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SIMULATION OF FORWARD-REVERSE STOCHASTIC
REPRESENTATIONS FOR CONDITIONAL DIFFUSIONS

BY CHRISTIAN BAYER AND JOHN SCHOENMAKERS1

WIAS Berlin

In this paper we derive stochastic representations for the finite dimen-
sional distributions of a multidimensional diffusion on a fixed time interval,
conditioned on the terminal state. The conditioning can be with respect to a
fixed point or more generally with respect to some subset. The representa-
tions rely on a reverse process connected with the given (forward) diffusion
as introduced in Milstein, Schoenmakers and Spokoiny [Bernoulli 10 (2004)
281–312] in the context of a forward-reverse transition density estimator. The
corresponding Monte Carlo estimators have essentially root-N accuracy, and
hence they do not suffer from the curse of dimensionality. We provide a de-
tailed convergence analysis and give a numerical example involving the re-
alized variance in a stochastic volatility asset model conditioned on a fixed
terminal value of the asset.

1. Introduction. The central result in this paper is the development of a new
generic procedure for simulation of conditioned diffusions, also called diffusion
bridges or pinned diffusions. More specifically, for some given (unconditional)
diffusion process X, we aim to simulate the functional

E
[
g
(
X(s1), . . . ,X(sR)

)|X(T ) ∈ A,X(0) = x
]
,(1)

where 0 ≤ s1 < s2 < · · · < sR < T , A is some set that may consist of only one
point, g is an arbitrarily given suitable test function and x ∈ R

d is a given state.
In recent years, the problem of computing terms such as (1) has attracted a lot of
attention in the literature, sparked by several applications. Indeed, many relevant
properties of a diffusion process X can be advantageously analyzed by consider-
ing the process conditioned on certain appropriate events. One so allows “to study
rare events by conditioning on the event happening or to analyze the behaviour
of a composite system when only some of its components can be observed,” as is
eloquently put by Hairer, Stuart and Voss (2009). For instance, in statistical infer-
ence based on a continuous time model, discrete time observations can be enriched
to continuous time observations by sampling from the diffusion bridges between
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the discrete time data; see Lin, Chen and Mykland (2010) and Bladt and Sørensen
(2012) for more information. Conditional diffusions have further been successfully
used for critical calculations in rare event situations. As an example from compu-
tational chemistry, we refer to the review paper of Bolhuis et al. (2002), where
diffusion bridges are used for detection of the transition state surface between two
stable regions A and B in configuration space. Here, standard Monte Carlo simu-
lation is prohibitively costly, as the event of such a transition is rare, provided that
the “walls” in the energy surface between A and B are high. However, by study-
ing the process conditioned on starting in A and ending in B , one can efficiently
observe on which paths the configuration typically travels from A to B . Other
possible applications appear in the field of stochastic environmental models, for
instance, regarding the concentration evolutions of pollution in water; for example
see Spivakovskaya, Heemink and Schoenmakers (2007) and references therein for
a related problem.

Several approaches for simulation of diffusion bridges have already been stud-
ied in the literature. For the theory of diffusion bridges we refer to Lyons and Zheng
(1990) and the references therein. Many existing approaches utilize known Radon–
Nikodym densities of the law of the diffusion X conditioned on initial and terminal
values, with respect to the law of a standard diffusion bridge process (e.g., Wiener
bridge) on path-space [as a Radon–Nikodym derivative obtained by Doob’s h-
transform; see, e.g., Rogers and Williams (2000) or Lyons and Zheng (1990)]. Sev-
eral other approaches are based on (partial) knowledge of the transition densities
of the unconditional diffusion (that is not generically available, of course). For an
overview of many different techniques, we refer to Lin, Chen and Mykland (2010).

First, let us mention the work by Beskos, Papaspiliopoulos and Roberts
(2006) who construct a general, rejection-based algorithm for solutions of one-
dimensional SDEs, based on the Radon–Nikodym derivative of the law of the
solution with respect to the Wiener measure. The algorithm gives (in finite, but
random time) discrete samples of the exact solution of the SDE. A simple adap-
tion of this algorithm gives samples of the exact diffusion process conditioned on
X(T ) = y, by using the law of the corresponding Brownian bridge as reference
measure (instead of the Wiener measure). An overview of related importance sam-
pling techniques is given by Papaspiliopoulos and Roberts (2012). On the other
hand, by relying on knowledge of the transition densities of X, Lin, Chen and
Mykland (2010) use a sequential weighted Monte Carlo framework, including
resampling with optimal priority scores.

Another general technique used for simulation of diffusion bridges is the
Markov chain Monte Carlo method. Indeed, Stuart, Voss and Wiberg (2004) and
Hairer, Stuart and Voss (2009) show how the law of a (multi-dimensional, uni-
formly elliptic, additive-noise) diffusion X conditioned on X(T ) = y can be re-
garded as the invariant distribution of a stochastic differential equation of Langevin
type on path-space, that is, of a Langevin-type stochastic partial differential equa-
tion (SPDE). Thus, in principle MCMC methods are applicable as explored by
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Stuart, Voss and Wiberg (2004) and Beskos et al. (2008). However, this requires
the numerical solution of the SPDE involved. It should be noted that in Hairer, Stu-
art and Voss (2011) the uniform ellipticity condition is relaxed leading to a fourth
order parabolic SPDE rather than a second order one.

Other notable approaches include those of Milstein and Tretyakov (2004),
which treat the case of physically relevant functionals of Wiener integrals with
respect to Brownian bridges, and Stinis (2011), who uses an MCMC approach
based on successive modifications of the drift of the diffusion process.

Another approach is the one of Bladt and Sørensen (2012) developed for one-
dimensional diffusions. In order to obtain a sample from the process X conditioned
on X(0) = x and X(T ) = y, Bladt and Sørensen (2012) start a path of the diffu-
sion from (0, x) and another path of the diffusion in reversed time at (T , y). If
these paths hit at time τ , consider the concatenated path Z. The distribution of the
process Z (conditional on 0 ≤ τ ≤ T ) equals the distribution of the bridge condi-
tional on being hit by an independent path of the underlying diffusion with initial
distribution p(0, y, T , ·). As proved by Bladt and Sørensen (2012), the probability
of this event approaches 1 when T → ∞. Finally, in order to improve the accuracy,
Z is used as initial value of an MCMC algorithm on path space, converging to a
sample from the true diffusion bridge.

A more general approach is given by Delyon and Hu (2006) which relies on the
explicit Radon–Nikodym derivative of the diffusion X conditioned on its initial
and terminal values and another diffusion Y , which is modeled like the Brownian
bridge. In fact, Y has the same dynamics as X, except for an extra term −Y (t)−y

T −t
in the drift, which enforces Y(T ) = y. Under certain regularity conditions—in
particular invertibility of the diffusion matrix σ = σ(t, x)—Delyon and Hu (2006)
provide a Girsanov-type theorem, which leads to a representation of the form

E
[
g(X)|X(0) = x,X(T ) = y

] = E
[
g(Y )Z(Y )

]
for functionals g defined on path-space and a factor Z(Y ) explicitly given as a
functional of the path Y together with quadratic variations of functions of Y . As
such this approach allows for direct Monte Carlo simulation of (1). However, we
stress that Z(Y ) explicitly depends on σ−1 which does not exist in many hypo-
elliptic applications. On the other hand, simulation of the bridge-type process Y is
numerically troublesome because of the exploding drift term.

The new method presented in this article is inspired by the forward-reverse esti-
mator for the transition density p(0, x, T , y) constructed by Milstein, Schoenmak-
ers and Spokoiny (2004). Given a grid 0 ≤ s0 < s1 < · · · < sK = t∗ < t1 < · · · <

tL = T , we prove that

E
[
g
(
X(s1), . . . ,X(sK),X(t1), . . . ,X(tL−1)

)|X(s0) = x,X(T ) = y
]

equals

lim
ε→0

E[g(X(s1), . . . ,X(sK),Y (̂tL−1), . . . , Y (̂t1))Kε(Y (̂tL) − X(t∗))Y (̂tL)]
E[Kε(Y (̂tL) − X(t∗))Y (̂tL)] ,(2)
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which can be implemented by Monte Carlo simulation for any ε > 0. In (2)
s0 < t∗ < T is a given grid-point chosen by the user. The process X solves the
original SDE with initial value X(s0) = x on the time-interval [s0, t

∗]. On the
other hand, Y is an (independent) reverse process as defined in Section 3 started at
Y(0) = y and simulated until time t̂L := T − t∗, not on the original grid, but on a
“perturbed” grid defined in (14). [Note that Y is different from the time-reversed
diffusion in the sense of Haussmann and Pardoux (1986) that explicitly requires
the transition density of X.] Indeed, the dynamics of Y are explicitly given be-
low in terms of the dynamics of X—not relying on the transition density—and,
usually, share the same regularity properties; see (4) and (5). Next, we weight
the trajectories according to the distance between X(t∗) and Y(T ) using a kernel
K with bandwidth ε. Finally, we have an exponential weighting factor Y , simi-
lar to the Radon–Nikodym derivative in Delyon and Hu (2006). The denomina-
tor in (2) actually corresponds to the forward-reverse estimator for the transition
density p(s0, x, T , y) of X introduced by Milstein, Schoenmakers and Spokoiny
(2004). The details of the Monte Carlo simulation are spelled out in Section 4, but
we note that (2) can be computed to an accuracy of ε with a complexity of O(ε−2)

in any dimension less or equal to four2 (disregarding possible discretization errors
due to the construction of samples X, Y and Y).3 Thus our algorithm essentially
achieves the optimal rate of convergence for Monte Carlo algorithms.

We underline that the forward-reverse algorithm for (1) presented here is not a
straightforward extension of the forward-reverse algorithm for transition densities
of Milstein, Schoenmakers and Spokoiny (2004). The main difficulty lies in the
extension of the representation from just one intermediate time 0 < t∗ < T to an
arbitrary time grid 0 ≤ s0 < s1 < · · · < sK = t∗ < t1 < · · · < tL = T with L > 1.
In the nonautonomous case this issue is further complicated due to the fact that
the dynamics of the reverse process as defined in Milstein, Schoenmakers and
Spokoiny (2004) depends explicitly on both t∗ and T . Obviously, the different
structure also requires a different error analysis. In particular, we need sharper
error bounds than Milstein, Schoenmakers and Spokoiny (2004).

In comparison to the other methods mentioned above, our new procedure has
the following main features:

(i) The method applies to multidimensional diffusions.
(ii) It is based on simulation of unconditional diffusions only, hence technical

simulation problems due to exploding drifts in SDEs that govern particular diffu-
sion bridges are avoided.

(iii) The vector fields determining the (forward) SDE that governs X only need
to satisfy a Hörmander-type condition guaranteeing sufficient regularity and ex-

2In fact, this restriction can be lifted by use of higher order kernels.
3The constant will increase in the dimension. Moreover, we ignore the cost of checking equality

of two integers.
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ponential decay of the transition densities. In particular, the diffusion matrix of X

may be degenerate.
(iv) The estimator corresponding to the developed stochastic representation

for (1) is root-N consistent, that is the mean square estimation accuracy is of order
O(N−1/2) with N being the number of trajectories that need to be simulated.

