c occurs for infinitely
many k. �

4.2.2. Main argument. We will first assume that λ+
0 < ∞ and that (9) holds.

By Proposition 4.2, α0 > 0 and so we can find v1, v2, v3 and p > 0 such that
P(B(v1, v2, v3)) ≥ p, where this event was defined before Lemma 4.8. Fix any
positive

ε <
λ+

0 − c+

8λ+
0

.(16)

We first define a modified event which combines conditions from the previous
section. Specifically, for k ∈ N we set B ′(k) = B ′(v1, v3;k) as the event that:

(1) the geodesics �v1 and �v3 are disjoint and intersect Lj in a finite set for all
j ∈ N∪ {0};

(2) writing w1 = w1(k) and w3 = w3(k) for the last intersections of �v1 and
�v3 with Lk , there is a vertex x∗ in Lk between w1 and w3 such that �x∗ is disjoint
from �v1 and �v3 , and �x∗ intersects Lk only at x∗;

(3) the finite geodesics r1(k) and r3(k), defined as the segments of �v1,�v3

from L0 to each of w1 and w3 satisfy τ(ri(k)) ≤ c+‖vi − wi‖1 for i = 1,3;
(4) ‖w1 − w3‖1 < εk. (See Figure 4.)
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FIG. 4. The event B ′(k). The geodesics �vi , i = 1,3, are the left and right paths. The central
geodesic �x∗ does not intersect either �v1 or �v3 and intersects Lk only at x∗. The initial segments
of �v1 and �v3 satisfy τ (ri (k)) ≤ c+‖vi − wi‖1 while ‖w1 − w3‖1 < εk.

The first two conditions hold together for all k simultaneously with probability
at least p. This is because whenever B(v1, v2, v3) occurs, almost surely each �vi

intersects each Lk in a finite set, so we can let x∗ be the last intersection point of
�v2 with Lk . Next, by Lemma 4.7 we can find k0 such that

P

(
τ(vi,w) ≤ c+‖vi − w‖1 for all i = 1,3 and w ∈

∞⋃
k=k0

Lk

)
> 1 − p/2.

This implies that the first three conditions hold for all k ≥ k0 with probability at
least p/2. Using Lemma 4.8,

P
(
B ′(k)

)
> 0 for infinitely many k ≥ k0.(17)

We then fix any such k ≥ k0 with

4‖v3 − v1‖1λ
+
0 <

λ+
0 − c+

2
k.(18)

Next we modify the edge-weights for a set of edges between the geodesics �v1

and �v3 . For any configuration ω in B ′(k) write X1 for the closed subset of R2 with
boundary curves �v1 , �v3 and the segment of the first coordinate axis between v1
and v3. Let X2 be the component of X1 ∩ {(x, y) ∈ R2 : 0 ≤ y ≤ k} containing v1.
Last, define the set X ⊂ EH consisting of all edges not in �v1 or �v3 but such that
both endpoints are in X2. Because there are only countably many choices, (17)
implies there is a deterministic choice X′ and a vertex y ∈ Lk such that

P
(
B ′(k),X = X′, x∗ = y

)
> 0.(19)

Here the notation x∗ = y means that the (deterministic) vertex y satisfies condi-
tion (2) of the definition of B ′(k).
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We next show that

P

(
B ′(k),X = X′, x∗ = y,

⋂
e∈X′

{
ωe ≥ c+ + λ+

0

2

})
> 0.(20)

To prove this we enumerate the edges e1, . . . , er of X′ and repeatedly apply
Lemma 4.6. By (19), we simply need to verify that for all j = 2, . . . , r ,

B ′(k) ∩ {
X = X′, x∗ = y

} ∩
j−1⋂
i=1

{
ωei

≥ c+ + λ+
0

2

}
is ej -increasing.

