
The Annals of Applied Probability
2014, Vol. 24, No. 6, 2491–2526
DOI: 10.1214/13-AAP983
© Institute of Mathematical Statistics, 2014

LIMIT THEOREMS FOR NONDEGENERATE U-STATISTICS OF
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This paper presents the asymptotic theory for nondegenerate U -statistics
of high frequency observations of continuous Itô semimartingales. We prove
uniform convergence in probability and show a functional stable central limit
theorem for the standardized version of the U -statistic. The limiting process
in the central limit theorem turns out to be conditionally Gaussian with mean
zero. Finally, we indicate potential statistical applications of our probabilistic
results.

1. Introduction. Since the seminal work by Hoeffding [15], U -statistics have
been widely investigated by probabilists and statisticians. Nowadays, there exists
a vast amount of literature on the asymptotic properties of U -statistics in the case
of independent and identically distributed (i.i.d.) random variables or in the frame-
work of weak dependence. We refer to [23] for a comprehensive account of the
asymptotic theory in the classical setting. In [4, 5, 11], the authors treat limit
theorems for U -statistics under various mixing conditions, while the correspond-
ing theory for long memory processes has been studied, for example, in [9, 14];
see [16] for a recent review of the properties of U -statistics in various settings.
The most powerful tools for proving asymptotic results for U -statistics include
the classical Hoeffding decomposition (see, e.g., [15]), Hermite expansions (see,
e.g., [9, 10]) and the empirical process approach; see, for example, [3]. Despite
the activity of this field of research, U -statistics for high frequency observations
of a time-continuous process have not been studied in the literature thus far. The
notion of high frequency data refers to the sampling scheme in which the time
step between two consecutive observations converges to zero while the time span
remains fixed. This concept is also known under the name of infill asymptotics.
Motivated by the prominent role of semimartingales in mathematical finance, in
this paper we present novel asymptotic results for high frequency observations of
Itô semimartingales and demonstrate some statistical applications.

The seminal work of Jacod [17] marks the starting point for stable limit theo-
rems for semimartingales. Stimulated by the increasing popularity of semimartin-
gales as natural models for asset pricing, the asymptotic theory for partial sums
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processes of continuous and discontinuous Itô semimartingales has been devel-
oped in [2, 18, 22]; see also the recent book [20]. We refer to [25] for a short
survey of limit theorems for semimartingales. More recently, asymptotic theory
for Itô semimartingales observed with errors has been investigated in [19].

The methodology we employ to derive a limit theory for U -statistics of contin-
uous Itô semimartingales is an intricate combination and extension of some of the
techniques developed in the series of papers mentioned in the previous paragraph
and the empirical process approach to U -statistics.

In this paper we consider a one-dimensional continuous Itô semimartingale of
the form

Xt = x +
∫ t

0
as ds +

∫ t

0
σs dWs, t ≥ 0,

defined on a filtered probability space (�,F, (Ft )t≥0,P) (which satisfies the usual
assumptions), where x ∈ R, (as)s≥0, (σs)s≥0 are stochastic processes, and W is a
standard Brownian motion. The underlying observations of X are

Xi/n, i = 0, . . . , [nt],
and we are in the framework of infill asymptotics, that is, n → ∞. In order to
present our main results, we introduce some notation. We define

An
t (d) := {

i = (i1, . . . , id) ∈ Nd : 1 ≤ i1 < i2 < · · · < id ≤ [nt]},
Zs := (Zs1, . . . ,Zsd ), s ∈Rd,

where Z = (Zt )t∈R is an arbitrary stochastic process. For any continuous function
H :Rd →R, we define the U -statistic U(H)nt of order d as

U(H)nt =
(

n

d

)−1 ∑
i∈An

t (d)

H
(√

n�n
i X

)
(1)

with �n
i X = Xi/n −X(i−1)/n. For a multi-index i ∈ Nd , the vector i−1 denotes the

multi-index obtained by componentwise subtraction of 1 from i. In the following
we assume that the function H is symmetric, that is, for all x = (x1, . . . , xd) ∈ Rd

and all permutations π of {1, . . . , d}, it holds that H(πx) = H(x), where πx =
(xπ(1), . . . , xπ(d)).

Our first result determines the asymptotic behavior of U(H)nt ,

U(H)nt
u.c.p.−→ U(H)t :=

∫
[0,t]d

ρσs(H)ds,

where Zn u.c.p.−→ Z denotes uniform convergence in probability, that is, for any

T > 0, supt∈[0,T ] |Zn
t − Zt | P−→ 0, and

ρσs(H) :=
∫
Rd

H(σs1u1, . . . , σsd ud)ϕd(u) du(2)
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with ϕd denoting the density of the d-dimensional standard Gaussian law
Nd(0, Id). The second result of this paper is the stable functional central limit
theorem

√
n
(
U(H)n − U(H)

) st−→ L,

where
st−→ denotes stable convergence in law, and the function H is assumed to

be even in each coordinate. The limiting process L lives on an extension of the
original probability space (�,F, (Ft )t≥0,P) and it turns out to be Gaussian with
mean zero conditionally on the original σ -algebra F . The proofs of the asymptotic
results rely upon a combination of recent limit theorems for semimartingales (see,
e.g., [17, 20, 22]) and empirical processes techniques.

The paper is organized as follows. In Section 3 we present the law of large
numbers for the U -statistic U(H)nt . The associated functional stable central limit
theorem is provided in Section 4. Furthermore, we derive a standard central limit
theorem in Section 5. In Section 6 we demonstrate statistical applications of
our limit theory including Gini’s mean difference, homoscedasticity testing and
Wilcoxon statistics for testing of structural breaks. Some technical parts of the
proofs are deferred to Section 7.

2. Preliminaries. We consider the continuous diffusion model

Xt = x +
∫ t

0
as ds +

∫ t

0
σs dWs, t ≥ 0,(3)

where (as)s≥0 is a càglàd process, (σs)s≥0 is a càdlàg process, both adapted to the
filtration (Fs)s≥0. Define the functional class Ck

p(Rd) via

Ck
p

(
Rd) := {

f :Rd →R|f ∈ Ck(Rd)
and all derivatives up to order k

are of polynomial growth
}
.

Note that H ∈ C0
p(Rd) implies that ρσs(H) < ∞ almost surely. For any vector

y ∈ Rd , we denote by ‖y‖ its maximum norm; for any function f :Rd →R, ‖f ‖∞
denotes its supremum norm. Finally, for any z 	= 0, �z and ϕz stand for the dis-
tribution function and density of the Gaussian law N (0, z2), respectively; �0 de-
notes the Dirac measure at the origin. The bracket [M,N ] denotes the covariation
process of two local martingales M and N .

3. Law of large numbers. We start with the law of large numbers, which
describes the limit of the U -statistic U(H)nt defined at (1). First of all, we remark
that the processes (as)s≥0 and (σs−)s≥0 are locally bounded, because they are both
càglàd. Since the main results of this subsection (Proposition 3.2 and Theorem 3.3)
are stable under stopping, we may assume without loss of generality that

The processes a and σ are bounded in (ω, t).(4)
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A detailed justification of this statement can be found in [2], Section 3.
We start with the representation of the process U(H)nt as an integral with re-

spect to a certain empirical random measure. For this purpose let us introduce the
quantity

αn
j := √

nσ(j−1)/n�
n
jW, j ∈N,(5)

which serves as a first order approximation of the increments
√

n�n
jX. The em-

pirical distribution function associated with the random variables (αn
j )1≤j≤[nt] is

defined as

Fn(t, x) := 1

n

[nt]∑
j=1

1{αn
j ≤x}, x ∈ R, t ≥ 0.(6)

Notice that, for any fixed t ≥ 0, Fn(t, ·) is a finite random measure. Let Ũ (H)nt be
the U -statistic based on αn

j ’s, that is,

Ũ (H)nt =
(

n

d

)−1 ∑
i∈An

t (d)

H
(
αn

i
)
.(7)

The functional U ′n
t (H) defined as

U ′n
t (H) :=

∫
Rd

H(x)F⊗d
n (t, dx),(8)

where

F⊗d
n (t, dx) := Fn(t, dx1) · · ·Fn(t, dxd),

is closely related to the process Ũ (H)nt ; in fact, if both are written out as multi-
ple sums over nondecreasing multi-indices, then their summands coincide on the
set An

t (d). They differ for multi-indices that have at least two equal components.
However, the number of these diagonal multi-indices is of order O(nd−1). We
start with a simple lemma, which we will often use throughout the paper. We omit
a formal proof since it follows by standard arguments.

LEMMA 3.1. Let Zn,Z : [0, T ] × Rm → R, n ≥ 1, be random positive func-
tions such that Zn(t, ·) and Z(t, ·) are finite random measures on Rm for any
t ∈ [0, T ]. Assume that

Zn(·,x)
u.c.p.−→ Z(·,x),

for any fixed x ∈ Rm, and supt∈[0,T ],x∈Rm Z(t,x), supt∈[0,T ],x∈Rm Zn(t,x), n ≥ 1,
are bounded random variables. Then, for any continuous function Q :Rm → R

with compact support, we obtain that∫
Rm

Q(x)Zn(·, dx)
u.c.p.−→

∫
Rm

Q(x)Z(·, dx).
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The next proposition determines the asymptotic behavior of the empirical dis-
tribution function Fn(t, x) defined at (6), and the U -statistic U ′n

t (H) given at (8).

PROPOSITION 3.2. Assume that H ∈ C0
p(Rd). Then, for any fixed x ∈ R, it

holds that

Fn(t, x)
u.c.p.−→ F(t, x) :=

∫ t

0
�σs (x) ds.(9)

Furthermore, we obtain that

U ′n
t (H)

u.c.p.−→ U(H)t :=
∫
[0,t]d

ρσs(H)ds,(10)

where the quantity ρσs(H) is defined at (2).