As a matter of fact, the methods for simulating diffusion bridges known in the
literature so far, do not cover all the features (i)–(iv) simultaneously. For exam-
ple, Delyon and Hu (2006) require that either the diffusion matrix is invertible, or
impose some very specific structural conditions on the drift and diffusion matrix
of the process X. Moreover, the exploding drift terms in their process Y makes
simulation of the auxiliary process Y nontrivial. On the other hand, the method
of Bladt and Sørensen (2012) in germ carries some ideas related to our approach,
but they need to impose balance restrictions on the transition density of X, and
moreover their method—together with several others—is only one dimensional.
The methods of Stuart, Voss and Wiberg (2004) and the related papers mentioned
above also involve some further structural assumptions and, in addition, require
numerical solutions of SPDEs.

Moreover, we complement our algorithm by an adaptation, which allows us to
treat the more general problem of conditioning at final time T not on all, but just
on some components of the vector XT . More precisely, we present a variant of the
algorithm for computing conditional expectations where XT is conditioned to lie
in a “simple” set A, that is, either A has positive measure both under the Lebesgue
measure and the distribution of XT , or A is an affine plane of dimension 0 ≤ d ′ ≤
d . In order to achieve this extension, we need to prove (Lebesgue) integrable error
bounds for the forward-reverse algorithm for the case where XT is conditioned to
a value y.

The structure of the paper is as follows. In Section 2 we recap the essential facts
concerning the reverse diffusion system of Milstein, Schoenmakers and Spokoiny
(2004). The main representation theorems for the diffusion conditioned on reach-
ing a fixed state, or conditioned on reaching some Borel set, are derived in Sec-
tion 3. A detailed accuracy analysis concerning the Monte Carlo estimators for the
respective conditioned diffusions is provided in Section 4, including the precise
required regularity assumptions given in Conditions 4.1, 4.4 and 4.5. Limitations
of the method are discussed in Section 4.3, while Section 5 provides a numerical
study involving a Heston-type stochastic volatility model.

2. Recap of forward-reverse representations for diffusions. In this section
we recapitulate shortly the main ingredients in the approach by Milstein, Schoen-
makers and Spokoiny (2004). Let us consider the SDE

dXt,x(s) = a
(
s,Xt,x(s)

)
ds + σ

(
s,Xt,x(s)

)
dW(s),

(3)
0 ≤ s ≤ T ,Xt,x(t) = x,
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where Xt,x ∈ R
d , a : [t, T ] × R

d → R
d , σ : [t, T ] × R

d → R
d×m, W is an m-

dimensional standard Wiener process and x ∈ R
d . At this stage, we only assume

that X admits a C2 transition density p and that the coefficients of (3) are C2 as
well.

Along with the (forward) process X given by (3), Milstein, Schoenmakers and
Spokoiny (2004) introduced an associated process (Yt,y;T (s),Yt,y;T (s)) in R

d ×
R, t ≤ s ≤ T , termed reverse process on the interval [t, T ], that solves the SDE

dYt,y;T (s) = αt,T

(
s, Yt,y;T (s)

)
ds

+ σ̃t,T

(
s, Yt,y;T (s)

)
dW̃(s), Yt,y;T (t) = y,(4)

Yt,y;T (s) = exp
(∫ s

t
ct,T

(
u,Yt,y;T (u)

)
du

)
with W̃ being a (from W independent) m-dimensional Wiener process, and

αi
t,T (s, y) :=

d∑
j=1

∂

∂yj
bij (T + t − s, y) − ai(T + t − s, y), b := σσ�,

σ̃t,T (s, y) := σ(T + t − s, y),(5)

ct,T (s, y) := 1

2

d∑
i,j=1

∂2bij

∂yi∂yj
(T + t − s, y) −

d∑
i=1

∂ai

∂yi
(T + t − s, y).

Despite its name, we stress that (Y,Y) is the solution of an ordinary SDE forward
in time on the interval [t, T ].

One of the central results in Milstein, Schoenmakers and Spokoiny (2004) is the
following theorem.

THEOREM 2.1 [M.S.S. (2004)]. For fixed t, x, y and t < t∗ < T , and any bi-
variate test function f we have

E
[
f

(
Xt,x

(
t∗

)
, Yt∗,y;T (T )

)
Yt∗,y;T (T )

]
(6)

=
∫∫

p
(
t, x, t∗, x′)p(

t∗, y′, T , y
)
f

(
x′, y′)dx′ dy′,

where Xt,x(s) satisfies the forward equation (3), and (Yt∗,y;T (s),Yt∗,y;T (s)), s ≥
t∗, is the solution of the reverse system (4).

COROLLARY 2.2. By taking f ≡ 1, (6) yields

E
[
Yt∗,y;T (T )

] =
∫

p
(
t∗, y′, T , y

)
dy′,(7)

which obviously extends to t∗ = t . By next taking f (x′, y′) = f (x′) (while abusing
notation slightly) we obtain from (6), using (7) and the independence of X and
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(Y,Y),

E
[
f

(
Xt,x

(
t∗

))] =
∫

p
(
t, x, t∗, x′)f (

x′)dx′,

which obviously extends to t∗ = T , that is, the standard forward stochastic rep-
resentation for

∫
p(t, x, T , x′)f (x′) dx′. On the other hand, by taking f (x′, y′) =

f (y′) we obtain the so called reverse stochastic representation

E
[
f

(
Yt∗,y;T (T )

)
Yt∗,y;T (T )

] =
∫

p
(
t∗, y′, T , y

)
f

(
y′)dy′,(8)

which obviously extends to t∗ = t .

3. Forward-reverse representations for conditional diffusions. It should
be noted that in Milstein, Schoenmakers and Spokoiny (2004) the time domain
of the reverse process was considered fixed. For our purposes however, it turns out
to be more effective (in particular regarding the proof of Theorem 3.2 below) to
consider reverse processes suitably defined on different time domains. In particu-
lar it turns out be fruitful to formulate the forward-reverse representations of the
previous section in terms of reverse processes defined on [0, T ] for suitable T > 0.
We therefore introduce the reverse process(

Yy;T (s),Yy;T (s)
)
0≤s≤T := (

Y0,y;T (s),Y0,y;T (s)
)
0≤s≤T(9)

that starts at time s = 0 at a generic state (y,1), is defined on an interval [0, T ] and
satisfies (4) with coefficients (5) for t = 0, that is, (9) solves the SDE

dY (s) = α0,T

(
s, Y (s)

)
ds + σ̃0,T

(
s, Y (s)

)
dW̃(s), Y (0) = y,

(10)

Y(s) = exp
(∫ s

0
c0,T

(
u,Y (u)

)
du

)
.

As a result, we have for any fixed t , 0 ≤ t ≤ T , that(
Yy;T (s),Yy;T (s)

)
0≤s≤T −t = (

Yt,y;T (t + s),Yt,y;T (t + s)
)
0≤s≤T −t ,

whence (6) and (8) may be equivalently written as

E
[
f

(
Xt,x

(
t∗

)
, Yy;T

(
T − t∗

))
Yy;T

(
T − t∗

)]
(11)

=
∫∫

p
(
t, x, t∗, x′)p(

t∗, y′, T , y
)
f

(
x′, y′)dx′ dy′

and

E
[
f

(
Yy;T

(
T − t∗

))
Yy;T

(
T − t∗

)] =
∫

p
(
t∗, y′, T , y

)
f

(
y′)dy′,(12)

respectively. The main benefit is that the reverse process used in representations (6)
and (8) depend on both t∗ and T , while the one used in (11) and (12) depends on
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T only. In particular, (12) may be considered as a reverse representation for all
0 < t∗ < T in terms of one and the same reverse process (Yy;T ,Yy;T ).

3.1. Representations for conditioning on a fixed state. Let us start with the
following lemma.

LEMMA 3.1. For any 0 < s < t ≤ T it holds that

YYy;T (s);T −s(t − s) = Yy;T (t),

Yy;T (t) = Yy;T (s)YYy;T (s);T −s(t − s).

PROOF. The first statement is directly obvious from (10). From this the second
statement follows by

Yy;T (t) = e
∫ s

0 c0,T (u,Yy;T (u)) due

∫ t
s c0,T (u,YYy;T (s);T −s (u−s)) du

= Yy;T (s)e

∫ t−s
0 c0,T −s (u,YYy;T (s);T −s (u)) du

= Yy;T (s)YYy;T (s);T −s(t − s). �

We are now ready to state the following key theorem.

THEOREM 3.2. Given a grid DL := {0 ≤ t∗ < t1 < · · · < tL}, it holds that

E
[
f

(
Yy;tL(tL − t0), Yy;tL(tL − t1), . . . , Yy;tL(tL − tL−1)

)
Yy;tL(tL − t0)

]
=

∫
Rd×L

f (y0, y1, . . . , yL−1)

L∏
i=1

p(ti−1, yi−1, ti , yi) dyi−1

with yL := y and t0 := t∗.

PROOF. The following proof—much shorter than the proof in a previous ver-
sion of the paper—has essentially been pointed out to us by an anonymous referee.
We fix t0 (= t∗) and use induction on L. For L = 1 the statement boils down to (12)
with T := t1. Suppose the statement is proved for some L ≥ 1. For the grid

DL+1 = {t0 < t1 < · · · < tL+1}
we next consider for any test function f :Rd×(L+1) →R,

E
[
f

(
Yy;tL+1(tL+1 − t0), Yy;tL+1(tL+1 − t1), . . . , Yy;tL+1(tL+1 − tL)

)
×Yy;tL+1(tL+1 − t0)

]
= E

[
E

[
f

(
YYy;tL+1 (tL+1−tL);tL(tL − t0), YYy;tL+1 (tL+1−tL);tL(tL − t1), . . . ,

YYy;tL+1 (tL+1−tL);tL(tL − tL−1), YYy;tL+1 (tL+1−tL);tL(0)
)
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×Yy;tL+1(tL+1 − tL)YYy;tL+1 (tL+1−tL);tL(tL − t0)|
Yy;tL+1(tL+1 − tL),Yy;tL+1(tL+1 − tL)

]]
= E

[
Yy;tL+1(tL+1 − tL)

×E
[
f

(
YYy;tL+1 (tL+1−tL);tL(tL − t0), YYy;tL+1 (tL+1−tL);tL(tL − t1), . . . ,

YYy;tL+1 (tL+1−tL);tL(tL − tL−1), Yy;tL+1(tL+1 − tL)
)

×YYy;tL+1 (tL+1−tL);tL(tL − t0)|Yy;tL+1(tL+1 − tL)
]]

.

By the induction hypothesis, we have that

E
[
f

(
YYy;tL+1 (tL+1−tL);tL(tL − t0), YYy;tL+1 (tL+1−tL);tL(tL − t1), . . . ,

YYy;tL+1 (tL+1−tL);tL(tL − tL−1), Yy;tL+1(tL+1 − tL)
)

×YYy;tL+1 (tL+1−tL);tL(tL − t0)|Yy;tL+1(tL+1 − tL) = z
]

= E
[
f

(
Yz;tL(tL − t0), Yz;tL(tL − t1), . . . , Yz;tL(tL − tL−1), z

)
Yz;tL(tL − t0)

]
=

∫
Rd×L

f (y0, y1, . . . , yL−1, z)

L∏
i=1

p(ti−1, yi−1, ti, yi) dyi−1 =: F(z)

with yL := z, and so we obtain

E
[
f

(
Yy;tL+1(tL+1 − t0), Yy;tL+1(tL+1 − t1), . . . , Yy;tL+1(tL+1 − tL)

)
×Yy;tL+1(tL+1 − t0)

]
= E

[
Yy;tL+1(tL+1 − tL)F

(
Yy;tL+1(tL+1 − tL)

)]
(12)=

∫
p(tL, z, tL+1, y)F (z) dz

=
∫
Rd×(L+1)

f (y0, y1, . . . , yL)

L+1∏
i=1

p(ti−1, yi−1, ti , yi) dyi−1,

where yL+1 := y and the integration variable z is renamed to yL. �

For the next theorem, we consider an extended time grid

0 ≤ s0 < s1 < · · · < sK = t∗ = t0 < t1 < · · · < tL = T .(13)

For convenience, we also introduce the notation

t̂i := tL − tL−i , i = 1, . . . ,L.(14)

Moreover, we fix a starting point x ∈ R
d .
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THEOREM 3.3. For any f :Rd×(K+L) →R and grids (13) together with (14),
we have

E
[
f

(
Xs0,x(s1), . . . ,Xs0,x(sK), Yy;T (̂tL), Yy;T (̂tL−1), . . . , Yy;T (̂t1)

)
Yy;T (̂tL)

]
=

∫
Rd×(K+L)

f (x1, . . . , xK, y0, y1, . . . , yL−1)

×
K∏

i=1

p(si−1, xi−1, si, xi) dxi

L∏
i=1

p(ti−1, yi−1, ti, yi) dyi−1

with x0 := x, yL := y, and the processes X and (Y,Y) being independent.