So take ω in the event on the left for some j = 2, . . . , r with ω′ such that ω′
f = ωf

for f �= ej and ω′
ej

≥ ωej
. First we claim that �v1 , �y and �v3 are unchanged

from ω to ω′. To see this, note that since ej is not in �v1 , �y or �v3 we can
find n1 = n1(ω) such that if n ≥ n1 then ej is also not in any of the geodesics
G(v1, (n,0)), G(y, (n,0)) or G(v3, (n,0)) in ω. Therefore these remain geodesics
in ω′; taking the limit as n → ∞ proves the claim. Now it is clear that X = X′ in
ω′ and conditions (1)–(4) of B ′(k) hold in ω′. Obviously if ωei

≥ (1/2)(c+ + λ+
0 )

for i = 1, . . . , j − 1 in ω, then this is still true in ω′. This proves (20).
On the event in (20), no point v ∈ L0 can have �v ∩�y �= ∅. We will now argue

for this fact and explain why it leads to a contradiction. If such a v exists, it must
be on the segment of L0 strictly between v1 and v3; this is a direct consequence
of planarity and the fact that each vertex in GH has out degree one. Therefore �v

must start at L0 and use only edges in X′ until its exit from L0 ∪ · · · ∪ Lk . Writing
w for the first vertex of �v in Lk , we must then have

τ(v,w) ≥ c+ + λ+
0

2
‖v − w‖1.(21)

On the other hand, we can give an upper bound for the passage time from v to w

by taking the path obtained by concatenating (a) the segment of L0 from v to v1,
(b) the geodesic r1 and (c) the segment of Lk from w1 to w. We get the bound

τ(v,w) ≤ [‖v3 − v1‖1 + εk
]
λ+

0 + c+‖v1 − w1‖1

≤ 2
[‖v3 − v1‖1 + εk

]
λ+

0 + c+‖v − w‖1.

Combining this with (21), we find(
λ+

0 − c+)
k ≤ 4

[‖v3 − v1‖1 + εk
]
λ+

0 .

This contradicts (16) and (18).
To summarize, we have now shown that for some fixed w1,w2,w3 ∈ Lk such

that the segment of Lk between w1 and w3 contains w2, C = C(w1,w2,w3) has
positive probability, where this event is defined by the conditions:

(1) �w1,�w2 and �w3 are disjoint and intersect L0 ∪ · · · ∪ Lk only in w1, w2
and w3, respectively, and

(2) no v ∈ L0 has �w2 ∩ �v �= ∅.
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Fix any m,n ∈ Z with m < n and w1,w3 ∈ [m,n] × {k}. Let l ∈ N be bigger
than ‖w3 − w1‖1, and recall the notation M

(k)
m,n from Section 4.1.1. Note that if

C ∩ T(l,0)C occurs, then M
(k)
m,n+l ≥ 2. Iterating this reasoning, for any j ∈ N,

M
(k)
m,n+j l(ω) ≥

j−1∑
i=0

1C

(
T i

(l,0)ω
)
.

Diving by j and using the ergodic theorem gives βk > 0, a contradiction. This
proves that assumption (9) is false in the case λ+

0 < ∞ and thus all geodesics
starting from L0 coalesce.

In the case that λ+
0 = ∞, the argument is much easier, and we will just explain

the idea. If (9) holds, then we still find v1, v2, v3 in L0 with v2 in the segment of
L0 between v1 and v3 and such that the �vi

’s are disjoint and intersect L0 in only
v1, v2 and v3. Again pick y as the last intersection point of �v2 with L1. Letting S

be the set of edges touching any vertex of L0 between v1 and v3 (and therefore not
in �v1 or �v3 ), we then modify the edge-weights for edges in S to be larger than
some Cbig > 0. Using Lemma 4.6 we can find Cbig large enough so that on this
event, no vertex v of L0 can have �v ∩ �y �= ∅. As before, this implies β1 > 0,
a contradiction.

APPENDIX A: DUAL EDGE BOUNDARY OF V

For any set V1 ⊆ Z2, let F be the edge boundary of V1,

F = F(V1) = {{x, y} :x ∈ V1, y ∈ V c
1
}
.