PROOF. Recall that we always assume (4) without loss of generality. Here
and throughout the paper, we denote by C a generic positive constant, which may
change from line to line; furthermore, we write Cp if we want to emphasize the
dependence of C on an external parameter p. We first show the convergence in (9).
Set ξn

j := n−11{αn
j ≤x}. It obviously holds that

[nt]∑
j=1

E
[
ξn
j |F(j−1)/n

] = 1

n

[nt]∑
j=1

�σ(j−1)/n
(x)

u.c.p.−→ F(t, x),

for any fixed x ∈ R, due to Riemann integrability of the process �σ . On the other
hand, we have for any fixed x ∈ R,

[nt]∑
j=1

E
[∣∣ξn

j

∣∣2|F(j−1)/n

] = 1

n2

[nt]∑
j=1

�σ(j−1)/n
(x)

P−→ 0.

This immediately implies the convergence (see [20], Lemma 2.2.11, page 577)

Fn(t, x) −
[nt]∑
j=1

E
[
ξn
j |F(j−1)/n

] =
[nt]∑
j=1

(
ξn
j −E

[
ξn
j |F(j−1)/n

]) u.c.p.−→ 0,

which completes the proof of (9). If H is compactly supported, then the conver-
gence in (10) follows directly from (9) and Lemma 3.1.

Now, let H ∈ C0
p(Rd) be arbitrary. For any k ∈ N, let Hk ∈ C0

p(Rd) be a function
with Hk = H on [−k, k]d and Hk = 0 on ([−k − 1, k + 1]d)c. We already know
that

U ′n(Hk)
u.c.p.−→ U(Hk),

for any fixed k, and U(Hk)
u.c.p.−→ U(H) as k → ∞. Since the function H has poly-

nomial growth, that is, |H(x)| ≤ C(1 + ‖x‖q) for some q > 0, we obtain for any
p > 0

E
[∣∣H (

αn
i
)∣∣p] ≤ CpE

[(
1 + ∥∥αn

i
∥∥qp)] ≤ Cp(11)
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uniformly in i, because the process σ is bounded. Statement (11) also holds for Hk .
Recall that the function H − Hk vanishes on [−k, k]d . Hence, we deduce by (11)
and Cauchy–Schwarz inequality that

E
[

sup
t∈[0,T ]

∣∣U ′n
t (H − Hk)

∣∣]

≤ C

(
n

d

)−1 ∑
1≤i1,...,id≤[nT ]

(
E[1{|αn

i1
|≥k} + · · · + 1{|αn

id
|≥k}]

)1/2

≤ CT sup
s∈[0,T ]

(
E

[
1 − �σs (k)

])1/2 → 0

as k → ∞. This completes the proof of (10). �

Proposition 3.2 implies the main result of this section.

THEOREM 3.3. Assume that H ∈ C0
p(Rd). Then it holds that

U(H)nt
u.c.p.−→ U(H)t :=

∫
[0,t]d

ρσs(H)ds,(12)

where the quantity ρσs(H) is defined at (2).

PROOF. In Section 7 we will show that

U(H)n − Ũ (H)n
u.c.p.−→ 0,(13)

where the functional Ũ (H)nt is given at (7). In view of Proposition 3.2, it remains

to prove that Ũ (H)nt − U ′n
t (H)

u.c.p.−→ 0. But due to the symmetry of H and estima-
tion (11), we obviously obtain that

E
[

sup
t∈[0,T ]

∣∣Ũ (H)nt − U ′n
t (H)

∣∣] ≤ CT

n
→ 0,

since the summands in Ũ (H)nt and U ′n
t (H) are equal except for diagonal multi-

indices. �

REMARK 1. The result of Theorem 3.3 can be extended to weighted U -statis-
tics of the type

U(H ;X)nt :=
(

n

d

)−1 ∑
i∈An

t (d)

H
(
X(i−1)/n;

√
n�n

i X
)
.(14)

Here, H :Rd ×Rd →R is assumed to be continuous and symmetric in the first and
last d arguments. Indeed, similar methods of proof imply the u.c.p. convergence

U(H ;X)nt
u.c.p.−→ U(H ;X)t =

∫
[0,t]d

ρσs(H ;Xs) ds,
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with

ρσs(H ;Xs) :=
∫
Rd

H(Xs;σs1u1, . . . , σsd ud)ϕd(u) du.

It is not essential that the weight process equals the diffusion process X. Instead,
we may consider any k-dimensional (Ft )-adapted Itô semimartingale of type (3).
We leave the details to the interested reader.

4. Stable central limit theorem. In this section we present a functional stable
central limit theorem associated with the convergence in (12).

4.1. Stable convergence. The concept of stable convergence of random vari-
ables was originally introduced by Renyi [26]. For properties of stable conver-
gence, we refer to [1, 25]. We recall the definition of stable convergence: let
(Yn)n∈N be a sequence of random variables defined on (�,F,P) with values
in a Polish space (E,E). We say that Yn converges stably with limit Y , written

Yn
st−→ Y , where Y is defined on an extension (�′,F ′,P′) of the original proba-

bility space (�,F,P), if and only if for any bounded, continuous function g and
any bounded F -measurable random variable Z it holds that

E
[
g(Yn)Z

] → E′[g(Y )Z
]
, n → ∞.(15)

Typically, we will deal with E = D([0, T ],R) equipped with the Skorohod topol-
ogy, or the uniform topology if the process Y is continuous. Notice that stable
convergence is a stronger mode of convergence than weak convergence. In fact,

the statement Yn
st−→ Y is equivalent to the joint weak convergence (Yn,Z)

d−→
(Y,Z) for any F -measurable random variable Z; see, for example, [1].

4.2. Central limit theorem. For the stable central limit theorem we require a
further structural assumption on the volatility process (σs)s≥0. We assume that σ

itself is a continuous Itô semimartingale,

σt = σ0 +
∫ t

0
ãs ds +

∫ t

0
σ̃s dWs +

∫ t

0
ṽs dVs,(16)

where the processes (ãs)s≥0, (σ̃s)s≥0, (ṽs)s≥0 are càdlàg, adapted and V is a Brow-
nian motion independent of W . This type of condition is motivated by potential
applications. For instance, when σt = f (Xt) for a C2-function f , then the Itô
formula implies representation (16) with ṽ ≡ 0. In fact, a condition of type (16) is
nowadays a standard assumption for proving stable central limit theorems for func-
tionals of high frequency data; see, for example, [2, 18]. Moreover, we assume that
the process σ does not vanish, that is,

σs 	= 0 for all s ∈ [0, T ].(17)
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We believe that this assumption is not essential, but dropping it would make the
following proofs considerably more involved and technical. As in the previous
subsection, the central limit theorems presented in this paper are stable under stop-
ping. This means, we may assume, without loss of generality, that

The processes a,σ, σ−1, ã, σ̃ and ṽ are bounded in (ω, t).(18)

We refer again to [2], Section 3, for a detailed justification of this statement.
We need to introduce some further notation to describe the limiting process.

First, we will study the asymptotic properties of the empirical process

Gn(t, x) := 1√
n

[nt]∑
j=1

(
1{αn

j ≤x} − �σ(j−1)/n
(x)

)
,(19)

where αn
j is defined at (5). This process is of crucial importance for proving the

stable central limit theorem for the U -statistic U(H)nt . We start with the derivation
of some useful inequalities for the process Gn.

LEMMA 4.1. For any even number p ≥ 2 and x, y ∈ R, we obtain the inequal-
ities

E
[

sup
t∈[0,T ]

∣∣Gn(t, x)
∣∣p]

≤ CT,pφ(x),(20)

E
[

sup
t∈[0,T ]

∣∣Gn(t, x) −Gn(t, y)
∣∣p]

≤ CT,p|x − y|,(21)

where φ :R→R is a bounded function (that depends on p and T ) with exponential
decay at ±∞.

PROOF. Recall that the processes σ and σ−1 are assumed to be bounded.
We begin with inequality (20). For any given x ∈ R, (Gn(t, x))t∈[0,T ] is an
(F[nt]/n)-martingale. Hence, the discrete Burkhölder inequality implies that

E
[

sup
t∈[0,T ]

∣∣Gn(t, x)
∣∣p]

≤ CT,pE

[∣∣∣∣∣
[nT ]∑
j=1

ζ n
j

∣∣∣∣∣
p/2]

with ζ n
j := n−1(1{αn

j ≤x} − �σ(j−1)/n
(x))2. Recalling that p ≥ 2 is an even number

und applying the Hölder inequality, we deduce that∣∣∣∣∣
[nT ]∑
j=1

ζ n
j

∣∣∣∣∣
p/2

≤ CT n−1
[nT ]∑
j=1

(
1{αn

j ≤x} − �σ(j−1)/n
(x)

)p

= CT n−1
[nT ]∑
j=1

p∑
k=0

(
p

k

)
(−1)k�k

σ(j−1)/n
(x)1{αn

j ≤x}.
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Thus we conclude that

E
[

sup
t∈[0,T ]

∣∣Gn(t, x)
∣∣p]

≤ CT,p sup
s∈[0,T ]

E
[
�σs (x)

(
1 − �σs (x)

)p] =: CT,pφ(x),

where the function φ obviously satisfies our requirements. This completes the
proof of (20). By exactly the same methods we obtain, for any x ≥ y,

E
[

sup
t∈[0,T ]

∣∣Gn(t, x) −Gn(t, y)
∣∣p]

≤ CT,p sup
s∈[0,T ]

E
[(

�σs (x) − �σs (y)
)(

1 − (
�σs (x) − �σs (y)

))p]
.

Since σ and σ−1 are both bounded, there exists a constant M > 0 such that

sup
s∈[0,T ]

∣∣�σs (x) − �σs (y)
∣∣ ≤ |x − y| sup

M−1≤z≤M,y≤r≤x

ϕz(r).

