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We consider a class of discrete q-state spin models defined in terms of a
translation-invariant quasilocal specification with discrete clock-rotation in-
variance which have extremal Gibbs measures μ′

ϕ labeled by the uncountably
many values of ϕ in the one-dimensional sphere (introduced by van Enter,
Opoku, Külske [J. Phys. A 44 (2011) 475002, 11]). In the present paper we
construct an associated Markov jump process with quasilocal rates whose
semigroup (St )t≥0 acts by a continuous rotation St (μ

′
ϕ) = μ′

ϕ+t .
As a consequence our construction provides examples of interacting parti-

cle systems with unique translation-invariant invariant measure, which is not
long-time limit of all starting measures, answering an old question (compare
Liggett [Interacting Particle Systems (1985) Springer], question four, Chap-
ter one). The construction of this particle system is inspired by recent con-
jectures of Maes and Shlosman about the intermediate temperature regime of
the nearest-neighbor clock model. We define our generator of the interacting
particle system as a (noncommuting) sum of the rotation part and a Glauber
part.

Technically the paper rests on the control of the spread of weak nonlo-
calities and relative entropy-methods, both in equilibrium and dynamically,
based on Dobrushin-uniqueness bounds for conditional measures.

1. Introduction. Consider an interacting particle system (IPS) on the infinite
d-dimensional integer lattice with finite local state space and quasilocal rates. Such
an IPS is a Markov process in continuous time where particles (or spins) which sit
on the lattice sites taking one of finitely many spin values are updated after ex-
ponential waiting times to take new states with probabilities which depend in an
(essentially) local way on the states of the neighboring particles. Assume that these
updating rules are lattice translation-invariant. Such infinite-volume processes may
possess multiple equilibria (time-invariant measures). Indeed, any Gibbsian poten-
tial (Hamiltonian) for a discrete-spin model allows one to prescribe rates defining a
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Glauber dynamics for which the corresponding Gibbs measures are time-invariant
and moreover reversible. Consequently, if there is a phase-transition (meaning that
there is nonuniqueness of the Gibbs measures for this Hamiltonian), the set of
time-invariant measures has more than one point; see [17]. To prove on the other
hand that for a Glauber dynamics there are no time-invariant measures other than
Gibbs measures is more intricate, and in general dimensions this statement is only
known to be true if one assumes all measures to be lattice-translation invariant; see
[13, 17] and compare Proposition 1.4.

To pose our problem let us start now from any lattice translation-invariant IPS
without assumptions on reversibility. Consider a lattice translation-invariant mea-
sure which is invariant under the IPS dynamics. Suppose there is only one such
measure. Is it true that the dynamics is necessarily ergodic? The notion of ergod-
icity for an IPS means that for any starting measure the time-evolved measures
converge to the unique invariant measure.

This is an old question which was picked up again in a recent very interesting
paper by Maes and Shlosman [18] about dynamics of clock models; see [2, 8, 9]
and [19]. In their paper the authors conjecture that this may not be the case and
suggest a mechanism producing time-periodic behavior of rotating infinite-volume
states. The concrete model they suggest to analyze is the discrete rotator model
with standard scalarproduct nearest-neighbor interactions at intermediate temper-
atures, and a nonreversible time-evolution. Nonergodicity could appear because if
one uses one of the Gibbs measures as the initial measure, the discrete rotators
would keep rotating coherently, and so the starting distribution would be repeated
periodically under the dynamics. While these conjectures seemed plausible, at the
same time no simple proof based on their heuristics in their model seemed possi-
ble.

To see naively how periodicity can create nonergodicity think of the example
of a two-state discrete time Markov chain with transition matrix

(0 1
1 0

)
. This chain

has the unique invariant distribution (1
2 , 1

2), but obviously never forgets its initial
condition. The same phenomenon of a unique stationary measure which does not
attract all starting measures occurs for a Markov chain if the state space is finite
and transition graph is bipartite.

Can such a periodic behavior with unique invariant measure persist for Markov
processes with time-simultaneous updating of all spins with local rules on the
infinite-lattice? Yes, and an example for nonergodicity of discrete-time, parallel
updating PCA (probabilistic cellular automaton), was only recently given in [3].
However, the issue of existence of a nonergodic IPS which interests us here can not
immediately be reduced to that of a nonergodic PCA. Indeed, continuous Marko-
vian time-evolutions in comparison with discrete time-evolution have a tendency
to wash out synchronization and forget initial conditions. (Clearly the continuous
time version of the simple two-state Markov chain example mentioned above is
ergodic.)
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In the present paper we construct a dynamics for a q-state particle system
(q possibly large but finite) which does the job: it has a unique translation-invariant
invariant measure for which the dynamics is not ergodic. Our construction is in-
spired by the conjectures of Maes and Shlosman (and different from [3]) which we
put to a situation where they can be proved.

In order to do this we will relate an IPS to a hidden system of continuous
S1-valued spins via a discretization transformation which acts on each local state
space. This will allow us to carry over knowledge about phase transitions in the
continuous system to the discrete system we want to analyze. Technically it builds
on earlier works [16, 22] about the preservation of the Gibbs property under such
discretization transformations. While these results concern properties of equilib-
rium measures the main new idea of the present paper is the definition of an as-
sociated nonreversible dynamics. This dynamics is chosen in such a way that it
preserves the set of equilibrium measures. It does not (unlike a Glauber dynamics)
preserve the individual equilibrium measures but rotates the lattice translation-
invariant equilibrium measures into each other periodically. In this way a periodic
orbit of measures is constructed. That such a dynamics can be realized by means of
a generator with quasilocal jump rates is one main result of this paper; that this dy-
namics has a unique time-invariant translation-invariant measure is another main
result.

The interest in the study of rotation dynamics also has an independent source
which comes from biological applications like interacting neurons or collective
behavior of animals. Usually the models studied in this context are of mean-field
type like the famous Kuramoto model. This is natural from the perspective of
many applications and also has the technical advantage of reducing all relevant
questions to questions about (paths of) empirical distributions which makes them
more tractable than lattice systems. In these models one usually studies S1-valued
spins under diffusive time-evolutions which contain a mean-field coupling that
tends to synchronize the rotators. Often these models contain additional sources
of quenched randomness (modeling individual rotation frequencies) which lead to
a nonreversible character and a periodic orbit which is deformed in a way which
depends on fluctuations of the realizations of the rotation frequencies. The rel-
evant questions starting with existence of synchronized rotating states and their
finer properties have been very successfully studied in particular in the Kuramoto
model [1, 4, 11].

Viewed in this light our construction of a lattice dynamics hints at the existence
of synchronization phenomena also on the lattice, even for discrete local spaces. It
would be interesting to know more about the domain of attraction of the periodic
orbit whose existence we prove, but we do not tackle this ongoing issue in this
paper where we only analyze properties on the cycle. Let us mention in this context
that our construction of a rotation dynamics to implement the Maes–Shlosman
mechanism of nonergodic behavior can be carried over to a mean-field setup. We
perform the construction of such a dynamics and the analysis of its properties in
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the related paper [14]. In that paper synchronization for discrete rotators is actually
proved, and a Lyapunov function is constructed to prove attractivity of the cycle of
rotating Gibbs measures.

1.1. Main result. To construct our IPS we have to introduce a continuous-
spin model first which will be given in terms of a Gibbsian specification for an
absolutely summable Hamiltonian (energy function) acting on continuous spins.
The particle dynamics will be related to this model in a further step. To define
this continuous-spin model we consider an S1-rotation invariant and translation-
invariant Gibbsian specification γ � on the lattice G = Z

d , with local state space
S1 = [0,2π). Let this specification γ � = (γ �

� )�⊂G be given in the standard way
by an absolutely summable, S1-invariant and translation-invariant potential � =
(�A)A⊂G,A finite, w.r.t. to the Lebesgue measure λ on the spheres. This means that
the Gibbsian specification is given by the family of probability kernels

γ �
� (B|η) =

∫
1B(ω�η�c) exp(−H�(ω�η�c))λ⊗�(dω�)∫

exp(−H�(ω�η�c))λ⊗�(dω�)
(1)

for finite �⊂G and Hamiltonian H� = ∑
A∩��=∅ �A applied to a measurable set

B⊂(S1)G and a boundary condition η ∈ (S1)G; for details on Gibbsian specifi-
cations, see [10]. We use notation �c := G \ �. H� also has to be differentiable
under variation at a single site and these partial derivatives have to be uniformly
bounded. A standard example of such a model is provided by the nearest-neighbor
scalarproduct interaction rotator model with Hamiltonian

H�(ω�η�c)
(2)

= −β
∑

i,j∈� : 〈i,j 〉
cos(ωi − ωj ) − β

∑
i∈�,j∈�c : 〈i,j 〉

cos(ωi − ηj ).

Denote by G(γ �) the simplex of the Gibbs measures corresponding to this
specification, which are the probability measures μ on (S1)G which satisfy the
DLR-equation

∫
μ(dη)γ �

� (B|η) = μ(B) for all finite �. Denote by Gθ (γ
�) the

lattice translation-invariant Gibbs measures.
We will make as an assumption on the class of potentials (Hamiltonians) we dis-

cuss moreover that it has a continuous symmetry breaking in the following sense.
Assume that the extremal translation-invariant Gibbs measures can be obtained
as weak limits with homogeneous boundary conditions, that is, with ηϕ ∈ (S1)G

defined as (ηϕ)i = ϕ for all i ∈ G and ϕ ∈ S1 we have

exGθ

(
γ �) =

{
μϕ

∣∣μϕ = lim
�↗G

γ �
� (·|ηϕ),ϕ ∈ S1

}
.

We further assume that different boundary conditions ηϕ yield different measures
so that there is a unique labeling of states μϕ by the angles ϕ in the sphere S1. It
is a nontrivial proven fact that this assumption is true in the case of the standard
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rotator model (2) in d = 3 for λ-a.a. temperatures in the low-temperature region as
discussed in [6, 7, 18, 20].

We will now describe the discretization transformation which maps the
continuous-spin model to a discrete-spin (or particle) model on which then the
dynamics will be constructed in the following step.

Denote by T the local coarse-graining with equal arcs, that is, T : [0,2π) �→
{1, . . . , q} where T (ϕ) := k if and only if 2π(k − 1)/q ≤ ϕ < 2πk/q . Extend
this map to infinite-volume configurations by performing it sitewise. We will refer
to the image space {1, . . . , q}G as the coarse-grained layer. In particular we will
consider images of infinite-volume measures under T .

We will need to choose the parameter of this discretization q ≥ q0(�) large
enough so that the image measures are again Gibbs measures for a discrete spec-
ification on the coarse-grained layer. That this is always possible (even for large
interactions) follows from our earlier investigations [16, 22]. More precisely, let us
assume that the condition from Theorem 2.1 of [22] is fulfilled (ensuring a regime
where the Dobrushin uniqueness condition holds for the so-called constrained first-
layer models—the Dobrushin condition is a weak dependence condition implying
uniqueness and locality properties). Note, as in our notation, the usual temperature
parameter β is incorporated into �, for β tending to infinity so does q0(�).

We are now ready to describe our definition of a dynamics on the coarse-grained
layer in terms of a generator which plays well together with the discretization
transformation T just introduced. This dynamics has two parts, a reversible part
and a nonreversible part. We begin with the more interesting nonreversible part
and define a Markov process with state space {1, . . . , q}G in terms of the generator

(Lψ)
(
ω′) := ∑

i∈G

cL

(
ω′,

(
ω′)i)(ψ((

ω′)i)− ψ
(
ω′))(3)

acting on sufficiently smooth observables ψ . The jump rates are given in terms of
certain expectations of conditional infinite-volume measures which naturally arise
in the course of the discretization transformation.

The choice of these rates may not seem intuitive at this stage, but they can be
obtained heuristically from a straightforward computation, as we will explain at a
later stage, namely (23). Let us at this stage just describe their definition which is

cL

(
ω′,

(
ω′)i) :=

∫
μG\i[ω′

G\i](dωG\i )e−Hi(2πω′
i /q,ωG\i )∫

μG\i[ω′
G\i](dωG\i )

∫
λ(dωi)e

−Hi(ωi,ωG\i )1T (ωi)=ω′
i

(4)

= μG\i[ω′
G\i](e−Hi(ω

′
i |r ,·ic ))

μG\i[ω′
G\i](λi(e−Hi 1ω′

i
))

,

where we have written the expression on the first line for clarity, and the second
line is the short notation we will continue to use. Further we used the following
notation: (ω′)i is the discrete configuration which coincides with ω′ except at the
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site i where it is increased by the amount of one unit (modulo q). The continuous
spin value ω′

i |r := 2πω′
i/q ∈ S1 is the right endpoint of the interval in continuous

single-spin space at the site i prescribed by ω′
i . (In other words, in the definition

of the rate to jump up at site i from ω′
i to ω′

i + 1, the Hamiltonian appearing un-
der the integral gets evaluated right at the continuous-spin boundary ω′

i |r between
the segments of S1 labeled by ω′

i and ω′
i + 1.) Finally, the measure μG\i[ω′

G\i]
is the unique continuous-spin Gibbs measure for a system on the smaller volume
G \ i with conditional specification obtained by deleting all interactions with i and
constrained to take values ωG\i with discretization images T (ωG\i ) = ω′

G\i . For
more details and precise definition of μG\i[ω′

G\i] in terms of formulas, see Sec-
tion 2, namely (11). Note that these constrained Gibbs measures are well defined
and well behaved for sufficiently fine discretization q ≥ q0(�), see [16, 22] and
Section 2. For general background on constrained Gibbs measures in the context
of preservation of Gibbsianness, see [5, 21] and [15].

From the definition of the rates (4) it is clear that the corresponding dynamics
will be irreversible since jumps are only possible in one direction. Note that these
rates depend on the original continuous-spin Hamiltonian in two places, namely in
the Hi and in the μG\i .

Having defined the nonreversible part of our dynamics, we next consider a
Glauber-type generator K on the same space {1, . . . , q}G by putting

(Kψ)
(
ω′) := ∑

i∈G

[
cK

(
ω′,

(
ω′)i)(ψ((

ω′)i)− ψ
(
ω′))

(5)
+ cK

(
ω′,

(
ω′)i−)(ψ((

ω′)i−)− ψ
(
ω′))]

with (ω′)i− being the discrete configuration which coincides with ω′ except at the
site i where it is decreased by the amount of one unit. We choose the rates to go
up and down, respectively, such that they satisfy

cK(ω′, (ω′)i)
cK((ω′)i,ω′)

= μG\i[ω′
G\i](λi(e−Hi 1(ω′

i )
i ))

μG\i[ω′
G\i](λi(e−Hi 1ω′

i
))

.(6)

(For clarity of notation we note that, e.g., the denominator on the RHS
means μG\i[ω′

G\i](λi(e−Hi 1ω′
i
)) = ∫

μG\i[ω′
G\i](dωG\i )

∫
λ(dωi)e

−Hi(ωi,ωG\i ) ×
1T (ωi)=ω′

i
.) A possible choice of K is obtained by identifying numerators (resp.,

denominators) on the RHS and LHS of (6).
Having defined the two generators L and K , we are finally in the position to

formulate our main result. We have the following theorem.

THEOREM 1.1. Consider a translation-invariant, rotation-invariant and con-
tinuously differentiable potential � which satisfies the decay assumption∑

A�0

∑
k∈G

eε|k|δk(�A) < ∞(7)
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for some ε > 0 where δk(�A) = supω,ω̄ : ωkc=ω̄kc |�A(ω) − �A(ω̄)| denotes the
variation at the site k. Assume fine enough discretization q ≥ q0(�), and let α > 0
be arbitrary.

(1) Then the generator L + αK gives rise to a welldefined IPS with quasilocal
rates.