Theorem 3.3 follows directly from Theorem 3.2 by a standard conditioning ar-
gument and the Chapman–Kolmogorov equation. Note that for K = L = 1, Theo-
rem 3.3 collapses to Theorem 2.1.

We are now ready to derive a forward-reverse stochastic representation for the
finite dimensional distributions of the process Xs0,x , conditional on Xs0,x(T ) = y,
for fixed s0 < T , and fixed x, y ∈R

d . To this end we henceforth assume that

p(s0, x, T , y) > 0.(15)

We also need to assume continuity of p. Let us take a bounded measurable test
function

g(x1, . . . , xK, y1, . . . , yL−1) :Rd×(K+L−1) →R,

and consider the conditional expectation

E
[
g
(
Xs0,x(s1), . . . ,Xs0,x(sK−1),Xs0,x

(
t∗

)
,Xs0,x(t1), . . . ,Xs0,x(tL−1)

)|
(16)

Xs0,x(T ) = y
]
.

The distribution of the diffusion Xs0,x conditional on Xs0,x(T ) = y is completely
determined by the totality of conditional expectations of the form (16). These con-
ditional expectations may be obtained due to Theorem 3.4 below.

THEOREM 3.4. Consider the forward process X and its reverse process
(Y,Y) as before and the grids as specified in (13) and (14). Let

Kε(u) := ε−dK(u/ε), y ∈ R
d,

with K being integrable on R
d and

∫
Rd K(u)du = 1. Hence, formally Kε con-

verges to the delta function δ0 on R
d (in distribution sense) as ε ↓ 0. Then,

since p(s0, x, T , y) > 0 by assumption, for any bounded measurable function
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g :Rd×(K+L−1) →R, we have

E
[
g
(
Xs0,x(s1), . . . ,Xs0,x

(
t∗

)
,Xs0,x(t1), . . . ,Xs0,x(tL−1)

)|Xs0,x(T ) = y
]

= 1

p(s0, x, T , y)
(17)

× lim
ε↓0

E
[
g
(
Xs0,x(s1), . . . ,Xs0,x

(
t∗

)
, Yy;T (̂tL−1), . . . , Yy;T (̂t1)

)
×Kε

(
Yy;T (̂tL) − Xs0,x

(
t∗

))
Yy;T (̂tL)

]
.

PROOF. By applying Theorem 3.3 to

f (x1, . . . , xK, y0, y1, . . . , yL−1) := g(x1, . . . , xK, y1, . . . , yL−1)Kε(y0 − xK),

we obtain

E
[
g
(
Xs0,x(s1), . . . ,Xs0,x

(
t∗

)
, Yy;T (̂tL−1), . . . , Yy;T (̂t1)

)
× Kε

(
Yy;T (̂tL) − Xs0,x

(
t∗

))
Yy;T (̂tL)

]
=

∫
Rd×(K+L)

g(x1, . . . , xK, y1, . . . , yL−1)Kε(y1 − xK)

(18)

×
K∏

i=1

p(si−1, xi−1, si, xi) dxi

L∏
i=1

p(ti−1, yi−1, ti, yi) dyi−1

=
∫
Rd×(K+L)

g(x1, . . . , xK, y1, . . . , yL−1)K(v) dv p
(
t∗, xk + εv, t1, y2

)
×

K∏
i=1

p(si−1, xi−1, si, xi) dxi

L∏
i=2

p(ti−1, yi−1, tl, yi) dyi−1.

By sending ε to zero, (18) clearly converges to

∫
Rd×(K+L−1)

g(x1, . . . , xK, y1, . . . , yL−1)

K∏
i=1

p(si−1, xi−1, si, xi) dxi

× p
(
t∗, xK, t1, y1

) L∏
i=2

p(ti−1, yi−1, tl, yi) dyi−1,

from which (17) easily follows. �

If the original grid t∗ = t0 < · · · < tL = T is equidistant, then the transformed
grid 0 = t̂0 < · · · < t̂L = T − t∗ is obtained by a translation with −t∗, which leads
to the following corollary.
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COROLLARY 3.5. If the time grid t∗ = t0 < · · · < tL = T is equidistant, we
have

E
[
g
(
Xs0,x(s1), . . . ,Xs0,x

(
t∗

)
,Xs0,x(t1), . . . ,Xs0,x(tL−1)

)|Xs0,x(T ) = y
]

= 1

p(s0, x, T , y)

× lim
ε↓0

E
[
g
(
Xs0,x(s1), . . . ,Xs0,x

(
t∗

)
, Yy;T

(
tL−1 − t∗

)
, . . . , Yy;T

(
t1 − t∗

))
× Kε

(
Yy;T

(
T − t∗

) − Xs0,x

(
t∗

))
Yy;T

(
T − t∗

)]
.

Moreover, by setting g ≡ 1, we retrieve the forward-reverse representation of the
transition density in Milstein, Schoenmakers and Spokoiny (2004),

p(s0, x, T , y) = lim
ε↓0

E
[
Kε

(
Yy;T

(
T − t∗

) − Xs0,x

(
t∗

))
Yy;T

(
T − t∗

)]
,(19)

expressed with the variant of the reverse process introduced in (10) above.

REMARK 3.6. For fixed x, y ∈ R
d and s0 < t∗ < T as before, let us define a

process Z by

Z(t) := Yy;T (T − t), t∗ ≤ t ≤ T .

The idea is that we run along the reverse diffusion Y backwards in time. Then (17)
reads

E
[
g
(
Xs0,x(s1), . . . ,Xs0,x

(
t∗

)
,Xs0,x(t1), . . . ,Xs0,x(tL−1)

)|Xs0,x(T ) = y
]

= 1

p(s0, x, T , y)
lim
ε↓0

E
[
g
(
Xs0,x(s1), . . . ,Xs0,x

(
t∗

)
,Z(t1), . . . ,Z(tL−1)

)
× Kε

(
Z

(
t∗

) − Xs0,x

(
t∗

))
Yy;T

(
T − t∗

)]
.

3.2. Representations for conditioning on a set. Now let us assume that we
are interested in the conditional expectation of a functional g(Xs0,x(s1), . . . ,

Xs0,x(tL−1)) given XT ∈ A for some Borel set A. It is assumed for simplic-
ity that either A is a subset of R

d with positive Lebesgue measure and with
P(Xs0,x(T ) ∈ A) > 0, or A is an affine hyperplane of dimension d ′, 0 ≤ d ′ ≤ d . As
a further simplification in the latter case, although without further loss of general-
ity, we assume that A is of the form

A = {
x ∈ R

d :x1 = c1, . . . , xd−d ′ = cd−d ′}
.(20)

For 0 ≤ d ′ ≤ d we consider the “restricted” Lebesgue measure

λA(dx) = δ{c1}
(
dx1) · · · δ{cd−d′ }

(
dxd−d ′) · dxd−d ′+1 · · ·dxd,(21)

which coincides with the ordinary Lebesgue measure if d ′ = d , and with a Dirac
point measure if d ′ = 0. We next introduce a random variable ξ with support in
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A independent from X and Y , whose law has a density ϕ > 0 with respect to λA.
Let further (Yt∗,ξ ,Yξ ;T ) denote the reverse process starting at the random location
(ξ,1) at time t∗. Here, we replace condition (15) on the positivity of the transition
density by ∫

A
p(s0, x, T , z)λA(dz) > 0.(22)

THEOREM 3.7. Let the kernel function K be as in Theorem 3.4, and let there
be given a time grid of the form (13). The conditional expectation of

g
(
Xs0,x(s1), . . . ,Xs0,x

(
t∗

)
,Xs0,x(t1), . . . ,Xs0,x(tL−1)

)
given Xs0,x(T ) ∈ A with A being a Borel set, either with positive probability or a
hyperplane of the form (20), and g being a bounded measurable test function, has
the stochastic representation∫

A
p(s0, x, T , y)λA(dy) ·E[

g
(
Xs0,x(s1), . . . ,Xs0,x(tL−1)

)|Xs0,x(T ) ∈ A
]

= lim
ε↓0

E

[
g
(
Xs0,x(s1), . . . ,Xs0,x

(
t∗

)
, Yξ ;T (̂tL−1), . . . , Yξ ;T (̂t1)

)
× Kε

(
Yξ ;T (̂tL) − Xs0,x

(
t∗

))Yξ ;T (̂tL)

ϕ(ξ)

]
.

In particular, by setting g ≡ 1 we obtain a stochastic representation for the factor∫
A

p(s0, x, T , y)λA(dy) = lim
ε↓0

E

[
Kε

(
Yξ ;T (̂tL) − Xs0,x

(
t∗

))Yξ ;T (̂tL)

ϕ(ξ)

]
.

PROOF. Let us abbreviate

HA := E
[
g
(
Xs0,x(s1), . . . ,Xs0,x(tL−1)

)|Xs0,x(T ) ∈ A
]
,

H(y) := E
[
g
(
Xs0,x(s1), . . . ,Xs0,x(tL−1)

)|Xs0,x(T ) = y
]
,

and consider the density of the conditional distribution of Xs0,x(T ) given
Xs0,x(T ) ∈ A with respect to the measure λA, that is,

q(y) = p(s0, x, T , y)∫
A p(s0, x, T , z)λA(dz)

1A(y).

Recall (22) and the construction (21) of λA. Then we have

HA =
∫
A
E

[
g
(
Xs0,x(s1), . . . ,Xs0,x(tL−1)

)|Xs0,x(T ) = y
]
q(y)λA(dy)

=
∫
A

H(y)q(y)λA(dy)
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= E

[
H(ξ)q(ξ)

ϕ(ξ)

]

= E[(p(s0, x, T , ξ)/ϕ(ξ))E[g(Xs0,x(s1), . . . ,Xs0,x(tL−1))|Xs0,x(T ) = ξ ]]∫
A p(s0, x, T , z)λA(dz)

.