This immediately gives (21). �

Our next result presents a functional stable central limit theorem for the process
Gn defined at (19).

PROPOSITION 4.2. We obtain the stable convergence

Gn(t, x)
st−→ G(t, x)

on D([0, T ]) equipped with the uniform topology, where the convergence is func-
tional in t ∈ [0, T ] and in finite distribution sense in x ∈ R. The limiting process G
is defined on an extension (�′,F ′,P′) of the original probability space (�,F,P)

and it is Gaussian conditionally on F . Its conditional drift and covariance kernel
are given by

E′[G(t, x)|F] =
∫ t

0
�σs (x) dWs,

E′[G(t1, x1)G(t2, x2)|F] −E′[G(t1, x1)|F]
E′[G(t2, x2)|F]

=
∫ t1∧t2

0
�σs (x1 ∧ x2) − �σs (x1)�σs (x2) − �σs (x1)�σs (x2) ds,

where �z(x) = E[V 1{zV ≤x}] with V ∼ N (0,1).

PROOF. Recall that due to (18) the process σ is bounded in (ω, t). [How-
ever, note that we do not require the condition (16) to hold.] For any given
x1, . . . , xk ∈ R, we need to prove the functional stable convergence(

Gn(·, x1), . . . ,Gn(·, xk)
) st−→ (

G(·, x1), . . . ,G(·, xk)
)
.
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We write Gn(t, xl) = ∑[nt]
j=1 χn

j,l with

χn
j,l := 1√

n

(
1{αn

j ≤xl} − �σ(j−1)/n
(xl)

)
, 1 ≤ l ≤ k.

According to [21], Theorem IX.7.28, we need to show that

[nt]∑
j=1

E
[
χn

j,rχ
n
j,l|F(j−1)/n

]
(22)

P−→
∫ t

0

(
�σs (xr ∧ xl) − �σs (xr)�σs (xl)

)
ds,

[nt]∑
j=1

E
[
χn

j,l�
n
jW |F(j−1)/n

] P−→
∫ t

0
�σs (xl) ds,(23)

[nt]∑
j=1

E
[∣∣χn

j,l

∣∣21{|χn
j,l |>ε}|F(j−1)/n

] P−→ 0 for all ε > 0,(24)

[nt]∑
j=1

E
[
χn

j,l�
n
jN |F(j−1)/n

] P−→ 0,(25)

where 1 ≤ r, l ≤ d and the last condition must hold for all bounded continuous
martingales N with [W,N ] = 0. The convergence in (22) and (23) is obvious,
since �n

jW is independent of σ(j−1)/n. We also have that

[nt]∑
j=1

E
[∣∣χn

j,l

∣∣21{|χn
j,l |>ε}|F(j−1)/n

] ≤ ε−2
[nt]∑
j=1

E
[∣∣χn

j,l

∣∣4|F(j−1)/n

] ≤ Cn−1,

which implies (24). Finally, let us prove (25). We fix l and define Mu := E[χn
j,l|Fu]

for u ≥ (j − 1)/n. By the martingale representation theorem we deduce the iden-
tity

Mu = M(j−1)/n +
∫ u

(j−1)/n
ηs dWs

for a suitable predictable process η. By the Itô isometry we conclude that

E
[
χn

j,l�
n
jN |F(j−1)/n

] = E
[
Mj/n�

n
jN |F(j−1)/n

] = E
[
�n

jM�n
jN |F(j−1)/n

] = 0.

This completes the proof of Proposition 4.2. �

We suspect that the stable convergence in Proposition 4.2 also holds in the func-
tional sense in the x variable. However, proving tightness (even on compact sets)
turns out to be a difficult task. In particular, inequality (21) is not sufficient for
showing tightness.
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REMARK 2. We highlight some probabilistic properties of the limiting pro-
cess G defined in Proposition 4.2.

(i) Proposition 4.2 can be reformulated as follows. Let x1, . . . , xk ∈ R be ar-
bitrary real numbers. Then it holds that(

Gn(·, x1), . . . ,Gn(·, xk)
) st−→

∫ ·
0

vs dWs +
∫ ·

0
w1/2

s dW ′
s,

where W ′ is a k-dimensional Brownian motion independent of F , and v and w are
Rk-valued and Rk×k-valued processes, respectively, with coordinates

vr
s = �σs (xr),

wrl
s = �σs (xr ∧ xl) − �σs (xr)�σs (xl) − �σs (xr)�σs (xl),

for 1 ≤ r, l ≤ k. This type of formulation appears in [21], Theorem IX.7.28. In
particular, (G(·, xl))1≤l≤k is a k-dimensional martingale.

(ii) It is obvious from (i) that G is continuous in t . Moreover, G is also contin-
uous in x. This follows from Kolmogorov’s criterion and the inequality (y ≤ x)

E′[∣∣G(t, x) −G(t, y)
∣∣p]

≤ CpE

[(∫ t

0

{
�σs (x) − �σs (y) − (

�σs (x) − �σs (y)
)2}

ds

)p/2]
≤ Cp(x − y)p/2,

for any p > 0, which follows by the Burkhölder inequality. In particular, G(t, ·)
has Hölder continuous paths of order 1/2 − ε, for any ε ∈ (0,1/2).

(iii) A straightforward computation [cf. (20)] shows that the function
E[supt∈[0,T ]G(t, x)2] has exponential decay as x → ±∞. Hence, for any func-
tion f ∈ C1

p(R), we have∫
R

f (x)G(t, dx) < ∞, a.s.

If f is an even function, we also have that∫
R

f (x)G(t, dx) =
∫
R

f (x)
(
G(t, dx) −E′[G(t, dx)|F])

,

since ∫
R

f (x)E′[G(t, dx)|F] =
∫ t

0

(∫
R

f (x)�σs (dx)

)
dWs,

and, for any z > 0, ∫
R

f (x)�z(dx) =
∫
R

xf (x)ϕz(x) dx = 0,
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because f ϕz is an even function. The same argument applies for z < 0. Further-
more, the integration by parts formula and the aforementioned argument imply the
identity

E′
[∣∣∣∣∫

R
f (x)G(t, dx)

∣∣∣∣2∣∣∣F]
=

∫ t

0

(∫
R2

f ′(x)f ′(y)
(
�σs (x ∧ y) − �σs (x)�σs (y)

)
dx dy

)
ds.

We remark that, for any z 	= 0, we have

var
[
f (V )

] =
∫
R2

f ′(x)f ′(y)
(
�z(x ∧ y) − �z(x)�z(y)

)
dx dy

with V ∼ N (0, z2).

Now, we present a functional stable central limit theorem of the U -statistic
U ′n

t (H) given at (8), which is based on the approximative quantities (αn
j )1≤j≤[nt]

defined at (5).

PROPOSITION 4.3. Assume that conditions (16), (17) and (18) hold. Let H ∈
C1

p(Rd) be a symmetric function that is even in each (or, equivalently, in one)
argument. Then we obtain the functional stable convergence

√
n
(
U ′n(H) − U(H)

) st−→ L,(26)

where

Lt = d

∫
Rd

H(x1, . . . , xd)G(t, dx1)F (t, dx2) · · ·F(t, dxd).(27)

The convergence takes place in D([0, T ]) equipped with the uniform topology.
Furthermore, G can be replaced by G−E′[G|F] without changing the limit and,
consequently, L is a centered Gaussian process, conditionally on F .

PROOF. First of all, we remark that∫
R

H(x1, . . . , xd)E′[G(t, dx1)|F] = 0

follows from Remark 2(iii). The main part of the proof is divided into five steps:

(i) In Section 7.3 we will show that under condition (16) we have

√
n

(
U(H)t −

∫
Rd

H(x)F⊗d
n (t, dx)

)
u.c.p.−→ 0(28)

with

Fn(t, x) := 1

n

[nt]∑
j=1

�σ(j−1)/n
(x).
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Thus, we need to prove the stable convergence Ln st−→ L for

Ln
t := √

n

(
U ′n

t (H) −
∫
Rd

H(x)F⊗d
n (t, dx)

)
.(29)

Assume that the function H ∈ C1(Rd) has compact support. Recalling defini-
tion (19) of the empirical process Gn, we obtain the identity

Ln
t =

d∑
l=1

∫
Rd

H(x)Gn(t, dxl)

l−1∏
m=1

Fn(t, dxm)

d∏
m=l+1

Fn(t, dxm).

In step (iv) we will show that both Fn(t, dxm) and Fn(t, dxm) can be replaced by

F(t, dxm) without affecting the limit. In other words, Ln − L′n u.c.p.−→ 0 with

L′n
t :=

d∑
l=1

∫
Rd

H(x)Gn(t, dxl)
∏
m	=l

F (t, dxm).

But, since H is symmetric, we readily deduce that

L′n
t = d

∫
Rd

H(x)Gn(t, dx1)

d∏
m=2

F(t, dxm).

The random measure F(t, x) has a Lebesgue density in x due to assumption (17),
which we denote by F ′(t, x). The integration by parts formula implies that

L′n
t = −d

∫
Rd

∂1H(x)Gn(t, x1)

d∏
m=2

F ′(t, xm)dx,

where ∂lH denotes the partial derivative of H with respect to xl . This identity
completes step (i).

(ii) In this step we will start proving the stable convergence L′n st−→ L [the
function H ∈ C1(Rd) is still assumed to have compact support]. Since the stable

convergence Gn
st−→ G does not hold in the functional sense in the x variable, we

need to overcome this problem by a Riemann sum approximation. Let the support
of H be contained in [−k, k]d . Let −k = z0 < · · · < zl = k be the equidistant
partition of the interval [−k, k]. We set

Q(t, x1) :=
∫
Rd−1

∂1H(x1, . . . , xd)

d∏
m=2

F ′(t, xm)dx2 · · ·dxd,

and define the approximation of L′n
t via

L′n
t (l) = −2dk

l

l∑
j=0

Q(t, zj )Gn(t, zj ).
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Proposition 4.2 and the properties of stable convergence imply that(
Q(·, zj ),Gn(·, zj )

)
0≤j≤l

st−→ (
Q(·, zj ),G(·, zj )

)
0≤j≤l .