(2) The class of translation-invariant measures which are invariant under the
associated Markov semigroup (SL+αK

t )t≥0 consists of a single element.
(3) There are translation-invariant measures which do not converge under the

dynamics to the unique invariant measure.

Note that any finite-range potential or exponentially decaying pair-potential sat-
isfies (7). We further note that the requirements on the potential can be relaxed. For
example, one could replace exponential decay by polynomial decay of sufficiently
high order as will become clear from the proof. The conditions will be presented
whenever they get used for the first time.

1.2. Idea of proof. The proof relies on the fact that the discretization trans-
formation T preserves the Gibbsian structure of the continuous and discrete-spin
system if we assume fine enough discretization q ≥ q0(�), in the following sense.

First, to talk about the correspondence between the continuous and the discrete
system we need to make explicit the relevant Gibbsian specification for the latter.
To do so define a family of kernels γ ′ = (γ ′

�)�⊂G,� finite for the discretized model
by

γ ′
�

(
ω′

�|ω′
G\�

) = μG\�[ω′
G\�](λ�(e−H�1ω′

�
))

μG\�[ω′
G\�](λ�(e−H�))

,(8)

where in analogy to the explanation for μG\i[ω′
G\i] given before, μG\�[ω′

G\�]
is the unique continuous-spin Gibbs measure for the continuous specification on
the volume G \ �, not interacting with � and conditioned to a discrete configu-
ration ω′

G\� ∈ {1, . . . , q}G\�. This γ ′ indeed is a quasilocal specification, and the
discretized Gibbs measures will be Gibbs for this γ ′. For details see Section 2.

Further, the infinite-volume discretization map T is injective when applied
to the set of translation-invariant extremal Gibbs states in the continuum model
(exGθ (γ

�)). More precisely we have the following theorem.

THEOREM 1.2. T is a bijection from exGθ (γ
�) to exGθ (γ

′) with inverse
given by the kernel μG[ω′](dω).

Here μG[ω′](dω) is the unique conditional continuous-spin Gibbs measure on
the whole volume G; see (11). It is important to understand that this kernel gets us
back from a discrete-spin Gibbs measure to a continuous-spin Gibbs measure in
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a way which does not depend on the choice of the initial measure. This is crucial
for the possibility to construct a rotation generator L with the desired properties,
as we will see.

The fact that T μ := μ ◦ T −1 is Gibbs for γ ′ when μ is Gibbs for γ �, is al-
ready proved in [16, 22] and based on the uniform Dobrushin condition on the
coarse-graining. The part that each translation-invariant discrete Gibbs measure
has a discretization preimage in the continuous Gibbs measures is new and uses
the Gibbs variational principle which involves considerations of relative entropy
densities; see [10].

The following step of the proof presents the main new structure of our paper.
We show that rotation on the level of discrete extremal Gibbs states μ′

ϕ = T μϕ can
be realized by the rotation dynamics with generator L with quasilocal jump rates
as defined above. This can be formulated as follows.

THEOREM 1.3. (1) The semigroup (SL
t )t≥0 associated to L is well defined.

(2) SL
t (T μϕ) = T μϕ+t for all μϕ ∈ exGθ (γ

�) and t ≥ 0.

The theorem expresses that a discretization of a deterministic rotation of the
continuous-spin model can be represented as a stochastic time evolution after dis-
cretization. The heuristic reason why this works and the heuristic route to the iden-
tification of such a suitable L is explained in formula (23): the idea is to compute
the time derivative d

dt |t=0
(T μϕ+t )(f ) for indicator functions f , and to identify the

appearing terms as (T μϕ)(Lf ). During this computation one makes explicit the
kernel from discrete to continuous variables of Theorem 1.2, uses its properties
and the rates defining L pop out. If we already knew that the trajectory t �→ T μϕ+t

can be realized in terms of a semigroup, this would identify its generator. A diffi-
culty in the actual proof is that we do not know this a priori, and more arguments
are needed. This involves the definition of weighted triple-norms (weighted sums
of variations of observables) to control the weak nonlocalities which are present in
the rates and the spreading of these under the action of the dynamics.

Rephrasing the result in a group theoretical language, we can say (t,μϕ) �→
μϕ+t is an S1-action on the extremal translation-invariant Gibbs measures
exGθ (γ

�) and (t,μ′
ϕ) �→ μ′

ϕ+t is an S1-action on exGθ (γ
′). The second state-

ment of the theorem then says that T is an equivariant map (i.e., a group-action
preserving map).

Let us now turn to the discussion of the reversible generator K . Having defined
the discretized local specification γ ′ = (γ ′

�)�⊂G we note that the generator K

defined above plays the role of a corresponding Glauber dynamics. To understand
the final arguments providing us with a unique translation-invariant measure for
the joint dynamics and understand better this Glauber part of the dynamics we
prove the following intermediate result.
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PROPOSITION 1.4. (1) The semigroup (SK
t )t≥0 associated to K is well de-

fined.
(2) The translation-invariant measures which are invariant under the dynamics

(SK
t )t≥0 are precisely the discrete Gibbs measures Gθ (γ

′).

To see that invariance under this dynamics implies Gibbsianness we use an
adaptation of the relative entropy arguments exposed in Liggett (“Holley’s argu-
ment”) [13, 17] from the Ising lattice gas context to our situation. The standard
idea here is to exploit the form of the time derivatives of relative entropy densities
of the time-evolved measure relative to a suitable finite-volume version of a Gibbs
measure. Putting these to zero, along with translation-invariance and estimation of
boundary terms, produces a single-site DLR equation implying that the invariant
measures are Gibbs for γ ′.

The technical treatment of this beautiful argument will have to be substantially
modified in view of the new terms arising from the joint dynamics corresponding to
L+αK , which we want to consider finally. The result is the following proposition
which is essential for the proof of the main theorem.

PROPOSITION 1.5. Let α > 0.

(1) The semigroup (SL+αK
t )t≥0 associated to L + αK is well defined.

(2) SL+αK
t (T μϕ) = T μϕ+t for all μϕ ∈ exGθ (γ

�) and t ≥ 0.
(3) The translation-invariant measures which are invariant under the joint dy-

namics (SL+αK
t )t≥0 must necessarily be elements of the discrete Gibbs measures

Gθ (γ
′).

For the proof we use that the Glauber part leaves the discrete Gibbs measures
invariant. Let us point out some of the issues which come into play. A bit of care
needs to be taken for the second statement since the rotation part L and the Glauber
part K do not commute. However, one can follow the same line of arguments as
for the proof of Theorem 1.3, part (2), using weighted triple-norms, to control
the weak nonlocalities of L and K . The idea of the third part is this: to see that
invariance under joint dynamics implies Gibbsianness we would like to use again
relative entropy arguments as in the proof of Proposition 1.4, part (2), but note that
we now have to deal with a sum of two terms each corresponding to L and K .
For the new part corresponding to L we apply the arguments to a finite-volume
open boundary version of L as well as of the measure in the second slot of the
relative entropy. The correction term is only of boundary-order. The bulk terms
have a good sign by a finite-volume argument since the modified L is attractive to
the modified measure. Together we arrive at the desired single-site DLR equation.

Combining the second and the third part of Proposition 1.5 we conclude:

COROLLARY 1.6. Let α > 0. Then the only translation-invariant mea-
sure which is invariant under the joint dynamics (SL+αK

t )t≥0 is the measure
1

2π

∫
dϕT μϕ .
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Finally, together with part (2) of Proposition 1.5 which shows that there is no
relaxation of the pure measure μ′

ϕ under (SL+αK
t )t≥0, we arrive at the proof of

Theorem 1.1.

1.3. Extensions. Theorem 1.2 stays true also for models where for every an-
gle there are more than one Gibbs measures. This could occur for potentials with
highly nonconvex shapes [23]. The well-definedness of the rotation semigroup is
untouched and one has:

THEOREM 1.7. The map T : exGθ (γ
�) �→ exGθ (γ

′) is an equivariant bijec-
tion for the S1-actions on continuous and discrete-spin Gibbs measures.

The equivariance property says SL+αK
t (T μ) = T Rtμ for all α ≥ 0, where Rtμ

is the measure obtained by joint rotation of the realizations of the measure μ by
an angle t . The conclusions of Theorems 1.2 and 1.1, parts (1) and (3) apply.
Theorem 1.1, part (2) (the uniqueness of the invariant measure) does not apply
because Corollary 1.6 does not apply since the symmetrization over the angles
will produce more then one invariant measure.

The remainder of the paper contains the following: in Section 2 we prove The-
orem 1.2 using the variational principle. For this we need to present generalities
and facts on discretizations and recall criteria on the preservation of Gibbsianness.
In Section 3 we consider the rotation dynamics and prove Theorem 1.3. In Sec-
tion 4 we consider the Glauber dynamics and prove Proposition 1.4. In Section 5
we consider the joint dynamics and prove the main Proposition 1.5.

2. Discretizations. In the present section we will give a self-contained pre-
sentation of properties of the discretization map T which maps continuous-spin
Gibbs measures to discrete-spin Gibbs measures. We will already obtain in this
section the “vertical” parts of the commutating diagram of Figure 1, that is, those

exGθ (γ
�)

μ�→Rtμ

T

exGθ (γ
�)

T

exGθ (γ
′)

μ′ �→SL+αK
t (μ′)

μ′ �→∫
μ′(dω′)μG[ω′](dω)

exGθ (γ
′)

FIG. 1. Equivariance property of the bijective discretization map T for the deterministic rotation
action (Rt )t≥0 and the action of the IPS (SL+αK

t )t≥0.
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parts not involving dynamics. These generalities about local discretizations we
are going to present are easily explained in a setup which is broader than that of
S1-valued spins on an integer lattice.

Take an underlying site space G, a local spin-space S equipped with a σ -algebra
and the configuration space � = SG carrying the product-σ -algebra. S1 will often
serve as an example for the local state space, but one can also consider subsets of
the Euclidean space of any finite dimension or finite-dimensional manifolds. We
will refer to this space as the continuous spin-space. Consider a Gibbsian potential
� = (�A)A⊂G,A finite which is absolutely summable. Write for the Hamiltonian
in the finite volume � ⊂ G, H� = ∑

A∩��=∅ �A and let γ � = (γ �
� )�⊂G,� finite

be the associated Gibbsian specification with a priori measure λ. We denote by
G(γ �) the corresponding Gibbs measures, defined by the DLR equation and by
Gθ (γ

�) the translation-invariant Gibbs measures. Together we call this the first-
layer system.

Let S = ⋃q

s′=1 Ss′ be a disjoint decomposition of the local state space into
sets of positive λ-measure. As in [12, 16, 22] the map T (s) := s ′ for Ss′ � s de-
fines a deterministic transformation on S, called the discretization map. The space
�′ := {1, . . . , q}G will be referred to as the discrete or coarse-grained configuration
space. It is convenient to use a notation which identifies the label s′ ∈ {1, . . . , q}
with the measurable subset of S described by it and write 1s′(s) = 1 if and only if
T (s) = s′.

LEMMA 2.1. For each fixed discrete-spin variable ω′ ∈ �′ define a family of
kernels on the continuous spin-space by constraining the continuous spins to ω′
and putting, for each finite �⊂G, and bounded measurable observable ϕ,

γ ω′
� (ϕ|ω�c) := γ �

� (ϕ1ω′
�
|ω�c)

γ �
� (1ω′

�
|ω�c)

.(9)

Then this family defines a Gibbsian specification γ ω′
on �ω′ =×i∈G Sω′

i
in the

sense of [10, 21].

It will be useful to sometimes indicate measurability of functions w.r.t. sub-σ -
algebras in the following way: we write f (ω′

�) equivalently to f (ω′) if f evaluates

ω′ only inside the volume �. For example, in the case of (9) we write γ
ω′

�
� for γ ω′

� .

PROOF OF LEMMA 2.1. We verify the defining properties of a specification
which need to be fulfilled to be a useful candidate system of conditional probabili-
ties of an infinite-volume measure. To begin with, from the compatibility property
of γ � follows the compatibility property of γ ω′

for each fixed ω′. The quasilocal-
ity of γ � implies that of γ ω′

for all ω′. Since γ � is proper it is easy to see that
γ ω′

is proper, where properness means for all finite � ⊂ G and A ⊂ � measurable
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and dependent only on sites in �c we have γ �
� (A|·) = 1A. Finally the property of

nonnullness on the constrained first-layer local spin-spaces (uniform boundedness
of local probabilities from below) follows from the positive measure of the sets in
the decomposition and the absolute summability of �. �

We will need to choose the discretization fine enough such that there is only
one Gibbs measure which is compatible with this specification, for any ω′. One
way to see that this is always possible and implement this requirement is to use
Dobrushin’s uniqueness theory. From general results of the theory, further infor-
mation about the unique Gibbs measure follows, and we will make use of this later.
We define a uniform Dobrushin matrix �C = (�Cij )i,j∈G which is associated to the
family of specifications γ ω′

, indexed by ω′, by letting their entries be

�Cij := sup
ω′

sup
ω,ω̃ :

ωjc=ω̃jc ,T (ω)=T (ω̃)=ω′

∥∥γ ω′(·|i |ω)− γ ω′(·|i |ω̃)∥∥i ,(10)

where ‖ · ‖i is the total variational distance at site i between the marginal distri-
butions at site i; for details, see [10, 22]. Notice that we used another supremum
over the discrete configurations and hence the corresponding Dobrushin constant
c̄ := supi

∑
j
�Cij is uniform in ω′.

We will always suppose that the discretization is fine enough such that c̄ < 1.
(Later we will even suppose a slightly stronger exponential decay property that
will appear in Lemma 3.4.)

Then it follows from the theory of Dobrushin uniqueness (see Theorem 8.23
in [10]) that, for any fixed ω′ the specification γ ω′

has a unique Gibbs measure.
Moreover, for each finite or infinite V ⊂ G there is a kernel from coarse-grained
configurations ω′ (inside V ) and boundary conditions of first-layer configurations
ω outside V , namely γ ω′

V (·|ω), which has the infinite-volume compatibility prop-
erty γ ω′

V γ ω′
W = γ ω′

V , between all (and not only finite) subsets of G.
For the unique first-layer Gibbs measure for given discretized variable ω′, we

use the notation

μG

[
ω′](dω) := γ ω′

G (dω).(11)

We note that μ[·](dω) is a probability kernel from �′ to �, since it is also measur-
able as a function of the coarse-grained configuration.

We report the result of [22] which gives a criterion for the fineness of the dis-
cretization in our main example, the standard nearest-neighbor model (the planar
rotor or XY -model), with Hamiltonian as given in (2): For q ≥ q(β) large enough
such that 2dβ(sin π

q
)2 < 1 we have c̄ < 1. Notice similar criteria are immediate for

high-dimensional rotators; for details, see [22].
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There is no obstacle to use this theory also for even more general models to
which the hypothesis of Theorem 1.1 apply. We report the bound on the matrix
elements of the Dobrushin matrix as given in [22] which takes the form

�Cij ≤ sup
s′

diamij Ss′/4(12)

with a family of metrics (dij )j∈G\i on the local spin-space at site i ∈ G which are
generated by variations of the energy as follows:

dij (σi, τi) := sup
ζ,ζ̄ :

ζjc=ζ̄jc ;T (ζj )=T (ζ̄j )

∣∣Hi(σiζic ) − Hi(σi ζ̄ic ) − (
Hi(τiζic ) − Hi(τi ζ̄ic )

)∣∣

and diamij (Ss′) := sups,s̃∈Ss′ dij (s, s̃).
Using the above criterion we suppose from now on that potential and discretiza-

tion are chosen such that we are conditionally uniformly in the Dobrushin regime
c̄ < 1. We note that to each quasilocal continuous-spin observable f there is nat-
urally associated a discrete-spin observable f ′(ω′) := μG[ω′](f ) which is easily
seen to be quasilocal as well (but on �′) using Dobrushin uniqueness techniques.
Denoting by F ′ the σ -algebra over � generated by the infinite-volume coarse-
graining map T , we have that f ′ is a regular version of the conditional expec-
tation μ(f |F ′)(ω′) for every Gibbs measure μ ∈ G(γ �), independently of its
choice.