PROPOSITION A.1. Let V1 ⊆ Z2 be infinite, connected and such that V c
1 is

infinite and connected. The dual edge set F ∗ consists of a single doubly infinite
dual path which is nonself intersecting. That is, it is connected and infinite, and
each dual vertex v∗ in W ∗, the set of endpoints of dual edges in F ∗, has degree
exactly 2 in the connected infinite graph G∗ = (W ∗,F ∗).

PROOF. Assume first that G∗ has a cycle. We can then extract from this cycle
a self-avoiding one, whose parametrization yields a Jordan curve. This curve must
contain a vertex of Z2 in its interior, showing that either V1 or V c

1 must be finite,
a contradiction.

Next we prove that each dual vertex v∗ ∈ W ∗ has degree 2 in G∗. If v∗ has
degree 1, then it has one incident dual edge e∗ ∈ F ∗, and this is dual to an edge
e ∈ F . One endpoint of e is in V1 and one is in V c

1 , but they can be connected
outside of F using the 3 other edges dual to those which have v∗ as an endpoint,
a contradiction. This means each v∗ ∈ W ∗ has degree at least 2 in G∗. However if
v∗ has degree at least 3 in G∗, then three such dual edges e∗

1, e
∗
2 and e∗

3 incident to
v∗ are the first edges of disjoint self-avoiding infinite dual paths P1,P2,P3. These
paths split Z2 into at least 3 components, violating the fact that (Z2,E2) \ F has
two components.
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Last we must show that G∗ is connected. Indeed, if G∗ were not connected, it
would have two components G∗

1,G
∗
2 (and possibly others). Since each dual vertex

of G∗
i must have degree two, and since there can be no cycles, G∗

1 and G∗
2 must be

disjoint, self-avoiding, doubly infinite dual paths. But this breaks Z2 into at least
three components, a contradiction. �

APPENDIX B: EXISTENCE OF GEODESICS

In this section, we prove that if P is a product measure and x and y are arbitrary
vertices of V , then there almost surely exists a (finite) geodesic between x and y.
For V = Z2 this was proved by Wierman and Reh [21]; for general d , this appears
to be open; see the remark under Theorem 8.1.8 in [22]. The proof will rely on the
following “partial shape theorem.”

LEMMA B.1. Assume that P(ωe = 0) < 1/2. Then, with probability one,

lim inf‖x‖1→∞
τ(0, x)

‖x‖1
> 0.

PROOF. Because (V ,E) is a subgraph of (Z2,E2), it suffices to show the
lemma in the first-passage model on Z2. So let (ωe) be a passage time realiza-
tion on E2, and define the truncated ω̂e = min{ωe,1}, with τ̂ the passage time in
the environment (ω̂e). Then by the shape theorem (see [17], Theorem 1, and the
references therein), the lemma holds for τ̂ . However, τ ≥ τ̂ , so we are done. �

THEOREM B.2. Let x and y be elements of V . Then, almost surely, there
exists a geodesic γ :x � y.

PROOF. The proof will be broken up into two cases, depending on the proba-
bility that ωe = 0. In both cases, we will show that if we write for N ∈ N,

τN(x, y) = min
γ : x�y

γ⊆(x+[−N,N]2)∩V

τ(γ ),

then

P
(
τN(x, y) = τ(x, y) for all large N

) = 1.(22)

This suffices to prove the theorem, as a function on a finite set attains its mini-
mum.

Case I: P(ωe = 0) < 1/2. In this case, we fix some deterministic path γ0 in V

connecting x and y and define N = N(τ(γ0)) to be the smallest number such that

min
z∈V \(x+[−N,N]2)

τ (x, z) > τ(γ0).
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Note that N is almost surely finite by Lemma B.1. Then no path containing a
vertex of V \ (x + [−N,N]2) can have passage time less than or equal to τ(x, y).
In particular, (22) holds.

