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BELIEF PROPAGATION FOR OPTIMAL EDGE COVER IN THE
RANDOM COMPLETE GRAPH
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We apply the objective method of Aldous to the problem of finding the
minimum-cost edge cover of the complete graph with random independent
and identically distributed edge costs. The limit, as the number of vertices
goes to infinity, of the expected minimum cost for this problem is known
via a combinatorial approach of Hessler and Wästlund. We provide a proof
of this result using the machinery of the objective method and local weak
convergence, which was used to prove the ζ(2) limit of the random assign-
ment problem. A proof via the objective method is useful because it provides
us with more information on the nature of the edge’s incident on a typical
root in the minimum-cost edge cover. We further show that a belief propaga-
tion algorithm converges asymptotically to the optimal solution. This can be
applied in a computational linguistics problem of semantic projection. The
belief propagation algorithm yields a near optimal solution with lesser com-
plexity than the known best algorithms designed for optimality in worst-case
settings.

1. Introduction. Suppose that we are given a graph G with vertex set V and
edge set E, denoted G = (V ,E). Each edge e ∈ E has a weight ξe ∈ R+. Alter-
natively, we are given a bipartite graph with a vertex set V = V1 ∪ V2, a union of
two disjoint vertex subsets, and an edge set E ⊂ V1 × V2. An edge cover for the
graph is a subset of edges that hits (covers) every vertex. The cost of an edge cover
is the sum of the weights of edges in the cover. Our interest in this paper is on
minimum-cost edge covers on the complete graph (denoted Kn when |V | = n) and
on the complete bipartite graph (denoted Kn,n when |V1| = |V2| = n), when the
edge weights are independent random variables, each with the exponential distri-
bution of mean 1.

The following example on a bipartite graph illustrates how minimum-cost edge
covers arise in practice.
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An example of semantic projection. Computational linguists have recently
been interested in machine-based natural language processing. These include part-
of-speech tagging, parsing, and at a higher level, semantic role parsing [12] which,
for example, would enable an automatic recognition that the sentences “Mary sold
the book to John” and “The book was sold by Mary to John” have the same se-
mantic roles. (This example is taken from Wikipedia [19].) Currently, English is
blessed with the availability of a large amount of annotated texts as training data
while most others languages lack this advantage. Semantic projection exploits the
availability of (1) parallel corpora of translated texts and (2) higher quality pars-
ing tools in one language in order to transfer annotations from the resource-rich
language to the other.

Padó and Lapata [12] provide one method to do this where a minimum-cost edge
cover naturally arises. The source and target sentences in the two languages are first
broken into linguistic units to yield sets V1 and V2 of the respective linguistic units.
These linguistic units are then viewed as vertices of a complete bipartite graph. Let
R be some finite set of semantic roles, which can be viewed for our purposes as
abstract annotations. The parsing tool on the source side is used to find a semantic
role assignment role1 :R → 2V1 , where the subscript refers to the source language.
A dissimilarity measure based on linguistic considerations is then assigned to every
pair of linguistic units across the languages and is denoted ξ :V1 × V2 → R+.
A decision procedure uses these dissimilarity scores to find a subset C ⊂ V1 × V2
of semantically aligned units. Padó and Lapata [12] argue that a minimum-cost
edge cover is a good choice for this semantic alignment. It allows a linguistic unit
in one language (an element of say V2) to map to several units in the other language
(a subset of V1), and vice-versa. For example, the linguistic units “to be on time”
and “punctual” (English) could both be mapped with small, but possibly different,
dissimilarity scores to “pünktlich” (German), and both edges may be picked by
a good candidate edge cover. The covering property of the edge cover enables
all source and target vertices to participate and thus has the potential to capture
important connections between linguistic units, which may otherwise be missed.
The minimum cost property attempts to provide an economical semantic alignment
and further captures global alignments as compared to previously proposed local
decision procedures. Once the minimum-cost edge cover is found by the decision
procedure, semantic roles are then assigned on the target side as

role2(r) = {
j | there is an i ∈ role1(r) such that (i, j) ∈ C

}
.

Padó and Lapata [12] compare the goodness of their decision procedures based
on minimum-cost edge cover (and perfect matching) with some other prior ap-
proaches on a data set of about 1000 sentences. Real data sets are of course much
larger. The resulting graph, when restricted to edges of small weight (i.e., edges
signifying low dissimilarity and therefore good correspondence), can be modeled
as a large, but sparse, random graph. If |V1| = O(|V2|) = n, algorithms used by
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Padó and Lapata [12] to find the minimum-cost edge cover take O(n3) operations,
in the worst case.

The actual results of the Padó and Lapata [12] experiments need not concern
us here. For a list of challenges that arise in the implementation of the above ap-
proach and methods to address them, we refer the linguistically inclined reader
to [13] and references therein. What we shall take with us as we move forward are
the observations that (1) edge covers arise in practice on large graphs that can be
modeled by sparse random graphs and (2) algorithmic simplifications that reduce
complexity are of practical value.

We shall for simplicity focus on minimum-cost edge covers on the complete
graph Kn on n vertices. All our results carry over to Kn,n with only scaling fac-
tor modifications. Recall that the edge capacities are independent, each edge hav-
ing the exponential distribution with mean 1. This is a typical mean-field model
which captures sparsity of the graph depicting linguistic units and associated edges
in the above example, but ignores correlations among edge weights. See Sec-
tion 11 for another geometric setting where the same mean field models arise.
Let Cn be the cost of the minimum-cost edge cover of Kn. We prove that the ex-
pected value of Cn converges to the constant W(1) + W(1)2/2, which is approxi-
mately 0.728. (The function W(·) is Lambert’s W -function, which is the inverse of
f : [0,∞) → [0,∞), f (x) = xex ; W(1) ≈ 0.567.) Further, and more importantly
from an application perspective, we show that a belief propagation algorithm can
be used to find asymptotically optimal edge covers in O(n2) steps. The results,
with only scaling factor changes, hold for the complete bipartite graphs Kn,n.

The result regarding the limit on Kn,n has been proved before by Hessler and
Wästlund in [10] using a combinatorial approach. A proof based on a game formu-
lation is contained in [16]. We discuss these works at the end of this Introduction.
Our focus in this article is on using the objective method for this problem and on
devising a belief propagation algorithm.

The roots of the objective method lie in Aldous’s 1992 paper [1] on the as-
signment problem. The problem of finding the minimum cost matching on the
complete bipartite graph with independent and identically distributed edge costs,
termed as the random assignment problem in literature, inspired a series of works
in combinatorial probability. Mézard and Parisi [11], using the cavity method of
statistical physics, conjectured in 1987 that the expected minimum cost for the
random assignment problem on the bipartite graph Kn,n converges to ζ(2) =∑∞

k=1 k−2 as n goes to infinity. This was proved rigorously by Aldous [4] in 2001
by extending the proof of existence of the limit contained in [1]. Several other
proofs have been provided for the limit in subsequent works.

In [4], Aldous related the problem on Kn,n to one on a suitable limit object.
Several calculations become easier on the limit object. In this case, the limit is
a tree, the so-called Poisson weighted infinite tree or PWIT, with many useful
symmetries. Aldous used these symmetries to construct a distributional identity,
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that then served as a guide for solving the random assignment problem rigorously.
With this approach, Aldous showed that the following quantities converge to the
corresponding quantities on the limit object:

• the expected cost of optimal matching on Kn,n;
• the distribution of the cost of the matching edge incident on a typical node

of Kn,n;
• the probability that the matching edge incident on a typical node of Kn,n is the

kth smallest of all the edges incident on it.

It turns out that the limit object, and hence the answers, remain the same for prob-
lems on the complete bipartite graph Kn,n and on the complete graph Kn. One
dividend of a proof via the objective method is that we have answers to several
ancillary questions such as the second and third bullets above. The ability of the
objective method to provide these auxiliary results motivates us to solve the prob-
lem of optimal edge cover via the objective method.

From an algorithms perspective, the cavity equations suggest a natural iterative
decentralized message passing algorithm, some versions of which are commonly
called belief propagation (BP) in the computer science literature. For many com-
binatorial optimization problems, a BP algorithm can be set up to converge to the
correct solution on graphs without cycles. Bayati, Shah and Sharma [7] proved that
the BP algorithm for maximum weight matching on bipartite graphs converges to
the correct value as long as the maximum weight matching is unique. Salez and
Shah [14] studied the random assignment problem and proved a tighter connection
with the limit object. They showed that that a BP algorithm on Kn,n converges to
an update rule on the limit PWIT of [4]. The iterates on the limit graph converge
in distribution to the minimum cost assignment. The iterates are near the optimal
solution in O(n2) steps, whereas the worst case optimal algorithm on bipartite
graphs is O(n3) [expected time O(n2 logn) for i.i.d. edge capacities]; see Salez
and Shah [14] and references therein. We show a similar complexity improvement
for the edge-cover problem.

The objective method is quite powerful to be applicable to several combinato-
rial probability problems. See Aldous and Steele [3] for a survey. Aldous and Ban-
dopadhyay [5], Section 7.5, outline the steps of Aldous’s program to establish the
validity of the cavity method, which we quote in Section 11. However, each prob-
lem requires specific proofs, and we are still far from a complete theory applicable
to a wide class of problems. The edge-cover problem itself poses some modest
problem-specific challenges which we overcome in this paper. These include (1) a
proof of existence and uniqueness of a solution to the distributional identity asso-
ciated with the edge-cover problem, (2) a proof of a property called endogeny of a
process on the tree associated with the distributional identity, (3) a proof of opti-
mality of the edge-cover selection on the PWIT as suggested by the distributional
identity and eventually (4) a proof that a BP algorithm converges to an asymptoti-
cally optimal edge cover on the random complete graph. See Section 11 for a more
detailed summary.
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Before we end this introduction, we would like to mention two other approaches
that have been used to solve related combinatorial optimization problems, in par-
ticular, matching, edge cover and travelling salesman problems. One approach
used by Wästlund in [16, 18] calls for a “boundary conditioning” parameter to
study “diluted” versions of the optimization problems, eventually driving the pa-
rameter to infinity, and thereby relating the resulting limiting problem with the
undiluted versions. For example, in the matching case, diluted matching is a par-
tial matching with each unmatched vertex paying a cost equal to the parameter.
Wästlund then formulates the optimization problem in terms of a game played on
the graph. A second and more combinatorial approach is used by Wästlund in [17]
for matching and TSP and in [10] for the edge-cover problem. These works study
the respective optimization problems as certain flow problems on bipartite graphs.
The feasible solutions to these flow problems have a fixed number of edges k. A re-
cursive relation on k is obtained for the cost of the optimal solution. As our focus
is on the objective method, we do not dwell any more on these approaches.