Hence, denoting pA := ∫
A p(s0, x, T , z)λA(dz),

HA × pA

= E

[
1

ϕ(ξ)
lim
ε↓0

E
ξ [

g
(
Xs0,x(s1), . . . ,Xs0,x

(
t∗

)
, Yξ ;T (̂tL−1), . . . , Yξ ;T (̂t1)

)
× Kε

(
Yξ ;T (̂tL) − Xs0,x

(
t∗

))
Yξ ;T (̂tL)

]]
= lim

ε↓0
E

[
g
(
Xs0,x(s1), . . . ,Xs0,x

(
t∗

)
, Yξ ;T (̂tL−1), . . . , Yξ ;T (̂t1)

)
× Kε

(
Yξ ;T (̂tL) − Xs0,x

(
t∗

))Yξ ;T (̂tL)

ϕ(ξ)

]
. �

COROLLARY 3.8. The conditional expectation of g(Xs0,x(s1), . . . ,

Xs0,x(tL−1)) given X1
s0,x

(T ) = c1 ∈ R has the stochastic representation

lim
ε↓0

E

[
g
(
Xs0,x(s1), . . . ,Xs0,x

(
t∗

)
, Yξ ;T (̂tL−1), . . . , Yξ ;T (̂t1)

)
× Kε

(
Yξ ;T (̂tL) − Xs0,x

(
t∗

))Yξ ;T (̂tL)

ϕ(ξ)

]
=

∫
Rd−1

p
(
s0, x, T , c1, y

)
dy

×E
[
g
(
Xs0,x(s1), . . . ,Xs0,x(tL−1)

)|X1
s0,x

(T ) = c1]
for any ξ taking values in the hyperplane A := {z ∈ R

d |z1 = c1} such that ϕ > 0 is
the density of the law of ξ with respect to λA defined accordingly. In particular, by
setting g ≡ 1, we obtain a stochastic representation for the marginal density

lim
ε↓0

E

[
Kε

(
Yξ ;T (̂tL) − Xs0,x

(
t∗

))Yξ ;T (̂tL)

ϕ(ξ)

]
=

∫
Rd−1

p
(
s0, x, T , c1, y2, . . . , yd)

dy2 · · ·dyd.

REMARK 3.9. Without doubt it is possible to construct analogous stochastic
representations for conditional Markov chains in the spirit of Milstein, Schoen-
makers and Spokoiny (2007). The details, however, are considered beyond the
scope of the present paper.
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4. Forward-reverse estimators and their analysis. The stochastic represen-
tations for the conditional diffusion problem (1), derived in the previous section,
naturally lead to respective Monte Carlo estimators. In this section we analyze the
accuracy of these estimators, under the following assumptions. First we need suit-
ably regularity of the transition densities of both forward and reverse processes.

CONDITION 4.1. We assume that the diffusion X as well as the reverse diffu-
sion Y (not including Y) defined in (4) have C∞ transition densities p(t, x, s, y)

and q(t, x, s, y), respectively. Moreover, for fixed N ∈ N, there are constants
mN ∈ N, νN > 0, λN > 0, KN > 0 and C0 > 0 such that for any multi-indices
α,β ∈ N

d
0 with |α| + |β| ≤ N we have

∣∣∂α
x ∂β

y p(t, x, s, y)
∣∣ ≤ KN

(s − t)νN
exp

(
−λN

|y − x|2
(1 + C2

0)(s − t)

)
,

uniformly for (t, x, s, y) ∈ (0, T ] ×R
d ×R

d and similarly for q .

REMARK 4.2. In fact, for the theorems formulated as below, we only need
Condition 4.1 for N = 2. Higher order versions only become necessary in the
context of Remark 4.17.

REMARK 4.3. By the results of Kusuoka and Stroock (1985), Corollary 3.25,
Condition 4.1 is satisfied in the autonomous case provided that (the vector fields
driving) the forward diffusion X and Y satisfy a uniform Hörmander condition,
and a and σ are bounded, and C∞ bounded; that is, all the derivatives are bounded
as well. We know of no similar study for nonautonomous stochastic differential
equations. Of course, the seminal work by Aronson (1967) gives upper (and lower)
Gaussian bounds for the transition density of time-dependent, but uniformly el-
liptic stochastic differential equations. Moreover, Cattiaux and Mesnager (2002)
prove the existence and smoothness of transition densities for time-dependent
SDEs under Hörmander conditions.

In any case, an extension of the Kusuoka–Stroock result to the time-
inhomogeneous case seems entirely possible, in particular since we do not consider
time-derivatives, for instance, by first considering the case of piecewise constant
coefficients.

CONDITION 4.4. The kernel K satisfies
∫
Rd K(v) dv = 1 and

∫
Rd vK(v) dv =

0. Moreover, it has lighter tails than a Gaussian density in the sense that there are
constants C,α > 0 and β ≥ 0 such that

K(v) ≤ C exp
(−α|v|2+β)

, v ∈ R
d .

In many applications, one would probably choose a compactly supported kernel,
which trivially satisfies the above tail-condition. Finally, we also introduce some
further assumptions put forth for convenience, which could be easily relaxed.
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CONDITION 4.5. The functional g :R(K+L−1)×d → R together with its gra-
dient and its Hessian are bounded. Moreover, the coefficient c in (4) is bounded.

REMARK 4.6. Condition 4.5 could be replaced by a requirement of polyno-
mial boundedness.

4.1. Forward-reverse estimators for conditioning on a fixed state. Let us con-
sider

hε := E

[
g
(
Xs0,x(s1), . . . ,Xs0,x

(
t∗

)
, Yy;T (̂tL−1), . . . , Yy;T (̂t1)

)
(23)

× ε−dK

(
Yy;T (̂tL) − Xs0,x(t

∗)
ε

)
Yy;T (̂tL)

]
,

which can—and will—be computed using Monte Carlo simulation. Here, we recall
the definition of t̂i = tL − tL−i given in (14). By Theorem 3.4, hε converges to

h := p(s0, x, T , y)E
[
g
(
Xs0,x(s1), . . . ,Xs0,x(tL−1)

)|Xs0,x(T ) = y
]
.(24)

THEOREM 4.7. Assuming Conditions 4.1, 4.4 and 4.5, there are constants
C,ε0 > 0 such that the bias of the approximation hε can be bounded by

|h − hε| ≤ Cε2, 0 < ε < ε0.

PROOF. Changing variables y0 → v := y0−xK

ε
in Theorem 3.3, we arrive at

hε =
∫

g(x1, . . . , xK, y1, . . . , yL−1)K(v)

×
K∏

i=1

p(si−1, xi−1, si, xi)p
(
t∗, xK + δv, t1, y1

)

×
L∏

i=2

p(ti−1, yi−1, ti , yi) dx1 · · ·dxK dv dy1 · · ·dyL−1.

In particular, we have that h = limε↓0 hε . Consider

rε(xK, y1) :=
∫

k(v)p
(
t∗, xK + εv, t1, y1

)
dv − p

(
t∗, xK, t1, y1

)
.

In the following, we use the notation ∂
β
x := ∂

β1

x1 · · · ∂βd

xd , for x ∈ R
d , β ∈ N

d . By
Taylor’s formula, Conditions 4.4 and 4.1, we get

rε =
∫

K(v)
[
p

(
t∗, xK + εv, t1, y1

) − p
(
t∗, xK, t1, y1

)]
dv

=
∫

K(v)
[
ε∂xp

(
t∗, xK, t1, y1

) · v]
dv

+ ∑
|β|=2

2

β!ε
2
∫∫ 1

0
(1 − t)∂β

x p
(
t∗, xK + tεv, t1, y1

) · vβ dtK(v) dv
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implying that

∣∣rε(xK, y1)
∣∣ ≤ ∑

|β|=2

2

β!ε
2
∫ 1

0
(1 − t)

∫ ∣∣∂β
x p

(
t∗, xK + tεv, t1, y1

)∣∣|v|2K(v)dv dt

≤ ∑
|β|=2

2

β!ε
2C1

∫ 1

0
(1 − t)

∫
e−γ |y1−xK−tεv|2 |v|2K(v)dv dt

≤ ∑
|β|=2

2

β!ε
2C1Cη

∫ 1

0
(1 − t)

∫
e−γ |y1−xK−tεv|2e−η|v|2 dv dt,

where C1 := K2(t1−t∗)
(t1−t∗)ν2 , γ := λ2

(1+C2
0 )(t1−t∗) as given in Condition 4.1, η > 0 and

Cη is chosen such that |v|2K(v) ≤ Cηe
−η|v|2 , which is possible by Condition 4.4.

Since

|y1 − xK − tεv|2 = |y1 − xK |2 − 2tε〈y1 − xK, v〉 + t2ε2|v|2,

we can further compute, using σ 2 := 1
2(η+γ t2ε2)

≤ 1
2η

,

∫
e−γ |y1−xK−tεv|2e−η|v|2 dv

= e−γ |y1−xK |2
∫

e2tγ ε〈y1−xK,v〉e−|v|2/(2σ 2) dv

=
(

η + γ t2ε2

π

)−d/2

exp
(
ε2 t2γ 2

η
|y1 − xK |2

)
e−γ |y1−xK |2

≤
(

π

η

)d/2

eε2(γ 2/η)|y1−xK |2e−γ |y1−xK |2 .

Defining C̃η := ∑
|β|=2

1
β!C1Cη(π/η)d/2, we get the bound

∣∣rε(xK, y1)
∣∣ ≤ 2C̃ε2e−γ |y1−xK |2

∫ 1

0
(1 − t)eε2(γ 2/η)|y1−xK |2 dt

≤ C̃ε2e−γ ′|y1−xK |2,

with γ ′ = γ − γ 2

η
ε2, which is positive for 0 < ε < ε0 := (η/γ )1/2. Consequently,

for 0 < ε < ε0, we can interpret sε(xK, y1) := |rε(xK, y1)|/(C2ε
2) as a (Gaussian)

transition density, which has moments of all orders, for a suitable normalization
constant C2, for which we can derive explicit upper bounds. Thus we finally ob-
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tain

|hε − h| ≤
∫ ∣∣g(x1, . . . , xK, y1, . . . , yL−1)

∣∣ K∏
i=1

p(si−1, xi−1, si, xi)

× ∣∣rε(xK, y1)
∣∣ L∏
i=2

p(ti−1, yi−1, ti, yi) dx1 · · ·dxK dy1 · · ·dyL−1

≤ C2ε
2
∫ ∣∣g(x1, . . . , xK, y1, . . . , yL−1)

∣∣ K∏
i=1

p(si−1, xi−1, si, xi)(25)

× sε(xK, y1)

L∏
i=2

p(ti−1, yi−1, ti , yi) dx1 · · ·dxK dy1 · · ·dyL−1

=: Cε2 < ∞,

provided that 0 < ε < ε0, as the last expression can be interpreted as

C2E
[∣∣g(Zs1, . . . ,ZsK ,Zt1, . . . ,ZtL−1)

∣∣|Zs0 = x,ZT = y
]

for a Markov process Z with transition densities p(si−1, xi−1, si, xi), 1 ≤ i ≤ K ,
sε(xK, y1), p(ti−1, yi−1, ti, yi), 2 ≤ i ≤ L, which admits finite moments of all
orders by construction. �

REMARK 4.8. Note that the constant C in the above statement can be explic-
itly bounded in terms of the bound on g, the constants appearing in Condition 4.1
and η.

In the spirit of Milstein, Schoenmakers and Spokoiny (2004) we now introduce
a Monte Carlo estimator ĥε for the quantity hε introduced in (23). Let us denote

Zε
nm := 1

εd
g
(
Xn

s0,x
(s1), . . . ,X

n
s0,x

(sK), Ym
y;T (̂tL−1), . . . , Y

m
y;T (̂t1)

)
(26)

× K

(Ym
y;T (̂tL) − Xn

s0,x
(t∗)

ε

)
Ym

y;T (̂tL).

Note that E[Zε
nm] = hε . The Monte Carlo estimator is now defined by

ĥε,M,N := 1

NM

N∑
n=1

M∑
m=1

Zε
nm,(27)

where the superscripts n and m denote different, independent realizations of the
corresponding processes. We are left to analyze the variance of the estimator
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ĥε,M,N . To this end, we consider the expectation E[Zε
nmZε

n′m′ ] for various com-
binations of n,m,n′ and m′.