Case II: P(ωe = 0) ≥ 1/2. Choose a deterministic N0 > 1 such that there exists
a path connecting x and y lying entirely in [−N0,N0]2 ∩ V . We will consider P

to actually be defined on RE2
, though of course the weights of edges outside of E

will have no bearing on the first-passage model in (V ,E).
Consider a sequence of annuli An ⊆ R2 of the form

An = [−Nn+1
0 ,Nn+1

0

]2 \ (−Nn
0 ,Nn

0
)2;

denote by Gn the event that there is a (vertex) self-avoiding circuit α in An

of edges e such that ωe = 0. By the RSW theorem for independent percolation
(see [4], Section 3.1), we have

P

( ∞⋃
n=1

Gn

)
= 1.

For any N ∈ N write LN = NN+1
0 . For a given ω such that GN occurs, choose

α as above, and consider it as a continuous plane curve. Further, let γ be any
vertex self-avoiding path in (V ,E) from x to y. We will show that there exists
another path γ ′ in [−LN,LN ]2 from x to y such that τ(γ ′) ≤ τ(γ ). This suffices to
complete the proof. To do so, we use the following construction. Let β be any path
from x to y in (V ,E) lying entirely in [−N0,N0]2. Since γ intersects β at x and
y we may list their common vertices in order (along γ ) as x = x1, . . . , xk = y. We
proceed along γ from each xi to xi+1, calling this subpath γi . If γi is not just one
edge of β , we create a Jordan curve C by concatenating the portion of β from xi to
xi+1 with γi . If α intersects the interior of C, then we choose any common point p

and proceed in both directions along α from it. In each direction we must meet C

again; otherwise α was in the interior of C, which is false. Furthermore we meet
C before we meet ϒ , since ϒ is in the exterior of C. Therefore the component
of α ∩ intC containing p is a segment of α from some vertex a to another b.
Since a and b are in C, they must be in γi , and we can replace the segment of
γi from a to b with this segment of α. In this way we obtain a new path we call
γ̃i and corresponding Jordan curve C̃. Note that τ(γ̃i) ≤ τ(γi). See Figure 5 for a
depiction of this procedure.

It remains to show that the procedure defined above eventually terminates in
some path γ̂i and Jordan curve Ĉ. At this point α will not intersect the interior
of Ĉ, implying that γ̂i does not leave [−LN,LN ]2. To prove this, assume that
p ∈ α ∩ intC and define a and b as above. Let σi be the segment of γi from a to b.
If σi does not leave α, then it must be the complementary segment of α from a

to b, implying that α ⊂ (C ∪ intC). Then intα ⊂ intC, a contradiction, since β is
in the interior of α. Therefore we can find some edge adjacent to α in σi . When
we construct γ̂i , we remove this edge from γi and only add edges of α. Since there
are only finitely many edges adjacent to α, the process terminates. �
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FIG. 5. Modifying the path γ by replacing a segment σi of γ with a segment of α. In the figure,
α is the dotted path and p is a point on α in the interior of C, the Jordan curve formed by the union
of γi with β .

APPENDIX C: ABSENCE OF BIGEODESICS IN H

In this section we outline the modifications needed to carry over the proof of the
main theorem of [20] to our setting. An infinite geodesic indexed by Z is called
a bigeodesic. When we assume unique passage times, such a path is (vertex) self-
avoiding.

C.1. Lemmas from Wehr–Woo. Assume either (A) or (B), and let K∗ be the
event

K∗ = {there exists a bigeodesic}.
Note that for all x, P(#Bx = ∞, (K∗)c) = 0, where Bx was defined in Theo-
rem 1.5. By horizontal translation ergodicity, P(K∗) is zero or one; let us assume
for a contradiction that P(K∗) = 1.

Any bigeodesic γ divides R2 \ γ into two components, say R+ = R+(γ ) and
R− = R−(γ ); that is,

R+(γ ) ∩ R−(γ ) = ∅,

R+(γ ) ∪ R−(γ ) = R2 \ γ,

∂R+ = ∂R− = γ,

where R− is a region that contains (0,−1) and where ∂A denotes the usual bound-
ary of a set A ⊂R2. Hence by unique passage times, for any points x, y ∈ R−(γ ),
no bond b belonging to the finite geodesic G(x,y) can be an element of R+(γ ).
The following is [20], Proposition 4.