2. Main results. Our first result establishes the limit of the expected mini-
mum cost of the random edge-cover problem.

THEOREM 1. On Kn, we have

lim
n→∞ ECn = W(1) + W(1)2

2
.(1)

Our second result shows that a belief propagation algorithm gives an edge cover
that is asymptotically optimal as n → ∞. We will use the result that the update
rule of BP converges to an update rule on a limit infinite tree. For this we define
the BP algorithm on an arbitrary graph G = (V ,E) with edge costs. For an edge
e = {v,w} ∈ E, we write its cost as ξG(e) or ξG(v,w). For each vertex v ∈ V , we
associate a nonempty subset of its neighbors πG(v). By taking a union of all edges
of the form {v,w},w ∈ πG(v), we get an edge cover of G which we will denote
by C(πG).

The BP algorithm is an iterative message passing algorithm. In each iteration
k ≥ 0, every vertex v ∈ V sends a message Xk

G(w,v) to each neighbor w ∼ v

according to the following rules:

Initialization:

X0
G(w,v) = 0.(2)

Update rule:

Xk+1
G (w,v) = min

u∼v,u
=w

{(
ξG(v,u) − Xk

G(v,u)
)+}

.(3)
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Decision rule:

πk
G(v) = arg min

u∼v

{(
ξG(v,u) − Xk

G(v,u)
)+}

,(4)

Edge cover = C
(
πk

G(v)
)
.(5)

We analyze the belief propagation algorithm for G = Kn and i.i.d. exponential
random edge costs, and prove that after a sufficiently large number of iterates, the
expected cost of the assignment given by the BP algorithm is close to the limit
value in Theorem 1.

THEOREM 2. On Kn, we have

lim
k→∞ lim

n→∞ E
[ ∑
e∈C(πk

Kn
)

ξKn(e)

]
= W(1) + W(1)2

2
.(6)

The formal statements on the bipartite complete graph Kn,n with i.i.d. expontial
distribution of mean 1 are the following and are stated without proof.

THEOREM 3. On Kn,n, we have

lim
n→∞ ECn = 2W(1) + W(1)2.(7)

THEOREM 4. On Kn,n, we have

lim
k→∞ lim

n→∞ E
[ ∑
e∈C(πk

Kn,n
)

ξKn,n(e)

]
= 2W(1) + W(1)2.(8)

3. Local weak convergence. In this section, we recollect the terminology for
defining convergence of graphs.

3.1. Rooted geometric networks. A graph G = (V ,E) along with a length
function l :E → (0,∞] is called a network. The distance between two vertices
in the network is the infimum of the sum of lengths of the edges of a path con-
necting the two vertices, the infimum being taken over all such paths. We call the
network a geometric network if for each vertex v ∈ V and positive real ρ, the num-
ber of vertices within a distance ρ of v is finite. We denote the space of geometric
networks by G.

A geometric network with a distinguished vertex v is called a rooted geomet-
ric network with root v. We denote the space of all connected rooted geometric
networks by G∗. In G∗ we do not distinguish between rooted isomorphisms of the
same network. We will use the notation (G,o) to denote an element of G∗ which is
the isomorphism class of rooted networks with underlying network G and root o.
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FIG. 1. Neighborhood Nρ(G) of graph G. The solid edges form the neighborhood, and form paths
of length at most ρ from the root v. Dashed edges are the other edges of G.

3.2. Local weak convergence. We call a positive real number ρ a continuity
point of G if no vertex of G is exactly at a distance ρ from the root of G. Let
Nρ(G) denote the neighborhood of the root of G up to distance ρ. Nρ(G) contains
all vertices of G which are within a distance ρ from the root of G (Figure 1). We
take Nρ(G) to be an element of G∗ by inheriting the same length function l as G,
and the same root as that of G.

We say that a sequence of rooted geometric networks Gn,n ≥ 1, converges
locally to an element G∞ in G∗ if for each continuity point ρ of G∞, there is an
nρ such that for all n ≥ nρ , there exists a graph isomorphism γn,ρ from Nρ(G∞)

to Nρ(Gn) that maps the root of the former to the root of the latter, and for each
edge e of Nρ(G∞), the length of γn,ρ(e) converges to the length of e as n → ∞.

The space G∗ can be suitably metrized to make it a separable and complete
metric space. One can then consider probability measures on this space and endow
that space with the topology of weak convergence of measures. This notion of
convergence is called local weak convergence.

In our setting of complete graphs Kn = (Vn,En) with random i.i.d. edge costs
{ξe, e ∈ En}, we regard the edge costs to be the lengths of the edges, and declare a
vertex of Kn chosen uniformly at random as the root of Kn. This makes Kn along
with its root a random element of G∗. We rescale the edge costs such that for each n,
{ξe, e ∈ En} are i.i.d. random variables with mean n exponential distribution. We
will denote this random, rooted, rescaled version of the n-vertex complete graph by
�Kn to distinguish it from the Kn defined earlier. Theorem 5 stated below (from [1])
says that the sequence of random geometric networks �Kn converges in the local
weak sense to an element of G∗ called the Poisson weighted infinite tree (PWIT).

3.3. Poisson weighted infinite tree. We use the notation from [14] to define
the PWIT.

Denote by V the set of all finite words over the alphabet N = {1,2,3, . . .}. Let φ

denote the empty string and “.” the concatenation operator. For any v ∈ V write |v|
for the length of string v, and if v 
= φ write v̇ for the string obtained by removing
the last letter of v.
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FIG. 2. PWIT T up to depth 2, with only the first three children of each vertex shown.

Construct an undirected graph T = (V,E) on V with the edge set

E = {{v, v.i}, v ∈ V, i ∈ N
}
.

Set φ to be the root of T . Then T is an infinite rooted tree with each vertex having a
countably infinite number of children. Construct a family of independent Poisson
processes of intensity 1 on R+ : {ξv = (ξv

1 , ξv
2 , . . .), v ∈ V}. Assign to each edge

{v, v.i} in E the length ξv
i . T is then a random element of G∗, and we call it the

Poisson weighted infinite tree (PWIT) (Figure 2).

THEOREM 5 ([1]). The sequence of uniformly rooted random networks �Kn

converges to the PWIT T as n → ∞ in the sense of local weak convergence.

A similar result was earlier established by Hajek [9], Section IV, for a class of
sparse Erdős–Rényi random graphs. The above theorem says that if we look at
an arbitrary, large but fixed neighborhood of the root of �Kn, then for large n it
looks like the corresponding neighborhood of the root of T . This suggests that if
boundary conditions can be ignored, we may be able to relate optimal edge covers
on �Kn with an appropriate edge cover on T [to be precise, an optimal involution
invariant edge cover (Section 5) on the PWIT]. Furthermore, the local neighbor-
hood of the root of �Kn is a tree for large enough n (with high probability). So we
may expect belief propagation on �Kn to converge. Both the above observations
are true in the matching case; the former was established in [1, 4], and the lat-
ter was shown in [14]. We now extend these ideas to prove similar results for the
edge-cover problem.
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4. Recursive distributional equation.

4.1. A heuristic recursion. The PWIT T is an infinite graph, and it is clear
that any edge cover on it must have infinite cost. So it does not make sense to talk
about a minimum-cost edge cover on T . However, for a moment let us pretend to
perform operations on the minimum cost as if it were a finite quantity. Write C(T )

for this minimum cost, and define

D(T ) = (
C(T ) − C

(
T \ {φ}))+,(9)

where C(T \ {φ}) is the minimum cost of edge cover on the subgraph of T ob-
tained by removing the root. Note that D(T ) denotes the difference between the
minimum cost of edge cover of T and the minimum cost of partial edge cover of T
where the root φ can be left uncovered.

If j is a child of the root, let T j denote the induced subgraph of T containing j

and all its descendants, and view it as a rooted network with root j (Figure 3).
Define D(T j ) accordingly, and observe from the symmetry of T that {D(T j ), j ≥
1} are i.i.d., and have the same distribution as D(T ). We give a heuristic argument
that D(T ) satisfies the following relation:

D(T ) = min
j≥1

(
ξ

φ
j − D

(
T j ))+.(10)

We can write C(T \ {φ}) in terms of edge covers on the subtrees T j , j ≥ 1, as

C
(
T \ {φ})= ∑

j∈N

C
(
T j ).(11)

Let us consider edge covers in which the edges covering the root are incident on
the vertices in a fixed subset A of the children of the root. The minimum cost
among such edge covers can be written as∑

j∈A

(
ξ

φ
j + min

{
C
(
T j ),C(T j \ {j})})+ ∑

i∈N\A
C
(
T i).

FIG. 3. PWIT T with the subtrees T j at node j .
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C(T ) is the minimum of the above value taken over all nonempty A, that is,

C(T ) = min
A nonempty

{∑
j∈A

(
ξ

φ
j + min

{
C
(
T j ),C(T j \ {j})})+ ∑

i∈N\A
C
(
T i)}.(12)

Thus we can write

D(T ) =
(

min|A|≥1

∑
j∈A

(
ξ

φ
j − (C(T j )− C

(
T j \ {j}))+))+

=
(

min|A|≥1

∑
j∈A

(
ξ

φ
j − D

(
T j )))+

.

To minimize the term within parentheses, we must include all those indices j for
which the summand (ξ

φ
j − D(T j )) is negative. If the terms are positive for all in-

dices j , A must be the singleton where the minimum is attained among all indices.
By then taking the positive part, equation (10) follows.

Although D(T ) and D(T j ) are not well-defined quantities, we shall prove that
there is a nonnegative random variable X and i.i.d. random variables Xj, j ≥ 1,
having the same distribution as X, such that

X = min
j≥1

(ξj − Xj)
+,(13)

where {ξj , j ≥ 1} are points of a Poisson process of rate 1 on R+, independent of
{Xj, j ≥ 1}.

4.2. Recursive distributional equations and recursive tree processes. Equa-
tions of the form of (13) are termed as recursive distributional equations in [5].
Specifically, if P(S) denotes the space of probability measures on a space S, a re-
cursive distributional equation (RDE) is a fixed-point equation on P(S) of the
form

X
D= g
(
ξ ; (Xj ,1 ≤ j < N)

)
,(14)

where Xj, j ≥ 1 are i.i.d. S-valued random variables having the same distribution
as X, and are independent of the pair (ξ,N), ξ is a random variable on some
space and N is a random variable on N ∪ {+∞}. g is a given S-valued function.
A solution to the RDE is a common distribution of X,Xj , j ≥ 1, satisfying (14).

We can use relation (14) to construct a tree indexed stochastic process, say
Xi, i ∈ V , which is called a recursive tree process (RTP) [5]. Associate to each
vertex i ∈ V , an independent copy (ξi,Ni) of the pair (ξ,N), and require Xi to
satisfy

Xi
D= g
(
ξi; (Xi.j ,1 ≤ j < Ni)

)
with Xi independent of {(ξi′,Ni′)||i′| < |i|}. If μ ∈ P(S) is a solution to the
RDE (14), there exists a stationary RTP; that is, each Xi is distributed as μ. Such
a process is called an invariant RTP with marginal distribution μ.
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4.3. Solution to the edge cover RDE.

THEOREM 6. The unique solution to the RDE (14) is the c.d.f. F∗ whose com-
plementary c.d.f. �F∗ is given by

�F∗(y) =
{

W(1)e−y, if y ≥ 0,
1, if y < 0.