Hence, we deduce the stable convergence

L′n· (l)
st−→ L·(l) := −2dk

l

l∑
j=0

Q(·, zj )G(·, zj )

as n → ∞, for any fixed l. Furthermore, we obtain the convergence

L(l)
u.c.p.−→ L

as l → ∞, where we reversed all above transformations. This convergence com-
pletes step (ii).

(iii) To complete the proof of the stable convergence L′n st−→ L, we need to
show that

lim
l→∞ lim sup

n→∞
sup

t∈[0,T ]
∣∣L′n

t (l) − L′n
t

∣∣ = 0,

where the limits are taken in probability. With h = l/2k we obtain that∣∣L′n
t (l) − L′n

t

∣∣ = d

∣∣∣∣∫
R

{
Q

(
t, [xh]/h

)
Gn

(
t, [xh]/h

) − Q(t, x)Gn(t, x)
}
dx

∣∣∣∣.
Observe that

sup
t∈[0,T ]

∣∣F ′(t, xm)
∣∣ =

∫ T

0
ϕσs (xm)ds ≤ T sup

M−1≤z≤M

ϕz(xm),(30)

where M is a positive constant with M−1 ≤ |σ | ≤ M . Recalling the definition of
Q(t, x) we obtain that

sup
t∈[0,T ]

∣∣Q(t, x)
∣∣ ≤ CT ,

(31)
sup

t∈[0,T ]
∣∣Q(t, x) − Q

(
t, [xh]/h

)∣∣ ≤ CT η
(
h−1)

,

where η(ε) := sup{|∂1H(y1) − ∂1H(y2)| :‖y1 − y2‖ ≤ ε,y1,y2 ∈ [−k, k]d} de-
notes the modulus of continuity of the function ∂1H . We also deduce by
Lemma 4.1 that

E
[

sup
t∈[0,T ]

∣∣Gn(t, x)
∣∣p]

≤ CT ,(32)

E
[

sup
t∈[0,T ]

∣∣Gn(t, x) −Gn

(
t, [xh]/h

)∣∣p]
≤ CT h−1,(33)
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for any even number p ≥ 2. Combining inequalities (31), (32) and (33), we deduce
the convergence

lim
l→∞ lim sup

n→∞
E

[
sup

t∈[0,T ]
∣∣L′n

t (l) − L′n
t

∣∣] = 0

using that Q(t, ·) has compact support contained in [−k, k]. Hence, L′n st−→ L,
and we are done.

(iv) In this step we will prove the convergence

Ln − L′n u.c.p.−→ 0.

This difference can be decomposed into several terms; in the following we will
treat a typical representative (all other terms are treated in exactly the same man-
ner). For l < d define

Rn
t (l) :=

∫
Rd

H(x)Gn(t, dxl)

l−1∏
m=1

Fn(t, dxm)

×
d−1∏

m=l+1

Fn(t, dxm)
[Fn(t, dxd) − F(t, dxd)

]
.

Now, we use the integration by parts formula to obtain that

Rn
t (l) =

∫
R

Nn(t, xl)Gn(t, xl) dxl,

where

Nn(t, xl) =
∫
Rd−1

∂lH(x)

l−1∏
m=1

Fn(t, dxm)

×
d−1∏

m=l+1

Fn(t, dxm)
[Fn(t, dxd) − F(t, dxd)

]
.

As in step (iii) we deduce for any even p ≥ 2,

E
[

sup
t∈[0,T ]

∣∣Gn(t, xl)
∣∣p]

≤ Cp,

E
[

sup
t∈[0,T ]

∣∣Nn(t, xl)
∣∣p]

≤ Cp.

Recalling that the function H has compact support and applying the dominated
convergence theorem, it is sufficient to show that

Nn(·, xl)
u.c.p.−→ 0,
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for any fixed xl . But this follows immediately from Lemma 3.1, since

Fn(·, x)
u.c.p.−→ F(·, x), Fn(·, x)

u.c.p.−→ F(·, x),

for any fixed x ∈ R, and ∂lH is a continuous function with compact support. This
finishes the proof of step (iv).

(v) Finally, let H ∈ C1
p(Rd) be arbitrary. For any k ∈ N, let Hk ∈ C1

p(Rd) be
a function with Hk = H on [−k, k]d and Hk = 0 on ([−k − 1, k + 1]d)c. Let us
denote by Ln

t (H) and Lt(H) the processes defined by (29) and (27), respectively,
that are associated with a given function H . We know from the previous steps that

Ln(Hk)
st−→ L(Hk)

as n → ∞, and L(Hk)
u.c.p.−→ L(H) as k → ∞. So, we are left to proving that

lim
k→∞ lim sup

n→∞
sup

t∈[0,T ]
∣∣Ln

t (Hk) − Ln
t (H)

∣∣ = 0,

where the limits are taken in probability. As in steps (ii) and (iii) we obtain the
identity

Ln
t (Hk) − Ln

t (H)

=
d∑

l=1

∫
Rd

∂l(H − Hk)(x)Gn(t, xl) dxl

l−1∏
m=1

Fn(t, dxm)

d∏
m=l+1

Fn(t, dxm)

=:
d∑

l=1

Ql(k)nt .

We deduce the inequality

∣∣Ql(k)nt
∣∣ ≤ n−(l−1)

[nt]∑
i1,...,il−1=1

∫
Rd−l+1

∣∣∂l(H − Hk)
(
αn

i1
, . . . , αn

il−1
, xl, . . . , xd

)∣∣
× ∣∣Gn(t, xl)

∣∣ d∏
m=l+1

F ′
n(t, xm)dxl · · ·dxd.

We remark that ∂l(Hk − H) vanishes if all arguments lie in the interval [−k, k].
Hence∣∣Ql(k)nt

∣∣ ≤ n−(l−1)
[nt]∑

i1,...,il−1=1

∫
Rd−l+1

∣∣∂l(H − Hk)
(
αn

i1
, . . . , αn

il−1
, xl, . . . , xd

)∣∣
×

(
l−1∑
m=1

1{|αn
im

|>k} +
d∑

m=l

1{|xm|>k}
)

× ∣∣Gn(t, xl)
∣∣ d∏
m=l+1

F ′
n(t, xm)dxl · · ·dxd.
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Now, applying Lemma 4.1, (11), (30) and the Cauchy–Schwarz inequality, we
deduce that

E
[

sup
t∈[0,T ]

∣∣Ql(k)nt
∣∣]

≤ CT

∫
Rd−l+1

(
(l − 1) sup

M−1≤z≤M

(
1 − �z(k)

) +
d∑

m=l

1{|xm|>k}
)1/2

× ψ(xl, . . . , xd)φ(xl)

d∏
m=l+1

sup
M−1≤z≤M

ϕz(xm)dxl · · ·dxd,

for some bounded function φ with exponential decay at ±∞ and a function ψ ∈
C0

p(Rd−l+1). Hence∫
Rd−l+1

ψ(xl, . . . , xd)φ(xl)

d∏
m=l+1

sup
M−1≤z≤M

ϕz(xm)dxl · · ·dxd < ∞,

and we conclude that

lim
k→∞ lim sup

n→∞
E

[
sup

t∈[0,T ]
∣∣Ql(k)nt

∣∣] = 0.

This finishes step (v), and we are done with the proof of Proposition 4.3. �

Notice that an additional F -conditional bias would appear in the limiting pro-
cess L if we would drop the assumption that H is even in each coordinate. The
corresponding asymptotic theory for the case d = 1 has been studied in [22]; see
also [17].

REMARK 3. Combining limit theorems for semimartingales with the empir-
ical distribution function approach is probably the most efficient way of prov-
ing Proposition 4.3. Nevertheless, we shortly comment on alternative methods of
proof.

Treating the multiple sum in the definition of U ′n(H) directly is relatively com-
plicated, since at a certain stage of the proof one will have to deal with partial
sums of functions of αn

j weighted by an anticipative process. This anticipation of
the weight process makes it impossible to apply martingale methods directly.

Another approach to proving Proposition 4.3 is a pseudo Hoeffding decomposi-
tion. This method relies on the application of the classical Hoeffding decomposi-
tion to U ′n(H) by pretending that the scaling components σ(i−1)/n are nonrandom.
However, since the random variables αn

j are not independent when the process σ

is stochastic, the treatment of the error term connected with the pseudo Hoeffding
decomposition will not be easy, because the usual orthogonality arguments of the
Hoeffding method do not apply in our setting.
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REMARK 4. In the context of Proposition 4.3 we would like to mention a very
recent work by Beutner and Zähle [3]. They study the empirical distribution func-
tion approach to U - and V -statistics for unbounded kernels H in the classical i.i.d.
or weakly dependent setting. Their method relies on the application of the func-
tional delta method for quasi-Hadamard differentiable functionals. In our setting it
would require the functional convergence

Gn(t, ·) st−→ G(t, ·),
where the convergence takes place in the space of càdlàg functions equipped with
the weighted sup-norm ‖f ‖λ := supx∈R |(1+|x|λ)f (x)| for some λ > 0. Although
we do not really require such a strong result in our framework (as can be seen from
the proof of Proposition 4.3), it would be interesting to prove this type of conver-
gence for functionals of high frequency data; cf. the comment before Remark 2.

To conclude this section, we finally present the main result: A functional stable
central limit theorem for the original U -statistic U(H)n.

THEOREM 4.4. Assume that the symmetric function H ∈ C1
p(Rd) is even in

each (or, equivalently, in one) argument. If σ satisfies conditions (16) and (17), we
obtain the functional stable central limit theorem

√
n
(
U(H)n − U(H)

) st−→ L,(34)

where the convergence takes place in D([0, T ]) equipped with the uniform topol-
ogy and the limiting process L is defined at (27).