PROPOSITION C.1. Consider the sequence G((−n,0), (n,0)) for n ∈ N. With
probability 1, this sequence has a limit

γ0 = lim
n→∞G

(
(−n,0), (n,0)

)
.



LIMITING GEODESICS FOR FIRST-PASSAGE PERCOLATION 399

Moreover, γ0 is a bigeodesic, and for any bigeodesic γ ,

γ0 ⊂ [
R−(γ ) ∪ γ

]
.

PROOF. The same proof as in [20] works here. The only assumption needed
is that of unique passage times. �

The next is [20], Lemma 5.

LEMMA C.2. Let n ∈ N and H′ = {(x1, x2) ∈ R2 :x2 ≤ n}. With probability 1,
for any bigeodesic γ intersecting z = (z1, z2) with z2 < n,

H′ ∩ R+(γ ) �=∅ and all its components are bounded.

The boundary of each component is a self-avoiding loop, which is a bond-disjoint
union of segments of γ and segments of the boundary of H′.

PROOF. Because we do not assume independence of the variables (ωe), we
must modify the proof of [20], replacing independence with the upward finite en-
ergy property.

In order to prove the boundedness of each component of H′ ∩ R+(γ ), it is suf-
ficient to prove that

P
(
there is a bigeodesic with an infinite connected part in H′) = 0.(23)

For each k ∈ Z consider a rectangular box

Ck = Ck(m,n) = {
(x1, x2) : 2km ≤ x1 ≤ (2k + 1)m,0 ≤ x2 ≤ n

}
.

Let Tk be the minimum passage time of all paths in Ck which start at a vertex in
the left boundary of Ck and end at a vertex in the right boundary of Ck , without
intersecting the top boundary. Let Ĉk for the set of edges in ∂Ck that do not lie on
the first coordinate axis; then set

Ek =
{ ∑

e∈Ĉk

τe < Tk

}
.

We claim that for some m large enough, P(Ek) > 0 for all k. To prove this,
we consider two cases. Assume first that λ+

0 , defined in (13), is finite. Then by
the ergodic theorem, writing ek = {(k,0), (k + 1,0)}, (1/m)

∑m−1
k=0 ωek

→ Eωe.
Therefore, using the bound ωe ≤ λ+

0 ,

lim
m→∞

1

m

∑
e∈Ĉ0

ωe = Eωe.
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As P has unique passage times, Eωe < λ+
0 , so choose m such that

P

( ∑
e∈Ĉ0

ωe <
Eωe + λ+

0

2
m

)
> 0.

Writing C0
k for the set of edges with an endpoint in Ck \ Ĉk , we see that the above

event is e-increasing for all e ∈ C0
0 . So by Lemma 4.6,

P

( ∑
e∈Ĉ0

ωe <
Eωe + λ+

0

2
m,ωf ≥ Eωe + λ+

0

2
for all f ∈ C0

0

)
> 0.

On this event, each path which passes from the left to the right-hand side of C0,

taking only edges in C0
0 , must have passage time at least

Eωe+λ+
0

2 m. So for such m,
horizontal translation invariance gives P(Ek) > 0.

In the case that λ+
0 = ∞, the proof of P(Ek) > 0 is easier. We simply modify

the edge-weights for edges in C0
0 to be larger than the sum of the boundary edge-

weights with positive probability. In either case, the ergodic theorem shows that

P(Ek occurs for infinitely many k > 0 and k < 0) = 1.

For any k such that Ek occurs, no geodesic can pass from the left-hand to the
right-hand side of Ck taking only edges in C0

k , because we can replace the segment
between the left-hand and right-hand sides by a portion of the boundary ∂C0. This
shows (23). The rest of the lemma follows immediately. �

We now move to [20], Proposition 6, the main observation showing that
unique passage times implies that γ0 must intersect any large box with proba-
bility bounded below uniformly of the position of the box. For l ∈ N, let us write
B = B(l) = [−l, l] × [0,2l], and let K be the event that at least one bigeodesic
intersects B . Define for L ∈ N, translations of B by

Bi,j = Bi,j (l,L) = B + (iL, jL) for (i, j) ∈ VH .