(15)

The function W above is Lambert’s W -function, the inverse of f : R+ →
R+, f (x) = xex . In particular, W(1)eW(1) = 1.

PROOF. Let μ be a solution to the RDE (13), and let F be its c.d.f. Take
Xj, j ≥ 1 i.i.d. with distribution μ. Then {(ξj ,Xj ), j ≥ 1} is a Poisson process on
R+ × R+ with intensity dz dF(x). For y ∈ R+,

P(X > y) = P
(
min
j≥1

(ξj − Xj)
+ > y

)
= P

(
No point of

{
(ξj ,Xj )

}
in
{
(z, x) : z − x ≤ y

})
= exp

(
−
∫ y

z=0

∫ ∞
x=0

dF(x)dz −
∫ ∞
z=y

∫ ∞
x=z−y

dF(x)dz

)

= e−y exp
(
−
∫ ∞
t=0

∫ ∞
x=t

dF(x)dt

)
= e−y exp

(
−
∫ ∞

0

(
1 − F(t)

)
dt

)
.

Writing �F(t) = 1 − F(t), we have

�F(y) = e−y exp
(
−
∫ ∞

0
�F(t)dt

)
for all y ≥ 0.

Let c = exp(− ∫∞
0

�F(t)dt). Then, using �F(t) = ce−t in the expression for c gives

c = exp
(
−
∫ ∞

0
ce−tdt

)
= e−c.

The unique c satisfying the above equation is c = W(1). This proves that F must
be the c.d.f. F∗. �

5. Unimodularity and involution invariance. In Section 3 we defined the
space G∗ as the set of connected rooted geometric networks. Now define G∗∗ as
the space of connected geometric networks with an ordered pair of distinguished
vertices. Again, we do not distinguish between isomorphisms in G∗∗, and denote
by (G,o, x) the isomorphism class of elements with underlying network G and
distinguished vertex pair (v, o). We endow this space with the topology of local
convergence in the same way as G∗, except that for the isomorphism between the
local neighborhoods of two graphs, we require that the distinguished ordered ver-
tex pair of one graph maps to the distinguished pair of the other graph. There is
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a suitable metric for this convergence that makes G∗∗ a complete separable metric
space.

A probability measure μ on G∗ is called unimodular if it satisfies the following
for all Borel f :G∗∗ → [0,∞]:∫ ∑

x∈V (G)

f (G,o, x)dμ(G,o) =
∫ ∑

x∈V (G)

f (G,x, o)dμ(G,o).

A measure μ on G∗ that satisfies the above for all Borel f supported on
{(G,x, y)|x ∼ y} is said to be involution invariant. It is clear that the set of uni-
modular measures is a subset of the set of involution invariant measures. Proposi-
tion 2.2 of [2] shows that involution invariance is equivalent to unimodularity.

Involution invariance is characterized alternatively in [3] as follows. Given a
measure μ on G∗, define a measure μ∗ on G∗∗ by letting its marginal measure
on G∗ to be μ and the conditional measure on the second vertex given a rooted
geometric network G to be the counting measure on the neighbors of the root
of G. Specifically,

μ∗(·) =
∫
G∗

∑
v∼o

1{(G,o,v)∈·} dμ(G,o).

Then μ is involution invariant if μ∗ is invariant under the involution transformation

ı :G∗∗ → G∗∗, ı(G,o, v) = (G,v, o).

Involution ı swaps the order of the distinguished pair of vertices, leaving all else
unchanged.

The definitions carry forward when the graphs in G∗ are appended with maps
from their edge sets to a complete separable metric space. An edge cover C on a
graph G can be represented as the graph G with a map on the edge set of G : e �→
1{e∈C}. We say that a random edge cover C on a random graph G is involution
invariant if the distribution of G with the above map on its edges is involution
invariant.

In our model, the complete graphs �Kn are randomly rooted. Write C∗
n for the

minimum-cost edge over on �Kn having the same root as �Kn. By symmetry it is
easy to see that its distribution is involution invariant. From Section 5.2 of [3], we
see that involution invariance is preserved under weak limits in the metric space
G∗ appended with the {0,1}-map on the edge set. Consequently, if the sequence
C∗

n, n ≥ 1, converges to an element C∗, then the distribution of C∗ will be involu-
tion invariant. This motivates us to study involution invariant edge covers on the
limit PWIT.

6. Optimal involution invariant edge cover on the PWIT.

6.1. A tree process based on the RDE. In the PWIT we split each undirected
edge into two directed edges. For a general graph G, we use the notation

−→
E (G) to

denote the set of directed edges so obtained. If ξe is the cost of the undirected edge
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e = {v,w}, we assign the same cost to both of the corresponding directed edges and
write the costs as ξ(u, v) = ξ(v,u) = ξe. To each directed edge −→e = (u, v), we
will assign a random variable denoted by X(−→e ) or X(u, v). Typically, X(u, v) will
be different from X(v,u). The X process is constructed in the following lemma,
which is an analogue of Lemma 5.8 of [3] and is proved similarly. We include the
proof here for completeness.

LEMMA 1. There exists a process(
T ,
(
ξe, e ∈ E(T )

)
,
(
X(−→e ),−→e ∈ −→

E (T )
))

,

where T is a PWIT with edge lengths {ξe, e ∈ E(T )}, and {X(−→e ),−→e ∈ −→
E (T )} is

a stochastic process satisfying the following properties:

(a) For each directed edge (u, v) ∈ −→
E (T ),

X(u, v) = min
{(

ξ(v,w) − X(v,w)
)+ : (v,w) ∈ −→

E (T ),w 
= u
}
.(16)

(b) If (u, v) ∈ −→
E (T ) is directed away from the root of T , then X(u, v) has the

distribution F∗ as in (15).
(c) If (u, v) ∈ −→

E (T ), the random variables X(u, v) and X(v,u) are indepen-
dent.

(d) For a fixed z > 0, conditional on the event that there exists an edge of length
z at the root, say {φ,vz}, the random variables X(φ,vz) and X(vz,φ) are inde-
pendent random variables, each having the distribution F∗.

PROOF. Fix an integer d ≥ 1. We create independent random variables from
the distribution F∗, and assign one to each directed edge (v,w) of T where v is at
depth d − 1, and w is at depth d from the root. Then if d > 1, use relation (16) to
recursively define random variables X(t, u), where t ∼ u are vertices of T within
depth d from the root. This generates a collection of random variables Cd whose
joint distribution satisfies properties (a), (b) and (c) in the statement of the lemma
for all vertices of T up to a depth d from the root. It is easy to see that the sequence
of collections {Cd, d ≥ 1} satisfies the conditions of Kolmogorov consistency the-
orem. So there exists a collection C∞ such that the restriction to random variables
corresponding to vertices up to depth d is equal in distribution to the collection Cd

for each d ≥ 1. This implies that random variables in C∞ satisfy the properties (a),
(b) and (c).

To prove property (d), observe that a Poisson process conditioned to have a point
at z is also a Poisson process of the same intensity when that point is removed.
Now conditional on the existence of the edge {φ,vz} of length z, if we remove
this edge the PWIT splits into two subtrees. Letting φ and vz to be the roots of
these two subtrees, we find that the two subtrees are independent copies of the
original PWIT T . From the construction in the previous paragraph, it is clear that
conditionally the random variables X(φ,vz) and X(vz,φ) are independent, and
have the same distribution F∗. �
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6.2. An involution invariant edge cover on the PWIT. We use the process
{X(−→e )} to construct an edge cover Copt on T .

For each vertex v of the PWIT, define a set

Copt(v) = arg min
y∼v

{(
ξ(v, y) − X(v, y)

)+}
.(17)

In words, include in Copt(v) all y ∼ v such that ξ(v, y) − X(v, y) < 0, and if
there is no such y, then Copt(v) = {w} where w is the unique (with probability 1)
neighbor of v that minimizes ξ(v, ·) − X(v, ·). Alternatively,

Copt(v) = arg min
A

{∑
y∈A

(
ξ(v, y) − X(v, y)

)
:A ⊂ Nv,A nonempty

}
.(18)

Define the edge cover to be

Copt =⋃
v

{{v,w} :w ∈ Copt(v)
}
.

The following lemma reassures us that the chosen edge cover does not include
wasteful edges.

LEMMA 2. For any two vertices v,w of T , we have

v ∈ Copt(w) ⇐⇒ ξ(v,w) < X(v,w) + X(w,v).

As a consequence,

v ∈ Copt(w) ⇐⇒ w ∈ Copt(v).

PROOF. Suppose w ∈ Copt(v). If ξ(v,w) < X(v,w) then, since X(w,v) ≥ 0,
we have ξ(v,w) < X(v,w) + X(w,v).

If ξ(v,w) ≥ X(v,w), then definition (17) of Copt(v) and w’s membership to
this set implies that w is the only element of

arg min
y∼v

{(
ξ(v, y) − X(v, y)

)+}
,

that is,

ξ(v,w) − X(v,w) <
(
ξ(v, y) − X(v, y)

)+ for all y ∼ v, y 
= w.

Hence,

ξ(v,w) − X(v,w) < min
{(

ξ(v, y) − X(v, y)
)+ :y ∼ v, y 
= w

}
= X(w,v),

where the last equality follows from (16). We have thus established one direction
of the first statement, that is,

w ∈ Copt(v) �⇒ ξ(v,w) < X(v,w) + X(w,v).
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Conversely, suppose that ξ(v,w) < X(v,w) + X(w,v). Then X(w,v) >

ξ(v,w) − X(v,w). Also X(w,v) ≥ 0. Therefore,

X(w,v) ≥ (ξ(v,w) − X(v,w)
)+

,

that is,

min
y∼v,y 
=w

(
ξ(v, y) − X(v, y)

)+ ≥ (ξ(v,w) − X(v,w)
)+

.

It follows that

w ∈ arg min
y∼v

(
ξ(v, y) − X(v, y)

)+
and hence w ∈ Copt(v). Thus we have established the first statement of the lemma,
which is

w ∈ Copt(v) ⇐⇒ ξ(v,w) < X(v,w) + X(w,v).

The condition on the right-hand side above is symmetric in v,w, and hence the
second statement of the lemma is proved. �

The following lemma asserts that the edge cover Copt satisfies involution invari-
ance. See Section 5 for definition. The proof is similar to the proof of Lemma 24
of [4].

LEMMA 3. Copt is involution invariant.

PROOF. Given ξe,X(−→e ),−→e ∈ −→
E (T ), the edge cover Copt does not depend

on the vertex labels (which are strings from V). Relation (16) for the X process
is also independent of the labels of the vertices. The proof of the lemma is then
complete by showing that the measure of the X process constructed in Lemma 1
is involution invariant.

From the proof of Lemma 1 it is clear that the joint distribution of X process is
determined by the property that for any d > 1,{

X(v,w)|v at depth d − 1 from the root,w at depth d from the root
}

are independent random variables with distribution F∗. We need to show that this
property is invariant under the involution map.

