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THE WILLIAMS–BJERKNES MODEL ON REGULAR TREES

BY OREN LOUIDOR1, RAN TESSLER AND

ALEXANDER VANDENBERG-RODES

Technion, Hebrew University of Jerusalem and University of California, Irvine

We consider the Williams–Bjerknes model, also known as the biased
voter model on the d-regular tree Td , where d ≥ 3. Starting from an ini-
tial configuration of “healthy” and “infected” vertices, infected vertices in-
fect their neighbors at Poisson rate λ ≥ 1, while healthy vertices heal their
neighbors at Poisson rate 1. All vertices act independently. It is well known
that starting from a configuration with a positive but finite number of infected
vertices, infected vertices will continue to exist at all time with positive prob-
ability if and only if λ > 1. We show that there exists a threshold λc ∈ (1,∞)

such that if λ > λc then in the above setting with positive probability, all ver-
tices will become eventually infected forever, while if λ < λc, all vertices
will become eventually healthy with probability 1. In particular, this yields a
complete convergence theorem for the model and its dual, a certain branching
coalescing random walk on Td—above λc. We also treat the case of initial
configurations chosen according to a distribution which is invariant or ergodic
with respect to the group of automorphisms of Td .

1. Introduction and results. We study the Williams–Bjerknes model (hence-
forth WB process), also known as the biased voter model, on the d-regular tree
T = Td for d ≥ 3. This a continuous time Markov process whose state space is
X := {−,+}T, that is, the set of all configurations (assignments) of ± to the ver-
tices of the tree. “+ vertices” will be thought of as infected, while “− vertices”
as healthy. Starting from some initial configuration ξ0 ∈ X , infected vertices in-
fect each of their neighbors at Poisson rate λ, where λ ≥ 1 is the infection rate
parameter, while healthy vertices heal each of their neighbors at Poisson rate 1.
All vertices act independently. We shall denote by ξ

ξ0,T,λ
t the state of this process

at time t and often omit some or all of the superscripts when they are clear or
irrelevant.

Formally, (ξ
ξ0,T,λ
t : t ≥ 0) is a Markov spin-system whose generator is the clo-

sure in C(X ) of the operator [defined on a suitable sub-space of C(X )].

Lf (ξ) = ∑
x

(1{ξ(x)=+} + λ1{ξ(x)=−})
∣∣{y ∼ x : ξ(y) �= ξ(x)

}∣∣
(1.1)

× [
f

(
ξx) − f (ξ)

]
,
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where ξx is equal to ξ except at the vertex x where it has the opposite sign, and
x ∼ y means that x and y are neighboring vertices in T. We shall identify a con-
figuration ξ with the subset of vertices which are infected under it, that is, the set
{x ∈ T : ξ(x) = +}.

This process was introduced in 1972 by Williams and Bjerknes [22] as a model
for tumor growth and independently by Schwartz [19] in 1977 as an example of
a particle system with an increasing dual. It is closely related to both the voter
model (the case of λ = 1) and the contact process (healing rates are fixed and
do not depend on the number of healthy neighbors). As such it exhibits behavior
which is similar to both models (this will be further discussed below). For standard
texts on all these models, see [11, 12].

The main question in this model, both from a mathematical and a biological
point of view, is that of survival. Namely, starting from a finite nonempty initial
configuration ξ0, that is, 0 < |ξ0| < ∞ (where |ξ0| is the cardinality of ξ0), whether
infected sites will continue to exist at all times or become extinct. As was noticed
by Williams and Bjerknes, observed at the times of transition: 0 = τ0, τ1, τ2, . . . ,

the process (|ξτk
| :k = 0,1, . . .) is just a nearest-neighbor random walk on Z+ with

an absorbing state at 0 and drift

−1
1

λ + 1
+ 1

λ

λ + 1
= λ − 1

λ + 1
.(1.2)

Therefore global survival, that is,

�ξ0
g := {

sup
{
t ≥ 0 : ξξ0

t �= ∅
} = ∞}

,(1.3)

has probability

P
(
�ξ0

g

) = 1 − λ−|ξ0|,(1.4)

which for finite, nonempty ξ0, is positive if and only if λ > 1 (the reason for the
term “global” will become apparent shortly). In other words, the threshold for the
possibility of global survival is λg = 1 regardless of the underlying graph, as long
as it is infinite, connected and has a bounded degree (this can be relaxed, but some
restrictions are needed to ensure that the process is well defined).