LEMMA 2.2. For a continuous-spin Gibbs measure μ denote its discretization
image by μ′ = T μ. Then the measures μ and μ′ are close in the sense that μ(f ) =
μ′(f ′) for all continuous-spin observables f , and moreover differences between
corresponding correlations obey the estimate∣∣(μ(fg) − μ(f )μ(g)

)− (
μ′(f ′g′)− μ′(f ′)μ′(g′))∣∣

(13)

≤ 1

4

∑
i,j∈G

δi(f )δj (g)�Dij

with the matrix (�Dij )i,j∈G := ∑
n≥0

�Cn and g′ = μ(g|F ′).

PROOF. To see that (13) holds, write

μ(fg) − μ(f )μ(g)

= μ
(
μ
(
fg|F ′))− μ(f )μ(g)

= μ′(μ(fg|F ′)− μ
(
f |F ′)μ(g|F ′))+ μ′(μ(f |F ′)μ(g|F ′))

− μ′(μ(f |F ′))μ′(μ(g|F ′)).
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Further the standard estimate (see Proposition 8.34 in [10]) in the Dobrushin
uniqueness regime yields

sup
ω′

∣∣μG

[
ω′](fg) − μG

[
ω′](f )μG

[
ω′](g)

∣∣ ≤ 1

4

∑
i,j∈G

δi(f )δj (g)�Dij ,(14)

which proves (13). �

On the lattice this statement can be used to see that power law decay of corre-
lations for a continuous-spin observable f (as it can occur in the standard rotor
model in space dimension 2) carries over to power law decay between correlations
in the associated observable f ′ when the discretization is fine enough, since in that
case the matrix elements of D are decaying exponentially fast.

It is clear that the map from μ to μ′ := T μ is injective when viewed on the (not
necessarily translation-invariant) Gibbs measures of the continuous-spin system:
indeed, we can restore an initial Gibbs measure μ from its coarse-grained image
via μ(ϕ) = ∫

μ′(dω′)μG[ω′](ϕ) where μG[ω′](ϕ) does not depend on μ. Hence
different μ’s must have different images μ′.

Next recall the definition of the specification γ ′ for the coarse-grained system
(see also [16]) given in (8), that we will sometimes also call the second-layer sys-
tem. We have the following lemma.

LEMMA 2.3. In the uniform Dobrushin regime, the discretization image of
any continuous-spin Gibbs measure is Gibbs for the specification γ ′.

PROOF. This is shown by standard arguments which we include for conve-
nience of the reader. Any conditional probability with finite-volume conditioning
can be written as

μ′(ω′
�′ |ω′

�\�′
)

=
∫

μ(dω�c)γ�(1ω′
�′ 1ω′

�\�′ |ω�c)∫
μ(dω�c)γ�(1ω′

�\�′ |ω�c)
(15)

=
∫

μ(dω�c)(γ
ω′

�\�′ |G\�′)�\�′(λ�′
(e−H�′ 1ω′

�′ )|ω�c)∫
μ(dω�c)(γ

ω′
�\�′ |G\�′)�\�′(λ�′

(e−H�′ )|ω�c)
,

where μ′(ω′
�′) = μ(1ω′

�′ ) and γ ω′ |G\�′ denote the specification on �
ω′

G\�′
G\�′ =

×i∈G\�′ Sω′
i

obtained by putting all potentials �A with A ∩ �′ �= ∅ equal to zero.
Then, by martingale convergence, μ′(ω′

�′ |ω′
�\�′) converges as � tends to G in

the a.s.- and L1-sense to μ(1ω′
�′ |F ′

G\�′)(ωG\�′) where 1ω′
�\�′ (ωG\�′) = 1 for all
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� ⊃ �′ and F ′
G\�′ is the σ -algebra over � generated by the coarse-graining map

T applied only in the infinite-volume G \ �′.
On the other hand, for any finite �′, there is convergence uniformly in the in-

tegration variable ω under the μ-integrals since the conditional specification is in
the uniform Dobrushin regime, and we have

γ ′
�′
(
ω′

�′ |ω′
G\�′

)
=

lim�↑G(γ
ω′

G\�′ |G\�′)�\�′(λ�′
(e−H�′ 1ω′

�′ )|ωG\�)

lim�↑G(γ
ω′

G\�′ |G\�′)�\�′(λ�′
(e−H�′ )|ωG\�)

(16)

=
μG\�′ [ω′

G\�′ ](λ�′
(e−H�′ 1ω′

�′ ))

μG\�′ [ω′
G\�′ ](λ�′

(e−H�′ ))
.

The limiting measure in the last line is the unique Gibbs measure of the speci-
fication restricted to G \ �′ with open boundary conditions, and this proves (8).

�

It is easy to see using the standard Dobrushin estimates that the specification γ ′
built with these kernels is quasilocal.

Now we are in the position to discuss new results which are related to the proof
of the bijectivity of the map T . To start, note that we also have that the influence
of variations of the boundary condition outside �′ on probabilities inside �′ has
the estimate, uniformly in the configuration ω′

�′ ,

log
γ ′
�′(ω′

�′ |ω′
G\�′)

γ ′
�′(ω′

�′ |ω̄′
G\�′)

≤ 4
∑

A∩�′ �=∅,A∩�′c �=∅

‖�A‖.(17)

Further note that for summable potentials and �′ being cubes on the lattice, the
RHS is bounded by a constant times the length of the boundary of �′, in other

words log
dγ ′

�′ (·|ω′
G\�′ )

dγ ′
�′ (·|ω̄′

G\�′ )
= O(|∂�′|), where | · | denotes the cardinality.

Let us now restrict to the lattice case, that is, G = Z
d and discuss the relative en-

tropy density. The following lemma should be seen as a generalization of the con-
tractivity of the relative entropy (density) between two measures (see Lemma 3.3
in [21]) under strictly local transforms to transforms which are not strictly but
“sufficiently” local.

LEMMA 2.4. Let μ′
1,μ

′
2 ∈ G(γ ′) for some specification for which

log
dγ ′

�(·|�|ω′
1)

dγ ′
�(·|�|ω′

2)
is of the order o(|�|) for cubes. Take a kernel μG[ω′](dω) where

log dμG[ω′](·|�)
dμG[ω̄′](·|�)

is also of the order o(|�|) uniformly in all configurations ω′ and ω̄′
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which coincide on �. Then the relative entropy density between the mapped mea-
sures equals zero, that is,

lim
�↑Zd

1

|�|H
(∫

μ′
1
(
dω̃′)μG

[
ω̃′]|�∣∣∣ ∫ μ′

2
(
dω̃′)μG

[
ω̃′]|�) = 0(18)

along cubes.

PROOF. We need to estimate the relative entropy H in a volume � where
� ⊂ Z

d is a finite cube appearing in the formula above, which is∫
μ′

1
(
dω̃′)μG

[
ω̃′]|�(log

d
∫

μ′
1(dω̃′)μG[ω̃′]|�

d
∫

μ′
2(dω̃′)μG[ω̃′]|�

)
.(19)

Using the DLR equation for the integrand as well as the conditions on the Radon–
Nikodym derivatives, we find

log
d
∫

μ′
1(dω̃′)μG[ω̃′]|�

d
∫

μ′
2(dω̃′)μG[ω̃′]|�

= log

∫
μ′

1(dω̃′
1)((dμG[ω̃′

1]|�)/(dλ�))∫
μ′

2(dω̃′
2)((dμG[ω̃′

2]|�)/(dλ�))
(20)

≤ sup
ω′

1,ω
′
2

log

∫
(γ ′

�)|�(dω̃′
1|ω′

1)((dμG[(ω̃′
1)�(ω′

1)�c ]|�)/(dλ�))∫
(γ ′

�)|�(dω̃′
2|ω′

2)((dμG[(ω̃′
2)�(ω′

2)�c ]|�)/(dλ�))

= o
(|�|),

where the estimate in the last line uses the two assumptions in the hypothesis.
Hence the relative entropy density as the limit of the relative entropy devided by
the volumes of a cofinal sequence of cubes is equal to zero. �

Applying the lemma and using now the Gibbs variational principle in the form
of Theorem 15.37 of [10], our desired result, stating that every discrete Gibbs
measure has a continuous preimage, follows:

PROPOSITION 2.5. Let μ′ ∈ Gθ (γ
′), then μ(dω) := ∫

μ′(dω′)μG[ω′](dω) ∈
Gθ (γ

�).

PROOF. Let μ0 ∈ Gθ (γ
�) be a Gibbs measure for the original system and

μ′
0 := T μ0 its coarse-grained image. We want to use the preceding lemma, that

is, to justify the conditions and therefore conclude that the relative entropy density
between the two translation-invariant measures is zero. Hence, by the variational
principle applied to the original system, also μ ∈ Gθ (γ

�).
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Indeed, (17) asserts the condition of Lemma 2.4 for the coarse-grained specifi-
cation γ ′. Also we have for ω′, ω̄′ coinciding on �

log
dμG[ω′]|�
dμG[ω̄′]|� = log

∫
μG[ω′](dω̃1)((d(γ ω′

� )|�)/(dλ�))(·|ω̃1)∫
μG[ω̄′](dω̃2)((d(γ ω′

� )|�)/(dλ�))(·|ω̃2)

≤ sup
ω̃1,ω̃2

log
dγ ω′

� (·|ω̃1)

dγ ω′
� (·|ω̃2)

≤ 4
∑

A∩�′ �=∅,A∩�′c �=∅

‖�A‖ = o
(|�|).

�

Together with the injectivity of T this means that the map from the translation-
invariant Gibbs measures of the original system Gθ (γ

�) to the translation-invariant
measures for the coarse-grained configuration Gθ (γ

′) is one-to-one.

REMARK 2.6. This one-to-one correspondence also holds for the extremals:
if μ is tail-trivial, then so is T μ since the tail-σ -algebra of discrete events is
contained in the tail-σ -algebra of all events, T ′ ⊂ T . In particular exG(γ ′) ⊃
T (exG(γ �)). To see that also μ ∈ exG(γ �) for T μ ∈ exG(γ ′) one can use the fact
that the mapping T is affine: let us assume T μ ∈ exG(γ ′) and μ = sμ1 +(1−s)μ2

for s ∈ [0,1] and μ1,μ2 ∈ G(γ �). Then we have T μ = sT μ1 + (1 − s)T μ2 and
hence T μ = T μ1 = T μ2 since T μ is extremal. But that means μ = μ1 = μ2 and
thus μ ∈ exG(γ �).

It is interesting to note that the proof of the preceding remark also follows from
the fact that tail-triviality is preserved under the kernel (even not assuming ini-
tial Gibbs measures). This property explains the “essentially local” nature of the
transformation T from the perspective of the tail events.

PROPOSITION 2.7. Assume that μ′ is any probability measure (not necessar-
ily Gibbs) on �′ which is trivial on T ′. Then μ(dω) := ∫

μ′(dω′)μG[ω′](dω) is
trivial on the tail-σ -algebra T .

PROOF. We assume that also supj

∑
i
�Cij < 1 which is guaranteed in the fine-

discretization regime ensured by our criteria.
If A ∈ T then μG[ω′](A) is T ′-measurable. To see this, suppose that W is a

finite subset of G, that V contains W and that A is in TV , the σ -algebra of events
not depending on spins inside V . Assuming that A is a cylinder, at first we have

sup
ω′,ω̄′ : ω′

Wc=ω̄′
Wc

(
μG

[
ω′](A) − μG

[
ω̄′](A)

) ≤ ∑
i∈supp(A),j∈W

�Dij

(21)
≤ ∑

i∈V c,j∈W

�Dij .
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Next we note that this inequality also holds by approximation of probabilities
of general events by cylinders (by a semiring-approximation argument) for all
A ∈ TV . Since A ∈ T is in any TV we may let V ↗ G and obtain that

sup
ω′,ω̄′ : ω′

Wc=ω̄′
Wc

(
μG

[
ω′](A) − μG

[
ω̄′](A)

) ≤ 0.(22)

Since W was arbitrary, this is the tail-measurability.
Further we note that μG[ω′](A) ∈ {0,1} for each fixed ω′ and A ∈ T since the

original measure constrained to coarse-grained configurations is in the Dobrushin
uniqueness regime, hence tail-trivial. So μG[ω′](A) = 1A′(ω′) for some A′ ∈ T ′
and this implies μ(A) = ∫

μ′(dω′)μG[ω′](A) = μ′(A′) ∈ {0,1} by tail-triviality
of μ′. �

3. Continuous rotations for discrete-spin models. After the preparations of
the last section we turn now to the discussion of the rotation dynamics. Let us
specialize to a translation-invariant S1-model and look at the Markov process given
in (3) with rates given in (4).

Intuitively the choice of the rates can be understood as follows: consider the
single-site discrete observable f (σ ′) = 1a(σ

′
i ) with a ∈ {1, . . . , q} fixed, and let

μϕ be an extremal translation-invariant Gibbs measure of the d ≥ 3 XY -model
labeled by the angle ϕ. Then we have

d

dt |t=0

(T μϕ+t )
(
1a

(
σ ′

i

))
= d

dt |t=0

μϕ

(
σi ∈ (

a|l − t, a|r − t
))

= d

dt |t=0

∫
(T μϕ)

(
dω′)μG

[
ω′](σi ∈ (

a|l − t, a|r − t
))

= d

dt |t=0

∫
(T μϕ)

(
dω′) ∫ a|r−t

a|l−t

dμG[ω′]|i
dλ

(s) ds

(23)

= d

dt |t=0

∫
(T μϕ)

(
dω′) ∫ a|r−t

a|l−t

μG\i[ω′
G\i](e−Hi(s,·ic ))

μG\i[ω′
G\i](λi(e−Hi 1a))

ds

=
∫

(T μϕ)
(
dω′)(μG\i[ω′

G\i](e−Hi(a|l ,·ic ))

μG\i[ω′
G\i](λi(e−Hi 1a))

− μG\i[ω′
G\i](e−Hi(a|r ,·ic ))

μG\i[ω′
G\i](λi(e−Hi 1a))

)

=
∫

(T μϕ)
(
dω′)cL

(
ω′,

(
ω′)i)(1a

((
ω′)i)− 1a

(
ω′))

= (T μϕ)(Lf ),

where in the second line we wrote a|l := 2π(a − 1)/q (resp., a|r := 2πa/q) to in-
dicate the left (resp., right) endpoint of a. In the third line we used Theorem 1.2. In
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the fourth line we rewrote the constrained Gibbs measure as a marginal density (at
site i) w.r.t. the Lebesgue measure λ on the sphere, which as indicated in the fifth
line can again be re-expressed by seperating the part of the potential interacting
with the site i.

3.1. Well-definedness of the rotation generator. In this subsection we prove
Theorem 1.3, part (1). We use methodology of Liggett [17] via the Hille–Yosida
theorem to prove well-definedness. Let us start with an overview on function
spaces we need in the investigation of the dynamics.

DEFINITION 3.1. Let us fix the following notation. We write:

(1) L′ := {f :�′ →R :f is local} for the local functions.
(2) C(�′) = L′‖·‖ equivalently for the space of continuous functions on the

compact configuration-space �′ which, since q is finite, coincides with the space
of bounded quasilocal functions which is just the ‖ · ‖-completion of the local
functions. Here ‖ · ‖ denotes the uniform norm.