If φ is the root (first distinguished vertex) of T , and u ∼ φ is the second dis-
tinguished vertex, then under the involution map, u becomes the root and φ the
second distinguished vertex. Write Tu for the subtree containing u obtained by
removing the edge {φ,u}. For an arbitrary Borel set B , define the event

A := {(
X(v,w), v at depth d − 1 from u,w at depth d from u

) ∈ B
}
.
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FIG. 4. The edges involved in events A (a) and ı−1(A) (b) are shown with arrow heads. Here
d = 3. The vertex with a filled circle is the root, and the vertex with an unfilled circle is the second
distinguished vertex.

The inverse image of A in the involution map is

ı−1(A) = {(
X(v1,w1), v1 ∈ Tu, v1 at depth d from φ,

w1 at depth d + 1 from φ;
X(v2,w2), v2 ∈ T \ Tu, v2 at depth d − 2 from φ,

w2 at depth d − 1 from φ
) ∈ B

}
.

Figure 4 shows the edges involved. It is clear that the random variables considered
above are independent with distribution F∗. Consequently the measure of the set
ı−1(A) equals the measure of A. This completes the proof. Note that we have used
here the simpler notion of involution invariance described in Section 5 rather than
spatial invariance as used in [4]. �

6.3. Evaluating the cost. In the following theorem we evaluate the cost of the
edge cover Copt on the T . For obvious reasons, the expectation is twice the right-
hand side of (6).

THEOREM 7.

E
[ ∑
v∈Copt(φ)

ξ(φ, v)

]
= 2W(1) + W(1)2.

PROOF. Denote by D the event that ξ(φ, v) > X(φ, v) for all v ∼ φ. Un-
der the event D, there is only one vertex in Copt(φ), say y. By Lemma 2, y is
the only neighbor of φ satisfying ξ(φ, y) < X(φ,y) + X(y,φ). Also, from (16),
X(y,φ) > 0. Conversely, if there is a neighbor y of φ that satisfies (i) X(y,φ) > 0,
(ii) ξ(φ, y) > X(φ,y) and (iii) ξ(φ, y) < X(φ,y) + X(y,φ), then from (16), we
have

0 < X(y,φ) = min
{(

ξ(φ, v) − X(φ,v)
)+

, v ∼ φ,v 
= y
}
,
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which implies ξ(φ, v) > X(φ, v) for every v ∼ φ,v 
= y. This and (ii) together
imply that the event D holds, and Copt(φ) = {y}.

Now fix a z > 0, and condition on the event that there is a neighbor vz of φ with
ξ(φ, vz) = z. Call this event Ez. If we condition a Poisson process to have a point
at some location, then the conditional process on removing this point is again a
Poisson process with the same intensity. This shows that under Ez, X(φ,vz) and
X(vz,φ) both have the same distribution F∗. Also they are independent. Using
these facts and the characterization of the event D in the previous paragraph, the
expected cost under D can be written as

E
[( ∑

v∈Copt(φ)

ξT (φ, v)

)
1D

]

=
∫ ∞
z=0

zP
{
X(vz,φ) > 0, z > X(φ, vz), z < X(φ, vz) + X(vz,φ)

}
dz

=
∫ ∞
z=0

(
zP
{
X(φ,vz) = 0

}
P
{
X(vz,φ) > z

}
+
∫ z

x=0
zP
{
X(vz,φ) > z − x

}
dF∗(x)

)
dz(19)

=
∫ ∞
z=0

(
z
(
1 − W(1)

)
W(1)e−z +

∫ z

x=0
zW(1)e−(z−x)W(1)e−x dx

)
dz

= W(1)
(
1 − W(1)

)+ 2W(1)2

= W(1) + W(1)2.

In the second equality above, we condition on X(φ,vz) = 0 and X(φ,vz) = x ∈
(0, z), respectively, in the two terms of the integrand.

Under the event Dc, Copt(φ) contains all v for which ξ(φ, v) < X(φ, v). The
expected cost over this event is given by

E
[( ∑

v∈Copt(φ)

ξ(φ, v)

)
1Dc

]

= E
[∑

v

ξ(φ, v)1{ξ(φ,v)<X(φ,v)}
]

=∑
v

E
[
ξ(φ, v)1{ξ(φ,v)<X(φ,v)}

]
=∑

v

∫ ∞
y=0

P
{
ξ(φ, v) > y, ξ(φ, v) < X(φ, v)

}
dy

=
∫ ∞
y=0

∑
v

P
{
y < ξ(φ, v) < X

}
dy

(X is a F∗-distributed r.v. independent of the Poisson process)(20)
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=
∫ ∞
y=0

E
[
Number of Poisson points in [y,X]]dy

=
∫ ∞
y=0

E
[
(X − y)+

]
dy

=
∫ ∞
y=0

∫ ∞
x=y

�F∗(x)dx dy

=
∫ ∞
y=0

∫ ∞
x=y

W(1)e−x dx dy

=
∫ ∞
y=0

W(1)e−y dy

= W(1).

Combining (19) and (20) completes the proof. �

In passing, we remark that Copt(φ) is finite almost surely.

6.4. Optimality in the class of involution invariant edge covers. We now show
that our candidate edge cover Copt has the minimum expected cost among involu-
tion invariant edge covers on the PWIT.

THEOREM 8. Let C be an involution invariant edge cover of the PWIT T .
Write C(φ) for the set of vertices of T adjacent to the root φ in C. Then

E
[ ∑
v∈C(φ)

ξ(φ, v)

]
≥ E

[ ∑
v∈Copt(φ)

ξ(φ, v)

]
.

Let us first set up some notation that will simplify the proof steps. For each
directed edge (v,w) of T , define a random variable

Y(v,w) = min
{∑

y∈A

(
ξ(w,y) − X(w,y)

)∣∣∣∣A ⊂ Nw \ {v},
A nonempty

}
,(21)

where Nw is the set of neighbors of w. It is easy to see that the random variable
can be written as

Y(v,w) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
y∼w,y 
=v

{
ξ(w,y) − X(w,y)

}
c,

if ξ(w,y) − X(w,y) ≥ 0 for all y ∼ w,y 
= v,∑
y∼w,y 
=v

(
ξ(w,y) − X(w,y)

)
1{ξ(w,y)−X(w,y)<0},

otherwise.

Note that (Y (v,w))+ = X(v,w).
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Suppose that E[∑v∈C(φ) ξ(φ, v)] < ∞. Then C(φ) is a finite set with probabil-
ity 1 because {ξ(φ, v), v ∼ φ} are points of a Poisson process of rate 1. For such
an edge cover C, define

A(C) = ∑
v∈C(φ)

X(φ, v) + max
v /∈C(φ),v∼φ

Y (v,φ).(22)

The max operation in the above equation is over an infinite number of vertices;
however, in the remark after the proof of Lemma 4, we will show that effectively
Y(v,φ) assumes only finitely many values as we vary v, and hence the max oper-
ation as well as A(C) are almost surely well defined.

The following two lemmas will be used to prove Theorem 8.

LEMMA 4. Let C be an edge cover rule on the PWIT such that

E
[ ∑
v∈C(φ)

ξ(φ, v)

]
< ∞.

Then almost surely, ∑
v∈C(φ)

ξ(φ, v) ≥ A(C).

Furthermore, ∑
v∈Copt(φ)

ξ(φ, v) = A(Copt).

LEMMA 5. Let C be an edge cover rule on the PWIT such that

E
[ ∑
v∈C(φ)

ξ(φ, v)

]
< ∞.

If C is involution invariant, we have E[A(C)] ≥ E[A(Copt)].
PROOF OF THEOREM 8. If E[∑v∈C(φ) ξ(φ, v)] = ∞, the statement of the the-

orem is trivially true. Assume that it is finite. We are now in a position to apply
Lemmas 4 and 5 as follows to get the result

E
[ ∑
v∈C(φ)

ξ(φ, v)

]
≥ E

[
A(C)

]
(Lemma 4)

≥ E
[
A(Copt)

]
(Lemma 5)

= E
[ ∑
v∈Copt(φ)

ξ(φ, v)

]
(Lemma 4).

�

Let us now complete the proofs of Lemmas 4 and 5.
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PROOF OF LEMMA 4. From (21), we have

Y(v,φ) ≤ ∑
y∈A

(
ξ(φ, y) − X(φ,y)

)
for all A ⊂ Nφ \ {v}, A nonempty.

For any v /∈ C(φ), we can choose A = C(φ) to obtain

Y(v,φ) ≤ ∑
y∈C(φ)

(
ξ(φ, y) − X(φ,y)

)
.

This implies

max
v /∈C(φ),v∼φ

Y (v,φ) ≤ ∑
y∈C(φ)

(
ξ(φ, y) − X(φ,y)

)
.(23)

Thanks to the finite expectation assumption in the lemma, C(φ) is a finite set almost
surely, and so

∑
y∈C(φ) X(φ, y) is finite. Rearrangement of (23) then yields∑

v∈C(φ)

ξ(φ, v) ≥ A(C).

Now recall the alternate characterization of Copt via

Copt(w) = arg min
A

{∑
y∈A

(
ξ(w,y) − X(w,y)

)
:A ⊂ Nw,A nonempty

}
.(24)

From (21) and (24), for any v /∈ Copt(φ), we have

Y(v,φ) = ∑
y∈Copt(φ)

(
ξ(φ, y) − X(φ,y)

)
(25)

and hence

max
v /∈Copt(φ),v∼φ

Y (v,φ) = ∑
y∈Copt(φ)

(
ξ(φ, y) − X(φ,y)

)
.

It follows by rearrangement that∑
v∈Copt(φ)

ξ(φ, v) = A(Copt).
�

Let us quickly reassure the reader that the max operation in (22) is well defined.
Notice that (25) implies that Y(w,φ) takes values in the finite set{ ∑

y∈Copt(φ)

(
ξ(φ, y) − X(φ,y)

)}∪ {Y(v,φ)|v ∈ Copt(φ)
}
.

That Copt(φ) is finite (almost surely) can be gleaned from Theorem 7. This vali-
dates the assertion that the max in the definition of A(C) is well defined.
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PROOF OF LEMMA 5. Define

Ã(C) = ∑
v∈C(φ)

X(v,φ) + max
v /∈C(φ),v∼φ

Y (v,φ).(26)

We will prove Lemma 5 by showing the following two results:

(a) For an involution invariant edge cover C,

E
[
Ã(C)

]= E
[
A(C)

]
.(27)

(b) Almost surely,

Ã(C) ≥ Ã(Copt).(28)

We first prove (27). First, by involution invariance of C, we have

E
[ ∑
v∈C(φ)

X(φ, v)

]
= E

[ ∑
v∈C(φ)

X(v,φ)

]
.(29)

Indeed, the left-hand side equals∫
G∗

∑
v∼φ

X(φ, v)1{{φ,v}∈C} dμC
([G,φ]),

where μC is the probability measure on G∗ corresponding to (T ,C). By involution
invariance, this equals∫

G∗

∑
v∼φ

X(v,φ)1{{v,φ}∈C} dμC
([G,φ]),

which is equal to the right-hand side of (29). Thanks to the finite expectation as-
sumption of the lemma, we saw in the proof of Lemma 4 that

max
v /∈C(φ),v∼φ

Y (v,φ)

is finite almost surely. Now observe that A(C) [resp., Ã(C)] is obtained by adding
the almost surely finite random variable maxv /∈C(φ),v∼φ Y (v,φ) to the random vari-
able which is the argument of the expectation on the left-hand side of (29) [resp.,
the right-hand side of (29)]. Taking expectation and using the equality in (29), we
get (27).