In the lattice case, based on numerical simulations Williams and Bjerknes pre-
dicted that once the infection survives, the set of infected sites will “roughly” look
like an ever growing “blob” around the initially infected vertex. This was proved
by Bramson and Griffeath in 1980 [2, 3] who gave a shape theorem with a linear
rate for the subset of infected sites—for Zd in all d ≥ 1 and any λ > 1. (This is
similar to the shape theorem for the Richardson Growth Model, which was proved
by Richardson [17] and Kesten [4].) Thus, in particular on Zd for all λ > 1, global
survival implies complete survival, namely

�ξ0
c := {

sup
{
t ≥ 0 : ξξ0

t �� x
}
< ∞}

,(1.5)
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where x is any vertex of Zd . Notice that except for an event of zero probability,
on �

ξ0
c every vertex will eventually become permanently infected, and hence the

choice of x is immaterial in the above definition.
On the d-regular tree, the situation is more intricate and so far was less under-

stood. Madras, Schinazi (and Durrett) [14] showed that for d ≥ 3, survival can be
global but not complete. More precisely, for ξ0 ∈ X and any x ∈ T, define local
survival as the event

�
ξ0
l := {

sup
{
t ≥ 0 : ξξ0

t � x
} = ∞}

.(1.6)

Then for all d ≥ 3, there exists λ′ strictly higher than λg = 1, such that for any

finite nonempty ξ0, if λ ∈ (1, λ′), then P(�
ξ0
l ) = 0. In other words, if λ ∈ (1, λ′)

the infection can survive, but it must eventually “drift to infinity.” Letting

λl(T) := inf
{
λ > 0 :P

(
�

ξ0
l

)
> 0

}
(1.7)

denote the threshold value for local survival, where ξ0 is any finite nonempty con-
figuration, whose precise value is immaterial, they are able to show that

λl

(
Td) ≥ d

2
√

d − 1
.(1.8)

However, it was not clear whether λl(T) < ∞ nor what exactly happens above this
threshold. More precisely, if we define

λc(T) := inf
{
λ > 0 :P

(
�ξ0

c

)
> 0

}
,(1.9)

then it is not clear whether λc(T) < ∞ and whether its value coincides with that
of λl(T) or is strictly larger than it. Had λl(T) < λc(T) < ∞ been the case, there
would have been three phases for the model: global but not local nor complete
survival, local but not complete survival and finally, complete survival.

The notion of local survival and the existence of an intermediate phase where
survival is global but not local was first observed by Pemantle in the context of the
contact process on trees [16]. By finding upper and lower bounds on the infection
thresholds for global (resp., local) survival, he was able to conclude that there is
an intermediate regime for Td when d ≥ 4. Liggett [10] and then [20] showed that
this is also true for d = 3.

By adapting the martingale methods of Pemantle, one can fairly easily obtain
bounds on the threshold values λl(T) and λc(T).

PROPOSITION 1.1. Let d ≥ 3.

(1) d

2
√

d−1
≤ λl(Td) ≤ min(2d, 4d

(
√

d−1−4)∨0
).

(2) λc(Td) ≤ (d − 1) ∨ λl(Td).



1892 O. LOUIDOR, R. TESSLER AND A. VANDENBERG-RODES

This shows that both local and complete survival occur for large enough values
of λ, but does not settle the question of whether there is a second intermediate
phase of local but not complete survival. The lower bound in part (1) is the same
as the one obtained in [14]. However, the martingale approach used here seems
more robust, as it does not rely on the tree isotropy, which is exploited in [14].
Therefore, it could be used to handle other tree-like graphs which are less regular
(e.g., a realization of a super-critical Galton–Watson process). It should be noted
that the argument leading to part (2) of the proposition can be applied to Zd as
well. In this case one gets λc(Zd) = λg = 1 for all d ≥ 1, thereby providing a very
short proof for (1.5), albeit without a shape theorem.

It requires much more work to show:

THEOREM 1.2. For all d ≥ 3 we have λc(Td) = λl(Td).