(3) D(�′) := {f ∈ C(�′) :‖|f ‖| := ∑
i∈G δi(f ) < ∞} for the core functions.

(4) L′‖|·‖| for the triple-norm completion of the local functions.
(5) Dp(�)(�

′) := {g ∈ C(�′) :‖|g‖|p(�) := ∑
i∈G p(�(i,0))δi(g) < ∞} for the

space of weighted triple-normed functions, where � is an increasing, translation-
invariant semi-metric on the site space and p :R+

0 →R
+
0 any weight-function.

Let us clarify the relations between those spaces and specialize to p being either
an exponential function with some factor ε > 0 or a monomial function with power
m ∈ N. Let the semi-metric just be the Euclidean metric | · | on an ordering of G.
We have

L′ ⊂ Deε|·|
(
�′) ⊂ D|·|m

(
�′) ⊂ D|·|1

(
�′) ⊂ L′‖|·‖| ⊂ D

(
�′) ⊂ C

(
�′).(24)

Notice that all of these spaces are dense in C(�′) with respect to the ‖ · ‖-norm.
All inclusions should be clear except D|·|1(�′) ⊂ L′‖|·‖|.

PROPOSITION 3.2. D|·|1(�′) ⊂ L′‖|·‖|.

PROOF. Let f ∈ D|·|1(�′) for an ordering o :G → N. Define �i := {j ∈
G :o(j) ≤ o(i)} an exhausting sequence of finite volumes, then

∑
i∈G |�i |δi(f ) =∑

i≥0 iδo−1(i)(f ) < ∞ and
∑

i≥n iδo−1(i)(f ) → 0 for n → ∞. Let η ∈ �′ be fixed,
and define a sequence of local functions fn(ω) := f (ω�nη�c

n
), and then we have

‖|f − fn‖| = ∑
i∈�n

δi(f − fn) + ∑
i∈�c

n

δi(f ) ≤ 2n‖f − fn‖ + ∑
i∈�c

n

δi(f )

≤ 2n
∑
i∈�c

n

δi(f ) + ∑
i∈�c

n

δi(f ) ≤ 2
∑
i>n

iδo−1(i)(f ) → 0(25)

for n → ∞.
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Hence f ∈ L′‖|·‖| and D|·|1(�′) ⊂ L′‖|·‖|. �

In the sequel, we will drop the notation o−1(i) and just write
∑

i≥0 iδi(f ).
Let us check the criteria for well-definedness proposed in [17]. Note the jump

rates are uniformly bounded since we assumed the potential to be absolutely
summable and translation-invariant and the coarse-graining to be finite. Further
the rates have to be of bounded variation, that is:

LEMMA 3.3. supi∈G

∑
j �=i δj (cL(·, ·i)) < ∞ if supi∈G

∑
A�i ‖|�A‖| < ∞.

PROOF. This follows from the Dobrushin comparison theorem (see [10], The-
orem 8.20), indeed,

δj

(
cL

(·, ·i))
≤ Ce‖Hi‖ sup

ω′=ω̃′/
off j

∣∣μG\i
[
ω′

G\i
](

e−Hi(ω
′
i |r ,·ic ))− μG\i

[
ω̃′

G\i
](

e−Hi(ω̃
′
i |r ,·ic ))∣∣

+ Ce3‖Hi‖ sup
ω′=ω̃′
off j

∣∣μG\i
[
ω′

G\i
](

λi(e−Hi 1ω′
i

))− μG\i
[
ω̃′

G\i
](

λi(e−Hi 1ω̃′
i

))∣∣
and therefore it suffices to look at the Gibbs measures μG\i[ω′

G\i] and μG\i[ω̃′
G\i]

on (S1)G\i applied to the quasilocal functions ψ
ω′

i

1 (·) := e−Hi(ω
′
i |r ,·ic ) and

ψ
ω′

i

2 (·) := λi(e−Hi(·,·ic )1ω′
i
). For any fixed first-layer boundary condition ω ∈ �,

the measure μG\i[ω′
G\i](·) is uniquely specified by the specification

γ
ω′

G\i := ((
γ

ω′
G\i |G\i

)
�\i (·|ω�c\i )

)
�⊂G\i ,(26)

� being finite subsets of G \ i. We have for ω′
G\j = ω̃′

G\j∥∥(γ ω′
G\i |G\i

)
l\i(·|ωlc\i ) − (

γ
ω̃′

G\i |G\i
)
l\i(·|ωlc\i )

∥∥
l ≤ 1l=j .(27)

Hence for ω′
G\j = ω̃′

G\j and ψω′
i ∈ {ψω′

i

1 ,ψ
ω′

i

2 } the comparison theorem gives us∣∣μG\i
[
ω′

G\i
](

ψω′
i
)− μG\i

[
ω̃′

G\i
](

ψω′
i
)∣∣ ≤ ∑

k �=i

δk

(
ψω′

i
)
Dkj

(
γ

ω′
G\i )

≤ ∑
k �=i

δk

(
ψω′

i
)�Dkj ,

where we used the fact that the specifications γ
ω′

G\i are in the Dobrushin
region uniformly in the constraint ω′. Since c̄ := supi

∑
j

�Cij < 1 we have∑
j∈G

�Dkj < ∞ for all k ∈ G and can therefore conclude

sup
i∈G

sup
ω′

i∈S′

∑
j �=i

∑
k �=i

δk

(
ψω′

i
)�Dkj ≤ C

∑
k∈G

sup
i∈G

sup
ω′

i∈S′
δk

(
ψω′

i
) ≤ C sup

i∈G

∑
k∈G

δk

(
ψi)
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with ψi ∈ {ψi
1,ψ

i
2} and ψi

1(·) := e−Hi(·,·ic ) and ψi
2(·) := λi(e−Hi(·,·ic )). In case ψi

is a local function, uniformly bounded in i (e.g., in the XY -model), the sum is
finite and thus less than infinity. In the general case were the ψi are coming from
an uniformly bounded Hamiltonian which is only quasilocal the summability is not
guaranteed. But if we stipulate supi∈G

∑
A�i ‖|�A‖| < ∞, we have for ψi

1 and ψi
2∑

k∈G

δk

(
ψi

2
) ≤ C

∑
k∈G

δk

(
ψi

1
) ≤ Ce‖H0‖ ∑

k∈G

∑
A�ik

δk(�A) = Ce‖H0‖ ∑
A�i

‖|�A‖| < ∞,

where we used |ex − ey | ≤ |x − y|emax(|x|,|y|). �

Note that in particular cL(·, ·i) ∈ D(�′) ⊂ L′‖·‖ for all i ∈ G and thus the rates
are quasilocal.

Later we will need even stronger regularity of the rates in the following sense.

LEMMA 3.4. Suppose supi∈G

∑
A�i

∑
k∈G e�(i,k)δk(�A) < ∞ and

c̄� := sup
i∈G

∑
j �=i

e�(i,j)�Cij < 1(28)

then supi∈G

∑
j �=i e

�(i,j)δj (cL(·, ·i)) < ∞.

Notice, the first condition given in the above lemma is independent of the hidden
temperature parameter β and with �(i, k) := ε|i − k| corresponds to condition (7)
in Theorem 1.1. Condition (28) is the requirement on the fineness of discretization
q ≥ q0(�) formulated in Theorem 1.1.

PROOF OF LEMMA 3.4. As a consequence of the exponential decay condition
on the Dobrushin matrix (28) (for a translation-invariant semi-metric � on G), we
have supi∈G

∑
j∈G e�(i,j) �Dij ≤ 1

1−c̄�
and by the triangle inequality

sup
i∈G

∑
j �=i

e�(i,j)δj

(
cL

(·, ·i)) ≤ sup
i∈G

∑
j∈G\i

∑
k∈G\i

e�(i,j)δk

(
ψi)�Dkj

(29)

≤ 1

1 − c̄�

sup
i∈G

∑
k∈G\i

e�(i,k)δk

(
ψi).

But for ψi
1 and ψi

2 using the same arguments as in the proof of Lemma 3.3,∑
k∈G

e�(i,k)δk

(
ψi

2
) ≤ C

∑
k∈G

e�(i,k)δk

(
ψi

1
)

(30)
≤ Ce2K

∑
A�i

∑
k∈G

e�(i,k)δk(�A) < ∞.
�

Instead of imposing an exponential decay property of the Dobrushin matrix, one
could just consider polynomial weights p(�(i, j)) which would admit Hamiltoni-
ans with polynomial dependence. In fact, for our purposes, that would be sufficient.
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After these preparations we are in the position to use Theorem 3.9 of [17] and
assert: (1) The closure �L of L is a Markov generator of a Markov semiproup
(SL

t )t≥0 connected to the generator via the Hille–Yosida theorem. D(�′) is a core
for �L. (2) For observables f ∈ D(�′) we can control the oscillation of Stf at any
site i ∈ G via

δi(Stf ) ≤ [
et�δ·(f )

]
(i),

where � : l1 → l1, [�δ·(f )](i) := ∑
j �=i δi(cL(·, ·j ))δj (f ) is a bounded operator

with ‖�‖ =: M . In particular for f ∈ D(�′) we have ‖|Stf ‖| ≤ etM‖|f ‖| and thus
Stf ∈ D(�′).

3.2. Rotation property of the generator. The goal of this subsection is to verify
Theorem 1.3, part (2). We use the following strategy:

(1) We verify the rotation property for infinitesimal times by comparing the
generator to the derivative on the level of the probability density. We do this di-
rectly on local observables.

(2) In order to get from infinitesimal to finite time, we consider the associated
semigroup (SL

t )t≥0 and use Taylor’s expansion. To match the first-order terms it is
necessary to verify the infinitesimal rotation for local functions propagated by SL

t .
Those functions are no longer strictly local but lie in a larger space, namely L′‖|·‖|.
Since later we need (and will verify) the stronger result SL

t f ∈ Dp(�)(�
′) for local

f and weight-function p(x) = x2, at this point we just assume SL
t f ∈ L′‖|·‖|.

(3) The two second-order error terms need to be estimated. As for the first
one we can use the contraction property of the semigroup. For the other one we
compute the second derivative of the measure again on the level of the probability
density and local observables. It turns out the desired upper bound exists as long
as the observable lies in a space of weighted triple-normed functions.

(4) By assuming exponential decay of the Dobrushin matrix [see (28)] the rates
of the generator are elements of this space, even for arbitrary polynomial weights.
One can think of these spaces as containing functions with a certain degree of
locality. The amount of nonlocality the semigroup injects into a local function is
controlled by the degree of locality of the rates. This can simply be captured by
looking at the operator � mentioned above. We can show under these assumptions
that local observables propagated by the semigroup stay in the space of weighted
triple-normed functions.

Let us start with an infinitesimal rotation and show μ′
(t+s)mod 2π

(f ) = μ′
t (S

L
s f )

for all t ∈ [0,2π), s > 0, μ′
ϕ = T μϕ ∈ exG(γ ′) and local observables f on �′.

Since the coarse-graining is finite it suffices to use f = 1a� for finite � and
a� ∈ {1, . . . , q}�. Write ρ� = dγ �

� /dλ� for the Lebesgue density of the local
specification in �. Then we can proceed similary to the intuitive calculations done
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in (23) and write
d

dε |ε=0

μ′
t+ε(1a�)

=
∫

μt(dω)
d

dε |ε=0

(∏
i∈�

∫ ai |r−ε

ai |l−ε

)
dϕ�ρ�(ϕ�,ω)

= ∑
j∈�

∫
μt(dω)

( ∏
i∈�\j

∫ ai |r

ai |l

)
dϕ�\j

(
ρ�

(
aj |l , ϕ�\j ,ω

)
− ρ�

(
aj |r , ϕ�\j ,ω

))
since μt admits γ� for all t ∈ [0,2π). On the other hand,

d

dε |ε=0

μ′
t S

L
ε (1a�)

= μ′
t (L1a�)

= ∑
j∈�

( ∑
ω′ : ω

′j
�=a�

cL

(
ω′,

(
ω′)j )μ′

t

(
ω′)− ∑

ω′ : ω′
�=a�

cL

(
ω′,

(
ω′)j )μ′

t

(
ω′)).

Looking at the individual summands we find∑
ω′ : ω′

�=a�

cL

(
ω′,

(
ω′)j )μ′

t

(
ω′)

=
∫

μ′
t

(
dω′)1a�

(
ω′)μG\j [ω′

G\j ](e−Hj (ω′
j |r ,·jc )

)

μG\j [ω′
G\j ](λj (e−Hj 1ω′

j
))

=
∫

μ′
t

(
dω′)1a�

(
ω′)μG\�[ω′

G\�](λ�\j (e−H�(aj |r ,·�\j ,·�c )1a�\j ))

μG\�[ω′
G\�](λ�(e−H�1a�))

=
∫

μ′
t

(
dω′)1a�

(
ω′)μG

[
ω′

G

](λ�\j (e−H�(aj |r ,·�\j ,·�c )1a�\j )

λ�(e−H�1a�)

)
=

∫
μ′

t

(
dω′)1a�

(
ω′)μG

[
ω′

G

]
×
(

1

γ�(1a� |·)
( ∏

i∈�\j

∫ ai |r

ai |l

)
dϕ�\j

(
ρ�

(
aj |r , ϕ�\j , ·)))

=
∫

μ′
t

(
dω′)μG

[
ω′

G

]( 1a�

γ�(1a� |·)
( ∏

i∈�\j

∫ ai |r

ai |l

)
dϕ�\j

(
ρ�

(
aj |r , ϕ�\j , ·)))

=
∫

μt(dω)

( ∏
i∈�\j

∫ ai |r

ai |l

)
dϕ�\j

(
ρ�

(
aj |r , ϕ�\j ,ω

))
,
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where we used the DLR equation in the second last line and the fact that

μG\�[ω′
G\�](ϕ(·�c)λ�(e−H�1ω′

�
))

μG\�[ω′
G\�](λ�(e−H�1ω′

�
))

= μG

[
ω′

G

](
ϕ(·�c)

)
.(31)

We proceed similarly for the other summand. Thus we have d
dε |ε=0

μ′
t+ε(f ) =

μ′
t (Lf ) for all local observables. Later we want to apply SL

t f and will show SL
t f ∈

L′‖|·‖| if f is local. So let us prove the following proposition.

PROPOSITION 3.5. If f ∈ L′‖|·‖|, then d
dε |ε=0

μ′
t+ε(f ) = μ′

t (Lf ).