REMARK 4.9. For the remainder of the section, we omit the sub-scripts in X,
Y and Y as we keep the initial times and values fixed.

LEMMA 4.10. For m �= m′ we obtain

E
[
Zε

nmZε
nm′

]|ε=0

=
∫

g(x1, . . . , xK, y1, . . . , yL−1)g
(
x1, . . . , xK, y′

1, . . . , y
′
L−1

)
× p

(
t∗, xK, t1, y1

)
p

(
t∗, xK, t1, y

′
1
)

×
K∏

i=1

p(si−1, xi−1, si, xi) dxi

L∏
i=2

p(ti−1, yi−1, ti, yi) dyi−1

×
L∏

i=2

p
(
ti−1, y

′
i−1, ti, y

′
i

)
dy′

i−1.

Moreover, we can bound∣∣E[
Zε

nmZε
nm′

] −E
[
Zε

nmZε
nm′

]|ε=0
∣∣ ≤ Cε2.

PROOF. In what follows, C is a positive constant, which may change from line
to line. We have

E
[
Zε

nmZε
nm′

]
= ε−2dE

[
g
(
Xn

s1
, . . . ,Xn

sK
,Ym

t̂L−1
, . . . , Ym

t̂1

)
g
(
Xn

s1
, . . . ,Xn

sK
,Ym′

t̂L−1
, . . . , Ym′

t̂1

)
× K

(Ym
t̂L

− Xn
t∗

ε

)
K

(Ym′
t̂L

− Xn
t∗

ε

)
Ym

t̂L
Ym′

t̂L

]
= ε−2d

∫
g(x1, . . . , xK, y1, . . . , yL−1)g

(
x1, . . . , xK, y′

1, . . . , y
′
L−1

)
× K

(
y0 − xK

ε

)
K

(
y′

0 − xK

ε

) K∏
i=1

p(si−1, xi−1, si, xi) dxi

×
L∏

i=1

p(ti−1, yi−1, ti, yi) dyi−1

L∏
i=1

p
(
ti−1, y

′
i−1, ti, y

′
i

)
dy′

i−1

=
∫

g(x1, . . . , xK, y1, . . . , yL−1)g
(
x1, . . . , xK, y′

1, . . . , y
′
L−1

)
× K(v)K

(
v′)p(

t∗, xK + εv, t1, y1
)
dvp

(
t∗, xK + εv′, t1, y′

1
)
dv′
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×
K∏

i=1

p(si−1, xi−1, si, xi) dxi

×
L∏

i=2

p(ti−1, yi−1, ti, yi) dyi−1

×
L∏

i=2

p
(
ti−1, y

′
i−1, ti, y

′
i

)
dy′

i−1,

where we changed variables v := (y0 − xK)/ε and v′ := (y′
0 − xK)/ε. Thus, for

ε = 0, we arrive at the above expression, which is treated as a problem-dependent
constant.

Using Condition 4.4 [and the short-hand notation p(x, y) := p(t∗, x, t1, y)], we
now consider

r(1,2)
ε

(
xK,y1, y

′
1
)

:=
∫

K(v)K
(
v′)

× [
p(xK + εv, y1)p

(
xK + εv′, y′

1
) − p(xK,y1)p

(
xK,y′

1
)]

dv dv′

= ε2
∫

K(v)K
(
v′)

×
∫ 1

0
(1 − t)

[
d∑

i=1

∂2ei
x p(xK + tεv, y1)p

(
xK + tεv′, y′

1
)
v2
i

+
d∑

i=1

p(xK + tεv, y1)

× ∂2ei
x p

(
xK + tεv′, y′

1
)(

v′
i

)2

+ 2
d∑

i,j=1

∂ei
x p(xK + tεv, y1)

× ∂
ej
x p

(
xK + tεv′, y′

1
)
viv

′
j dv dv′

]
dt dv dv′,

where, for instance, ∂
ei
x ≡ ∂xi and ∂

2ei
x ≡ ∂xi ∂xi . By similar techniques as in the

proof of Theorem 4.7, relying once more on the uniform bounds of Condition 4.1,
we arrive at an upper bound∣∣r(1,2)

ε

(
xK,y1, y

′
1
)∣∣ ≤ Cs(1,2)

ε (xK, y1)s
(1,2)
ε

(
xK,y′

1
)
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for a transition density s
(1,2)
ε (xK, y1) with Gaussian bounds. Consequently, we

obtain ∣∣E[
Zε

nmZε
nm′

] −E
[
Zε

nmZε
nm′

]|ε=0
∣∣

≤ Cε2
∫ ∣∣g(x1, . . . , xK, y1, . . . , yL−1)

∣∣
× ∣∣g(

x1, . . . , xK, y′
1, . . . , y

′
L−1

)∣∣
×

K∏
i=1

p(si−1, xi−1, si, xi) dxis
(1,2)
ε (xK, y1) dy1

×
L∏

i=3

p(ti−1, yi−1, ti, yi) dyi−1 × s(1,2)
ε

(
xK,y′

1
)
dy′

1

×
L∏

i=3

p
(
ti−1, y

′
i−1, ti, y

′
i

)
dy′

i−1,

which can be bounded by Cε2 by boundedness of g. In fact, we can find densities
p̃ and q̃ with Gaussian tails such that∣∣E[

Zε
nmZε

nm′
] −E

[
Zε

nmZε
nm′

]|ε=0
∣∣

(28)
≤ Cε2

∫
p̃

(
s0, x, t∗, xK

)
q̃
(
t∗, xK,T , y

)2
dxK. �

When we consider E[Zε
nmZε

n′m], we have to take care of terms Y2
t̂L

appearing in
the expectation. To this end, let us introduce

μ2(y0, . . . , yL−1) := E
[
Y2

t̂L
|Yt̂L = y0, . . . , Yt̂1 = yL−1

]
.

In what follows, we replace Y2
t̂L

by its conditional expectation μ2(Yt̂L, . . . , Yt̂1) and
re-write the expectation as an integral w.r.t. the transition density of the reverse
diffusion Y ; by independence of X and (Y,Y), we do not need to condition on X

as well. Note that by Condition 4.5, μ2 is a bounded function, and the transition
densities q of the reverse process Y satisfy the bounds provided by Condition 4.1
as well.

LEMMA 4.11. For n �= n′ we have

E
[
Zε

nmZε
n′m

]|ε=0

=
∫

g(x1, . . . , xK−1, y0, . . . , yL−1)g
(
x′

1, . . . , x
′
K−1, y0, . . . , yL−1

)
× μ2(y0, . . . , yL−1)

K−1∏
i=1

p(si−1, xi−1, si, xi) dxi
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×
K−1∏
i=1

p
(
si−1, x

′
i−1, si, x

′
i

)
dx′

i ×

× p(sK−1, xK−1, sK, y0)p
(
sK−1, x

′
K−1, sK, y0

)
×

L∏
i=1

q(̂ti−1, yi, t̂i , yi−1) dyi−1.

Moreover, there is a constant C such that∣∣E[
Zε

nmZε
n′m

] −E
[
Zε

nmZε
n′m

]|ε=0
∣∣ ≤ ε2C.

PROOF. We first note that

E
[
Zε

nmZε
n′m

]
= ε−2d

E

[
g
(
Xn

s1
, . . . ,Xn

sK
,Ym

t̂L−1
, . . . , Ym

t̂1

)
g
(
Xn′

s1
, . . . ,Xn′

sK
, Ym

t̂L−1
, . . . , Ym

t̂1

)
× K

(Ym
t̂L

− Xn
t∗

ε

)
K

(Ym
t̂L

− Xn′
t∗

ε

)(
Ym

t̂L

)2
]

= ε−2d
E

[
g
(
Xn

s1
, . . . ,Xn

sK
,Ym

t̂L−1
, . . . , Ym

t̂1

)
g
(
Xn′

s1
, . . . ,Xn′

sK
, Ym

t̂L−1
, . . . , Ym

t̂1

)
× K

(Ym
t̂L

− Xn
t∗

ε

)
K

(Ym
t̂L

− Xn′
t∗

ε

)
μ2

(
Ym

t̂L
, . . . , Ym

t̂1

)]
.

By a similar approach as in Lemma 4.10, but changing variables xK → v :=
(y0 − xK)/ε and x′

K → v′ := (y0 − x′
K)/ε, we arrive at

E
[
Zε

nmZε
n′m

]
=

∫
g(x1, . . . , xK−1, y0 − εv, y1, . . . , yL−1)

× g
(
x′

1, . . . , x
′
K−1, y0 − εv′, y1, . . . , yL−1

)
× K(v)K

(
v′)μ2(y0, . . . , yL−1)

×
K−1∏
i=1

p(si−1, xi−1, si, xi) dxi

K−1∏
i=1

p
(
si−1, x

′
i−1, si, x

′
i

)
dx′

i

× p(sK−1, xK−1, sK, y0 − εv) dv

× p
(
sK−1, x

′
K−1, sK, y0 − εv′)dv′

×
L∏

i=1

q(̂ti−1, yi, t̂i , yi−1) dyi−1.
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For ε = 0, Condition 4.4 implies

E
[
Zε

nmZε
n′m

]|ε=0

=
∫

g(x1, . . . , xK−1, y0, . . . , yL−1)g
(
x′

1, . . . , x
′
K−1, y0, . . . , yL−1

)
× μ2(y0, . . . , yL−1)

K−1∏
i=1

p(si−1, xi−1, si, xi) dxi

×
K−1∏
i=1

p
(
si−1, x

′
i−1, si, x

′
i

)
dx′

i

× p(sK−1, xK−1, sK, y0)p
(
sK−1, x

′
K−1, sK, y0

)
×

L∏
i=1

q(̂ti−1, yi, t̂i , yi−1) dyi−1,

which gives the formula from the statement of the lemma.
For the bound on the difference, note once again that

r(2,1)
ε :=

∫ [
g(x1, . . . , xK−1, y0 − εv, y1, . . . , yL−1)

× g
(
x′

1, . . . , x
′
K−1, y0 − εv′, y1, . . . , yL−1

)
× p(sK−1, xK−1, sK, y0 − εv)

× p
(
sK−1, x

′
K−1, sK, y0 − εv′)

− g(x1, . . . , xK−1, y0, . . . , yL−1)

× g
(
x′

1, . . . , x
′
K−1, y0, . . . , yL−1

)
× p(sK−1, xK−1, sK, y0)p

(
sK−1, x

′
K−1, sK, y0

)]
K(v)K

(
v′)dv dv′

can be bounded in the sense that |r(2,1)
ε | ≤ Cs

(2,1)
ε (xK−1, y0)s

(2,1)
ε (x′

K−1, y0) for

transition densities s
(2,1)
ε with Gaussian tails, so that∣∣E[

Zε
nmZε

n′m
] −E

[
Zε

nmZε
n′m

]|ε=0
∣∣

≤ Cε2
∫

μ2(y0, . . . , yL−1)

K−1∏
i=1

p(si−1, xi−1, si, xi) dxi

×
K−1∏
i=1

p
(
si−1, x

′
i−1, si, x

′
i

)
dx′

is
(2,1)
ε (xK−1, y0)s

(2,1)
ε

(
x′
K−1, y0

)

×
L∏

i=1

q(̂ti−1, yi, t̂i , yi−1) dyi−1.