The proof of this theorem constitutes the main part of this paper. The theorem
implies that the only possibility for local but not complete survival is when λ =
λl(T) = λc(T). We conjecture that this is not the case and that in fact at this λ

survival can only be global. This is the case in the contact process [9, 23]. As an
immediate corollary of Theorem 1.2 we get the following characterization of all
possible weak limits of ξ·. In what follows, we naturally endow the space X with
the product topology and product σ -algebra.

COROLLARY 1.3. Let d ≥ 3 and λ > λl(Td). For all ξ0 ∈ X as t → ∞,

P
(
ξ

ξ0
t ∈ ·) ⇒ P

(
�ξ0

g

)
δT + (

1 − P
(
�ξ0

g

))
δ∅.(1.10)

In particular δ0 and δT are the only extremal invariant measures for the model
above λl(T).

Equation (1.10) is an analog of the complete convergence theorem for the con-
tact process on T, conjectured by Pemantle and first proved by Zhang [23] and
reproved in a simpler way by Salzano and Schonmann [18]. Here δT plays the role
of the upper invariant measure of the contact process (i.e., the limiting measure
of the process when started from the all + configuration). When λ ∈ (1, λl(T)] it
is not clear whether aside from δ∅ and δT there are other extremal invariant mea-
sures. We conjecture that this is the case, as it is for the contact process [5] below
the threshold for local survival and for the nonbiased voter model, that is, the case
when λ = 1, [11].

Another consequence of Theorem 1.2 is the process “mostly” fixates. More for-
mally, for ξ0 ∈ X and x ∈ T define the fixation event as

�
ξ0
f := {

sup
{
t ≥ 0 : ξξ0

t−(x) �= ξ
ξ0
t (x)

}
< ∞}

.(1.11)

Then we have the following:
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COROLLARY 1.4. Fix d ≥ 3.

(1) If λ > λl(Td), then P(�
ξ0
f ) = 1, for any ξ0 ∈ X .

(2) If 1 ≤ λ < λl(Td), then P(�
ξ0
f ) = 1, for any finite ξ0 ∈ X .

Duality plays an important role in the analysis of particle systems; see, for ex-
ample [6, 7]. At the same time, the dual processes are often of interest by them-
selves. When λ ≥ 1, a dual for the WB process, which was exploited time and
again in the past, is a certain (continuous time) branching coalescing random walk
(henceforth the BCRW process), which we now describe. Like ξ·, this process
takes value in the space X of all ± configurations on T. However, this time we
interpret a “+ vertex” as occupied by a particle, while a “− vertex” as vacant.
Starting from an initial configuration ξ̂0, particles independently move to each of
their neighbors at rate 1 and give birth (branch) to a new particle at each of their
neighbors at rate λ − 1. If a vertex to which a particle moved or branched was
already occupied by a particle, the two particles coalesce. We shall denote this

process by (ξ̂
ξ̂0,T,λ
t : t ≥ 0). Formally, its generator is the closure of

L̂f (ξ̂ )

= ∑
x∼y

(
1{ξ̂ (x)=+,ξ̂ (y)=−}

([
f

(
ξ̂ xy) − f (ξ̂ )

] + (λ − 1)
[
f

(
ξ̂ y) − f (ξ̂ )

])
(1.12)

+ 1{ξ̂ (x)=+,ξ̂ (y)=+}
([

f
(
ξ̂ x) − f (ξ̂ )

] + [
f

(
ξ̂ y) − f (ξ̂ )

]))
.

As before ξ̂ x is ξ̂ with the sign at x flipped, while ξ̂ xy is ξ̂ with the sign flipped
both at x and at y.

There are two known duality relations between ξ· and ξ̂t . The first one which
is more standard, can be read immediately from the graphical representation of
the model. The second was discovered by Sudbury and Lloyd [21] and involves
p-thinning of configurations, whereby each + vertex becomes a − vertex with
probability 1 − p and kept + with probability p, independently of other vertices.
We shall make use of both of these relations in the proofs, but they are not needed
in order to state the results concerning ξ̂· and therefore we shall defer their precise
formulation to Section 2.5.

For p ∈ [0,1], let νp denote the Bernoulli(p)-product measure on X . Using
either of the two duality relations, the previous results on ξ· immediately give

THEOREM 1.5. Let d ≥ 3. If λ ∈ [1, λl(Td)), then for any finite ξ̂0 ∈ X as
t → ∞,

P
(
ξ̂

ξ̂0
t ∈ ·) ⇒ δ∅.(1.13)

If λ > λl(Td), then for any ξ̂0 ∈ X as t → ∞,

P
(
ξ̂

ξ̂0
t ∈ ·) ⇒ 1{ξ̂0 �=∅}ν1−1/λ + 1{ξ̂0=∅}δ∅.(1.14)
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In particular the only extremal invariant measures for BCRW above λl(T) are δ∅
and ν1−1/λ.