PROOF. Assume (fn)n∈N to be a sequence of local functions such that ‖|f −
fn‖| → 0 for n → ∞. Then we have, according to Proposition 3.2 of [17],∣∣μ′

t (Lf ) − μ′
t (Lfn)

∣∣ ≤ ‖Lf − Lfn‖ ≤ C‖|f − fn‖| n→∞−→ 0.(32)

On the other hand, with g := f − fn and o :G →N an ordering of G, we have

μ′
t+ε(g) − μ′

t (g)

=
∫

μt(dω̃)
(
g
(
T (ω̃ − ε1G)

)− g
(
T (ω̃)

))
=

∫
μt(dω̃)

∑
j∈G

(
g
(
T (ω̃ − ε1{0,...,o(j)})

)− g
(
T (ω̃ − ε1{0,...,(o(j)−1)})

))
≤ ∑

j∈G

δj (g)μt

({
ω̃ :T (ω̃j − ε) = T (ω̃j ) − 1

})
,

where we use a telescopic sum in the second line. Further we have with Aj :=
{ω̃ :T (ω̃j − ε) = T (ω̃j ) − 1} = {ω̃ : ω̃j ∈ [a|l , a|l + ε] for some a ∈ {1, . . . , q}},

μt(Aj ) ≤ sup
ω∈�

γj (Aj |ω) ≤ εqe‖Hj‖

2πe−‖Hj‖ ≤ �Kε(33)

uniformly in t and j , hence 1
ε
|μ′

t+ε(f −fn)−μ′
t (f −fn)| ≤ �K‖|f −fn‖| n→∞−→ 0,

and we can conclude∣∣∣∣ d

dε |ε=0

μ′
t+ε(f ) − μ′

t (Lf )

∣∣∣∣
≤
∣∣∣∣ d

dε |ε=0

μ′
t+ε(f − fn)

∣∣∣∣+ ∣∣μ′
t

(
L(f − fn)

)∣∣ n→∞−→ 0. �

Assume for the moment SL
t f ∈ L′‖|·‖| for local f . In order to verify the rotation

property for finite times, we use the following iteration procedure. Let f be local,



NONERGODIC INTERACTING PARTICLE SYSTEMS 2619

k ∈N, t ∈ [0,2π), s > 0 and ε := s/k. On the one hand,

μ′
t

(
SL

s f
) = μ′

t

(
SL

ε SL
s−εf

) = μ′
t

((
1 + εL + SL

ε − (1 + εL)
)
SL

s−εf
)

(34)
= μ′

t (g) + εμ′
t (Lg) + μ′

t

((
SL

ε − (1 + εL)
)
g
)
,

where we set g := SL
s−εf . On the other hand we can use Taylor’s expansion in

Lagrange form and write

μ′
t+ε(g) = μ′

t (g) + ε
d

dε |ε=0

μ′
t+ε(g) + ε2

2

d2

dε̂2 |ε̃∈[0,ε]
μ′

t+ε̂(g)

(35)

= μ′
t (g) + εμ′

t (Lg) + ε2

2

d2

dε̂2 |ε̃∈[0,ε]
μ′

t+ε̂(g).

By iteration

μ′
t

(
SL

s f
)− μ′

t+s(f ) =
k−1∑
l=0

μ′
t+lε

((
SL

ε − (1 + εL)
)
SL

s−(l+1)εf
)

(36)

− ε2

2

k−1∑
l=0

d2

dε̂2 |ε̃∈[0,ε]
μ′

t+lε+ε̂

(
SL

s−(l+1)εf
)
,

where the error terms should go to zero as k tends to infinity. Let us look at the
first error term on the RHS of (36) and use the uniform continuity of the Markov
semigroup, we have

k−1∑
l=0

μ′
t+lε

((
SL

ε − (1 + εL)
)
SL

s−(l+1)εf
)

≤ ε

k−1∑
l=0

∥∥∥∥SL
ε SL

s−(l+1)εf − SL
s−(l+1)εf

ε
− LSL

s−(l+1)εf

∥∥∥∥
≤ ε

k−1∑
l=0

∥∥∥∥SL
ε f − f

ε
− Lf

∥∥∥∥ = s

∥∥∥∥SL
ε f − f

ε
− Lf

∥∥∥∥,
where the RHS goes to zero as ε goes to zero since the semigroup is generated by
L and f in the domain of L. In particular this is true for core observables of L.

Let us check the second error term on the RHS of (36). Let t ′(l) ∈ [t + lε, t +
(l + 1)ε]. Then it suffices to find a constant C(s, f ) such that

d2

dε̂2 |ε̂=0

μ′
t ′(l)+ε̂

(
SL

s−(l+1)εf
) ≤ C(s, f )(37)

for all l, since then we have

ε2
k−1∑
l=0

d2

dε̂2 |ε̂=0

μ′
t ′(l)+ε̂

(
SL

s−(l+1)εf
) ≤ s2

k
C(s, f )

k→∞−→ 0.



2620 B. JAHNEL AND C. KÜLSKE

Consider the second derivative when we apply the extremal Gibbs measure at
first to a local indicator function 1a� . Then we have

d2

dε2 |ε=0

μ′
t+ε(1a�)

= ∑
j∈�

∫
μt(dω)

d

dε

( ∏
i∈�\j

∫ ai |r−ε

ai |l−ε

)
dϕ�\j

(
ρ�

(
aj |l − ε,ϕ�\j ,ω

)
− ρ�

(
aj |r − ε,ϕ�\j ,ω

))
= ∑

j∈�

∫
μt(dω)

×
[( ∏

i∈�\j

∫ ai |r

ai |l

)
dϕ�\j

×
(
ρ�

(
aj |r , ϕ�\j ,ω

) d

dεj |εj =aj |r
H�(εj , ϕ�\j ,ω)

− ρ�

(
aj |l , ϕ�\j ,ω

) d

dεj |
εj =aj |l

H�(εj , ϕ�\j ,ω)

)

+ ∑
k∈�\j

( ∏
i∈�\{j,k}

∫ ai |r

ai |l

)
dϕ�\j

(
ρ�

(
aj |l , ak|l , ϕ�\{j,k},ω

)
− ρ�

(
aj |l , ak|r , ϕ�\{j,k},ω

)
− ρ�

(
aj |r , ak|l , ϕ�\{j,k},ω

)
+ ρ�

(
aj |r , ak|r , ϕ�\{j,k},ω

))]
=: ∑

j∈�

∫
μt(dω)

[
A(j, a�,ω) + ∑

k∈�\j
B(j, k, a�,ω)

]
,

where, as we see from the formular, the Hamiltonian of the first-layer system needs
to be differentiable as a function on S1. Let us assume these partial derivatives are
also uniformly bounded with K ′ := supi∈G supω∈� ‖ d

dε
Hi(ε,ωic)‖ < ∞. Then we

have

A(j, a�,ω)

=
( ∏

i∈�\j

∫ ai |r

ai |l

)
dϕ�\j

(
e−H�(aj |r ,ϕ�\j ,ω�c )∫
dϕ�e−H�(ϕ�,ω�c )

(
d

dεj |εj =aj |r
H�(εj , ϕ�\j ,ω)

− d

dεj |
εj =aj |l

H�(εj , ϕ�\jω)

)
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+ d

dεj |
εj =aj |l

H�(εj , ϕ�\j ,ω)

× e−H�(aj |r ,ϕ�\j ,ω�c ) − e−H�(aj |l ,ϕ�\j ,ω�c )∫
dϕ�e−H�(ϕ�,ω�c )

)
,

where d
dεj |εj =aj |r

H�(εj , ϕ�\j ,ω) − d
dεj |

εj =aj |l
H�(εj , ϕ�\jω) ≤ δj (

d
dεj

Hj ) ≤ 2K ′

and e−H�(aj |r ,ϕ�\j ,ω�c ) − e−H�(aj |l ,ϕ�\j ,ω�c ) ≤ 2eKe−∑
A∩� �=∅,j /∈A �A(ϕ�\j ,ω�c ).

Thus

A(j, a�,ω)

≤ 2K ′e2K2π
(
∏

i∈�\j
∫ ai |r
ai |l ) dϕ�\j e−∑

A∩� �=∅,j /∈A �A(ϕ�\j ,ω�c )∫
dϕ�\j e−∑

A∩� �=∅,j /∈A �A(ϕ�\j ,ω�c )

+ 2e2K(
K ′ + (|�| − 1

)
K
)

× 2π
(
∏

i∈�\j
∫ ai |r
ai |l ) dϕ�\j e−∑

A∩� �=∅,j /∈A �A(ϕ�\j ,ω�c )∫
dϕ�\j e−∑

A∩� �=∅,j /∈A �A(ϕ�\j ,ω�c )
.

Let us check the second term. We can write

B(j, k, a�,ω)

≤ 4e4K4π2
(
∏

i∈�\{j,k}
∫ ai |r
ai |l ) dϕ�\{j,k}e−∑

A∩� �=∅,{j,k}�⊂A �A(ϕ�\{j,k},ω�c )∫
dϕ�\{j,k}e−∑

A∩� �=∅,{j,k}�⊂A �A(ϕ�\{j,k},ω�c )
.

For convenience set Ǩ := max{K,K ′} and �K := max{4πǨe2Ǩ ,8π2e4Ǩ}. Also
we want to adopt a notation we introduced earlier, namely,

γ�\j |jc (1a�\j |ω�c)

=
(
∏

i∈�\j
∫ ai |r
ai |l ) dϕ�\j e−∑

A∩� �=∅,j /∈A �A(ϕ�\j ,ω�c )∫
dϕ�\j e−∑

A∩� �=∅,j /∈A �A(ϕ�\j ,ω�c )
.

Before we combine these estimates, let us apply the measure to a general local
function h on the coarse-grained space with support �. h can be written as h(ω′) =∑

a�∈{1,...,q}� κa�1a�(ω′) with ‖h‖ = supa�
|κa� |. Hence

d2

dε2 |ε=0

μ′
t+ε(h)

≤ ‖h‖ ∑
j∈�

∫
μt(dω)

[
q �K(|�| + 1

) ∑
a�\j∈{1,...,q}�\j

γ�\j |jc (1a�\j |ω�c)
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+ ∑
k∈�\j

q2 �K

× ∑
a�\{j,k}∈{1,...,q}�\{j,k}

γ�\{j,k}|{j,k}c (1a�\{j,k} |ω�c)

]

≤ ‖h‖|�|(q �K(|�| + 1
)+ q2 �K(|�| − 1

))
≤ K̂|�|2‖h‖.

For a general quasilocal function f , one can write again a telescopic sum using an
ordering of G and a generic configuration η′

f
(
ω′) = f

(
ω′

1, η
′{1}c

)+ (
f
(
ω′

1,ω
′
2, η

′{1,2}c
)− f

(
ω′

1, η
′{1}c

))
(38)

+ ∑
n≥3

(
f
(
ω′{1,...,n}, η′{1,...,n}c

)− f
(
ω′{1,...,n−1}, η′{1,...,n−1}c

))
.

Let us define gn(ω
′) := (f (ω′{1,...,n}, η′{1,...,n}c ) − f (ω′{1,...,n−1}, η′{1,...,n−1}c )) ∈

F{1,...,n}. In particular ‖gn‖ ≤ δn(f ). Hence we can write

d2

dε2 |ε=0

μ′
t+ε(f ) ≤ ‖f ‖K̂ + ∑

n≥2

‖gn‖K̂n2 ≤ 2K̂
∑
n≥1

n2δn(f ).(39)

Thus in order to have (37) it suffices to show SL
t f ∈ D|·|2(�′) for local f . To do

that, let us use the exponential decay property of the Dobrushin matrix introduced
in (28) and the exponentially decaying Hamiltonian, that is, by Lemma 3.4 as-
sume the model to satisfy supi∈G

∑
j �=i e

�(i,j)δj (cL(·, ·i )) =: M̌� < ∞ for some
translation-invariant increasing semi-metric � in G. With this we can prove the
following proposition.

PROPOSITION 3.6. Let f be a local observable on �′ and (SL
t )t≥0 associ-

ated to the rotation generator L. For all polynomials p on R
+
0 we have SL

t f ∈
Dp(�)(�

′).

PROOF. Let us consider only the monomials xn. It suffices to look at n = 2m

for some m ∈ N. We know from Theorem 3.9 in [17],∑
i≥0

�(i,0)mδi

(
SL

t f
) ≤ ∑

i≥0

�(i,0)m
[
et�δ·(f )

]
(i),

where [�δ·(f )](i) := ∑
j �=i δi(cL(·, ·j ))δj (f ). There exists a constant Km,�

such that for fixed j,m ∈ N, we have �(i, j)m ≤ Km,�e
�(i,j). Of course local

f ∈ D�m(�′) for all m ∈ N and also for exponential weight. Under the above
condition on the jump rates, the operator � is bounded as well in the exponential
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weighted triple-norm with norm M̌ , indeed,

‖|�‖|e� = sup
‖|v‖|e�≤1

‖|�v‖|e�

‖|v‖|e�
= sup

‖|v‖|e�≤1

∑
i≥0

∑
j �=i e

�(i,0)δi(cL(·, ·j ))vj∑
j≥0 e�(j,0)vj

(40)

≤ sup
‖|v‖|e�≤1

M̌
∑

j≥0 e�(j,0)vj∑
j≥0 e�(j,0)vj

= M̌.

Then we can write∑
i≥0

�(i,0)m
[
et�δ·(f )

]
(i) ≤ Km,�

∑
i≥0

e�(i,0)[et�δ·(f )
]
(i) = Km,�

∥∥∣∣et�δ·(f )
∥∥∣∣

e�

≤ Km,�

∥∥∣∣et�
∥∥∣∣

e�

∥∥∣∣δ·(f )
∥∥∣∣

e�

≤ Km,�e
t‖|�‖|e� ∥∥∣∣δ·(f )

∥∥∣∣
e� . �

In particular for local f , we have SL
s−εf ∈ Dp(|·|)(�′) ⊂ L′‖|·‖| for all polyno-

mial and even exponential weights p. In other words, we can control the diffusion
of the semi-group applied to a local function by looking at the decay property of
the conditional Dobrushin matrix as well as of the first-layer Hamiltonian. In par-
ticular if those are well behaved (which is the case for the XY -model with some
slightly refined coarse-graining) the second order terms in the Taylor expansion
are controlled. We can conclude μ′

t+ε = SL
ε (μ′

t ) for all extremal Gibbs measures
labeled by t ∈ S1 and ε > 0.

4. Reversible dynamics for discrete-spin models. The infinite-volume dy-
namics K given in (5) with rates satisfying (6) is reversible. By expressing the
RHS of (6) in terms of the specification γ ′ it is clear that K has detailed balance
with respect to γ ′.

These rates are bounded (by boundedness of Hj ), translation-invariant (by the
translation-covariance of the μG\j [ω′

G\j ] in the conditional Dobrushin regime)
and of exponentially decaying influence (however, not strictly local). The rates are
even uniformly bounded and bounded in the triple-norm by the same arguments as
used for the rotation dynamics, so Proposition 1.4, part (1) is true.

In the next subsection we adapt a line of arguments presented for q = 2 in [17]
for general finite q .

4.1. Translation-invariant invariant measures are Gibbs measures. Let us put
ourselves in dimension d ≥ 3. In the right temperature region there are multiple
Gibbs measures for the XY -model, ferromagnetically ordered on S1.

Since in the following subsections we will only deal with second-layer configu-
rations, it is convenient to suppress the primes and write cK(ω,ωi) for the up-flip
at site i ∈ G and cK(ω,ωi−) for the down-flip. Assume the rates to be defined as
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in (6), in particular for the corresponding process second-layer Gibbs measures are
invariant w.r.t. K .

We now show, invariant measures w.r.t. K that are also translation-invariant are
second-layer Gibbs measures. This is precisely part (2) of Proposition 1.4. We use
Holleys’s argument [13]. Recall the definition of the second-layer specification and
define the local relative entropy

H�

(
ν|γ ′

�(·|ζ )
) := ∑

ω∈{1,...,q}�
ν(1ω) log

ν(1ω)

γ ′
�(1ω|ζ )

,(41)

where � ⊂ Z
d is finite, ν ∈ P(�′) and ζ ∈ �′ an arbitrary but fixed boundary

condition. Let (SK
t )t≥0 be the semigroup for the generator K , and define νt :=

SK
t (ν). Let us compute d

dt |t=0
H�(νt |γ ′

�(·|ζ )) in two steps,

d

dt |t=0

∑
ω∈{1,...,q}�

νt (1ω) logνt (1ω)

= ∑
ω

[
1 + logν(1ω)

] ∫
K1ω dν

= ∑
ω,i∈�

logν(1ω)

∫
ν(dη)

[
cK

(
η,ηi)(1ω

(
ηi)− 1ω(η)

)
+ cK

(
η,ηi−)(1ω

(
ηi−)− 1ω(η)

)]
= ∑

ω,i∈�

[
�
(
ω, i+

)
log

ν(1ωi )

ν(1ω)
+ �

(
ω, i−

)
log

ν(1ωi−)

ν(1ω)

]
,

where we wrote �(ω, i±) := ∫
ν(dη)cK(η, ηi±)1ω(η) for the outflows of 1ω in the

direction i±.
Note that if ν is invariant w.r.t. K , then ν(1ω�) > 0 for all ω� ∈ {1, . . . , q}�,

indeed

0 =
∫

K1ω� dν

= ∑
i∈�

∫
dν(dη)

[
cK

(
η,ηi)(1

ωi−
�

(η) − 1ω�(η)
)

(42)

+ cK

(
η,ηi−)(1ωi

�
(η) − 1ω�(η)

)]
.