Now we will prove (28). First condition on the event L1 = {|Copt(φ)| > 1}. Ob-
serve that, under L1, ξ(φ, y) − X(φ,y) < 0, y ∼ φ if and only if y ∈ Copt(φ), and
there are at least two such y. Then, by (16),

X(v,φ) = 0 for all v ∼ φ.(30)

Also, from (21) and (24),

Y(v,φ) ≥ ∑
y∈Copt(φ)

(
ξ(φ, y) − X(φ,y)

)= Y(w,φ)
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if w /∈ Copt(φ). This implies

Y(v,φ) ≥ max
w/∈Copt(φ),w∼φ

Y (w,φ) for all v ∼ φ.

In particular,

max
v /∈C(φ),v∼φ

Y (v,φ) ≥ max
w/∈Copt(φ),w∼φ

Y (w,φ).(31)

Combining (30) and (31) gives∑
v∈C(φ)

X(v,φ) + max
v /∈C(φ),v∼φ

Y (v,φ)

(32)
≥ ∑

v∈Copt(φ)

X(v,φ) + max
v /∈Copt(φ),v∼φ

Y (v,φ).

Thus Ã(C) ≥ Ã(Copt) under L1.
Now consider the event L2 = {|Copt(φ)| = 1}. Let

X
(1)
φ = min

v∼φ

(
ξ(φ, v) − X(φ,v)

)
and

X
(2)
φ = min

v∼φ

(2)(ξ(φ, v) − X(φ,v)
)
,

where min(2) stands for the second minimum.
Let Copt(φ) = {u}. Then X(u,φ) = X

(2)
φ , and for v ∈ C(φ) \ Copt(φ), X(v,φ) =

(X
(1)
φ )+. So we get ∑

v∈C(φ)

X(v,φ) − ∑
v∈Copt(φ)

X(v,φ)

(33)
= ∑

v∈C(φ)\Copt(φ)

(
X

(1)
φ

)+ − X
(2)
φ 1{u/∈C(φ)}.

If v /∈ Copt(φ), then Y(v,φ) = X
(1)
φ . Also Y(u,φ) = X

(2)
φ . Since X

(2)
φ ≥ X

(1)
φ ,

we get

max
v /∈C(φ),v∼φ

Y (v,φ) = X
(2)
φ 1{u/∈C(φ)} + X

(1)
φ 1{u∈C(φ)}

and

max
v /∈Copt(φ),v∼φ

Y (v,φ) = X
(1)
φ .

Therefore,

max
v /∈C(φ),v∼φ

Y (v,φ) − max
v /∈Copt(φ),v∼φ

Y (v,φ) = (
X

(2)
φ − X

(1)
φ

)
1{u/∈C(φ)}.(34)
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Adding (33) and (34), and canceling X
(2)
φ 1{u/∈C(φ)}, we get∑

v∈C(φ)

X(v,φ) + max
v /∈C(φ),v∼φ

Y (v,φ) − ∑
v∈Copt(φ)

X(v,φ) − max
v /∈Copt(φ),v∼φ

Y (v,φ)

= ∑
v∈C(φ)\Copt(φ)

(
X

(1)
φ

)+ − X
(1)
φ 1{u/∈C(φ)} ≥ 0,

where the last inequality follows because there exists a v ∈ C(φ)\Copt(φ) by virtue
of our assumption that C(φ) 
= Copt(φ). Thus Ã(C) ≥ Ã(Copt) under L2 as well. �

7. Completing the lower bound. In the previous section we described an
edge cover Copt on the infinite tree T . We showed that this edge cover satisfies
the expected property of involution invariance, and it has the minimum expected
cost among all edge covers having this property. We use this to show now that the
expected cost of Copt serves as an asymptotic lower bound on the expected cost of
min-cost edge covers on �Kn.

THEOREM 9. Let C∗
n be the optimal edge cover on �Kn. Then

lim inf
n→∞ E

[ ∑
{φ,v}∈C∗

n

ξ�Kn
(φ, v)

]
≥ 2W(1) + W(1)2.

PROOF. Take a subsequence {nk, k ≥ 1} for which the lim inf above is a limit.

Now consider the joint sequence (C∗
nk

, �Knk
)k≥1 in G∗ × G∗. Because �Knk

l.w.−→ T ,
for every ε > 0 there is a compact subset K of G∗, with P{�Knk

∈ K} > 1 − ε

for all k. Also, we can take the graphs �Knk
to be on a common vertex set Ṽ ,

and assume that all graphs in K are defined on the same vertex set. Let Ẽ denote
the set of all possible edges. Let KS denote the set {H is a subgraph of G|G ∈
K}. Since C∗

nk
is a subgraph of �Knk

, P{C∗
nk

∈ KS} > 1 − ε for all k. An element

of KS can be identified with an element of K × {0,1}Ẽ , where 1 or 0 denotes
the presence or absence of an edge, respectively. Since the latter is a compact
set, so is KS . This shows that the sequence of random graphs {C∗

nk
}k≥1 is tight.

By completeness of G∗, we have that {(C∗
nk

, �Knk
), k ≥ 1} is sequentially compact.

Therefore, there exists a further subsequence {nj , j ≥ 1} of {nk, k ≥ 1} such that
(C∗

nj
, �Knj

) converges in the local weak sense to (C∗,T ). Since the C∗
n distribution

is involution invariant, so is the distribution of C∗. By Skorohod’s theorem we can
assume the convergence occurs almost surely in some probability space. By the
definition of local weak convergence∑

{φ,v}∈C∗
nj

ξ�Knj
(φ, v) → ∑

v∈C∗(φ)

ξT (φ, v) as n → ∞ a.s.
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By Fatou’s lemma

lim inf
j→∞ E

[ ∑
{φ,v}∈C∗

nj

ξ�Knj
(φ, v)

]
≥ E

[ ∑
v∈C∗(φ)

ξT (φ, v)

]
.

By Theorems 8 and 7,

E
[ ∑
v∈C∗(φ)

ξT (φ, v)

]
≥ E

[ ∑
v∈Copt(φ)

ξT (φ, v)

]
= 2W(1) + W(1)2.

This completes the proof. �

8. Belief propagation. To prove the upper bound on ECn in order to com-
plete the proof of Theorem 1, we will construct edge covers on Kn,n ≥ 1, with
costs W(1) + W(1)2/2 + o(1). This is achieved using belief propagation as de-
scribed in Section 2.

We follow the approach of [14] to prove Theorem 2. In this section we will show
the convergence of the BP algorithm on the PWIT T , and relate the converged
solution with the edge cover Copt of Section 6. In the next section we show that the
belief propagation on �Kn converges to belief propagation on T as n → ∞.

8.1. Convergence of BP on the PWIT. In this section we will prove that the
messages on T converge, and relate the resulting edge cover with the cover Copt of
Section 6.

The message process can essentially be written as

Xk+1
T (v̇, v) = min

i≥1

{(
ξT (v, v.i) − Xk

T (v, v.i)
)+}

,(35)

where the initial messages X0
T (v̇, v) are i.i.d. random variables [zero in the case of

our algorithm; see (2)].
By the structure of T , it is clear that for a fixed k ≥ 0, all the messages

Xk
T (v̇, v), v ∈ V share the same distribution. Also, it can be seen from the anal-

ysis of RDE (13) in Section 4 that if we denote the complementary c.d.f. of this
distribution at some step k by �F , then after one update the complementary c.d.f. is
given by the map

T �F(y) =
⎧⎨⎩ e−y exp

(
−
∫ ∞

0
�F(t)dt

)
, if y ≥ 0,

1, if y < 0.

The operator T thus defined on the space D of complementary c.d.f.’s of �R-valued
random variables has a unique fixed point �F∗ given by (15).

The following theorem shows that the fixed point �F∗ has the full space D as
its domain of attraction. In other words, irrespective of the initial distribution, the
common distribution of the messages Xk

T (v̇, v), v ∈ V converges to the distribution
F∗ as k → ∞.
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THEOREM 10. For any �F ∈D,

lim
k→∞T k �F = �F∗.

PROOF. For any y ≥ 0 and k ≥ 0,

T k+1 �F(y) = e−y exp
(
−
∫ ∞

0
T k �F(t)dt

)
.

Thus for k ≥ 1, T k �F(y) = cke
−y , where ck, k ≥ 1, are nonnegative real numbers

satisfying

ck+1 = exp
(
−
∫ ∞

0
cke

−t dt

)
= e−ck .

It is easy to check that ck → W(1). Consequently, T k �F → �F∗. �

8.2. Endogeny and bivariate uniqueness. We have established the conver-
gence of the messages on T in distribution. We now ask for the joint convergence
of the message process on the tree. In particular, the question is whether there is a
limit process satisfying the requirements of Lemma 1.

An important property of the limiting process that allows us to come to this con-
clusion is endogeny introduced in [5]. Endogeny is a property of the recursive tree
process (RTP) that it is measurable with respect to the i.i.d. process (ξi,Ni), i ∈ V .

DEFINITION. An invariant RTP with marginal distribution μ is said to be en-
dogenous if the root variable Xφ is almost surely measurable with respect to the
σ -algebra

σ
({

(ξi,Ni)|i ∈ V
})

.

Endogeny is related to another property of the RTP termed as bivariate unique-
ness again introduced in [5].

For a general RDE (14) write T :P → P(S) for the map induced by the func-
tion g. Let P(2) denote the space of probability measures on S × S with marginals
in P . We now define a bivariate map T (2) :P(2) → P(S × S), which maps a distri-
bution μ(2) ∈ P(2) to the joint distribution of(

g
(
ξ ; (X(1)

j ,1 ≤ j < N
))

g
(
ξ ; (X(2)

j ,1 ≤ j < N
))
)

,

where (X
(1)
j ,X

(2)
j )j≥1 are independent with joint distribution μ(2) on S × S, and

the family of random variables (X
(1)
j ,X

(2)
j )j≥1 are independent of the pair (ξ,N).
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It is easy to see that if μ is a fixed point of the RDE, then the associated diagonal
measure μ↗ := Law(X,X) where X ∼ μ is a fixed point of the operator T (2).

DEFINITION. An invariant RTP with marginal distribution μ is said to have
the bivariate uniqueness property if μ↗ is the unique fixed point of the operator
T (2) with marginals μ.

Theorem 11 of [5] stated below shows that under certain assumptions, endogeny
and bivariate uniqueness are equivalent.

THEOREM 11 (Theorem 11 of [5]). Let S be a Polish space. Consider an
invariant RTP with marginal distribution μ:

(a) If the endogenous property holds, then the bivariate uniqueness property
holds.

(b) Conversely, suppose the bivariate uniqueness property holds. If also T (2) is
continuous with respect to weak convergence on the set of bivariate distributions
with marginals μ, then the endogenous property holds.