PROOF. In Section 7.2 we will show the following statement: under condition
(16) it holds that

√
n
∣∣U(H)n − Ũ (H)n

∣∣ u.c.p.−→ 0.(35)

In view of Proposition 4.3, it remains to prove that
√

n|Ũ (H)nt − U ′n
t (H)| u.c.p.−→ 0.

But due to the symmetry of H , we obtain as in the proof of Theorem 3.3

E
[

sup
t∈[0,T ]

∣∣Ũ (H)nt − U ′n
t (H)

∣∣] ≤ CT

n
.

This completes the proof of Theorem 4.4. �

We remark that the stable convergence at (34) is not feasible in its present form,
since the distribution of the limiting process L is unknown. In the next section we
will explain how to obtain a feasible central limit theorem that opens the door to
statistical applications.
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5. Estimation of the conditional variance. In this section we present a stan-
dard central limit theorem for the U -statistic U(H)nt . We will confine ourselves to
the presentation of a result in finite distributional sense. According to Remark 2(iii)
applied to

ft (x) := d

∫
Rd−1

H(x, x2, . . . , xd)F (t, dx2) · · ·F(t, dxd),

the conditional variance of the limit Lt is given by

Vt := E′[|Lt |2|F] =
∫ t

0

(∫
R

f 2
t (x)ϕσs (x) dx −

(∫
R

ft (x)ϕσs (x) dx

)2)
ds.

Hence, the random variable Lt is nondegenerate when

var
(
E

[
H(x1U1, . . . , xdUd)|U1

])
> 0, (U1, . . . ,Ud) ∼Nd(0, Id),

for all x1, . . . , xd ∈ {σs |s ∈ A ⊆ [0, t]} and some set A with positive Lebesgue
measure. This essentially coincides with the classical nondegeneracy condition for
U -statistics of independent random variables.

We define the functions G1 :R2d−1 →R and G2 :R2 ×R2d−2 →R by

G1(x) = H(x1, x2, . . . , xd)H(x1, xd+1, . . . , x2d−1),(36)

G2(x;y) = H(x1, y1, . . . , yd−1)H(x2, yd, . . . , y2d−2),(37)

respectively. Then Vt can be written as

Vt = d2
∫
[0,t]2d−1

ρσs(G1) ds

− d2
∫
[0,t]2d−2

∫ t

0

∫
R

∫
R

ρσs

(
G2(x1, x2; ·))ϕσq (x1)ϕσq (x2) dx1 dx2 dq ds.

We denote the first and second summand on the right-hand side of the preceding
equation by V1,t and V2,t , respectively. Let G̃1 denote the symmetrization of the
function G1. By Theorem 3.3 it holds that

V n
1,t = d2U(G̃1)

n
t

u.c.p.−→ d2U(G̃1)t = V1,t .

The multiple integral V2,t is almost in the form of the limit in Theorem 3.3, and
it is indeed possible to estimate it by a slightly modified U -statistic as the fol-
lowing proposition shows. The statistic presented in the following proposition is
a generalization of the bipower concept discussed, for example, in [2] in the case
d = 1.

PROPOSITION 5.1. Assume that H ∈ C0
p(Rd). Let

V n
2,t := d2

n

(
n

2d − 2

)−1

× ∑
i∈An

t (2d−2)

[nt]−1∑
j=1

G̃2
(√

n�n
jX,

√
n�n

j+1X;√n�n
i1
X, . . . ,

√
n�n

i2d−2
X

)
,
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where G̃2 denotes the symmetrization of G2 with respect to the y-values, that is,

G̃2(x;y) = 1

(2d − 2)!
∑
π

G2(x;πy),

for x ∈ R2, y ∈ R2d−2, and where the sum runs over all permutations of
{1, . . . ,2d − 2}. Then

V n
2

u.c.p.−→ V2.

PROOF. The result can be shown using essentially the same arguments as in
the proofs of Proposition 3.2 and Theorem 3.3. We provide a sketch of the proof.
Similarly to (7) we define

Ṽ n
2,t := d2

n

(
n

2d − 2

)−1 ∑
i∈An

t (2d−2)

[nt]−1∑
j=1

G̃2
(
αn

j ,α′n
j+1;αn

i1
, . . . , αn

i2d−2

)
,

where α′n
j+1 := √

nσ(j−1)/n�
n
i+1W . Analogously to (8) we introduce the random

process

V ′n
2,t := d2

∫
R2d−2

∫
R2

G̃2(x;y)F̃n(t, dx)F⊗(2d−2)
n (t, dy),

where

F̃n(t, x1, x2) = 1

n

[nt]−1∑
j=1

1{αn
j ≤x1}1{α′n

j+1≤x2}.

Writing out V ′n
2,t as a multiple sum over nondecreasing multi-indices in the y ar-

guments, one observes as before that V ′n
2,t and Ṽ n

2,t differ in at most O(n2d−3)

summands. Therefore, using the same argument as in the proof of Theorem 3.3

Ṽ n
2,t − V ′n

2,t

u.c.p.−→ 0.

For any fixed x, y ∈ R it holds that

F̃n(t, x, y)
u.c.p.−→ F̃ (t, x, y) :=

∫ t

0
�σs (x)�σs (y) ds.

This can be shown similarly to the proof of Proposition 3.2 as follows. Let ξn
j =

n−11{αn
j ≤x1}1{α′n

j+1≤x2}. Then

[nt]−1∑
j=1

E
[
ξn
j |F(j−1)/n

] = 1

n

[nt]−1∑
j=1

�σ(j−1)/n
(x1)�σ(j−1)/n

(x2)
u.c.p.−→ F̃ (t, x, y).
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On the other hand, we trivially have that
∑[nt]−1

j=1 E[|ξn
j |2|F(j−1)/n] P−→ 0, for any

fixed t > 0. Hence, the Lenglart’s domination property (see [21], page 35) implies
the convergence

[nt]−1∑
j=1

(
ξn
j −E

[
ξn
j |F(j−1)/n

]) u.c.p.−→ 0,

which in turn means that F̃n(t, x, y)
u.c.p.−→ F̃ (t, x, y).

We know now that V ′n
2,t converges to the claimed limit if G2 is compactly sup-

ported. For a general G2 with polynomial growth one can proceed exactly as in

Proposition 3.2. To complete the proof, one has to show that V n
2,t − V ′n

2,t

u.c.p.−→ 0.
This works exactly as in Section 7.1. �

The properties of stable convergence immediately imply the following theorem.

THEOREM 5.2. Let the assumptions of Theorem 4.4 be satisfied. Let t > 0 be
fixed. Then we obtain the standard central limit theorem

√
n(U(H)nt − U(H)t )√

V n
t

d−→N (0,1),(38)

where V n
t = V n

1,t − V n
2,t using the notation defined above.

The convergence in law in (38) is a feasible central limit theorem that can be
used in statistical applications. It is possible to obtain similar multivariate central
limit theorems for finite-dimensional vectors

√
n(U(H)ntj − U(H)tj )1≤j≤k ; we

leave the details to the interested reader.

6. Statistical applications. In this section we present some statistical appli-
cations of the limit theory for U -statistics of continuous Itô semimartingales.

6.1. Gini’s mean difference. Gini’s mean difference is a classical measure of
statistical dispersion, which serves as robust measure of variability of a probability
distribution [7]. Recall that for a given distribution Q, Gini’s mean difference is
defined as

MD := E
[|Y1 − Y2|],

where Y1, Y2 are independent random variables with distribution Q. In the frame-
work of i.i.d. observations (Yi)i≥1, the measure MD is consistently estimated by
the U -statistic 2

n(n−1)

∑
1≤i<j≤n |Yi − Yj |. Gini’s mean difference is connected to

questions of stochasic dominance as shown by [27]. We refer to the recent pa-
per [24] for the estimation theory for Gini’s mean difference under long range
dependence.
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In the setting of continuous Itô semimartingales we conclude by Theorem 3.3
that

U(H)nt
u.c.p.−→ MDt := m1

∫
[0,t]2

∣∣σ 2
s1

+ σ 2
s2

∣∣1/2
ds1 ds2,

where the function H is given by H(x,y) = |x − y|, and mp is the pth absolute
moment of N (0,1). In mathematical finance the quantity MDt may be viewed as
an alternative measure of price variability, which is more robust to outliers than
the standard quadratic variation [X,X]t .

Formally, we cannot directly apply Theorem 4.4 to obtain a weak limit theory
for the statistic U(H)nt , since the function H(x,y) = |x − y| is not differentiable,
and H is not even in each component. Since Y1 −Y2 and Y1 +Y2 have the same dis-
tribution for centered independent normally distributed random variables Y1, Y2,
the modification

H(x,y) := 1
2

(|x − y| + |x + y|),
which is even in each component, has the same limit, that is, U( H)nt

u.c.p.−→ MDt .
Moreover, using sub-differential calculus and defining

grad H(x,y) := 1
2

(
sign(x − y) + sign(x + y), sign(x − y) + sign(x + y)

)
,

all the proof steps remain valid (we also refer to [2], who prove the central limit
theorem for nondifferentiable functions). Thus, by the assertion of Theorem 4.4,
we deduce the stable convergence

√
n
(
U( H)nt − MDt

) st−→ Lt =
∫
R2

(|x1 − x2| + |x1 + x2|)G(t, dx1)F (t, dx2),

where the stochastic fields G(t, x) and F(t, x) are defined in Proposition 4.2
and (9), respectively. Now, we follow the route proposed in Section 5 to obtain
a standard central limit theorem. We compute the symmetrization G̃1, G̃2 of the
functions G1,G2 defined at (36) and (37), respectively:

G̃1(x1, x2, x3) = 1
6

((|x1 − x2| + |x1 + x2|)(|x1 − x3| + |x1 + x3|)
+ (|x2 − x1| + |x2 + x1|)(|x2 − x3| + |x2 + x3|)
+ (|x3 − x1| + |x3 + x1|)(|x3 − x2| + |x3 + x2|)),

G̃1(x1, x2;y1, y2) = 1
4

((|x1 − y1| + |x1 + y1|)(|x2 − y2| + |x2 + y2|)
+ (|x1 − y2| + |x1 + y2|)(|x2 − y1| + |x2 + y1|)).