Since all flip-rates are positive, ν(1ω�) = 0 would imply ν(1ωi
�
) = 0 = ν(1

ωi−
�

)

for all i ∈ � and thus by iteration ν(1η�) = 0 for all η� ∈ {1, . . . , q}�, which is a
contradiction to ν being a probability measure.

Let us look at the second summand of d
dt |t=0

H�(νt |γ ′
�(·|ζ )). Since the normal-

izing constant in the specification is independent of ω� and
∑

ω�

d
dt |t=0

∫
νt (dω) =
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0, we can directly compute
d

dt |t=0

∫
νt (dω) logμG\�[ζG\�](λ�(e−H�1ω�

))
= ∑

ω�∈{1,...,q}�

∫
ν(dη�c)ν(ω�|η�c)

× K logμG\�[ζG\�](λ�(e−H�1·�
))

(ω�η�c)

= ∑
ω�,i∈�

[
log

μG\�[ζG\�](λ�(e−H�1ωi
�
))

μG\�[ζG\�](λ�(e−H�1ω�))

∫
ν(dη)1ω�(η)cK

(
η,ηi)

(43)

+ log
μG\�[ζG\�](λ�(e−H�1

ωi−
�

))

μG\�[ζG\�](λ�(e−H�1ω�))

∫
ν(dη)1ω�(η)cK

(
η,ηi−)]

= ∑
ω�,i∈�

[
V
(
ω, i+

)
�
(
ω, i+

)+ V
(
ω, i.

)
�
(
ω, i−

)]
,

where we defined V (ω, i±) := log
μG\�[ζG\�](λ�(e−H�1

ω
i±
�

))

μG\�[ζG\�](λ�(e−H�1ω�
))

. Notice we have

μG\�[ζG\�](λ�(e−H�1ωi
�
))

μG\�[ζG\�](λ�(e−H�1ω�))
=

μG\i[ζG\�ω�\i](λ(e−Hi 1ωi
i
))

μG\i[ζG\�ω�\i](λ(e−Hi 1ωi
))

= cK(ω�ζ�c,ωi
�ζ�c)

cK(ωi
�ζ�c,ω�ζ�c)

.

Combining the two summands we have
d

dt
H�

(
ν|γ ′

�(·|ζ )
)
|t=0

= ∑
ω,i∈�

[
�
(
ω, i+

)(
log

ν(1ωi )

ν(1ω)
− V

(
ω, i+

))
(44)

+ �
(
ω, i−

)(
log

ν(1ωi−)

ν(1ω)
− V

(
ω, i−

))]
.

Since log
ν(1

ωi )

ν(1ω)
− V (ω, i+) = −(log ν(1ω)

ν(1
ωi )

− V (ωi, i−)), we can write

2
d

dt |t=0

H�

(
νt |γ ′

�(·|ζ )
)

= ∑
ω,i∈�

[(
�
(
ω, i+

)− �
(
ωi, i−

))(
log

ν(1ωi )

ν(1ω)
− V

(
ω, i+

))
(45)

+ (
�
(
ω, i−

)− �
(
ωi−, i+

))(
log

ν(1ωi−)

ν(1ω)
− V

(
ω, i−

))]
.
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Adding zeros we have

2
d

dt
H�

(
ν|γ ′

�(·|ζ )
)
|t=0

= − ∑
ω,i∈�

[(
�
(
ω, i+

)− �
(
ωi, i−

))
log

�(ω, i+)

�(ωi, i−)

+ (
�
(
ω, i−

)− �
(
ωi−, i+

))
log

�(ω, i−)

�(ωi−, i+)

]

+ ∑
ω,i∈�

[(
�
(
ω, i+

)− �
(
ωi, i−

))

×
[
log

�(ω, i+)

ν(1ω)
− log

�(ωi, i−)

ν(1ωi )
− V

(
ω, i+

)]
+ (

�
(
ω, i−

)− �
(
ωi−, i+

))
×
[
log

�(ω, i−)

ν(1ω)
− log

�(ωi−, i+)

ν(1ωi−)
− V

(
ω, i−

)]]
.

If ν is invariant w.r.t. K , it follows∑
ω,i∈�

[(
�
(
ω, i+

)− �
(
ωi, i−

))
log

�(ω, i+)

�(ωi, i−)

+ (
�
(
ω, i−

)− �
(
ωi−, i+

))
log

�(ω, i−)

�(ωi−, i+)

]

= ∑
ω,i∈�

[(
�
(
ω, i+

)− �
(
ωi, i−

))

×
[
log

�(ω, i+)

ν(1ω)
− log

�(ωi, i−)

ν(1ωi )
− V

(
ω, i+

)]
+ (

�
(
ω, i−

)− �
(
ωi−, i+

))
×
[
log

�(ω, i−)

ν(1ω)
− log

�(ωi−, i+)

ν(1ωi−)
− V

(
ω, i−

)]]
,

where the left-hand side is nonnegative. We want to exploit properties of the
d-dimensional lattice in order to show the RHS of the last equation goes to zero
for � ↗ G. Let us define

κ�

(
i±

) := ∑
ω

(
�
(
ω, i±

)− �
(
ωi±, i∓

))
log

�(ω, i±)

�(ωi±, i∓)
,

β�

(
i±

) := ∑
ω

∣∣�(ω, i±
)− �

(
ωi±, i∓

)∣∣,(46)
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ϑ�(i) := ∑
j /∈�

sup
ηjc=η̃jc

|cK(η, ηi) − cK(η̃, η̃i)|
cK(η, ηi)

+ ∑
j /∈�

sup
ηjc=η̃jc

|cK(η, ηi−) − cK(η̃, η̃i−)|
cK(η, ηi−)

.

We estimate

−V (ω, i+) + log
�(ω, i+)

ν(1ω)
− log

�(ωi, i−)

ν(1ωi )

= log

∫
ν(dη)1ω�(η)((cK(ω�η�c,ωi

�η�c))/(cK(ω�ζ�c,ωi
�ζ�c))

ν(1ω�)

− log

∫
ν(dη)1ωi

�
(η)((cK(ωi

�η�c,ω�η�c))/(cK(ωi
�ζ�c,ω�ζ�c))

ν(1ωi
�
)

≤ sup
{

log
cK(η1, η

i
1)

cK(η2, η
i
2)

:η1 = η2 on �

}

+ sup
{

log
cK(η1, η

i−
1 )

cK(η2, η
i−
2 )

:η1 = η2 on �

}
.

Using loga ≤ a − 1 and expressing the oscillation on �c via single-point oscilla-
tions, we arrive at ϑ�(i). Similarly we get for the second summand

−V
(
ω, i−

)+ log
�(ω, i−)

ν(1ω)
− log

�(ωi−, i+)

ν(1ωi−)

≤ sup
{

log
cK(η1, η

i−
1 )

cK(η2, η
i−
2 )

:η1 = η2 on �

}

+ sup
{

log
cK(η1, η

i
1)

cK(η2, η
i
2)

:η1 = η2 on �

}
≤ ϑ�(i).

Hence ∑
i∈�

[
κ�

(
i+

)+ κ�

(
i−

)] ≤ ∑
i∈�

[(
β�

(
i+

)+ β�

(
i−

))
ϑ�(i)

]
.

Notice that ϑ�(i) → 0 for all i ∈ G as � ↗ G since our flip-rates are quasilocal
and summable, indeed by the well-definedness we have for all i ∈ G∑
j /∈�

sup
ηjc=η̃jc

|cK(η, ηi) − cK(η̃, η̃i)|
cK(η, ηi)

≤ 2πe‖H0‖

minl∈{1,...,q} λ(l)
sup
i∈G

∑
j∈G

sup
ηjc=η̃jc

∣∣cK

(
η,ηi)− cK

(
η̃, η̃i)∣∣ =: A × B+ < ∞.
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Notice also that κ�1(i
±) ≤ κ�2(i

±) if i ∈ �1 ⊂ �2. Indeed if we look at the sub-
additive function ϕ(x, y) = (x − y) log x

y
for x, y > 0 and use

��1

(
ω1, i

±) = ∑
ω2=ω1 on �1

��2

(
ω2, i

±),
we have

κ�1

(
i±

) = ∑
ω1∈{1,...,q}�1

ϕ
[
��1

(
ω1, i

±),��1

(
ωi±

1 , i∓
)]

(47)
≤ ∑

ω2∈{1,...,q}�2

ϕ
[
��2

(
ω2, i

±),��2

(
ωi±

2 , i∓
)] = κ�2

(
i±

)
.

We are now in the position to finish the proof of Proposition 1.4, part (2). This is a
standard argument from [17] using translation-invariance and explicit control over
boundary terms, applied to the q-state model.

THEOREM 4.1. Suppose that G = Z
d and the Glauber dynamics flip-rates

cK(ω′, (ω′)i)
cK((ω′)i,ω′)

= μG\i[ω′
G\i](λi(e−Hi 1(ω′

i )
i ))

μG\i[ω′
G\i](λi(e−Hi 1ω′

i
))

(48)

are defined for a translation-invariant first-layer potential H . Then a measure that
is translation invariant and invariant w.r.t. K must be Gibbs for γ ′.

PROOF. Let ν be invariant w.r.t. K and translation-invariant. Denote by �n

cubes in Z
d of side length n. Then we have

1

(kn)d

∑
i∈�kn

[
κ�kn

(
i+

)+ κ�kn

(
i−

)] ≥ 1

nd

∑
i∈�n

[
κ�n

(
i+

)+ κ�n

(
i−

)]
.(49)

On the other hand β�(i+) and β�(i−) are uniformly bounded and

1

nd

∑
i∈�n

ϑ�n(i)

≤ A

nd

∑
i∈�n

∑
j /∈�n

[
δj

(
cK

(·, ·i))+ δj

(
cK

(·, ·i−))]
(50)

= A

nd

∑
i∈�n

∑
j /∈�n

[
δj−i

(
cK

(·, ·0))+ δj−i

(
cK

(·, ·0−))]
= A

∑
l∈Zd

[
δl

(
cK

(·, ·0))+ δl

(
cK

(·, ·0−))]#{i ∈ �n : i + l /∈ �n}
nd

.
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This tends to zero since the oscillations are bounded by B± and the fact that an
increasing strip of boundary of cubes goes to infinity slower than the volume.
Together we can write

1

nd

∑
i∈�n

[
κ�n

(
i+

)+ κ�n

(
i−

)] ≤ 1

nd

∑
i∈�n

[(
β�n

(
i+

)+ β�n

(
i−

))
ϑ�n(i)

]
(51)

≤ C
1

nd

∑
i∈�n

ϑ�n(i) → 0 for n → ∞

and hence by the nonnegativity of κ�(i±) we have κ�n(i
+) = κ�n(i

−) = 0 for all
i ∈ �n. By the subadditivity argument κ�(i+) = κ�(i−) = 0 for all � and i ∈ �.
Thus for all finite �, ω ∈ {1, . . . , q}� and i ∈ �

0 = �
(
ω, i+

)− �
(
ωi, i−

)
=

∫
ν(dη)

[
ν(ωi |ω�\iη�c)cK

(
ω�η�c,ωi

�η�c

)
− ν

(
ωi

i |ω�\iη�c

)
cK

(
ωi

�η�c,ω�η�c

)]
.

So ν-a.s. we have

ν(ωi
i |ω�\iη�c)

ν(ωi |ω�\iη�c)
= cK(ω�η�c,ωi

�η�c)

cK(ωi
�η�c,ω�η�c)

=
μG\i[η�cω�\i](λ(e−Hi 1ωi

i
))

μG\i[η�cω�\i](λ(e−Hi 1ωi
))

.

Since we compare discrete measures on sites i ∈ G, it follows by the remark below,
ν(ωi |ωic) = γ ′

i (ωi |ωic) ν-almost everywhere and thus ν ∈ G(γ ′). �

REMARK 4.2. Let (a1, . . . , aq) and (b1, . . . , bq) be probability vectors with
ak

ak+1
= bk

bk+1
for all k ∈ {1, . . . , q}. Then we have al

ak
= bl

bk
for all k, l ∈ {1, . . . , q}

and thus

al = al∑q
k=1 ak

= 1

1 +∑
k �=l(ak/al)

= 1

1 +∑
k �=l(bk/bl)

= bl.(52)

5. Joint dynamics. Let us now consider the joint dynamics L+αK for α > 0.
Of course well-definedness [Proposition 1.5, part (1)] follows directly from the
fact, that the individual rates of L and K are well defined.

As a warning, we note that the generators L and K do not commute (except in
the limit q → ∞). To see this we apply LK −KL to the local observable ψ := 1η�

for a finite � ⊂ G. Evaluated, for instance, at ω� = η�, we find the expression∑
i∈�

(
cL

(
ω,ωi)cK

(
ωi,ω

)− cK

(
ω,ωi−)cL

(
ωi−,ω

))
(53)

= ∑
i∈�

(
μG\i[ωG\i](e−Hi((ωi)

l ,·ic ))− μG\i[ωG\i](e−Hi((ω
i−
i )l ,·ic ))).
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This does not vanish in general, and thus the commutator is not zero. But if we
consider the limit of the coarse-graining, that is, letting q the number of discrete
states go to infinity, we approach a commutative setting. This result reflects the
continuum situation in the Maes and Shlosman program [18].

As a consequence, SL+αK
t �= SL

t SαK
t , and it is not immediate that the joint dy-

namics also rotates the discrete Gibbs measures in the sense of Proposition 1.5,
part (2). To see that this is nevertheless true one has to follow the same arguments
as in Section 3.2 and notice ‖|�joint‖|e� < ∞.

5.1. The invariant measure for the joint dynamics. In this subsection we show
Proposition 1.5, part (3) and Corollary 1.6. First let us verify that indeed the sym-
metrically mixed measure is invariant and in the set of Gibbs measures this is the
only one. Finally we prove that measures that are invariant under the joint dynam-
ics must be Gibbs.

The mixture of all translation-invariant extremal Gibbs measures μ′
t

μ′∗ := 1

2π

∫ 2π

0
μ′

t dt

is invariant for the rotation dynamics and hence for the joint dynamics L + αK .
Indeed, let (SL

t )t≥0 be the semigroup for L and f a quasilocal observable, we have∫
SL

t f (η)μ′∗(dη) = 1

2π

∫ 2π

0

∫
SL

t f (η)μ′
s(dη) ds

=
∫

f (η)
1

2π

∫ 2π

0
μ′

s+t (dη) ds(54)

=
∫

f (η)μ′∗(dη).

PROPOSITION 5.1. There are no translation-invariant invariant Gibbs mea-
sures for the rotation dynamics other then μ′∗.