The cases of λ = λl(Td)—any initial configuration ξ̂0—and λ ∈ (1, λl(Td))

with infinite ξ̂0—remain open, as they do for ξ·.
As mentioned, when λ ∈ (1, λl(Td)) and the initial configuration is chosen ac-

cording to a distribution which puts mass on infinite configurations, then it is an
open problem to characterize the set of possible weak limits for both ξ· and ξ̂·.
Nevertheless, if the initial configuration is invariant or even ergodic, with respect
to the group of automorphisms of Td , then such a characterization is possible.

More precisely, denote by I the set of probability measures on X which are
invariant under all automorphisms of Td . The subset of I of all measures which
are in addition ergodic will be denoted by E . For a configuration ξ , a (connected)
component is a maximal subset of vertices U of T, for which the induced sub-
graph is connected and such that all vertices in U have the same sign under ξ . We
shall call a component infected if its vertices are infected under ξ . Then we have
the following:

THEOREM 1.6. Let d ≥ 3 and λ > 1.

(1) If P(ξ0 ∈ ·) ∈ I , then

P
(
�

ξ0
f

) = 1.(1.15)

In particular, any automorphism-invariant stationary distribution for ξ· is a convex
combination of δ∅ and δT.

(2) If P(ξ0 ∈ ·) ∈ E \ {δ∅}, then

P
(
�ξ0

c

) = 1.(1.16)

In this case, infinite infected components are formed in finite time P-almost surely.
In particular, the only automorphism-ergodic stationary distributions for ξ· are δ∅
and δT.

It should be noted that the proof of Theorem 1.6 applies to a much larger class
of vertex transitive graphs.

1.1. Outline of the paper. The remainder of the paper is organized as follows.
In Section 2 we recall some known facts about the WB and BCRW processes
as well as introduce most of the notation which will be used later in the proofs.
In Section 3 we prove Theorems 1.2 and 1.5 as well as Corollaries 1.3 and 1.4.
Section 4 includes the proof of Proposition 1.1, and finally Section 5 is devoted to
the proof of Theorem 1.6.
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2. Preliminaries and notation. In this section we set up some additional no-
tation which will often be used in the sequel as well as collect some well-known
facts about the process and its dual. Any future use of these facts will be accompa-
nied by a proper reference to this section. Consequently, the reader who is familiar
with the model can skim through this section quickly or skip it altogether, without
much risk of getting lost later on.

2.1. Graphs. We will mostly be concerned with the d-regular tree T, although
occasionally we shall use other graphs G = (V ,E). We shall identify sub-graphs
with their corresponding edge-set and vertex-set. For example, for a set of vertices
U we may write U ⊆ T to indicate that U is a subset of the vertex set of T and in
this case treat U also as the sub-graph of T induced by the vertices in U . We shall
distinguish one vertex of T to be called the origin and denoted 0.

Although in the definition of ξ· the underlying graph need not be directed, it will
be convenient to think of the edges of T as oriented such that each vertex will have
exactly one predecessor, its parent and d − 1 successors—its children (formally,
we fix an end of T and define the parent of x as the first vertex after x on the
ray from x which belongs to this end). For a vertex x ∈ T, we let Tx denote the
subtree, in the above orientation, rooted at x.

The graph distance will be denoted by ρ. For x ∈ G and r > 0 we denote by
Bx(r) the closed ball of radius r around x in this metric, namely Bx(r) := {y ∈
G :ρ(x, y) ≤ r} and set Sx(r) := Bx(r) \ Bx(r − 1). Given a subset of vertices
U ⊆ G, we denote by ∂GU the set of edges in G with exactly one endpoint in U .