Using these functions we construct the statistics V n
1,t and V n

2,t (see Section 5).
Finally, for any fixed t > 0 we obtain a feasible central limit theorem√

n(U( H)nt − MDt )√
V n

1,t − V n
2,t

d−→ N (0,1).

The latter enables us to construct confidence regions for mean difference statis-
tic MDt .
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6.2. Lp-type tests for constant volatility. In this subsection we propose a new
homoscedasticity test for the volatility process σ 2. Our main idea relies on a certain
distance measure, which is related to Lp-norms; we refer to [12, 13] for similar
testing procedures in the L2 case. Let us define

h(s1, . . . , sd) :=
d∑

i=1

σ 2
si
, s1, . . . , sd ∈ [0,1],

and consider a real number p > 1. Our test relies on the Lp-norms

‖h‖Lp :=
(∫

[0,1]d
∣∣h(s)

∣∣p ds
)1/p

.

Observe the inequality ‖h‖Lp ≥ ‖h‖L1 and, when the process h is continuous,
equality holds if and only if h is constant. Applying this intuition, we introduce a
distance measure M2 via

M2 := ‖h‖p
Lp − ‖h‖p

L1

‖h‖p
Lp

∈ [0,1].

Notice that a continuous process σ 2 is constant if and only if M2 = 0. Further-
more, the measure M2 provides a quantitative account of the deviation from the
homoscedasticity hypothesis, as it takes values in [0,1].

For simplicity of exposition we introduce an empirical analogue of M2 in the
case d = 2. We define the functions

H1(x) := 1
2

(|x1 − x2|2p + |x1 + x2|2p)
, H2(x) := x2

1 + x2
2

with x ∈ R2. Notice that both functions are continuously differentiable and even
in each component; hence they satisfy the assumptions of Theorems 3.3 and 4.4.
In particular, Theorem 3.3 implies the convergence in probability

U(H1)
n
1

P−→ U(H1)1 = m2p‖h‖p
Lp , U(H2)

n
1

P−→ U(H2)1 = ‖h‖L1,

where the constant m2p has been defined in the previous subsection. The main
ingredient for a formal testing procedure is the following result.

PROPOSITION 6.1. Assume that conditions of Theorem 4.4 hold. Then we ob-
tain the stable convergence

√
n
(
U(H1)

n
1 − m2p‖h‖p

Lp ,U(H2)
n
1 − ‖h‖L1

)
st−→ 2

(∫
R2

H1(x1, x2)G(1, dx1)F (1, dx2),(39) ∫
R2

H2(x1, x2)G(1, dx1)F (1, dx2)

)
.
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Furthermore, the F -conditional covariance matrix V = (Vij )1≤i,j≤2 of the limit-
ing random variable is given as

Vij =
∫ 1

0

(∫
R

fi(x)fj (x)ϕσs (x) dx

(40)

−
(∫

R
fi(x)ϕσs (x) dx

)(∫
R

fj (x)ϕσs (x) dx

))
ds

with

fi(x) := 2
∫
R

Hi(x, y)F (1, dy), i = 1,2.

PROOF. As in the proof of Theorem 4.4 we deduce that
√

n
(
U(Hi)

n
1 − U(Hi)1

) = L′n
1 (i) + oP(1), i = 1,2,

where L′n
1 (i) is defined via

L′n
1 (i) = 2

∫
R2

Hi(x1, x2)Gn(1, dx1)F (1, dx2).

Now, exactly as in steps (ii)–(v) of the proof of Proposition 4.3, we conclude the
joint stable convergence in (39). The F -conditional covariance matrix V is ob-
tained from Remark 2(iii) as in the beginning of Section 5. �

Let now M2
n be the empirical analogue of M2, that is,

M2
n := m−1

2p U(H1)
n
1 − (U(H2)

n
1)

p

m−1
2p U(H1)

n
1

P−→ M2.

Observe the identities

M2
n = r

(
U(H1)

n
1,U(H2)

n
1
)
, M2 = r

(
m2p‖h‖p

Lp ,‖h‖L1
)
,

where r(x, y) = 1 −m2p
yp

x
. Applying Proposition 6.1 and delta method for stable

convergence, we conclude that
√

n(M2
n − M2) converges stably in law toward a

mixed normal distribution with mean 0 and F -conditional variance given by

v2 := ∇r
(
m2p‖h‖p

Lp ,‖h‖L1
)
V ∇r

(
m2p‖h‖p

Lp ,‖h‖L1
)�

,

where the random variable V ∈R2×2 is defined at (40).
For an estimation of V we can proceed as in Section 5. Define the functions

G
ij
1 :R3 →R and G

ij
2 :R4 →R by

G
ij
1 (x1, x2, x3) = Hi(x1, x2)Hj (x1, x3),

G
ij
2 (x1, x2, y1, y2) = Hi(x1, y1)Hj (x2, y2), i, j = 1,2.
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Let further G̃
ij
1 be the symmetrization of G

ij
1 and G̃

ij
2 the symmetrization of G

ij
2

with respect to the y-values. With

Wij := 4

n

(
n

2

)−1 n−1∑
i1=1

∑
1≤i2<i3≤n

G̃
ij
2

(√
n�n

i1
X,

√
n�n

i1+1X,
√

n�n
i2
X,

√
n�n

i3
X

)
,

we can, exactly as in Section 5, deduce that

V n := (
4U

(
G̃

ij
1

)n
1 − Wij

)
i,j=1,2

P−→ V.

Using the previous results, we directly get

v2
n := ∇r

(
U(H1)

n
1,U(H2)

n
1
)
V n∇r

(
U(H1)

n
1,U(H2)

n
1
)� P−→ v2.

Now the properties of stable convergence yield the following feasible central limit
theorem:

√
n(M2

n −M2)√
v2
n

d−→ N (0,1).(41)

With these formulas at hand, we can derive a formal test procedure for the hypoth-
esis

H0 :σ 2
s is constant on [0,1] vs. H1 :σ 2

s is not constant on [0,1].
These hypotheses are obviously equivalent to

H0 :M2 = 0 vs. H1 :M2 > 0.

Defining the test statistic Sn via

Sn :=
√

nM2
n√

v2
n

,

we reject the null hypothesis at level γ ∈ (0,1) whenever Sn
t > c1−γ , where c1−γ

denotes the (1 − γ )-quantile of N (0,1). Now, (41) implies that

lim
n→∞PH0(Sn > c1−γ ) = γ, lim

n→∞PH1

(
Sn

n > c1−γ

) = 1.

In other words, our test statistic is consistent and keeps the level γ asymptotically.

6.3. Wilcoxon test statistic for structural breaks. Change-point analysis has
been an active area of research for many decades; we refer to [6] for a comprehen-
sive overview. The Wilcoxon statistic is a standard statistical procedure for testing
structural breaks in location models. Let (Yi)1≤i≤n, (Zi)1≤i≤m be mutually inde-
pendent observations with Yi ∼Qθ1 , Zi ∼ Qθ2 , where Qθ (A) = Q0(A − θ) for all
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A ∈ B(R) and Q0 be a nonatomic probability measure. In this classical framework
the Wilcoxon statistic is defined by

1

nm

n∑
i=1

m∑
j=1

1{Yi≤Zj }.

Under the null hypothesis θ1 = θ2, the test statistic is close to 1/2, while deviations
from this value indicate that θ1 	= θ2. We refer to the recent work [8] for change-
point tests for long-range dependent data.

Applying the same intuition we may provide a test statistic for structural breaks
in the volatility process σ 2. Assume that the semimartingale X is observed at high
frequency on the interval [0,1] and the volatility is constant on the intervals [0, t)

and (t,1] for some t ∈ (0,1), that is, σ 2
s = σ 2

0 on [0, t) and σ 2
s = σ 2

1 on (t,1].
Our aim is to test the null hypothesis σ 2

0 = σ 2
1 or to infer the change-point t when

σ 2
0 	= σ 2

1 . In this framework the Wilcoxon type statistic is defined via

WLn
t := 1

n2

[nt]∑
i=1

n∑
j=[nt]+1

1{|�n
i X|≤|�n

j X|}.

Notice that the kernel is neither symmetric nor continuous. Nevertheless, we de-
duce the following result.

PROPOSITION 6.2. Assume that condition (17) holds. Then we obtain the con-
vergence:

WLn
t

u.c.p.−→ WLt :=
∫ t

0

∫ 1

t

(∫
R2

1{|σs1u1|≤|σs2u2|}ϕd(u) du
)

ds1 ds2(42)

=
∫ t

0

∫ 1

t

(
1 − 2

π
arctan

∣∣∣∣σs1

σs2

∣∣∣∣)ds1 ds2.(43)

PROOF. As in the proof of Theorem 3.3, we first show the convergence (42)
for the approximations αn

i of the scaled increments
√

n�n
i X. We define

U ′n
t :=

∫
R2

1{|x|≤|y|}Fn(t, dx)
(
Fn(1, dy) − Fn(t, dy)

)
.

Since condition (17) holds, the measure Fn(t, dx) is nonatomic. Hence, we con-
clude that

U ′n
t

u.c.p.−→ WLt

exactly as in the proof of Proposition 3.2. It remains to prove the convergence

WLn
t − U ′n

t

u.c.p.−→ 0.
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Observe the identity

WLn
t − U ′n

t = 1

n2

[nt]∑
i=1

n∑
j=[nt]+1

(1{|�n
i X|≤|�n

jX|} − 1{|αn
i |≤|αn

j |})

= 1

n2

[nt]∑
i=1

n∑
j=[nt]+1

(1{|�n
i X|≤|�n

jX|} − 1{|√n�n
i X|≤|αn

j |}

+ 1{|√n�n
i X|≤|αn

j |} − 1{|αn
i |≤|αn

j |}).