For L > 2l, the Bi,j are mutually disjoint.

PROPOSITION C.3. Let δ = 1 − P(K). Then

P
(
Bi,j ⊂ R+(γ0)

) ≤ δ,

P
(
Bi,j ⊂ R−(γ0)

) ≤ δ.

PROOF. The proof is the same as that in [20]. �
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C.2. Main modifications. From this point on we must obtain a contradiction
in a different manner than what was used in [20]; this is because the large deviation
estimate [20], Lemma 9, does not necessarily hold in our setting.

A consequence of Proposition C.3 is that for any i, j , P(Bi,j ∩γ0 �=∅) > 1−2δ.
So using P(K∗) = 1, choose l large enough that 1−2δ > 0 and fix L = 2l +1. For
any n ∈ N let Nn be the number of boxes Bi,j contained in Rn := [−l, nL + l] ×
[0, nL+ 2l] such that Bi,j ∩ γ0 �= ∅ (the maximum number is n2). The choice of l

ensures that there is a constant c1 with 0 < c1 ≤ 1 such that

ENn ≥ c1n
2 for all n ∈ N.

Therefore writing En for the set of edges with both endpoints in Rn, for some
c2 > 0,

E#γ0 ∩ En ≥ c2n
2 for all n ∈ N.(24)

We can then argue the following.

LEMMA C.4. Assuming P(K∗) = 1, there exists c3 > 0 such that with posi-
tive probability, for an infinite number of n ∈ N, there are vertices v1, v2 ∈ ∂Rn

such that the geodesic G(v1, v2) contains at least c3n
2 edges in En with weight at

least c3.

PROOF. Let a > 0 and choose C > a such that #En ≤ Cn2 for all n ∈ N.
Use (24) to estimate

c2n
2 ≤ an2 + (

Cn2 − an2)
P

(
#γ0 ∩ En ≥ an2)

,

giving

P
(
#γ0 ∩ En ≥ an2) ≥ c2 − a

C − a
.(25)

Furthermore for b > 0, writing pb = P(ωe < b), and N ′
n = #{e ∈ En :ωe < b},

#Enpb = EN ′
n ≥ √

pbn
2P

(
N ′

n ≥ √
pbn

2)
,

so P(N ′
n ≥ √

pbn
2) ≤ #En

√
pb

n2 .
Because P has unique passage times, P(ωe = 0) = 0 and so pb → 0 as b → 0.

Thus P(N ′
n ≥ √

pbn
2) → 0 uniformly in n as b → 0. Combining this with (25),

choosing a and b small enough,

P
(
N ′

n < an2/2 and #γ0 ∩ En ≥ an2)
>

c2

2C
for all n ∈ N.

With probability at least c2/(2C), this event occurs for infinitely many n and
gives at least an2/2 edges in γ0 ∩ En with weight at least b, so set c3 <

min{c2/(2C), a/2}. For such an n, we take v1 and v2 to be the first and last vertices
that γ0 touches in Rn. �

To contradict Lemma C.4, we will need to handle assumptions (A) and (B)
differently.
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C.2.1. Contradiction under (A). Because assumption (A) does not include a
moment condition on the variable ωe, we will need to define modified passage
times similarly to [5]. Choose any D > 0 such that

P(ωe > D) ≤ 1/5

and define a percolation process by setting ηD = ηD(ω) ∈ {0,1}VH to be

ηD(e) =
{

0, if ωe > D,
1, if ωe ≤ D.

Because the weights (ωe) are i.i.d., so are the variables (ηD(e)). Because the crit-
ical value for bond percolation on Z2 is 1/2, this is a supercritical percolation
process. The following lemma holds for any D such that (ηD(e)) is supercritical,
but we will give a simple proof for D as above. For the statement, we define an
open half-circuit to be a path in H whose initial and final endpoints are on the first
coordinate axis and all of whose edges e have ηD(e) = 1.