PROOF. We know from Theorem 7.26 of [10] that every Gibbs measure μ′ ∈
Gθ (γ

′) has a unique representation

μ′ =
∫

exGθ (γ ′)
μ̄wμ′(dμ̄),

where wμ′ ∈ P(exGθ (γ
′), σ (exGθ (γ

′))), and σ(P) is the so-called evaluation
σ -algebra. Since the Gibbs measures can be labeled as described above, there is a
bijection

b : exGθ

(
γ ′) → [0,2π) = S1, μ′ �→ arg

(
em̂′

0

(
μ′)/mβ

)
,

where b is (σ (exGθ (γ
′)),B([0,2π))) measurable and arg denotes the argument

of a number in S1. Indeed since m̂′
0 is bounded and measurable, so is em̂′

0
:μ′ �→
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μ′(m̂′
0) ∈ R

2, and thus b(μ′) = arg(em̂′
0
(μ′)/mβ) is a composition of measurable

functions. Hence we can consider image measures vμ′ of wμ′ under b.
On the other hand for all local coarse-grained sets A′ ∈ F ′, the mapping

cA′ : [0,2π) → [0,1], t �→ μ′
t

(
A′) = μt(A) = lim

�↗Zd
γ�(A|ωt),

where A := T −1(A′) and ωt the homogeneous boundary condition as described in
the Introduction, is Borel-measurable as a composition of measurable maps. We
also used the measurability of t �→ ωt . Hence this is true for all A′ ∈ F ′.

By the transformation theorem for measurable maps we have for all A′ ∈F ′

μ′(A′) =
∫

exGθ (γ ′)
μ̄
(
A′)wμ′(dμ̄) =

∫
exGθ (γ ′)

cA′
(
b(μ̄)

)
wμ′(dμ̄)

=
∫ 2π

0
cA′(t)wμ′

(
b−1(dt)

) =
∫ 2π

0
cA′(t)vμ′(dt)(55)

=
∫ 2π

0
μ′

t

(
A′)vμ′(dt).

By looking at tail-measurable interval sets

A[0,u) :=
{
ω ∈ � : lim

n→∞
1

|�n|
∑

j∈�n

arg
(

ωj

mβ

)
= [0, u)

}
and ϕ[0,u)(ω

′) := μG[ω′](A[0,u)) we see that vμ′ has to be a translation-invariant
Borel-measure, indeed

vμ′
([0, u)

) =
∫ 2π

0
μ′

t (ϕ[0,u))vμ′(dt) = μ′(ϕ[0,u)) = μ′SL
s (ϕ[0,u))

(56)

=
∫ 2π

0
μ′

t+s(ϕ[0,u))vμ′(dt) = vμ′
([−s, u − s)

)
for all s ∈ [0,2π). Since {[0, u) :u ∈ [0,2π)} is a generator for the Borel-σ -
algebra, and vμ′ is a probability measure, we have vμ′(dt) = 1

2π
λ(dt). �

Since SL+αK
s (μ′

t ) = μ′
t+s = SL

s (μ′
t ) we can conclude μ′∗ is the only translation-

invariant measure that is also invariant w.r.t. the joint dynamics. The next proposi-
tion proves Proposition 1.5, part (3).

PROPOSITION 5.2. Every translation-invariant measure that is invariant for
the joint dynamics L + αK with α > 0 is a Gibbs measure.

PROOF. Let � ⊂ Z
d be a finite set, and ζ ∈ �′ be an arbitrary but fixed bound-

ary condition for the second-layer specification; that is, consider the coarse-grained

measure γ ′
�(ω|ζ ) = μ�c [ζ�c ](λ�(e−H�1ω�

))

μ�c [ζ�c ](λ�(e−H�))
on {1, . . . , q}�. Our strategy for the
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proof is to again look at the derivative of the local relative entropy H�(ν|γ ′
�(·|ζ ))

for ν translation-invariant and invariant w.r.t. the joint dynamics. We have seen in
case of the Glauber dynamics how to verify Gibbsianness for invariant measures
by estimating certain terms in the derivative of the local relative entropy. Those
term are only of the order of the boundary |∂�|. This allowed us to prove the DLR
equality for the invariant measure. A crucial ingredient is the translation-invariance
of both, the model as well as the invariant measure.

Essentially we follow the same line of arguments here, taking special care of
the contribution of the rotation. We look at an approximating local open boundary
rotation dynamics and show its relative entropy is decreasing. This means that the
approximating rotation only “helps” the Glauber dynamics argument. The error we
make by using the approximation instead of the infinite-volume rotation dynamics
is only of boundary order and thus again increases more slowly than the volume.

Since the time-derivative of the local relative entropy is additive as a sum of
the two terms corresponding to the two generators K and L, we can calculate
separately for the Glauber and for the rotation dynamics. We write νt,L (resp.,
νt,K , νt,L+αK ) for the measure ν propagated only by the rotation (resp., by the
Glauber dynamics, by the joint dynamics).

Let us compute for the rotation d
dt |t=0

H�(νt,L|γ ′
�(·|ζ )) with ν = ν0. Again we

do this in two steps. Similarly to the computations done in (42) we find

d

dt |t=0

∑
ω∈{1,...,q}�

νt,L(1ω) logνt,L(1ω) = ∑
ω,i∈�

�L

(
ω, i+

)
log

ν(1ωi )

ν(1ω)
,(57)

where we again wrote �L(ω, i+) := ∫
ν(dη)cL(η, ηi)1ω(η) for the outflows of 1ω

in the direction i+. For the other summand of d
dt |t=0

H�(νt,L|γ ′
�(·|ζ )) we have

d

dt |t=0

∫
νt,L(dω) logμ�c [ζ�c ](λ�(e−H�1ω�

))
(58)

= ∑
ω,i∈�

V ζ (ω, i+
)
�L

(
ω, i+

)
,

where we again defined V ζ (ω, i+) := log
μ�c [ζ�c ](λ�(e−H�1

ωi
�

))

μ�c [ζ�c ](λ�(e−H�1ω�
))

. Together we have

d

dt |t=0

H�

(
νt,L|γ ′

�(·|ζ )
) = ∑

ω,i∈�

�L

(
ω, i+

)(
log

ν(1ωi )

ν(1ω)
− V ζ (ω, i+

))
.(59)

We define the approximating local generator L̃� via the following open boundary
rates:

cL̃�

(
η,ηi) :=

⎧⎪⎪⎨⎪⎪⎩
λ�\i (e−H̃�(ηi |r ,·)1η�\i )

λ�(e−H̃�1η�)
, if i ∈ �,

0, if i ∈ �c,
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where � is a fixed finite volume, and H̃� := ∑
A⊂� �A is the open boundary

Hamiltonian for � in the first-layer model. Let (S
L̃�
t )t≥0 be the corresponding

semigroup. Since we assume the underlying first-layer potential to be rotation-
invariant, the open boundary measure γ̃�(ω�) := λ�(e−H̃�1ω�)/λ�(e−H̃�) on
{1, . . . , q}� is invariant for L̃�. Indeed for all ω� ∈ {1, . . . , q}� we have

γ̃�

(
L̃�(1ω�)

) =
∑

i∈�[λ�\i(e−H̃�(ωi |l ,·)1ω�\i ) − λ�\i (e−H̃�(ωi |r ,·)1ω�\i )]
λ�(e−H̃�)

(60)

= d

dε |ε=0

γ̃�(1ω�+ε) = d

dε |ε=0

γ̃�(1ω�) = 0.

We can employ a standard argument for the decrease of relative entropy in finite
volume in order to determine the sign of d

dt |t=0
H�(νt,L̃�

|γ̃�). Indeed if we use the
convex function ψ(x) = x logx + x − 1, the relative entropy reads

H�(νt,L̃�
|γ̃�) = ∑

ω

γ̃�(1ω)ψ

(
νt,L̃�

(1ω)

γ̃�(1ω)

)
(61)

= ∑
ω

γ̃�(1ω)ψ

(
1

γ̃�(1ω)

∑
η

S
L̃�
t (1ω)(η)

ν(η)

γ̃�(η)
γ̃�(η)

)
,

where S
L̃�
t (1ω)(η)

γ̃ (1ω)
γ̃ (dη) = 1ω(η)

γ̃ (1ω)
γ̃ (dη) is a probability measure. Hence we can use

Jensen’s inequality and obtain

H�(νt,L̃�
|γ̃�) ≤ ∑

ω

γ̃ (1ω)
1

γ̃ (1ω)

∑
η

S
L̃�
t (1ω)(η)ψ

(
ν(η)

γ̃�(η)

)
γ̃�(η)

= ∑
ω

ψ

(
ν(ω)

γ̃�(ω)

)
γ̃�(ω)(62)

= H�(ν|γ̃�)

with equality if and only if νt,L̃�
= γ̃�. Thus the derivative must be nonpositive

0 ≥ d

dt |t=0

H�(νt,L̃�
|γ̃�)

= ∑
ω,i∈�

νt (1ω)cL̃�

(
ω,ωi)(log

ν(1ωi )

ν(1ω)
− log

γ̃�(ωi)

γ̃�(ω)

)
(63)

=: ∑
ω,i∈�

�L̃�

(
ω, i+

)(
log

ν(1ωi )

ν(1ω)
− VL̃�

(
ω, i+

))
.
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We are going to show | d
dt |t=0

H�(νt,L|γ ′
�(·|ζ ))− d

dt |t=0
H�(νt,L̃�

|γ̃�)| = o(|�|).
Let us start with the following estimate:

d

dt |t=0

H�

(
νt,L|γ ′

�(·|ζ )
)− d

dt |t=0

H�(νt,L̃�
|γ̃�)

= ∑
ω,i∈�

[
�L

(
ω, i+

)− �L̃�

(
ω, i+

)]
log

ν(1ωi )

ν(1ω)

+ ∑
ω,i∈�

[[
VL̃�

(
ω, i+

)− V ζ (ω, i+
)]

�L

(
ω, i+

)
(64)

− [
�L

(
ω, i+

)− �L̃�

(
ω, i+

)]
VL̃�

(
ω, i+

)]
≤ ∑

ω,i∈�

A
(
ω, i+

)
ν(1ω)

∣∣∣∣log
ν(1ωi )

ν(1ω)

∣∣∣∣
+ ∑

ω,i∈�

[
B
(
ω, i+

)
�L

(
ω, i+

)− A
(
ω, i+

)
ν(1ω)

∣∣VL̃�

(
ω, i+

)∣∣],
where we defined B(ω, i+) := |VL̃�

(ω, i+) − V ζ (ω, i+)| and used the following
estimate and definition:

�L

(
ω, i+

)− �̃L̃�

(
ω, i+

)
=

∫
ν(dη)cL

(
η,ηi)1ω(η) − ν(1ω)cL̃�

(
ω,ωi)

=
∫

ν(dη�c)ν(1ω|η�c)
[
cL

(
ω�η�c,ωi

�η�c

)− cL̃�

(
ω,ωi)]

≤ sup
η�c

∣∣∣∣ μG\i[η�cω�\i](e−Hi(ω
r
i ,·ic ))

μG\i[η�cω�\i](λ(e−Hi(·)1ωi
))

− λ�\i (e−H̃�(ωr
i ,·�\i )1ω�\i )

λ�(e−H̃�(·�)1ω�)

∣∣∣∣ν(1ω)

=: A(
ω, i+

)
ν(1ω).

We first verify supω

∑
i∈� A(ω, i+) = o(|�|) and supω

∑
i∈� B(ω, i+) =

o(|�|). We do this in the two following lemmata.

LEMMA 5.3. supω

∑
i∈� A(ω, i+) = o(|�|).

PROOF. In order to see cancellations we define for a given second-layer
boundary condition inside �, namely ω�, and open boundary conditions out-
side �, the conditional first-layer probability measures on (S1)G\i

μ̃G\i[ω�\i](ϕ) := λic(ϕe−∑
i /∈A⊂� �A1ω�\i )

λic (e−∑
i /∈A⊂� �A1ω�\i )

.(65)
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In particular μ̃G\i [ω�\i ](e−H̃i (ωi |r ,·�\i ))
μ̃G\i [ω�\i ](λ(e−H̃i (·�)1ωi

))
= λ�\i (e−H̃�(ωi |r ,·�\i )1ω�\i )

λ�(e−H̃�(·�)1ω�
)

. These fractions

again give rise to a specification γ̃ on the second layer when we look at sub-
volumes, keeping the � fixed.

In essence we want to exploit the Dobrushin comparison theorem. Since we can
bound every term by some constant times e±‖Hi‖ = e±‖Hi‖ := eK it suffices to
estimate the distance of the conditional first-layer Gibbs measures μG\i[η�cω�\i]
and μ̃G\i[ω�\i] applied to the quasilocal functions

ψ
ωi

1 (·) := e−Hi(ωi |r ,·ic ), ψ
ωi

2 (·) := λ
(
e−Hi(·,·ic )1ωi

)
and

(66)
ψ̃

ωi

1 (·) := e−H̃i (ωi |r ,·ic ), ψ̃
ωi

2 (·) := λ
(
e−H̃i (·,·ic )1ωi

)
.

(Notice that we have done computations of the same flavor in the section about
the well-definedness of the rotation dynamics.) For any fixed first-layer boundary
condition w ∈ � the measure μG\i[η�cω�\i] is uniquely admitted by the specifi-
cation

γ η�cω�\i |ic := ((
γ η�cω�\i |ic)�(·|w�c\i )

)
�⊂ic(67)

and μ̃G\i[ω�\i] is admitted by γ̃ ω�\i |ic := ((γ̃ ω�\i |ic )�(·|w�c\i ))�⊂ic , � being
finite subsets of ic. The total variational distance between the two specifications
on the site l �= i can be estimated by

bl := sup
η�cω�\i ,wlc\i

∥∥(γ η�cω�\i |ic)l(·|wlc\i ) − (
γ̃ ω�\i |ic)l(·|wlc\i )

∥∥
l

= sup
η�cω�\i ,wlc\i ,B∈S1

∣∣∣∣λ(1B1η�cω�\i e
−∑

i /∈A�l �A(·,wlc\i ))

λ(1η�cω�\i e
−∑

i /∈A�l �A(·,wlc\i ))

− λ(1B1ω�\i e
−∑

i /∈A�l,A⊂� �A(·,wlc\i ))

λ(1ω�\i e
−∑

i /∈A�l,A⊂� �A(·,wlc\i ))

∣∣∣∣
≤

⎧⎪⎨⎪⎩
1, if l ∈ �c,

K
∑

l∈A �⊂�

‖�A‖, if l ∈ � \ i,

where K some constant and again we used |ex − ey | ≤ |x − y|emax(|x|,|y|). Notice,
for any fixed l when � tends to Z

d , because of the absolute summability of the
Hamiltonian, this goes to zero. Further we want to estimate

sup
η�cω�

∣∣μG\i[η�cω�\i](ψωi

1

)− μ̃G\i[ω�\i](ψ̃ωi

1

)∣∣ and

(68)
sup

η�cω�

∣∣μG\i[η�cω�\i](ψωi

2

)− μ̃G\i[ω�\i](ψ̃ωi

2

)∣∣.
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We do this for both terms simultaneously by just writing ψ instead of ψ1,ψ2.

sup
η�cω�

∣∣μG\i[η�cω�\i](ψωi
)− μ̃G\i[ω�\i](ψ̃ωi

)∣∣
≤ sup

η�cω�

∣∣μG\i[η�cω�\i](ψ̃ωi
)− μ̃G\i[ω�\i](ψ̃ωi

)∣∣(69)

+ sup
η�cω�

∣∣μG\i[η�cω�\i](ψωi
)− μG\i[η�cω�\i](ψ̃ωi

)∣∣.
For the second part in (69) we have

sup
η�c ,ω�

∣∣μG\i[η�cω�\i](ψωi
)− μG\i[η�cω�\i](ψ̃ωi

)∣∣
≤ sup

ωi

∥∥ψωi − ψ̃ωi
∥∥

≤ K
∑

i∈A �⊂�

‖�A‖,

which tends to zero as � ↗ Z
d by the absolute summability of the potential. In

particular there exists a radius r ∈ N such that supi∈�n−r

∑
i∈A �⊂�n

‖�A‖ < ε for
all centered cubes �n such that n − r ≥ 0. Hence

1

|�n|
∑
i∈�n

∑
i∈A �⊂�n

‖�A‖ < ε + ‖H0‖|�n \ �n−r |
|�n| ,(70)

where the RHS becomes arbitrarily small as n → ∞.
Let us look at the first part of (69) and use the Dobrushin comparison theorem,

which states

sup
η�cω�

∣∣μG\i[η�cω�\i](ψ̃ωi
)− μ̃G\i[ω�\i](ψ̃ωi

)∣∣
≤ sup

η�cω�

∑
k �=i,l �=i

δk

(
ψ̃ωi

)
Dkl

(
γ η�cω�\i )bl(71)

≤ sup
ωi

∑
k∈�\i

∑
l∈�c

δk

(
ψ̃ωi

)�Dkl + sup
ωi

∑
k∈�\i

∑
l∈�\i

δk

(
ψ̃ωi

)�Dklbl.