In the following we concentrate on proving that

1

n2

[nt]∑
i=1

n∑
j=[nt]+1

(1{|√n�n
i X|≤|αn

j |} − 1{|αn
i |≤|αn

j |})
u.c.p.−→ 0,

as the other part is negligible by the same arguments. Using the identity

1{|√n�n
i X|≤|αn

j |} − 1{|αn
i |≤|αn

j |}
= 1{|√n�n

i X|≤|αn
j |,|αn

i |>|αn
j |} − 1{|√n�n

i X|>|αn
j |,|αn

i |≤|αn
j |}

we restrict our attention on proving

1

n2

[nt]∑
i=1

n∑
j=[nt]+1

1{|√n�n
i X|>|αn

j |,|αn
i |≤|αn

j |}
u.c.p.−→ 0.

For an arbitrary q ∈ (0,1/2), we deduce the inequality

E[1{|√n�n
i X|>|αn

j |,|αn
i |≤|αn

j |}] ≤ E

[ |√n�n
i X − αn

i |q
||αn

j | − |αn
i ||q

]
≤ E

[∣∣√n�n
i X − αn

i

∣∣2q]1/2
E

[∣∣∣∣αn
j

∣∣ − ∣∣αn
i

∣∣∣∣−2q]1/2
.

For a standard normal random variable U , and for any x > 0, y ≥ 0, define

gq(x, y) := E
[∣∣x|U | − y

∣∣−2q]
.

Since 2q < 1, we have

gq(x, y) = E
[∣∣x|U | − y

∣∣−2q1{|x|U |−y|≤1}
] +E

[∣∣x|U | − y
∣∣−2q1{|x|U |−y|>1}

]
≤

∫
R

∣∣x|u| − y
∣∣−2q1{|x|u|−y|≤1} du + 1(44)

≤ Cq

x
+ 1 < ∞.
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Due to assumption (17) and by a localization argument, we can assume that σt is
uniformly bounded away from zero. Therefore, and by (44) we obtain

E
[∣∣∣∣αn

j

∣∣ − ∣∣αn
i

∣∣∣∣−2q] = E
[
E

[∣∣∣∣αn
j

∣∣ − ∣∣αn
i

∣∣∣∣−2q |F(j−1)/n

]]
= E

[
gq

(
σ(j−1)/n, α

n
i

)] ≤ Cq < ∞.

Hence

1

n2

[nt]∑
i=1

n∑
j=[nt]+1

E[1{∣∣√n�n
i X

∣∣>|αn
j |,|αn

i |≤|αn
j |}]

≤ C

n2

[nt]∑
i=1

n∑
j=[nt]+1

E
[∣∣√n�n

i X − αn
i

∣∣2q]1/2 u.c.p.−→ 0,

where the last convergence follows as in (45). This completes the proof of Propo-
sition 6.2. �

Now, observe that when the process σ 2 has no change-point at time t ∈ (0,1)

(i.e., σ 2
0 = σ 2

1 ) the limit at (42) is given by WLt = 1
2 t (1 − t). Thus, under the null

hypothesis σ 2
0 = σ 2

1 , we conclude that WLn
t

u.c.p.−→ 1
2 t (1 − t). Since the time point

t ∈ (0,1) is unknown in general, we may use the test statistic

sup
t∈(0,1)

∣∣∣∣WLn
t − 1

2
t (1 − t)

∣∣∣∣
to test for a possible change point. Large values of this quantity speak against
the null hypothesis. On the other hand, under the alternative σ 2

0 	= σ 2
1 , the statistic

t̂n := argsupt∈(0,1) |WLn
t − 1

2 t (1− t)| provides a consistent estimator of the change-
point t ∈ (0,1). A formal testing procedure would rely on a stable central limit
theorem for WLn

t , which is expected to be highly complex, since the applied kernel
is not differentiable.

7. Proofs of some technical results. Before we start with the proofs of (13)
and (35) we state the following lemma, which can be shown exactly as [2],
Lemma 5.4.

LEMMA 7.1. Let f :Rd → Rq be a continuous function of polynomial
growth. Let further γ n

i , γ ′n
i be real-valued random variables satisfying E[(|γ n

i | +
|γ ′n

i |)p] ≤ Cp for all p ≥ 2 and(
n

d

)−1 ∑
i∈An

t (d)

E
[∥∥γ n

i − γ ′n
i

∥∥2] → 0.
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Then we have for all t > 0,(
n

d

)−1 ∑
i∈An

t (d)

E
[∥∥f (

γ n
i

) − f
(
γ ′n

i
)∥∥2] → 0.

Recall that we assume (4) without loss of generality; in Sections 7.2 and 7.3 we
further assume (18), that is, all the involved processes are bounded.

7.1. Proof of (13). The Burkhölder inequality yields that E[(|√n�n
i X| +

|αn
i |)p] ≤ Cp for all p ≥ 2. In view of the previous lemma U(H)n − Ũ (H)n

u.c.p.−→ 0
is a direct consequence of(

n

d

)−1 ∑
i∈An

t (d)

E
[∥∥√n�n

i X − αn
i
∥∥2] ≤ C

n

[nt]∑
j=1

E
[∣∣√n�n

jX − αn
j

∣∣2] → 0(45)

as it is shown in [2], Lemma 5.3.

7.2. Proof of (35). We divide the proof into several steps.

(i) We claim that
√

n
(
U(H)n − Ũ (H)n

) − P n(H)
u.c.p.−→ 0,

where

P n
t (H) := √

n

(
n

d

)−1 ∑
i∈An

t (d)

∇H
(
αn

i
)(√

n�n
i X − αn

i
)
.

Here, ∇H denotes the gradient of H . This can be seen as follows. Since the process
σ is itself a continuous Itô semimartingale, we have

E
[∣∣√n�n

i X − αn
i

∣∣p] ≤ Cpn−p/2(46)

for all p ≥ 2. By the mean value theorem, for any i ∈ An
t (d), there exists a random

variable χn
i ∈ Rd such that

H
(√

n�n
i X

) − H
(
αn

i
) = ∇H

(
χn

i
)(√

n�n
i X − αn

i
)

with ‖χn
i − αn

i ‖ ≤ ‖√n�n
i X − αn

i ‖. Therefore, we have

E
[
sup
t≤T

∣∣√n
(
U(H)nt − Ũt (H)n

) − P n
t (H)

∣∣]

≤ C
√

n

(
n

d

)−1 ∑
i∈An

T (d)

E
[∥∥(∇H

(
χn

i
) − ∇H

(
αn

i
)∥∥∥∥(√

n�n
i X − αn

i
)∥∥]
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≤ C
√

n

(
n

d

)−1 ( ∑
i∈An

T (d)

E
[∥∥(∇H

(
χn

i
) − ∇H

(
αn

i
))∥∥2])1/2

×
( ∑

i∈An
T (d)

E
[∥∥(√

n�n
i X − αn

i
)∥∥2])1/2

≤ C

{(
n

d

)−1 ∑
i∈An

T (d)

E
[∥∥(∇H

(
χn

i
) − ∇H

(
αn

i
))∥∥2]}1/2

→ 0

by (45) and Lemma 7.1.
(ii) In this and the next step we assume that H has compact support. Now we

split P n
t up into two parts:

P n
t = √

n

(
n

d

)−1 ∑
i∈An

t (d)

∇H
(
αn

i
)
vn

i (1)

(47)

+ √
n

(
n

d

)−1 ∑
i∈An

t (d)

∇H
(
αn

i
)
vn

i (2),

where
√

n�n
i X − αn

i = vn
i (1) + vn

i (2) and i = (i1, . . . , id), with

vn
ik
(1) = √

n

(
n−1a(ik−1)/n +

∫ (ik)/n

(ik−1)/n

{
σ̃(ik−1)/n(Ws − W(ik−1)/n)

+ ṽ(ik−1)/n(Vs − V(ik−1)/n)
}
dWs

)
,

vn
ik
(2) = √

n

(∫ (ik)/n

(ik−1)/n
(as − a(ik−1)/n) ds

+
∫ (ik)/n

(ik−1)/n

{∫ s

(ik−1)/n
ãu du

+
∫ s

(ik−1)/n
(σ̃u− − σ̃(ik−1)/n) dWu

+
∫ s

(ik−1)/n
(ṽu− − ṽ(ik−1)/n) dVu

}
dWs

)
.

We denote the first and the second summand on the right-hand side of (47) by Sn
t

and S̃n
t , respectively. First, we show the convergence S̃n u.c.p.−→ 0. Since the first

derivative of H is of polynomial growth we have E[‖∇H(αn
i )‖2] ≤ C for all

i ∈ An
t (d). Furthermore, we obtain by using the Hölder, Jensen and Burkhölder
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inequalities

E
[∣∣vn

ik
(2)

∣∣2]
≤ C

n2 +
∫ (ik)/n

(ik−1)/n
(as − a[ns]/n)

2 + (σ̃s− − σ̃[ns]/n)
2 + (ṽs− − ṽ[ns]/n)

2 ds.