(c) The endogenous property holds if and only if T (2)n(μ⊗μ)
D−→ μ↗, where

μ ⊗ μ is the product measure.

The following theorem establishes the endogeny of the edge cover RDE.

THEOREM 12. The invariant RTP with marginal μ∗ (with c.d.f. F∗) associated
with the edge cover RDE (13) is endogenous.

PROOF. By Theorem 11(b) it is sufficient to prove bivariate uniqueness and
continuity for the map T (2) :P(R+ × R+) → P(R+ × R+), where R+ = [0,∞)

and T (2)(μ(2)) is the distribution of

(
X

Y

)
=
⎛⎝min

i≥1
(ξi − Xi)

+

min
i≥1

(ξi − Yi)
+

⎞⎠ ,

where (Xi, Yi)i≥1 are independent with joint distribution μ(2) on R2+, and are in-
dependent of (ξi)i≥1 which are points of a Poisson process of rate 1 on R+.

To prove bivariate uniqueness, we have to show that if μ
(2)∗ is a fixed point

of the above map (with marginals μ∗), then X = Y a.s. (μ
(2)∗ ). By Lemma 1

of [6] this is equivalent to showing X
D= Y

D= X ∧ Y . Let (Xi, Yi)i≥1 be i.i.d.
with distribution μ(2). The set of points P := {(ξi; (Xi, Yi))|i ≥ 1} forms a Pois-
son process on (0,∞) × R2+ with intensity dtμ

(2)∗ (d(x, y)) at (t; (x, y)). Writing
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G(x,y) = P{X > x,Y > y} for x, y ∈ R+, we get

G(x,y) = P{ξi − Xi > x, ξi − Yi > y, for all i ≥ 1}
= P

{
No point of P in

{(
t; (u, v)

)
: t − u ≤ x or t − v ≤ y

}}
= exp

(
−
∫ x∨y

t=0
dt −

∫ ∞
t=x∨y

P{t − X1 ≤ x or t − Y1 ≤ y}dt

)

= e−x∨y exp
(
−
∫ ∞
t=x∨y

P{X1 ≥ t − x or Y1 ≥ t − y}dt

)
(36)

= e−x∨y exp
(
−
∫ ∞
t=x∨y

(
W(1)e−(t−x) + W(1)e−(t−y)

− P{X1 ≥ t − x,Y1 ≥ t − y})dt

)
= e−x∨y exp

(−W(1)e−x∨y(ex + ey))
× exp

(∫ ∞
t=x∨y

P{X1 ≥ t − x,Y1 ≥ t − y}dt

)
.

From this, setting x = y, it is clear that G(x,x) = ce−x, x ≥ 0, for some constant c.
We now have to evaluate the constant.

Observe that the only place where G(x,x) can be discontinuous (if at all) is
at x = 0. As a consequence, with x = y and the change of variable z = t − x,
we see that the integral inside the exponent in (36) is

∫∞
0 P(X1 ≥ z,Y1 ≥ z)dz =∫∞

0 P(X1 > z,Y1 > z)dz = ∫∞
0 G(z, z)dz. With x = y in (36), and integrating,

we find that

c = e−2W(1)ec,

that is,

ce−c = e−2W(1).

Since W(1) = e−W(1), it can be seen that c = W(1) solves the above equation.
Because G(0,0) ≤ 1, we have c ≤ 1, and noting that the function x �→ xe−x is
monotone increasing for 0 ≤ x ≤ 1, we conclude that c = W(1) is the only solu-

tion. Thus G = �F∗, that is, X ∧ Y
D= X

D= Y . This establishes bivariate uniqueness.
Now to establish endogeny it remains to prove the continuity hypothesis of The-

orem 11(b). Note that we require continuity of the map T (2) only over the subset
P∗ ⊂ P(R2+) which contains probability distributions with both marginals equal

to μ∗. We need to show that for any μ(2) ∈ P∗ and a sequence (μ
(2)
n )n≥1 in P∗

such that μ
(2)
n

D−→ μ(2), we have T (2)(μ
(2)
n )

D−→ T (2)(μ(2)).
Take a probability space (
,F,P ) in which there are random vectors (X,Y ) ∼

μ(2) and a sequence of random vectors {(Xn,Yn), n ≥ 1}, with (Xn,Yn) ∼ μ
(2)
n .
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Then (Xn,Yn)
D−→ (X,Y ). By following the steps of (36), for x, y ∈ R+, we can

write

Gn(x, y) = T (2)(μ2
n

)(
(x,∞), (y,∞)

)
= e−x∨y exp

(−W(1)e−x∨y(ex + ey))
× exp

(∫ ∞
t=x∨y

P{Xn ≥ t − x,Yn ≥ t − y}dt

)
= e−x∨y exp

(−W(1)e−x∨y(ex + ey))(37)

× exp
(∫ ∞

t=x∨y
P
{
(Xn + x) ∧ (Yn + y) ≥ t

}
dt

)
= e−x∨y exp

(−W(1)e−x∨y(ex + ey))
× exp

(
E
[(

(Xn + x) ∧ (Yn + y) − x ∨ y
)+])

.

The same calculation also gives

G(x,y) = T (2)(μ(2))((x,∞), (y,∞)
)

= e−x∨y exp
(−W(1)e−x∨y(ex + ey))(38)

× exp
(
E
[(

(X + x) ∧ (Y + y) − x ∨ y
)+])

.

Let

Zx,y
n := (

(Xn + x) ∧ (Yn + y) − x ∨ y
)+ and

Zx,y := (
(X + x) ∧ (Y + y) − x ∨ y

)+
.

Now (Xn,Yn)
D−→ (X,Y ) implies that, for each (x, y), Z

x,y
n

D−→ Zx,y . Now

0 ≤ Zx,y
n ≤ Xn for all n ≥ 1.

Since EXn = EX for all n ≥ 1, by dominated convergence theorem, we have
EZ

x,y
n → EZx,y as n → ∞. Consequently Gn(x, y) → G(x,y) for all x, y ∈ R+.

�

8.3. Completing the proof of convergence of BP on the PWIT. With endogeny
in hand, we conclude that given a realization of T , almost surely, the resulting sta-
tionary configuration of the X process of Lemma 1 is unique. Also, the following
lemma will show that if the initial messages are i.i.d. random variables with the
fixed point distribution μ∗, then the message process (35) converges, and the limit
configuration is unique (almost surely).

LEMMA 6. If the initial messages X0
T (v̇, v) are i.i.d. random variables with

distribution μ∗, then the message process (35) converges in L2 to the process X

as k → ∞.



2442 M. KHANDWAWALA AND R. SUNDARESAN

PROOF. Consider the evolution of bivariate messages according to (35), start-
ing from (X0

T (·),X(·)). The second component will remain unchanged because
the X process satisfies (16). The distribution of (X0

T (·),X(·)) is μ∗ ⊗μ∗. We have

Law
(
Xk+1

T (·),X(·))= T (2)(Law
(
Xk

T (·),X(·))).
Here T (2) is as defined in Theorem 12. By Theorem 11(c), (Xk

T (·),X(·)) con-
verges to (X(·),X(·)) in distribution as k → ∞. Since (Xk

T − X)2 ≤ 2(Xk
T )2 +

2X2, and E[2(Xk
T )2 + 2X2] = 4E[X2], the dominated convergence theorem gives

E[(Xk
T − X)2] → 0 as k → ∞. �

We now prove that if the initial values are i.i.d. random variables with some ar-
bitrary distribution (not necessarily μ∗), then the message process (35) does indeed
converge to the unique stationary configuration. Of course, the initial condition of
particular interest to us is the all zero initial condition (2), but we will prove a more
general result.

The following lemma will allow us to interchange limit and minimization while
working with the updates on T .

LEMMA 7. Let X0
T (v̇, v) be initialized to i.i.d. random variables with arbi-

trary distribution F on R+. Then the map

πk
T (v) = arg min

u∼v

{(
ξT (v, u) − Xk

T (v, u)
)+}

is a.s. well defined and finite for all k ≥ 1, and

sup
k≥1

P
{
max arg min

i≥1

{(
ξT (v, v.i) − Xk

T (v, v.i)
)+}≥ i0

}
→ 0 as i0 → ∞.

PROOF. Fix k. If j ∈ arg mini≥1{(ξT (v, v.i) − Xk
T (v, v.i))+} and j ≥ 2, then

ξ(v, v.j) − Xk
T (v, v.j) ≤ (ξT (v, v.1) − Xk

T (v, v.1)
)+

.

Now

P
{
ξ(v, v.j) − Xk

T (v, v.j) ≤ (ξT (v, v.1) − Xk
T (v, v.1)

)+}
≤ P

{
ξ(v, v.j) ≤ Xk

T (v, v.j)
}

(39)

+ P
{
ξ(v, v.j) − Xk

T (v, v.j) ≤ ξ(v, v.1) − Xk
T (v, v.1)

}
.

The updates are such that {Xk
T (v, v.i), i ≥ 1} remain i.i.d. and independent of the

Poisson process {ξ(v, v.i)}. Thus the probability on the right-hand side of (39)
equals

P
{
ξj ≤ Xk

1
}+ P

{
ξj−1 ≤ Xk

2 − Xk
1
}
,
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where {ξi} is a Poisson process and Xk
1,X

k
2 are independent random variables with

same distribution as Xk
T (v, v.1). Then

∞∑
j=2

P
{
j ∈ arg min

i≥1

{(
ξT (v, v.i) − Xk

T (v, v.i)
)+}}

≤
∞∑

j=2

(
P
{
ξj ≤ Xk

1
}+ P

{
ξj−1 ≤ Xk

2 − Xk
1
})

≤
∞∑

j=1

P
{
ξj ≤ Xk

1
}+

∞∑
j=1

P
{
ξj ≤ Xk

2 − Xk
1
}

(40)

= EXk
1 + E

∣∣Xk
1 − Xk

2

∣∣
≤ 3EXk

1.

From the proof of Theorem 10 it follows that EXk
1 converges, and hence it is

bounded. This proves that the arg min is a.s. finite and the probability in the state-
ment of the lemma, being upper bounded by the tail sum of the left-hand side
of (40), converges uniformly to 0. �

We are now in a position to prove the required convergence.

THEOREM 13. The recursive tree process defined by (35) with i.i.d. initial
messages converges to the unique stationary configuration in the following sense.
For every v ∈ V ,

Xk
T (v, v.i)

L2−→ X(v, v.i) as k → ∞.

Also, the decisions at the root converge, that is, P{πk
T (φ) 
= Copt(φ)} → 0 as

k → ∞.

PROOF. The proof is essentially identical to the proof of Theorem 5.2 of [14].
We present it here for completeness.

Let F be the c.d.f. of the initial distribution. Let θt , t ∈ R denote the t-shift
operator on D, that is, θt

�F :x �→ �F(x − t). Since T n �F → �F∗, and T n �F are of the
form y �→ cne

−y, y ≥ 0 for n ≥ 1, for any ε > 0 there exists kε ∈ N such that

θ−ε
�F∗ ≤ T kε �F ≤ θε

�F∗.