As for the second term on the RHS of (71), we have∑
i∈�

∑
k∈�\i

∑
l∈�\i

sup
ωi

δk

(
ψ̃ωi

)�Dklbl

≤
( ∑

l∈�\i
bl

)(
sup

l

∑
k∈�\i

�Dkl

)(
sup
k

∑
i∈�

sup
ωi

δk

(
ψ̃ωi

))

≤ K
∑

l∈�\i
bl = o

(|�|).
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Indeed we have for all k,∑
i∈�

sup
ωi

δk

(
ψ̃ωi

) ≤ eC
∑
i∈�

∑
{i,k}⊂A⊂�

δk(�A) ≤ eC
∑
0∈A

‖|�A‖| < ∞(72)

and also
∑

k∈�\i �Dkl ≤ ∑
k

�Dkl = ∑
k

�D0,l−k = ∑
j

�D0,j < ∞ for all l. Finally,

1

|�|
∑

l∈�\i
bl ≤ K

|�|
∑
l∈�

∑
l∈A �⊂�

‖�A‖ → 0 as � ↗ Z
d

by the Cesàro argument as in (70). Let us consider for the first term on the RHS
of (71) ∑

i∈�

∑
k∈�\i

∑
l∈�c

sup
ωi

δk

(
ψ̃ωi

)�Dkl = ∑
i∈�

∑
l∈�c

∑
k∈�\i

sup
ωi

δk

(
ψ̃ωi

)�Dkl.(73)

Notice we assume the model to have the exponential decay property (28) with
increasing translation invariant semi-metric � on G and again summability of the
potential in the triple-norm. Thus for all i and l by the triangle inequality∑

k∈�\i
e�(i,l) sup

ωi

δk

(
ψ̃ωi

)�Dkl

(74)

≤
(

sup
i∈�

∑
k

e�(i,k) sup
ωi

δk

(
ψ̃ωi

))(
sup
l,k

e�(k,l) �Dkl

)
≤ C̃.

Hence we can write∑
i∈�

∑
l∈�c

∑
k∈�\i

sup
ωi

δk

(
ψ̃ωi

)�Dkl = C̃
∑

j∈Zd

e−�(0,j)#{i ∈ � : i + j /∈ �},(75)

which again tends to infinity slower than |�|. �

LEMMA 5.4. supω

∑
i∈� B(ω, i+) = o(|�|).

PROOF. For the next error term in (64) we have

B
(
ω, i+

) =
∣∣∣∣log

μ̃G\i[ω�\i](λ(e−H̃i 1ωi
i
))

μG\i[ζ�cω�\i](λ(e−Hi 1ωi
i
))

− log
μ̃G\i[ω�\i](λ(e−H̃i 1ωi

))

μG\i[ζ�cω�\i](λ(e−Hi 1ωi
))

∣∣∣∣
≤

|μ̃G\i[ω�\i](λ(e−H̃i 1ωi
i
)) − μG\i[ζ�cω�\i](λ(e−Hi 1ωi

i
))|

μG\i[ζ�cω�\i](λ(e−Hi 1ωi
i
))

(76)

+ |μ̃G\i[ω�\i](λ(e−H̃i 1ωi
)) − μG\i[ζ�cω�\i](λ(e−Hi 1ωi

))|
μG\i[ζ�cω�\i](λ(e−Hi 1ωi

))
,
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where we assumed μ̃G\i[ω�\i](λ(e−H̃i 1ωi
i
)) ≥ μG\i[ζ�cω�\i](λ(e−Hi 1ωi

i
)) and

μ̃G\i[ω�\i](λ(e−H̃i 1ωi
)) ≥ μG\i[ζ�cω�\i](λ(e−Hi 1ωi

)). In this case, as well as
in all other cases, we can follow the exact same arguments as before and get

1

|�| sup
ω

∑
i∈�

B
(
ω, i+

) → 0 as � ↗ Z
d .(77)

�

Given the fact that supi

∑
ω �L(ω, i+) < ∞ and

sup
i∈�

∑
ω

ν(1ω)
∣∣VL̃�

(ω, i+)
∣∣ ≤ K sup

i∈�

∑
ω

ν(1ω) = K < ∞,

we have by now verified that the second summand in the last line of (64) is indeed
o(|�|). The first summand in the last line of (64) requires some extra care. We
prepare by writing∑

ω,i∈�

A
(
ω, i+

)
ν(1ω)

∣∣∣∣log
ν(1ωi )

ν(1ω)

∣∣∣∣ ≤ ∑
i∈�

sup
ω

A
(
ω, i+

)∑
ω

ν(1ω)

∣∣∣∣log
ν(1ωi )

ν(1ω)

∣∣∣∣.(78)

The next step is then to show boundary order of the RHS of (78), in other words
to show the following lemma.

LEMMA 5.5.
∑

i∈� supω A(ω, i+)
∑

ω ν(1ω)| log
ν(1

ωi )

ν(1ω)
| = o(|�|).

Notice, since the rates are bounded from below away from zero and bounded
from above, that is, e−2‖H0‖ ≤ cL(ω,ωi) ≤ k̃e2‖H0‖, e−‖H0‖ ≤ cK(ω,ωi) ≤
k̃e‖H0‖, e−‖H0‖ ≤ cK(ω,ωi−) ≤ k̃e‖H0‖ and ν is invariant, that is, 0 = ∫

(L +
αK)1ω� dν, we have for all ω ∈ {1, . . . , q}� [after separation of the terms in this
equation proportional to ν(1ω) from ν(1ωi ) and ν(1ω−i )],

K̃ ≥ 1

|�|
∑
i∈�

[
ν(1ωi−)

ν(1ω)
+ ν(1ωi )

ν(1ω)

]
≥ 1

|�|
∑
i∈�

ν(1ω)

ν(1ωi )

(79)

= 1

|�|
∑
i∈�

ν(ωi |ω�\i )
ν(ωi

i |ω�\i )
.

To control possibly small arguments of the logarithm, we need to bound ν-probabi-
lities from below. For this the following lemma will be useful.

LEMMA 5.6. Let ν ∈ P(�′) be translation-invariant and invariant for the
joint dynamics. There exists a constant K̂ such that for all finite sets � we have∫

ν(dω)
1√

ν(ω0
0|ω�\0)

< K̂.
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PROOF OF LEMMA 5.6. By the Jensen inequality, it suffices to show this for
centered cubes �. Let us consider the ν-expectation of our essential estimate (79)
and apply Jensen’s inequality to obtain

K̃ ≥ 1

|�|
∑
i∈�

∫
ν(dω)

ν(ωi |ω�\i )
ν(ωi

i |ω�\i )

≥ 1

|�|
∑
i∈�

q∑
k=1

[∫
ν(dω)

ν(k|ω�\i )√
ν((k + 1)|ω�\i )

]2

≥ 1

|�|
∑
i∈�

min
l

∫
ν(dω)

ν(l|ω�\i )√
ν((l + 1)|ω�\i )

q∑
k=1

∫
ν(dω)

ν(k|ω�\i )√
ν((k + 1)|ω�\i )

≥ 1

|�|
∑
i∈�

min
l

∫
ν(dω)ν(l|ω�\i )

q∑
k=1

∫
ν(dω)

1√
ν(ωi

i |ω�\i )

≥ 1

|�|
∑
i∈�

min
l

ν(l)

q∑
k=1

∫
ν(dω)

1√
ν(ωi

i |ω�\i )

≥ ε0

|�|
∑
i∈�

∫
ν(dω)

1√
ν(ωi

i |ω�\i )
,

where we used minl ν(l) ≥ ε0 > 0.

REMARK 5.7. In fact, take � = {0} in (79), and then we have ν(k)
ν(k+1)

≤ K̃ and

hence ν(k) = 1∑q
l=1(ν(l)/ν(k))

≥ 1
1+K̃+K̃2+···+K̃(q−1) = 1∑q−1

l=0 K̃l
=: ε0.

Consider �n := [−n,n]d and m := n − �nκ� with κ ∈ (0,1). Then the above
inequality can be further estimated by

K̃

ε0
≥ 1

|�n|
∑

i∈�m

∫
ν(dω)

1√
ν(ωi

i |ω�n\i )
≥ 1

|�n|
∑

i∈�m

∫
ν(dω)

1√
ν(ωi

i |ω(�+i)\i)
,

where � is the largest centered cube such that for all i ∈ �m we have � + i ⊂ �.
We used the conditional Jensen inequality in the last line. Because of translation-
invariance we have K̃

ε0
≥ |�m|

|�n|
∫

ν(dω) 1√
ν(ω0

0|ω�\0)
. Since |�m|

|�n| → 1 for n → ∞ and

�n \ �m allows � to become arbitrarily large, the result of Lemma 5.6 follows.
�

PROOF OF LEMMA 5.5. Consider centered cubes �n of side-length 2n + 1,
and write ∂r(�n) := {i ∈ � :d(i,�c) = r} where d(·, ·) is the uniform norm. We
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show for i ∈ ∂r(�n)

sup
ω

A
(
ω, i+

) ≤ f (r)(80)

with limr→∞ f (r) = 0. Indeed, let us look at (69) again. We can estimate the
second part by

sup
i∈∂r (�n)

sup
ωi

∥∥ψωi − ψ̃ωi
∥∥ ≤ sup

i∈∂r (�n)

K
∑

i∈A �⊂�n

‖�A‖ ≤ K
∑

0∈A �⊂�r

‖�A‖,(81)

which goes to zero as r tends to infinity. For the first part of (69) we have

sup
η�c

n
ω�

∣∣μG\i[η�c
n
ω�n\i](ψ̃ωi

)− μ̃G\i[ω�n\i](ψ̃ωi
)∣∣

≤ sup
ωi

∑
k �=i,l �=i

δk

(
ψ̃ωi

)�Dklbl(82)

≤ sup
ωi

∑
k∈�n\i

∑
l∈�c

n

δk

(
ψ̃ωi

)�Dkl + sup
ωi

∑
k∈�n\i

∑
l∈�n\i

δk

(
ψ̃ωi

)�Dklbl.

By looking at (74) we notice for i ∈ ∂r(�n)

sup
ωi

∑
k∈�n\i

∑
l∈�c

n

δk

(
ψ̃ωi

)�Dkl ≤ C̃
∑
l∈�c

n

e−�(i,l) ≤ C̃
∑

l∈(�n−i)c

e−�(0,l)

≤ C̃
∑
l∈�c

r

e−�(0,l),

which goes to zero as r tends to infinity. Let us define nl := d(l,�c
n) for the dis-

tance between the site l and �c
n. For the other summand in (82) we have

sup
ωi

∑
k∈�n\i

∑
l∈�n\i

δk

(
ψ̃ωi

)�Dklbl ≤ ∑
k

sup
ω0

δk

(
ψ̃ω0

)∑
l

�D0,l

∑
0∈A �⊂�ni+k+l

‖�A‖.

Notice if ni → ∞ then ni+l+k → ∞ for every fixed l, k. In particular since∑
l
�D0,l < ∞ we have for ni → ∞∑

l

�D0,l

∑
0∈A �⊂�nl+k+l

‖�A‖ → 0

by the dominated convergence theorem. Similar to (72) we have∑
k

δk

(
ψ̃ω0

) ≤ eC
∑
k

∑
{i,k}⊂A

δk(�A) ≤ eC
∑
0∈A

‖|�A‖| < ∞(83)

and thus for ni → ∞ we can conclude again with the dominated convergence
theorem ∑

k

sup
ω0

δk

(
ψ̃ω0

)∑
l

�D0,l

∑
0∈A �⊂�nl+k+l

‖�A‖ → 0.
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Since − log(x) < 1√
x

< 1
x

on (0,1], we finally have

n∑
r=1

∑
i∈∂r (�n)

sup
ω

A
(
ω, i+

) ∫
ν(dω)

∣∣∣∣log
ν(ωi

i |ω�n\i )
ν(ωi |ω�n\i )

∣∣∣∣
≤

n∑
r=1

f (r)
∑

i∈∂r (�n)

[∫
− logν(ωi |ω�n\i )ν(dω)

+
∫

− logν
(
ωi

i |ω�n\i
)
ν(dω)

]
(84)

≤
n∑

r=1

f (r)
∑

i∈∂r (�n)

[∫
ν(dω)

1

ν(ωi |ω�\i )
+
∫

ν(dω)
1√

ν(ωi
i |ω�n\i )

]

=
n∑

r=1

f (r)
∑

i∈∂r (�n)

[ q∑
k=1

∫
ν(dω)

ν(k|ω�\i )
ν(k|ω�\i )

+
∫

ν(dω)
1√

ν(ωi
i |ω�n\i )

]

≤
n∑

r=1

f (r)
∑

i∈∂r (�n)

[q + K̂] = K

n∑
r=1

f (r)
∣∣∂r(�n)

∣∣,
where we used the last lemma in the last line. Since f (r) → 0 for r → ∞ there
exists a R ∈ N such that for all r ≥ R we have f (r) < ε, and hence for large n

1

|�n|
n∑

r=1

f (r)
∣∣∂r(�n)

∣∣
= 1

|�n|
(

n∑
r=R+1

f (r)
∣∣∂r(�n)

∣∣+ R∑
r=1

f (r)
∣∣∂r(�n)

∣∣)

≤ ε + K
|∂(�n)|
|�n| ,

where the second summand goes to zero as n tends to infinity. �

Together we see the combined error caused by the finite-volume approximation
vanishes from the point of view of difference between time derivatives of relative
entropy densities, that is, d

dt |t=0
H�(νt,L|γ ′

�(·|ζ )) − d
dt |t=0

H�(νt,L̃�
|γ̃�) = o(|�|).

For a translation-invariant measure ν, that is also invariant w.r.t. the joint dynamics,
we have

0 = d

dt |t=0

H�

(
νt,L+αK |γ ′

�(·|ζ )
)

= d

dt |t=0

H�

(
νt,L|γ ′

�(·|ζ )
)+ α

d

dt |t=0

H�

(
νt,K |γ ′

�(·|ζ )
)
.
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Hence with the notation given in (46) we can write

α
∑
i∈�

[
κ�,K

(
i+

)+ κ�,K

(
i−

)]
≤ α

∑
i∈�

[(
β�,K

(
i+

)+ β�,K

(
i−

))
ϑ�,K(i)

]+ 2
d

dt |t=0

H�(νt,L|γ ′
�

(·|(ζ )
)

≤ αĈ
∑
i∈�

∑
j /∈�

δj

(
cK

(·, ·i))
+ 2C̃

∣∣∣∣ d

dt |t=0

H�

(
νt,L|γ ′

�(·|ζ )
)− d

dt |t=0

H�(νt,L̃�
|γ̃�)

∣∣∣∣
≤ αĈo

(|�|)+ 2C̃K̃o
(|�|) = o

(|�|),
where in the second line we dropped the contribution of the finite-volume part
since it is only negative.

However, this estimate implies the single-site DLR equation and thus ν must be
Gibbs. This completes the proof of Proposition 5.2. �
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