SIMULATION OF CONDITIONAL DIFFUSIONS 2017

If q was symmetric, that is, q(̂ti−1, yi, t̂i , yi−1) = q(̂ti−1, yi−1, t̂i , yi), then this
expression would already have the desired form. While symmetry of q would be a
very strong assumption, note that Condition 4.1 allows us to bound

q(̂ti−1, yi, t̂i , yi−1) ≤ Ci exp
(−γ i |yi − yi−1|2) =: C̃isi−1(yi−1, yi)

by a Gaussian transition density si−1 which is naturally symmetric. Absorbing
‖μ2‖∞ and

∏L
i=1 C̃i into the constant C and denoting (by a mild abuse of notation)

p̃
(
s0, x, t∗, y1

) :=
∫ K−1∏

i=1

p(si−1, xi−1, si, xi) dxis
(2,1)
ε (xK−1, y0),

q̃
(
t∗, y0, T , y

) :=
∫ L∏

i=1

si−1(yi−1, yi) dy1 · · ·dyL−1,

the Chapman–Kolmogorov equation implies that∣∣E[
Zε

nmZε
n′m

] −E
[
Zε

nmZε
n′m

]|ε=0
∣∣

≤ Cε2
∫

p̃
(
s0, x, t∗, y0

)2
q̃
(
t∗, y0, T , y

)
dy0(29)

≤ Cε2
∫

p̃
(
s0, x, t∗, y0

)
q̃
(
t∗, y0, T , y

)
dy0. �

LEMMA 4.12. We have

εdE
[(

Zε
nm

)2]
=

∫
K(v)2 dv

∫
g(x1, . . . , xK−1, y0, y1, . . . , yL−1)

× μ2(y0, y1, . . . , yL−1)

×
K−1∏
i=1

p(si−1, xi−1, si, xi)p(sK−1, xK−1, sK, y0)

×
L∏

i=1

q(̂ti−1, yi, t̂i , yi−1) dx1 · · ·dxK−1 dy0 dy1 · · ·dyL−1.

Moreover, there is a constant C > 0 such that∣∣∣εd
E

[(
Zε

nm

)2] − lim
ε→0

εd
E

[(
Zε

nm

)2]∣∣∣ ≤ Cε2.

PROOF. Substituting xK → v := (y0 − xK)/ε, we obtain

εdE
[(

Zε
nm

)2]
=

∫
g(x1, . . . , xK−1, y0 − εv, y1, . . . , yL−1)μ2(y0, y1, . . . , yL−1)
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× K(v)2
K−1∏
i=1

p(si−1, xi−1, si, xi)p(sK−1, xK−1, sK, y0 − εv)

×
L∏

i=1

q(̂ti−1, yi, t̂i , yi−1) × dx1 · · ·dxK−1 dv dy0 dy1 · · ·dyL−1.

For ε → 0 the right-hand side gives the statement from the lemma.
For the difference, consider

r(1,1)
ε :=

∫
K(v)2[

g(x1, . . . , xK−1, y0 − εv, y1, . . . , yL−1)
2

× p(sK−1, xK−1, sK, y0 − εv)

− g(x1, . . . , xK−1, y0, y1, . . . , yL−1)
2

× p(sK−1, xK−1, sK, y0)
]
dv.

Following the procedure established in the previous lemmas, we obtain∣∣r(1,1)
ε

∣∣ ≤ Cs(1,1)
ε (xK−1, y0),

and by the argument used in the proof of Lemma 4.11, we obtain transition densi-
ties function p̃(s0, x, t∗, y0) and q̃(t∗, y0, T , y) such that∣∣∣εd

E
[(

Zε
nm

)2] − lim
ε→0

εd
E

[(
Zε

nm

)2]∣∣∣
(30)

≤ Cε2
∫

p̃
(
s0, x, t∗, y0

)
q̃
(
t∗, y0, T , y

)
dy0. �

In what follows, we simplify the notation by the following conventions:

• the constant in Theorem 4.7 is denoted by C0, that is, |hε − h| ≤ C0ε
2;

• for m �= m′, we set E[Zε
nmZε

nm′ ] =: h(1,2)
ε and denote the constant for the differ-

ence by C1,2, that is, |h(1,2)
ε − h

(1,2)
0 | ≤ C1,2ε

2;

• for n �= n′, we set E[Zε
nmZε

n′m] =: h
(2,1)
ε and denote the constant for the differ-

ence by C2,1, that is, |h(2,1)
ε − h

(2,1)
0 | ≤ C2,1ε

2;

• we set εd
E[(Zε

nm)2] =: h(1,1)
ε and denote the constant for the difference by C1,1,

that is, |h(1,1)
ε − h

(1,1)
0 | ≤ C1,1ε

2.

LEMMA 4.13. The variance of the estimator is given by

Var ĥε,M,N = 1 − M − N

NM
h2

ε + M − 1

NM
h(1,2)

ε + N − 1

NM
h(2,1)

ε + ε−d

NM
h(1,1)

ε .

REMARK 4.14. Lemma 4.13 gives a clarification of the intuitive fact that the
variance of ĥε,M,N explodes as ε → 0 (and, hence, Kε → δ0). Indeed, as all the h

(·)
ε
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terms have a finite limit, the explosion is exclusively caused by the contribution of
E[(Zε

nm)2] = ε−dh
(1,1)
ε . Finally, the exploding term ε−d will be compensated by

the factor 1/(NM).

PROOF OF LEMMA 4.13. The result follows immediately by (26), indepen-
dence of Zε

nm and Zε
n′m′ when both n �= n′ and m �= m′ and the notation introduced

above, noting that E[Zε
nm] = hε . �

We immediately obtain the following:

LEMMA 4.15. We assume Conditions 4.1, 4.4 and 4.5 hold. Then the mean
square error of the estimator ĥε,M,N introduced in (27) for the term h defined
in (24) satisfies

E
[
(ĥε,M,N − h)2]

≤ 1 − N − M

NM
h2 + M − 1

NM
h

(1,2)
0 + N − 1

NM
h

(2,1)
0 + ε−d

NM
h

(1,1)
0

+ ε−d+2

NM
C1,1 + ε2

[
2

1 − N − M

NM
Ch + M − 1

NM
C1,2 + N − 1

NM
C2,1

]
+ (N − 1)(M − 1)

NM
C2

0ε4.

Similar to Milstein, Schoenmakers and Spokoiny (2004), we can now choose
N = M and the bandwidth ε so as to obtain convergence proportional to N−1/2 in
RMSE-sense.

THEOREM 4.16. Assume Conditions 4.1, 4.4 and 4.5 and set M = N , and
ε = εN dependent on N .

• If d ≤ 4, choose εN = CN−α for some 1/4 ≤ α ≤ 1/d . Then we have
E[(ĥεN ,N,N −h)2] = O(N−1), so we achieve the optimal convergence rate 1/2.

• For d > 4, choose εN = CN−2/(4+d), and we obtain E[(ĥεN ,N,N − h)2] =
O(N−8/(4+d)).

PROOF. Insert M = N and the respective choice of εN in Lemma 4.15. �

REMARK 4.17. By replacing the kernel K by higher order kernels,4 one
could retain the convergence rate 1/2 even in higher dimensions, as higher order
kernels lead to higher order estimates (in ε) in Lemmas 4.10, 4.11 and 4.12.

4Recall that the order of a kernel K is the order of the lowest order (nonconstant) monomial f

such that
∫

f (v)K(v)dv �= 0.
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So far, we have only computed the quantity h as given in (24). However, finally
we want to compute the conditional expectation

H := E
[
g
(
Xs0,x(s1), . . . ,Xs0,x(tL−1)

)|Xs0,x(T ) = y
]
.

As H = h
p(s0,x,T ,y)

with h defined in (24), we need to divide the estimator for
h by an appropriate estimator for p(s0, x, T , y)—in fact, we choose the forward
reverse estimator with g ≡ 1. Note that we have assumed that p(s0, x, T , y) >

0. To rule out large error contributions when the denominator is small, we will
discard experiments which give too small estimates for the transition density. More
precisely, we choose our final estimator to be

Ĥε,M,N :=
∑N

n=1
∑M

m=1 g(Xn
s1

, . . . ,Xn
sK

,Ym
t̂L−1

, . . . , Ym
t̂1

)K((Ym
t̂L

− Xn
t∗)/ε)Ym

t̂L∑N
n=1

∑M
m=1 K((Ym

t̂L
− Xn

t∗)/ε)Ym
t̂L

(31)
× 1(1/(NM))ε−d

∑N
n=1

∑M
m=1 K((Ym

t̂L
−Xn

t∗ )/ε)Ym
t̂L

>p/2,

where p > 0 is a lower bound for p(s0, x, T , y) (for fixed s0, x, T , y), which is
assumed to be known.5

THEOREM 4.18. Assume Conditions 4.1, 4.4 and 4.5 and set M = N and
ε = εN dependent on N .

• If d ≤ 4 (or d > 4 and higher order kernels are used), choose εN = CN−α ,
1/4 ≤ α ≤ 1/d . Then we have E[(ĤεN ,N,N − H)2] = O(N−1), so we achieve
the optimal convergence rate 1/2.

• For d > 4, choose εN = CN−2/(4+d), and we obtain E[(ĤεN ,N,N − H)2] =
O(N−8/(4+d)).

PROOF. Let XN := ĥεN ,N,N , and, similarly, let

YN := 1

N2 ε−d
N

N∑
n=1

N∑
m=1

K

(Ym
t̂L

− Xn
t∗

εN

)
Ym

t̂L

denote the estimator in the denominator, including the normalization factor. More-
over, let X := h as defined in (24) and let Y := p(s0, x, T , y). Then we have al-
ready established in Theorem 4.16 that

E
[|XN − X|2] = O

(
N−p)

,

E
[|YN − Y |2] = O

(
N−p)

,

5In practice, such a lower bound could be achieved by running an independent estimation for
p(s0, x, T , y) and then taking a value at the lower end of a required confidence interval. See Re-
mark 4.19 below for a different version of the theorem. In any case, our numerical experiments
suggest that the cut-off can be safely omitted in practice. Keep in mind, however, that the ratio of the
asymptotic distributions for numerator and denominator may not have finite moments.
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where p = 1 for d ≤ 4 and p = 8
4+d

when d > 4. Moreover, we have obtained in
Lemma 4.13 that VarXN = O(N−p) and VarYN = O(N−p).

We will now estimate the mean square error for the quotient by splitting it into
two contributions, depending on whether YN is small or large. To this end, let

ζN := XN

YN

1YN>DN

for a constant DN to be specified below satisfying DN < E[YN ] (in fact, for N

large enough, this constant may be chosen to be p/2). Then we have

E

[(
XN

YN

− X

Y

)2

1YN>DN

]
= E

[
(XNY − YNX)2

(YNY )2 1YN>DN

]

≤ E[(Y (XN − X) + X(Y − YN))2]
Y 2D2

N
(32)

≤ 2
Y 2

E[(XN − X)2] + X2
E[(Y − YN)2]

Y 2D2
N

≤ C1
X,Y

D2
NNp

,

where we used the estimates on the MSEs for numerator and denominator. On
the other hand, we have, using that DN < EYN , Chebyshev’s inequality and our
estimate on the variance of YN ,

P(YN ≤ DN) = P(YN −EYN ≤ DN −EYN ;YN ≤ EYN)

≤ P
(|YN −EYN | ≥ EYN − DN

)
(33)

≤ VarYN

(EYN − DN)2

≤ C2
Y

(EYN − DN)2Np
.