By Strassen’s theorem, probability measures satisfying such an ordering can be
coupled in a pointwise monotone manner. In other words, there exists a proba-
bility space E′ = (
′,F ′,P ′), possibly differing from the original space E =
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(
,F ,P ), on which we can define a random variable Xε with complementary
c.d.f. T kε �F and two random variables X− and X+ with distribution �F∗ such that
almost surely

X− − ε ≤ Xε ≤ X+ + ε.(41)

We now define over the product space (
⊗

v∈V E′) ⊗ E the PWIT T and inde-
pendent copies (X−

v ,Xε
v,X

+
v )v∈V of the triple (X−,Xε,X+).

On T , we look at the message process with three different initializations:

X
0,−
T (v̇, v) = X−

v , X
0,ε
T (v̇, v) = Xε

v and X
0,+
T (v̇, v) = X+

v ∀v ∈ V.

From the update rule (35) one can readily verify that the ordering between the
messages is preserved in the following sense. For any v ∈ V and k ≥ 0,

X
2k,−
T (v̇, v) − ε ≤ X

2k,ε
T (v̇, v) ≤ X

2k,+
T (v̇, v) + ε;

X
2k+1,+
T (v̇, v) − ε ≤ X

2k+1,ε
T (v̇, v) ≤ X

2k+1,−
T (v̇, v) + ε.

Now fix a v ∈ V , and observe that(
X

k+kε

T (v̇, v)
)
k≥0

D= (
X

k,ε
T (v̇, v)

)
k≥0.

It follows that for every k ≥ kε ,

sup
s,t≥k

∥∥Xs
T (v̇, v) − Xt

T (v̇, v)
∥∥
L2

= sup
s,t≥k−kε

∥∥Xs,ε
T (v̇, v) − X

t,ε
T (v̇, v)

∥∥
L2

≤ 2 sup
t≥k−kε

∥∥Xt,±
T (v̇, v) − X(v̇, v)

∥∥
L2 + 2ε.

From endogeny and Lemma 6, it follows that

sup
t≥k−kε

∥∥Xt,±
T (v̇, v) − X(v̇, v)

∥∥
L2 → 0 as k → ∞.

Thus the sequence (Xk
T (v̇, v))k≥0 is Cauchy in L2, and hence convergent. Now,

Lemma 7 allows us to interchange limit and minimization in (35) to conclude that
the limit process has to be a fixed point of (35). By endogeny there is a unique
stationary configuration a.s. on any realization of the PWIT. Hence the limit con-
figuration has to be identical to the X process.

Again by Lemma 7, for any ε > 0, we can choose an i0 such that

P
{
πk
T (φ) � {1,2, . . . , i0}}< ε/3

for all k ≥ 1, and P{Copt(φ) � {1,2, . . . , i0}} < ε/3. Now, the convergence of Xk
T

to X implies that for k sufficiently large, when πk
T (φ) and Copt(φ) are contained in

{1,2, . . . , i0}, the probability that the two maps differ is less than ε/3. This proves
the second statement of the theorem. �
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9. Belief propagation on �Kn.

9.1. Convergence of the update rule on �Kn to the update rule on T . We use
from [14] the modified definition of local convergence applied to geometric net-
works with edge labels, that is, networks in which each directed edge (v,w) has
a label λ(v,w) taking values in some Polish space. For local convergence of a se-
quence of such labeled networks G1,G2, . . . to a labeled geometric network G∞,
we add the additional requirement that the rooted graph isomorphisms γn,ρ satisfy

lim
n→∞λGn

(
γn,ρ(v,w)

)= λG∞(v,w)

for each directed edge (v,w) in Nρ(G∞).
Now we view the configuration of BP on a graph G at the kth iteration as a

labeled geometric network with the label on edge (v,w) given by the pair(
Xk

G(v,w),1{v∈πk
G(w)}

)
.

With this definition, our convergence result can be written as the following the-
orem.

THEOREM 14. For every fixed k ≥ 0, the kth step configuration of BP on �Kn

converges in the local weak sense to the kth step configuration of BP on T .(�Kn,X
k�Kn

(v,w),1{v∈πk�Kn
(w)}

) l.w.−→ (
T ,Xk

T (v,w),1{v∈πk
T (w)}

)
.(42)

PROOF. The proof of this theorem proceeds along the lines of the proof of
Theorem 4.1 of [14].

Consider an almost sure realization of the convergence �Kn → T .
Recall from Section 3 the labeling of the vertices of T from the set V . We

now recursively apply multiple labels from V to the vertices of �Kn. Label the root
as φ. If v ∈ V denotes a vertex x of �Kn, then (v.1, v.2, . . . , v.(n − 1) denote the
neighbors of x in �Kn ordered by increasing lengths of the corresponding edge
with x. Then the convergence in (42) is shown if we argue that

∀{v,w} ∈ E Xk�Kn
(v,w)

P−→ Xk
T (v,w) and

∀v ∈ V πk�Kn
(v)

P−→ πk
T (v) as n → ∞.

The above is trivially true for k = 0. Writing the update and decision rules as

Xk+1
�Kn

(w,v) = min
u∈{v.1,...,v.(n−1),v̇}\{w}

{(
ξ�Kn

(v,u) − Xk�Kn
(v,u)

)+} and

πk�Kn
(v) = arg min

u∈{v.1,...,v.(n−1),v̇}
{(

ξ�Kn
(v,u) − Xk�Kn

(v,u)
)+}

,
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we may try to use the convergence of each term on the right-hand side inductively
to conclude the convergence of the term on the left. This is not directly possible
as the minimum is over an unbounded number of terms as n → ∞. However the
following lemma allows us to restrict attention to a uniformly bounded number of
terms for each n with probability as high as desired, and hence obtain convergence
in probability for each k ≥ 0. �

LEMMA 8. For all v ∈ V and k ≥ 0,

lim
i0→∞ lim sup

n→∞
P
{
max arg min

1≤i≤n−1

{(
ξ�Kn

(v, v.i) − Xk�Kn
(v, v.i)

)+}≥ i0

}
= 0.

PROOF. The proof is the same as the proof of Lemma 4.1 of [14]. The only
thing to keep in mind is arg min is a set, and we target the largest index, but the
same proof applies. �

9.2. Completing the upper bound: Proof of Theorem 2. By Theorem 13,

πk
T (φ)

P−→ Copt(φ) as k → ∞. It follows that∑
v∈πk

T (φ)

ξT (φ, v)
P−→ ∑

v∈Copt(φ)

ξT (φ, v) as k → ∞.(43)

We now prove convergence in expectation. Observe that

v ∈ πk
T (φ) �⇒ ξT (φ, v) − Xk

T (φ, v) ≤ (ξT (φ,1) − Xk
T (φ,1)

)+ ≤ ξT (φ,1).

By (35), Xk
T (φ, v) ≤ ξT (v, v.1). Thus

v ∈ πk
T (φ) �⇒ ξT (φ, v) ≤ ξT (φ,1) + ξT (v, v.1).(44)

This implies∑
v∈πk

T (φ)

ξT (φ, v) ≤ ξT (φ,1) +∑
i≥2

ξT (φ, i)1{ξT (φ,i)≤ξT (φ,1)+ξT (i,i.1)}.

It can be verified that the sum on the right-hand side in the above equation is an
integrable random variable. Equation (43) and the dominated convergence theorem
give

lim
k→∞ E

[ ∑
v∈πk

T (φ)

ξT (φ, v)

]
= E

[ ∑
v∈Copt(φ)

ξT (φ, v)

]
(45)

= 2W(1) + W(1)2,

where the last equality follows from Theorem 7.
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By Theorem 14 and Lemma 8, using the definition of local weak convergence,
we have ∑

v∈πk�Kn
(φ)

ξ�Kn
(φ, v)

P−→ ∑
v∈πk

T (φ)

ξT (φ, v) as n → ∞.(46)

We now apply the arguments that lead to (44) to the edge covers πk�Kn
(φ), and

obtain

v ∈ πk�Kn
(φ) �⇒ ξ�Kn

(φ, v) ≤ ξ�Kn
(φ,1) + ξ�Kn

(v, v.1).

For any two vertices u, v of �Kn, define Sn(u, v) = minw 
=u,v ξ�Kn
(u,w). Then for a

vertex v of �Kn, ξ�Kn
(φ,1) ≤ Sn(φ, v) and ξ�Kn

(v, v.1) ≤ Sn(v,φ). This gives

v ∈ πk�Kn
(φ) �⇒ ξ�Kn

(φ, v) ≤ Sn(φ, v) + Sn(v,φ).

Consequently,∑
v∈πk�Kn

(φ)

ξ�Kn
(φ, v) ≤∑

v

ξ�Kn
(φ, v)1{ξ�Kn

(φ,v)≤Sn(φ,v)+Sn(v,φ)}.(47)

Observe that ξ�Kn
(φ, v), Sn(φ, v) and Sn(v,φ) are independent exponential ran-

dom variables with means n,n/(n − 2) and n/(n − 2), respectively. So we can
write

E
[
ξ�Kn

(φ, v)1{ξ�Kn
(φ,v)≤Sn(φ,v)+Sn(v,φ)}

]
=
∫ ∞

0

∫ x

0

t

n
e−t/n dt

(
n − 2

n

)2

xe−((n−2)/n)x dx

= 3n2 − 5n

(n − 1)3 .

Summing over all neighbors of φ, we get

E
[∑

v

ξ�Kn
(φ, v)1{ξ�Kn

(φ,v)≤Sn(φ,v)+Sn(v,φ)}
]

= 3n2 − 5n

(n − 1)2 ,(48)

which converges to 3 as n → ∞.
Using local weak convergence, we can see that∑

v

ξ�Kn
(φ, v)1{ξ�Kn

(φ,v)≤Sn(φ,v)+Sn(v,φ)}

P−→ ξT (φ,1) +∑
i≥2

ξT (φ, i)1{ξT (φ,i)≤ξT (φ,1)+ξT (i,i.1)}.
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It can be verified that the expectation of the random variable on the right-hand side
above equals 3. Using this with (46), (47) and (48), the generalized dominated
convergence theorem yields

lim
n→∞ E

[ ∑
v∈πk�Kn

(φ)

ξ�Kn
(φ, v)

]
= E

[ ∑
v∈πk

T (φ)

ξT (φ, v)

]
.(49)

Combining (49) and (45) gives

lim
k→∞ lim

n→∞ E
[ ∑
v∈πk�Kn

(φ)

ξ�Kn
(φ, v)

]
= 2W(1) + W(1)2.(50)

The expectation in the statement of Theorem 2 can be written as

E
[ ∑
e∈C(πk

Kn
)

ξKn(e)

]
= 1

2
E
[∑

v

∑
w∈πk

Kn
(v)

ξKn(v,w)

]

= 1

2
E
[∑

v

1

n

∑
w∈πk�Kn

(v)

ξ�Kn
(v,w)

]
(51)

= 1

2
E
[ ∑
v∈πk�Kn

(φ)

ξ�Kn
(φ, v)

]
.