Thus, for all t > 0, we have

√
n

(
n

d

)−1
E

∑
i∈An

t (d)

∣∣∇H
(
αn

i
)
vn

i (2)
∣∣

≤ C
√

n

(
n

d

)−1 (
E

[ ∑
i∈An

t (d)

∥∥∇H
(
αn

i
)∥∥2

])1/2(
E

[ ∑
i∈An

t (d)

∥∥vn
i (2)

∥∥2
])1/2

≤ C

(
n

(
n

d

)−1
E

[ [nt]∑
i1,...,id=1

(∣∣vn
i1
(2)

∣∣2 + · · · + ∣∣vn
id

(2)
∣∣2)])1/2

≤ C

(
E

[ [nt]∑
j=1

∣∣vn
j (2)

∣∣2])1/2

≤ C

(
n−1 +

∫ t

0
(as − a[ns]/n)

2 + (σ̃s− − σ̃[ns]/n)
2 + (ṽs− − ṽ[ns]/n)

2 ds

)1/2

→ 0

by the dominated convergence theorem, and S̃n u.c.p.−→ 0 readily follows.

(iii) To show Sn u.c.p.−→ 0 we use

Sn
t =

d∑
k=1

√
n

(
n

d

)−1 ∑
i∈An

t (d)

∂kH
(
αn

i
)
vn
ik
(1) =:

d∑
k=1

Sn
t (k).

Before we proceed with proving Sn(k)
u.c.p.−→ 0, for k = 1, . . . , d , we make two ob-

servations: first, by the Burkhölder inequality, we deduce

E
[∣∣√nvn

ik
(1)

∣∣p] ≤ Cp for all p ≥ 2,(48)

and second, for fixed x ∈Rd−k , and for all i = (i1, . . . , ik) ∈ An
t (k), we have

E
[
∂kH

(
αn

i , x
)
vn
ik
(1)|F(ik−1)/n

] = 0,(49)

since ∂kH is an odd function in its kth component. Now, we will prove that

√
nn−k

∑
i∈An

t (k)

∂kH
(
αn

i , x
)
vn
ik
(1)

u.c.p.−→ 0,(50)
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for any fixed x ∈ Rd−k . From (49) we know that it suffices to show that

[nt]∑
ik=1

E

[( ∑
1≤i1<···<ik−1<ik

χi1,...,ik

)2∣∣∣∣F(ik−1)/n

]
P−→ 0,

where χi1,...,ik := √
nn−k∂kH(αn

i , x)vn
ik
(1). (Note that the sum in the expectation

only runs over the indices i1, . . . , ik−1.) But this follows from the L1 convergence
and (48) via

[nt]∑
ik=1

E

[( ∑
1≤i1<···<ik−1<ik

χi1,...,ik

)2]

≤ C

nk

[nt]∑
ik=1

∑
1≤i1<···<ik−1<ik

E
[(

∂kH
(
αn

i , x
)
vn
ik
(1)

)2]

≤ C

n
→ 0.

Recall that we still assume that H has compact support. Let the support of H be
a subset of [−K,K]d and further −K = z0 < · · · < zm = K be an equidistant
partition of [−K,K]. We denote the set {z0, . . . , zm} by Zm. Also, let η(ε) :=
sup{‖∇H(x) − ∇H(y)‖;‖x − y‖ ≤ ε} be the modulus of continuity of ∇H . Then
we have

sup
t≤T

∣∣Sn
t (k)

∣∣ ≤ C
√

nn−k sup
t≤T

sup
x∈[−K,K]d−k

∣∣∣∣∣ ∑
i∈An

t (k)

∂kH
(
αn

i , x
)
vn
ik
(1)

∣∣∣∣∣
≤ C

√
nn−k sup

t≤T

max
x∈Zd−k

m

∣∣∣∣∣ ∑
i∈An

t (k)

∂kH
(
αn

i , x
)
vn
ik
(1)

∣∣∣∣∣
+ C

√
nn−k

∑
i∈An

T (k)

η

(
2K

m

)∣∣vn
ik
(1)

∣∣.
Observe that, for fixed m, the first summand converges in probability to 0 as
n → ∞ by (50). The second summand is bounded in expectation by Cη(2K/m)

which converges to 0 as m → ∞. This implies Sn
t (k)

u.c.p.−→ 0 which finishes the
proof of (35) for all H with compact support.

(iv) Now, let H ∈ C1
p(Rd) be arbitrary and Hk be a sequence of functions in

C1
p(Rd) with compact support that converges pointwise to H and fulfills H = Hk

on [−k, k]d . In view of step (i) it is enough to show that

lim
k→∞ lim sup

n→∞
E

[
sup
t≤T

∣∣∣∣√n

(
n

d

)−1 ∑
i∈An

t (d)

∇(H − Hk)
(
αn

i
)(√

n�n
i X − αn

i
)∣∣∣∣] = 0.
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Since H − Hk is of polynomial growth and by (46), we get

E

[
sup
t≤T

∣∣∣∣√n

(
n

d

)−1 ∑
i∈An

t (d)

∇(H − Hk)
(
αn

i
)(√

n�n
i X − αn

i
)∣∣∣∣]

≤ C
√

n

(
n

d

)−1 ∑
i∈An

T (d)

E
[∥∥∇(H − Hk)

(
αn

i
)∥∥∥∥√n�n

i X − αn
i
∥∥]

≤ C

(
n

d

)−1 ∑
i∈An

T (d)

E

[(
d∑

l=1

1{|αn
il
|>k}

)2∥∥∇(H − Hk)
(
αn

i
)∥∥2

]1/2

≤ C

k
,

which finishes the proof.

7.3. Proof of (28). We can write

U(H)t =
∫
[0,t]d

∫
Rd

H(x)ϕσs1
(x1) · · ·ϕσsd

(xd) dxds.

We also have

F ′
n(t, x) =

∫ [nt]/n

0
ϕσ[ns]/n

(x) ds,

where F ′
n(t, x) denotes the Lebesgue density in x of Fn(t, x) defined at (28). So

we need to show that P n(H)
u.c.p.−→ 0, where

P n
t (H) := √

n

∫
[0,t]d

∫
Rd

H(x)
(
ϕσs1

(x1) · · ·ϕσsd
(xd)

− ϕσ[ns1]/n
(x1) · · ·ϕσ[nsd ]/n

(xd)
)
dxds.

As previously we show the result first for H with compact support.

(i) Let the support of H be contained in [−k, k]d . From [2], Section 8, we
know that, for fixed x ∈R, it holds that

√
n

∫ t

0

(
ϕσs (x) − ϕσ[ns]/n

(x)
)
ds

u.c.p.−→ 0.(51)

Also, with ρ(z, x) := ϕz(x) we obtain, for x, y ∈ [−k, k],∣∣∣∣∫ t

0

(
ϕσs (x) − ϕσ[ns]/n

(x)
) − (

ϕσs (y) − ϕσ[ns]/n
(y)

)
ds

∣∣∣∣
≤

∫ t

0

∣∣∂1ρ(ξs, x)(σs − σ[ns]/n) − ∂1ρ
(
ξ ′
s, y

)
(σs − σ[ns]/n)

∣∣ds

≤
∫ t

0

∣∣∂11ρ
(
ξ ′′
s , ηs

)(
ξs − ξ ′

s

) + ∂21ρ
(
ξ ′′
s , ηs

)
(x − y)

∣∣|σs − σ[ns]/n|ds

≤ C

∫ t

0
|σs − σ[ns]/n|2 + |σs − σ[ns]/n||y − x|ds,
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where ξs, ξ
′
s, ξ

′′
s are between σs and σ[ns]/n and ηs is between x and y. Now, let

Zm = {jk/m|j = −m, . . . ,m}. Then, we get

sup
t≤T

∣∣P n
t (H)

∣∣ ≤ CT sup
t≤T

√
n

∫
[−k,k]

∣∣∣∣∫ t

0
ϕσs (x) − ϕσ[ns]/n

(x) ds

∣∣∣∣dx

≤ CT sup
t≤T

sup
x∈[−k,k]

√
n

∣∣∣∣∫ t

0
ϕσs (x) − ϕσ[ns]/n

(x) ds

∣∣∣∣
≤ CT sup

t≤T

max
x∈Zm

√
n

∣∣∣∣∫ t

0
ϕσs (x) − ϕσ[ns]/n

(x) ds

∣∣∣∣
+ CT

√
n

∫ T

0

(
|σs − σ[ns]/n|2 + k

m
|σs − σ[ns]/n|

)
ds

≤ CT

∑
x∈Zm

sup
t≤T

√
n

∣∣∣∣∫ t

0
ϕσs (x) − ϕσ[ns]/n

(x) ds

∣∣∣∣
+ CT

√
n

∫ T

0

(
|σs − σ[ns]/n|2 + k

m
|σs − σ[ns]/n|

)
ds.

Observe that, for fixed m, the first summand converges in probability to 0 by (51).
By the Itô isometry and (18) we get for the expectation of the second summand,

E

[√
n

∫ T

0

(
|σs − σ[ns]/n|2 + k

m
|σs − σ[ns]/n|

)
ds

]

= √
n

∫ T

0
E

[
|σs − σ[ns]/n|2 + k

m
|σs − σ[ns]/n|

]
ds ≤ CT

(
1√
n

+ 1

m

)
.

Thus, by choosing m large enough and then letting n go to infinity, we get

P n
t (H)

u.c.p.−→ 0.
(ii) Now let H ∈ C1

p(Rd) and Hk be an approximating sequence of functions
in C1

p(Rd) with compact support and H = Hk on [−k, k]d . Observe that, for
x, s ∈ Rd , we obtain by the mean value theorem that

E
[∣∣ϕσs1

(x1) · · ·ϕσsd
(xd) − ϕσ[ns1]/n

(x1) · · ·ϕσ[nsd ]/n
(xd)

∣∣]
≤ ψ(x)

d∑
i=1

E|σsi − σ[nsi ]/n| ≤ C√
n
ψ(x),

where the function ψ is exponentially decaying at ±∞. Thus

lim
k→∞ lim sup

n→∞
E

[
sup
t≤T

∣∣P n
t (H) − P n

t (Hk)
∣∣]

≤ CT lim
k→∞ lim sup

n→∞

∫
Rd

∣∣(H − Hk)(x)
∣∣ψ(x) dx = 0,

which finishes the proof of (28).
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