Finally, consider

E

[(
ζN − X

Y

)2]
= E

[(
ζN − X

Y
1YN>DN

− X

Y
1YN≤DN

)2]

= E

[(
ζN − X

Y
1YN>DN

)2]
+ X2

Y 2 P(YN ≤ DN)(34)

≤ C1
X,Y

D2
NNp

+ C2
Y X2

(EYN − DN)2Y 2Np
,
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where we have combined (32) and (33). Now choose DN := p/2 for N large

enough. As EYN
N→∞−→ Y , (34) implies that

E

[(
ζN − X

Y

)2]
= O

(
N−p)

.(35) �

REMARK 4.19. Alternatively, we could replace the cut-off p/2 in (31) by

some sequence DN
N→∞−→ 0. In that case, the MSE of the estimator is of order

O(N−p/D2
N), which can be chosen as close to O(N−p) as desired by proper

choices of (slowly convergent) sequences DN . Note that finally EYN > DN in

the proof of Theorem 4.18, as EYN
N→∞−→ p(s0, x, T , y) > 0 by assumption.

4.2. Forward-reverse estimators for conditioning on a set. In Theorem 3.7
and Corollary 3.8 we have derived a representation of the conditional expectation
of a functional g of the process X given that XT ∈ A (for a Borel set A with
positive probability) or given X1

T = y1, . . . ,Xd ′
T = yd ′

. In analogy to the first part
of this section, one can construct Monte Carlo estimators for these conditional
expectations and analyze their bias and variance. In what follows, we assume that
A is either a general Borel set with positive probability or an affine surface, that is,
we treat both cases distinguished above together.

Recall that we represented the conditional expectation as

lim
ε↓0

E

[
g
(
Xs0,x(s1), . . . ,Xs0,x(sK), Yξ ;T

(̂
tL−1, . . . Yt∗,ξ (̂t1)

))
× ε−dK

(
Yξ ;T (̂tL) − Xs0,x(t

∗)
ε

)Yξ ;T (̂tL)

ϕ(ξ)

]
=

∫
A

p(s0, x, T , y)λA(dy)E
[
g
(
Xs0,x(s1), . . . ,Xs0,x(tL−1)

)|Xs0,x(T ) ∈ A
]
,

where ξ is an independent random variable taking values in A with density ϕ with
respect to λA. In order to arrive at an estimator with bounded variance, we need to
restrict the choice of ϕ and, consequently, ξ .

CONDITION 4.20. The density ϕ has (strictly) super-Gaussian tails, that is,
there are constants C,γ, δ > 0 such that

ϕ(v)−1 ≤ C exp
(
γ |v|2−δ), v ∈ A.

We define the following Monte Carlo estimator for the conditional expectation

Ĥ
ξ
ε,M,N

:=
∑N

n=1
∑M

m=1 g(Xn
s1

, . . . ,Xn
sK

,Ym
t̂L−1

, . . . , Ym
t̂1

)K((Ym
t̂L

− Xn
t∗)/ε)(Ym

t̂L
/ϕ(ξm))∑N

n=1
∑M

m=1 K((Ym
t̂L

− Xn
t∗)/ε)(Ym

t̂L
/ϕ(ξm))

(36)

× 1(1/(NM))ε−d
∑N

n=1
∑M

m=1 K((Ym
t̂L

−Xn
t∗ )/ε)(Ym

t̂L
/ϕ(ξm))>p/2,
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where (Xn
s1

, . . . ,Xn
sK

), 1 ≤ n ≤ N , are independent samples from the solution of
the forward process X started at Xs0 = x and (Ym

t̂L
, . . . , Ym

t̂1
) together with Ym

t̂L
, 1 ≤

m ≤ M , are independent samples from the reverse process (Y,Y) started at Ym
0 =

ξm, Ym
0 = 1, for an independent sequence of samples ξm from the distribution ξ .

Apart from the term ϕ(ξm), the difference to estimator (31) is the randomness
of the initial values of the reverse process. Again, p(s0, x, T , y) > p > 0, and
Remark 4.19 applies. The analysis of (36), however, works along the lines of the
analysis of (31). Indeed, in all the expectations considered in Theorem 4.7 and in
Lemmas 4.10–4.12, we obtain the same kind of results by the following steps:

(1) condition on ξ and pull out the factor ϕ(ξ)−1 (possibly with indices m

and/or m′);
(2) use the results obtained in Section 4.1, with constants depending on the

value of ξ ;
(3) move ϕ(ξ)−1 back in and take the expectation in ξ .

THEOREM 4.21. Set M = N and assume Condition 4.20 and, as usual, Con-
dition 4.1, 4.4 and 4.5.

• If d ≤ 4, choose εN = CN−α , 1/4 ≤ α ≤ 1/d . Then the MSE of the forward-
reverse estimator Ĥ

ξ
ε,M,N is O(N−1).

• For d > 4, choose εN = CN−2/(4+d). Then the MSE of the forward-reverse
estimator Ĥ

ξ
ε,M,N is O(N−8/(4+d)).

PROOF. In this proof, the constant C may change from line to line. Define

hξ :=
∫
A

p(s0, x, T , y)λA(dy) ·E[
g
(
Xs0,x(s1), . . . ,Xs0,x(tL−1)

)|Xs0,x(T ) ∈ A
]
,

hξ
ε := E

[
g
(
Xs0,x(s1), . . . ,Xs0,x

(
t∗

)
, Yξ ;T (̂tL−1), . . . , Yξ ;T (̂ti)

)
× Kε

(
Yξ ;T (̂tL) − Xs0,x

(
t∗

))Yξ ;T (̂tL)

ϕ(ξ)

]
,

Zε,ξ
nm := 1

εd
g
(
Xn

s0,x
(s1), . . . ,X

n
s0,x

(sK), Ym
ξm;T (̂tL−1), . . . , Y

m
ξm;T (̂t1)

)
× K

(Ym
ξm;T (̂tL) − Xn

s0,x
(t∗)

ε

)Ym
ξm;T (̂tL)

ϕ(ξm)
,

and notice that the result will follow if we can establish the bounds of Theorem 4.7
and Lemmas 4.10, 4.11 and 4.12 for h, hε and Zε

nm replaced by hξ , h
ξ
ε and Z

ε,ξ
nm ,

respectively.
For the bias, (25) implies a bound |h(y) − hε(y)| ≤ Cε2p̃(s0, x, T , y) for some

density p̃ in y, where we make the dependence of h and hε on y explicit. Conse-
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quently, conditioning on ξ first, we have

∣∣hξ − hξ
ε

∣∣ =
∣∣∣∣E[

h(ξ) − hε(ξ)

ϕ(ξ)

]∣∣∣∣
≤ E

[ |h(ξ) − hε(ξ)|
ϕ(ξ)

]
(37)

≤ Cε2
∫

p̃(s0, x, T , ξ)

ϕ(ξ)
ϕ(ξ) dξ

≤ Cε2.

Similarly, using the estimate from Lemma 4.10, denoting zε
n,m,m′(y, y′) :=

E[Zε
nmZε

nm′ ], where we assume Ym = Ym
y;T and Ym′ = Ym′

t∗,y′ , we get, using a sim-
ple adaptation of (28) for different terminal values y and y′,∣∣E[

Zε,ξ
nmZ

ε,ξ

nm′
] −E

[
Zε,ξ

nmZ
ξ

nm′
]|ε=0

∣∣
≤ E

[ |zε
n,m,m′(ξm, ξm′

) − zε
n,m,m′(ξm, ξm′

)|ε=0|
ϕ(ξm)ϕ(ξm′

)

]

≤ Cε2
E

[∫
p̃(s0, x, t∗, xK)q̃(t∗, xK,T , ξm)q̃(t∗, xk, T , ξm′

) dxK

ϕ(ξm)ϕ(ξm′
)

]
(38)

= Cε2
∫

p̃
(
s0, x, t∗, xK

)
q̃
(
t∗, xK,T , y

)
× q̃

(
t∗, xk, T , y′)dxKλA(dy)λA

(
dy′)

≤ Cε2.

Adopting the above notation for the case n �= n′ covered in Lemma 4.11 and
using (29), we get∣∣E[

Zε,ξ
nmZ

ε,ξ

n′m
] −E

[
Zε,ξ

nmZ
ε,ξ

n′m
]|ε=0

∣∣
≤ E

[ |zε
n,n′,m(ξm, ξm) − zε

n,n′,m(ξm, ξm)|ε=0|
ϕ(ξm)ϕ(ξm)

]

≤ Cε2
∫

p̃(s0, x, t∗, y1)q̃(t∗, y1, T , y)

ϕ(y)
dy1λA(dy).

By assumption the density
∫

p̃(s0, x, t∗, y1)q̃(t∗, y1, T , y) dy1 has Gaussian tails,
whereas ϕ was assumed to have strictly sub-Gaussian tails. This implies that the
above integral is finite, and we get the bound∣∣E[

Zε,ξ
nmZ

ε,ξ

n′m
] −E

[
Zε,ξ

nmZ
ε,ξ

n′m
]|ε=0

∣∣ ≤ Cε2.(39)
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In a similar way, using (30), we get the bound∣∣∣εd
E

[(
Zε,ξ

nm

)2] − lim
ε→0

εd
E

[(
Zε,ξ

nm

)2]∣∣∣ ≤ Cε2.(40)

The respective versions of Lemmas 4.13, 4.15 and Theorem 4.16 follow imme-
diately from the bounds (37), (38), (39) and (40), and we can repeat the proof of
Theorem 4.18, arriving at the conclusion. �

We again stress that the nonoptimal complexity rate in Theorem 4.21 can be
improved to the optimal one even for d > 4 by Remark 4.17.

4.3. Limitations of the forward-reverse estimator. Theorems 4.18 and 4.21
above present the asymptotic analysis of the MSE for the forward-reverse esti-
mator. In practice, for many methods with very good asymptotic rates, limitations
arise due to potentially high constants, and the forward-reverse estimator is no ex-
ception. In fact, this can be already seen in a very simple example, where all the
estimates can be given explicitly.

For s0 = 0 < t∗ < T , consider the one-dimensional Ornstein–Uhlenbeck pro-
cess

dX0,x(t) = −αX0,x(t) dt + dBt(41)

for α > 0. The corresponding reverse process satisfies

dYy;T (t) = αYy;T (t) dt + dWt(42)

for a Brownian motion Wt . Moreover, Yy;T (T − t∗) = eα(T −t∗). We first discuss
the estimator ĥε,N,N introduced in (27) for the numerator of the forward-reverse
estimator Ĥε,N,N for g ≡ 1 with K = L = 1. Of course, we expect that the findings
for this special case carry over to situations with nonconstant g and K,L ≥ 1.

After elementary but tedious calculations [Milstein, Schoenmakers and
Spokoiny (2004), Section 4] one arrives at

E[ĥε,N,N ] = 1√
2π

(
ε2e−2α(T −t∗) + σ 2

T

) exp
(
− (e−αT x − y)2

2(ε2e−2α(T −t∗) + σ 2
T )

)
(43)

and

Var ĥε,N,N = − 2N − 1

2πN2(B + σ 2
T )

exp
(
− A

B + σ 2
T

)

+ N − 1

2πN2
√

B + σ 2
T −t∗

√
B + 2σ 2

T − σ 2
T −t∗

× exp
(
− A

B + 2σ 2
T − σ 2

T −t∗

)
(44)
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+ N − 1

2πN2
√

B + σ 2
T − σ 2

T −t∗
√

B + σ 2
T + σ 2

T −t∗

× exp
(
− A

B + σ 2
T + σ 2

T −t∗

)

+ eα(T −t∗)

2πN2ε
√

B + 2σ 2
T

exp
(
− A

B + 2σ 2
T

)
,

where

σ 2
s := 1 − e−2αs

2α
, A := (

e−αT x − y
)2

, B := ε2e−2α(T −t∗).