In the first equality above we count the contribution of the edges of the cover
incident at each vertex of Kn. The factor of 1/2 appears because each edge in the
edge cover appears twice, once for each of its endpoints. The 1/n in the second
equality accounts for the scaling of edge costs from Kn to �Kn. The third equality
holds because the root φ in �Kn is chosen uniformly at random from the n vertices.
Equation (50) now completes the proof of Theorem 2.

9.3. Completing the proof of Theorem 1. Applying the scaling in (51) to the
optimal edge covers in Kn and �Kn, we get

ECn = 1

2
E
[ ∑
{φ,v}∈C∗

n

ξ�Kn
(φ, v)

]
.

Theorem 9 gives the lower bound

lim inf
n→∞ ECn ≥ W(1) + W(1)2

2
.

By Theorem 2 for any ε > 0, we can find k large such that

lim
n→∞ E

[ ∑
e∈C(πk

Kn
)

ξKn(e)

]
≤ W(1) + W(1)2

2
+ ε.
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This gives

lim sup
n→∞

ECn ≤ W(1) + W(1)2

2
+ ε.

Since ε is arbitrary, we get the upper bound

lim sup
n→∞

ECn ≤ W(1) + W(1)2

2
.

This completes the proof of Theorem 1.
Observe that for any ε > 0, there exist Kε and Nε such that for all k ≥ Kε and

n ≥ Nε , we have

E
[ ∑
e∈C(πk

Kn
)

ξKn(e)

]
≤ W(1) + W(1)2

2
+ ε.

Thus for large n the BP algorithm gives a solution with cost within ε of the optimal
value in Kε iterations. In an iteration, the algorithm requires O(n) computations at
every vertex. This gives an O(Kεn

2) running time for the BP algorithm to compute
an ε-approximate solution. The worst case complexity of the edge-cover problem
is O(n3), a result due to Edmonds and Johnson (1970); see [15], Theorem 27.2.

10. More results. Our main results for the edge-cover problem were the proof
of the limit of the expected minimum cost (Theorem 1) and the means to obtain an
asymptotically optimal solution using the BP algorithm (Theorem 2). The use of
objective method as the proof technique allows us to obtain several auxiliary results
about the structure of the optimal solution, through calculations for the edge cover
Copt on the PWIT. In this section we state and prove, as examples, results for the
distribution of the degree of the root and the probability that the least cost edge at
the root is part of the optimal edge cover Copt. It is easy to show using local weak
convergence and the results of Sections 8 and 9 that these quantities arise as limits
of the quantities corresponding to the edge covers πk�Kn

.

THEOREM 15.

P
{∣∣Copt(φ)

∣∣= 1
}= e−W(1)(1 + W(1)

)
.

For k ≥ 2,

P
{∣∣Copt(φ)

∣∣= k
}= e−W(1) W(1)k

k! .

PROOF. As in the proof of Theorem 6, {(ξj ,Xj ), j ≥ 1} is a Poisson process
on R+ × R+ with intensity dz dF∗(x).
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From the definition of Copt,

P
{∣∣Copt(φ)

∣∣= 1
}= P

{
at most one point of

{
(ξj ,Xj )

}
in
{
(z, x) : z − x ≤ 0

}}
= e−A(1 + A),

where

A =
∫ ∞
z=0

∫ ∞
x=z

dF∗(x)dz

=
∫ ∞
z=0

W(1)e−z dz

= W(1).

Thus

P
{∣∣Copt(φ)

∣∣= 1
}= e−W(1)(1 + W(1)

)
.

For k ≥ 2,

P
{∣∣Copt(φ)

∣∣= k
}= P

{
k points of

{
(ξj ,Xj )

}
in
{
(z, x) : z − x ≤ 0

}}
= e−A Ak

k!
= e−W(1) W(1)k

k! . �

THEOREM 16.

P
{
1 ∈ Copt(φ)

}= W(1)

2
+ 1

W(1)
− W(1)2 − 1.

PROOF. The event {1 ∈ Copt(φ)} equals the union of two disjoint events:

(a) ξ(φ,1) − X(φ,1) < 0 and
(b) 0 ≤ ξ(φ,1) − X(φ,1) ≤ ξ(φ, i) − X(φ, i) for all i ≥ 2.

The probability of the first event is

P
{
ξ(φ,1) − X(φ,1) < 0

}=
∫ ∞
z=0

∫ ∞
x=z

dF∗(x)e−z dz

=
∫ ∞
z=0

W(1)e−ze−z dz

= W(1)

2
.

For the second event, write ξ(φ, i) = ξ(φ,1) + ξ ′
i , where obviously {ξ ′

i , i ≥ 2}
is a rate 1 Poisson process independent of {X(φ, i), i ≥ 2}. For i ≥ 2, ξ(φ,1) −
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X(φ,1) ≤ ξ(φ, i) − X(φ, i) if and only if −X(φ,1) ≤ ξ ′
i − X(φ, i). The proba-

bility of the second event can be written as

P
{
0 ≤ ξ(φ,1) − X(φ,1) ≤ ξ(φ, i) − X(φ, i) for all i ≥ 2

}
=
∫ ∞
x1=0

∫ ∞
z1=x1

P
{
no point of

{(
ξ ′
i ,X(φ, i), i ≥ 2

)}
in
{
(z, x) : z − x ≤ −x1

}}
e−z1 dz1 dF∗(x1)

=
∫ ∞
x1=0

e−x1 exp
(
−
∫ ∞
z=0

∫ ∞
x=z+x1

dF∗(x)dz

)
dF∗(x1)

=
∫ ∞
x1=0

e−x1 exp
(
−
∫ ∞
z=0

W(1)e−ze−x1 dz

)
dF∗(x1)

=
∫ ∞
x1=0

e−x1 exp
(−W(1)e−x1

)
dF∗(x1)

= W(1)
(
1 − W(1)

)+ ∫ ∞
x1=0

W(1)e−2x1 exp
(−W(1)e−x1

)
dx1

= W(1)
(
1 − W(1)

)+ 1

W(1)
− W(1) − 1

= 1

W(1)
− W(1)2 − 1. �

11. Summary. In a nutshell, we have implemented Aldous’s program based
on [4] to solve the random edge-cover problem. Aldous’s program serves as a
rigorous mathematical alternative to the cavity method applied to mean-field com-
binatorial optimization problems. Aldous and Bandyopadhyay [5], Section 7.5,
outline the steps of this rigorous methodology, highlighting the role of RDEs and
endogeny. See below.

But first, we must indicate another way in which the complete graph with i.i.d.
edge weights arises. Combinatorial optimization problems involving n random
points on Rd are of interest in many physical settings, but are typically difficult
to analyze because of dependence of the random variables representing the

(n
2

)
dis-

tances. A more tractable mean-field model ignores the underlying d-dimensional
space, and simply models the interpoint distances as i.i.d. random variables. This
resulting model is then the complete graph on n vertices with i.i.d. edge weights.
The case of exponential mean 1 edge weights models the d = 1 setting. There are
other distributions to model the d > 1 settings. Though we did not deal with d > 1
in this paper, we expect the extension to hold (as for matching).

Let us return to Aldous’s program, as summarized by Aldous and Bandyopad-
hyay [5], Section 7.5, and reproduced below.

“Start with a combinatorial optimization problem over some
size-n random structure.
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• Formulate a “size-∞” random structure, the n → ∞ limit in the sense of local
weak convergence.

• Formulate a corresponding combinatorial optimization problem on the size-∞
structure.

• Heuristically define relevant quantities on the size-∞ structure via additive
renormalization . . .

• If the size-∞ structure is treelike (the only case where one expects exact asymp-
totic solutions), observe that the relevant quantities satisfy a problem dependent
RDE.

• Solve the RDE. Use the unique solution to find the value of the optimization
problem on the size-∞ structure.

• Show that the RTP associated with the solution is endogenous.
• Endogeny shows that the optimal solution is a measurable function of the data,

in the infinite-size problem. Since a measurable function is almost continuous,
we can pull back to define almost-feasible solutions of the size-n problem with
almost the same cost.

• Show that in the size-n problem one can patch an almost-feasible solution into
a feasible solution for asymptotically negligible cost.” [5], Section 7.5.

The size-n random structure is the complete graph on n-vertices �Kn with inde-
pendent exponential mean-n edge weights. The following points elaborate on how
we addressed the steps above:

• The size-∞ random structure is the PWIT.
• The corresponding optimization problem on the size-∞ structure is simply the

minimum-cost edge cover on the PWIT. While this step is easy for the edge-
cover problem, in general some subtleties are involved. For example, the lim-
iting size-∞ problem for Frieze’s size-n problem of minimal spanning tree on
�Kn [8] is a minimal spanning forest with certain requirements on the included
edges. See [3], Definition 4.2, for details.

• We then heuristically provided the quantities relevant to the edge-cover problem
on the PWIT in Section 4. The additive renormalization measured the reduction
in cost arising from the relaxation of the requirement that the root be hit.

• Using the tree structure of the limiting object, we obtained the RDE (13) asso-
ciated with the edge-cover problem.

• We solved the RDE in Theorem 6, showed that it had a unique solution, and
found the value of the optimization problem on the PWIT in Theorem 7. An-
other important step is Theorem 8 which proves that the edge cover Copt, based
on the heuristic relation (10), is optimal among involution invariant edge covers
on the PWIT. Our method for establishing this nontrivial step may have some
bearing on other similar combinatorial optimization problems. This step even-
tually established a lower bound for the liminf of size-n optimal values.
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• Theorem 12 established endogeny of the RTP associated with the solution
of (13). Theorem 2 corresponding to the BP algorithm on Kn replaces the pro-
cedure of Aldous’s program for obtaining solutions of the size-n problem from
the solution of the size-∞ problem. The key steps for this are based on Salez
and Shah’s approach [14] and is as follows. Using endogeny, we argued that BP
(with i.i.d. initializations) converges to the RDE-based stationary configuration
on the PWIT. We then established that, at a particular node of �Kn, the BP update
for large n depends essentially only on messages from its local neighborhood
(Lemma 8). This is then used to express BP on the PWIT as the limit of BP
on �Kn. The BP iterates on �Kn were then the candidate solutions for the size-n
problem.

• No corrective patch-up was needed for the size-n problem, since at each iter-
ation of the BP algorithm, every vertex was covered by the corresponding se-
lection of edges. Simple dominated convergence arguments then established the
convergence of the expected optimal costs to the correct value.

It is worth noting that the upper bound result in Theorem 1 can be obtained via a
simpler proof of Theorem 2 for a version of BP algorithm, where the messages are
initialized as i.i.d. random variables from the fixed-point distribution F∗. In this
case Lemma 6, which follows from endogeny, establishes the convergence result
on the PWIT. The more general result of Theorem 13 shows that BP works when
messages are initialized as i.i.d. random variables from any arbitrary distribution.

Finally, we must mention that Aldous [4] proved a strong property called asymp-
totic essential uniqueness for matching, which is roughly the property that if a
matching on �Kn is almost optimal, then it coincides with the optimal matching,
except on a small proportion of edges. The question of whether this property holds
for the edge-cover problem is one that we hope to address in the near future.
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