LEMMA C.5. Define Bn as the box [−n,n] × [0,2n] and An as the half-
annulus An = Bn \ Bn−√

n. Then∑
n

P
(
there is no open half-circuit of edges in An enclosing (0,0)

)
< ∞.

PROOF. We will consider the dual half-plane lattice H∗, whose vertex set
is V ∗

H = VH − (1/2,1/2) and whose edge set is E∗
H = [EH \ X] − (1/2,1/2),

where X is the set of edges joining vertices on the first coordinate axis. The
configuration ηD induces one on the dual lattice η∗

D , where we set η∗
D(e∗) = 1

if ηD(e) = 1 and 0 otherwise. Here e∗ is the edge dual to e ∈ EH ; that is, the
unique dual edge which bisects e. Note that η∗

D has a product distribution with
P(η∗

D(e∗) = 1) = P(ωe ≤ D).
For v ∈ V ∗

H and n ∈ N, let Fn(v) be the event that there is a dual path of n dual
edges e∗ starting at v satisfying η∗

D(e∗) = 0 for all e∗. Then

P
(
Fn(v)

) ≤ ∑
|P |=n

P(ωe > D)n ≤ (
4P(ωe > D)

)n ≤ (4/5)n,

where the sum is over all dual paths P starting at v with length n. Therefore, letting
∂∗
n be the set of dual vertices in Bn within Euclidean distance 1 of ∂Bn,∑

n

∑
v∈∂∗

n

P
(
F√

n(v)
)
< ∞.

But if there is no open half-circuit of edges in An enclosing (0,0), then there is
a dual path with all dual edges e∗ satisfying η∗

D(e∗) = 0 starting at a dual vertex
in ∂∗

n and ending in Bn−√
n. �
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FIG. 6. The annulus Rn \[BnL/2+l−√
nL/2+l + (nL/2+ l,0)]. The open half-circuit Cn is between

the two half-boxes, and the geodesic γ0 is the bold path entering and leaving the large box. The first
intersection of γ0 with Cn is v′

n and the last intersection is w′
n. Because γ0 intersects order n2

number of edges in the inner half-box with weight at least c3, τ (v′
n,w′

n) is at least order n2.

Note that there is some C > 0 such that, if v,w are vertices in such an open
half-circuit mentioned in the previous lemma, then

τ(v,w) ≤ CDn3/2.(26)

Combining this with Lemma C.4, we see that with positive probability, for in-
finitely many n, both of the following occur:

(1) there exist vn,wn ∈ ∂Rn such that the geodesic G(vn,wn) contains at least
c3n

2 edges in En with edge-weight at least c3, and
(2) the annulus Rn \ [BnL/2+l−√

nL/2+l + (nL/2 + l,0)] contains an open half-
circuit Cn of edges enclosing (nL/2 + l,0). (See Figure 6.)

Note that the above annulus contains only order n3/2 edges total. Therefore when
these two conditions hold for large n, the geodesic G(vn,wn) must contain at least
c3n

2/2 edges in BnL/2+l−√
nL/2+l + (nL/2 + l,0) with weight at least c3. This

means that this geodesic must intersect Cn and contain at least c3n
2/2 edges with

weight at least c3 between two intersections with Cn. Consequently, there exist
vertices v′

n and w′
n on Cn such that τ(v′

n,w
′
n) ≥ c2

3n
2/2. This contradicts (26) for

large n.

C.2.2. Contradiction under (B). Lemma C.4 implies that with positive proba-
bility, for infinitely many n, there are two vertices v,w in ∂Rn such that τ(v,w) ≥
c2

3n
2. But this passage time is bounded above by the sum of edge weights for edges
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in ∂Rn, and we find

P
(
τ(v,w) ≥ c2

3n
2 for some v,w ∈ ∂Rn

) ≤ P

( ∑
e∈∂Rn

ωe ≥ c2
3n

2
)

≤ 1

c4
3n

4
E

( ∑
e∈∂Rn

ωe

)2

= O
(
n−2)

as n → ∞. Borel–Cantelli then contradicts Lemma C.4.
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