Thus, all the terms in the MSE [composed of the square of (43) and (44)] exhibit
fairly moderate constants, except for the last term in (44). Indeed, when α � 0,
we have eα(T −t∗) � 1, unless T − t∗ � 1. In other words, the constant in Theo-
rem 4.16 will be quite large if α � 0 and T − t∗ ∼ 1. That observation is quite in-
tuitive in view of (41) and (42): X0,x is contracting to 0 as time increases, whereas
Yy;T is exponentially expanding away from y. Thus, the probability of X0,x(t

∗)
and Yy;T (T − t∗) be close to each other is very small.

REMARK 4.22. Note that the last term in (44) is the term estimated in
Lemma 4.12. The constant in the lemma depends on the constant in Condition 4.1
for the derivatives of the transition density p(t, x′, s, y′) with respect to the y′-
variable. For the Ornstein–Uhlenbeck process, the density is given by

p
(
t, x′, s, y′) = 1

2πσ 2(s − t)
exp

(
−(e−α(s−t)x′ − y′)2

2σ 2(s − t)

)
.

Therefore, we see that derivatives with respect to y′ (and, hence, the corresponding
constants) are considerably larger than derivatives with respect to x′. This explains
why the last term (and no other term) in (44) causes problems for α large.

REMARK 4.23. There is also a source of error due to the form of Ĥε,N,M as
a fraction of two terms. The error of an approximation

Q

P
≈ Q̂

P̂
= Q + �Q

P + �P

of a quantity of interest Q/P by the fraction of the approximations Q̂ for Q

and P̂ for P with corresponding (absolute) errors �Q and �P is controlled by
the relative errors for Q and P . Indeed, assume for simplicity that �Q = 0 and
Q/P = O(1), then

Q

P
− Q̂

P̂
=O

(
�P/P

1 + �P/P

)
,

which may be close to 1 if the relative error �P/P for the denominator P is large.
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5. Numerical study.

5.1. Implementation. Some care is necessary when implementing the forward
reverse estimators (31) and (36) for expectations of a functional of the diffusion
bridge between two points or a point and a subset. This especially concerns the
evaluation of the double sum. Indeed, straightforward computation would require
the cost of MN kernel evaluations which would be tremendous, for example, when
M = N = 105. But, fortunately, by using kernels with an (in some sense) small
support we can get around this difficulty as outlined below; see also Milstein,
Schoenmakers and Spokoiny (2004) for a similar discussion.

We here assume that the kernel K(x) used in (31) and (36), respectively, has
bounded support contained in some ball of radius r , an assumption which is eas-
ily fulfilled in practice. For instance, even though the Gaussian kernel K(x) =
(2π)−d/2 exp(−|x|2/2) has unbounded support, in practice K(x) is negligible
outside a finite ball (with exponential decay of the value as function of the ra-
dius). Therefore, it is easy to choose a ball Br(0) such that K is smaller than
some error tolerance const×TOL outside the ball.6 Then, due to the small sup-
port of K , the following Monte Carlo algorithm for the kernel estimator is feasi-
ble. For simplicity, we take N = M . [We present the algorithm only for the case
of (31), the analysis being virtually equal for (36).] Here, the input variable D
denotes the grid (13). The complexity of the simulation steps (2) and (3) in Al-
gorithm 1 is O(KNd) and O(LNd) elementary computations, respectively. The
size lm of the intersection in step (5) of Algorithm 1 is, on average, proportional to
Nεd

N × p(s0, x, t∗, Ym
y;T (̂tL)). The search procedure itself can be done at a cost of

order O(N logN) (neglecting the cost of comparison between two integers). Thus,
we get the complexity bounds summarized in Theorem 5.1 below.

THEOREM 5.1. Assume that samples from the forward process X and the
reverse process (Y,Y) can be obtained at constant cost.7 Furthermore, assume
that the cost of checking for equality of integers carries negligible cost. Then the
following asymptotic bounds hold for the complexity of Algorithm 1:

• if d ≤ 4, we choose εN = O(N−1/d), implying that the MSE of the output of the
algorithm is O(N−1) with a complexity O(N logN);

• if d > 4, we choose εN = O(N−2/(4+d)) and obtain an MSE of O(N−8/(4+d))

with a complexity O(N logN).

6Obviously, the appropriate value for const depends on the size of the constants in the MSE bound.
7It is a straightforward exercise to adjust this calculation for the case when the corresponding

stochastic differential equations need to be solved by some numerical scheme with known rate of
convergence.
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Algorithm 1 Forward-reverse algorithm
1: procedure FORREV(N , εN , a, σ , x, y, D, t∗, g)
2: Simulate N trajectories (Xn

s0,x
)Nn=1 of the forward process on s0 < · · · <

sK .
3: Simulate N trajectories (Ym

y;T ,Ym
y;T )Nm=1 of the reverse process on 0 < t̂1 <

· · · < t̂L.
4: for m ← 1,N do
5: Find the sub-sample{

Xnk(m)
s0,x

(
t∗

)
:k = 1, . . . , lm

} := {
Xn

s0,x

(
t∗

)
:n = 1, . . . ,N

} ∩ BrεN

(
Ym

y;T (T )
)
.

6: end for
7: Evaluate (31) by

Ĥε,M,N

←
∑N

m=1
∑lm

k=1 g(X
nk(m)
s1 , . . . ,X

nk(m)
sK , Ym

t̂L−1
, . . . , Ym

t̂1
)K((Ym

t̂L
− X

nk(m)
t∗ )/ε)Ym

t̂L∑N
m=1

∑lm
k=1 K((Ym

t̂L
− X

nk(m)
t∗ )/ε)Ym

t̂L

× 1
1/(NM)ε−d

∑N
m=1

∑lm
k=1 K((Ym

t̂L
−X

nk(m)

t∗ )/ε)Ym
t̂L

>p/2
.

8: end procedure

5.2. Numerical examples. We present two numerical studies: in the first exam-
ple, the forward process is a two-dimensional Brownian motion, with the standard
Brownian bridge as the conditional diffusion. In the second example, we consider
a Heston model whose stock price component is conditioned to end in a certain
value. In both examples, we actually use a Gaussian kernel

K(x) = 1

(2π)d/2 e−|x|2/2,

and the simulation as well as the functional g of interest are defined on a uniform
grid D = {0 = s0 < · · · < sK = t∗ = t0 < · · · < tL = T } with si = i/ l and tj =
(K + j)/ l for l ∈N and L + K = l.

EXAMPLE 5.2. We consider Xt = Bt , a two-dimensional standard Brownian
motion, which we condition on starting at X0 = 0 and ending at X1 = 0, that
is, the conditioned diffusion is a classical two-dimensional Brownian bridge. In
particular, the reverse process Yt is also a standard Brownian motion, and Y ≡ 1.
We consider the functional

g(x1, . . . , xl−1) :=
2∑

j=1

(
1

l − 1

l−1∑
i=1

x
j
i

)2

,
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FIG. 1. MSE for Example 5.2. Dashed lines are reference lines proportional to N−1.

where xi = (x1
i , x2

i ) ∈ R
2. In this simple toy-example, we can actually compute

the true solution

E
[
g(X1/l, . . . ,X(l−1)/ l)|X0 = X1 = 0

] = 1

6

l + 1

l − 1
.

As evaluation of the functional g is cheap in this case, we use a naive algorithm
calculating the full double sum. We choose M = N and ε = εN = N−0.4, which
still gives the rate of convergence obtained in Theorem 4.18.

In Figure 1, we show the results for l = 10, with the choices K = 1 and K = 4,
that is, with t∗ = 1/10 and t∗ = 4/10, respectively. In both case, we observe the
asymptotic relation MSE ∼ N−1 predicted by Theorem 4.18. The MSE is slightly
lower when t∗ is closer to the middle of the interval [0,1] [case (b)] as compared
to the situation when t∗ is close to the boundary [case (a)]. Intuitively, one would
expect such an effect, as in the latter case the forward process can only accumulate
a considerably smaller variance as compared to the reverse process. However, it
should be noted that the effect is rather small.8

EXAMPLE 5.3. Let us consider the stock price St in a Heston model: Xt :=
(St , vt ), that is, the stock price together with its (stochastic) volatility satisfies the
stochastic differential equation

dSt = μSt dt + √
vtSt dB1

t ,

dvt = (γ vt + β)dt + ξ
√

vt

(
ρ dB1

t +
√

1 − ρ2 dB2
t

)
.

8Cf. Milstein, Schoenmakers and Spokoiny (2004), where it was noted that the variance of the
forward-reverse density estimator explodes when t∗ → T or t∗ → 0. Mathematically, this is a con-
sequence of the transition densities getting singular.
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We have

a(s, x) =
(

μx1

γ x2 + β

)
, σ (s, x) =

( √
x2x1 0

ξ
√

x2ρ ξ
√

x2
√

1 − ρ2

)
.

As this process is time-homogeneous, we have σ̃ = σ , and the remaining coeffi-
cients of the SDE for the reverse process are given by

α(s, x) =
( (

2x2 + ρξ − μ
)
x1

(ρξ − γ )x2 + ξ2 − β

)
, c(s, x) = x2 + ρξ − μ − γ.

As path-dependent functional we consider the realized variance of the stock-
price, that is, for a grid as above we consider

g(x1, . . . , xl−1, xl) :=
l−1∑
i=1

(
log

(
x1
i+1

) − log
(
x1
i

))2
.

(Dependence of the functional g on the final value y obviously changes nothing
in the theorems of Sections 3 and 4.) We choose T = 1/12 and l = 30. This time,
however, we only condition on the value of the stock component at final time T .
For the calculations, we use the following, arbitrarily chosen parameters: μ = 0.05,
γ = −0.15, β = −0.045, ξ = 0.3, ρ = −0.7. The initial stock price and the initial
variance were set to S0 = 10 and v0 = 0.25, respectively. Moreover, the realized
variance was computed conditionally on ST = 12, and we choose the standard
normal density for ϕ, despite Condition 4.20.

Contrary to Example 5.2, we cannot produce samples from the exact distri-
butions of either the forward or the reverse processes Xt or (Yt ,Yt ). Thus, we
approximate the corresponding paths using the Euler–Maruyama scheme on a uni-
form grid with mesh h = min(1/360,

√
0.05/N), so that the MSE for the solution

of the corresponding SDE is itself O(N−1), implying that the asymptotic order of
the MSE of our quantity of interest is not affected by the numerical approximation
of the forward and backward processes. Moreover, evaluation of the functional g is
quite costly due to the numerous calls of the log-function. Thus, we use the cut-off
procedure introduced above, so that the individual terms in the double sum are only
included when the value of the kernel Kε is larger than η = 10−3. The main param-
eters of the forward-reverse algorithm are chosen as M = N and εN = (4N)−0.4,
so that we are in the regime of Theorem 4.21.

The numerical results in Figure 2 confirm the rate of convergence for the MSE
established in Theorem 4.21. Again, there is no significant advantage of choosing
t∗ in the middle of the relevant interval [0, T ]. The “exact” reference value was
computed using the forward-reverse algorithm with very large N , corresponding
small ε and a very fine grid for the Euler scheme. Note that Figure 2 depicts the
“relative MSE,” that is, the MSE normalized by the squared reference value.
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FIG. 2. Relative MSE for Example 5.3. Dashed lines are reference lines proportional to N−1.
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