2.2. WB and BCRW on general underlying graphs and boundary conditions.
The definition of ξ· in (1.1) and ξ̂· in (1.12) can, of course, be extended to any
underlying graph G = (V ,E) with a bounded degree (as mentioned, this can be
relaxed). In this case the state space is XG := {+,−}G and the Williams–Bjerknes
process for such graph, initial configuration ξ0 ∈ XG and infection parameter λ ≥ 1
will be denoted by (ξ

ξ0,G,λ
t : t ≥ 0). Similarly, the corresponding branching co-

alescing random walk will be denoted by (ξ̂
ξ0,G,λ
t : t ≥ 0). As mentioned in the

Introduction, we shall often omit some or all of the superscripts.
The inclusion time of a subset of vertices U ⊆ G will be used often. For ξ· it is

defined as

τU := inf{t ≥ 0 : ξt ⊇ U}.(2.1)

Similarly τ̂U will denote the inclusion time of U by ξ̂·.
We shall often treat several instances of ξ· and ξ̂· corresponding to different

(ξ0,G, λ) at the same time. In this case, it will be useful to decorate all events and
random variables pertaining to a certain instance with the same superscripts and
accents used to denote the process itself. For example, we may write �

ξ0,G,λ
g for

the event of global survival for ξ
ξ0,G,λ· or τ̂

ξ0,G
x for the inclusion time of x by ξ̂

ξ0,G· .
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If G is a sub-graph of a larger graph G′, we may often want to put boundary
conditions on the vertices of G′ \G. Given ζ ∈ XG′\G = {−,+}G′\G, the process ξ·
with boundary conditions ζ evolves as before, only that the sign of vertices in
G′ \G remain fixed according to ζ . Thus vertices in G′ \G cannot be infected nor
healed, but they continue to infect or heal their neighboring vertices in G at the
usual rates.

It will be convenient to suppose that sub-graphs can possibly “come” with
boundary conditions and we shall write Gζ to mean that G “comes” with bound-
ary conditions ζ on G′ \ G. Writing just G means that there are no boundary
conditions associated with G. In practice, we shall only use either the + boundary
conditions, by which we mean that ζ = δG′\G or the − boundary conditions, by
which we mean that ζ = δ∅. In these cases we shall write either G+ or G−. Fur-

thermore, if G′ is not specified it will be assumed to be T. For example, ξ
ξ0,T

+
0 ,λ

·
is the WB process on T0 with + boundary conditions on T \T0.

Boundary conditions will also be used for ξ̂ , although here we need to clarify
what they mean exactly. Given ζ ∈ XG′\G as before, ξ̂· on G with boundary con-
ditions ζ evolves as ξ̂· does, only that particles which reach a − vertex in G′ \ G
disappear, while particles which reach a + vertex in G′ \ G stay there forever.
No particles are initially placed in any of the vertices of G′ \ G. We shall see in
Section 2.5 why this definition is useful.

2.3. The graphical representation. The use of a graphical representation for
describing the evolution of particle systems, originally due to Harris [8], is now a
standard tool in their analysis. A more detailed account of this construction can be
found in [6]. Let a graph G = (V ,E) and an infection parameter λ ≥ 1 be given.
Consider the set DG = V ×R+ which we think of as embedded in the plane as a
disjoint collection of vertical rays, one for each vertex in V , starting at some point
on the x-axis and going upwards. An element (v, t) of DG where v ∈ V and t ≥ 0
is therefore identified with the point on the ray corresponding to v at height t above
the x-axis. We think of the second coordinate t as time.

With each ordered pair of neighboring vertices u ∼ v in G, we associate two
Poisson point processes on R+: N •

u,v , N ◦
u,v . The former has intensity measure

(λ − 1) dt and the latter 1dt . Now fix a realization of all these processes. For
each point t in N •

u,v we add to DG a horizontal segment between (u, t) and (v, t),
which we think of as oriented from (u, t) to (v, t). Similarly, for each point s in
N ◦

u,v we add a horizontal segment between (u, s) and (v, s), which we think of
as oriented from (u, s) to (v, s), but just below (v, s) we make a hole in the ray
corresponding to v. In both cases the segments are considered to only intersect the
rays emanating from u and v. The set DG along with all oriented segments and
holes will be denoted DG,λ.

Given a realization of DG,λ, a path from (u, s) to (v, t), where 0 ≤ s ≤ t and
u, v ∈ V , is a self-avoiding curve from (u, s) to (v, t) which is also a subset of
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DG,λ and adheres to the orientation of all rays and segments. In other words, it can
only go upwards on a ray and in the direction of the segment on a segment and

cannot pass through holes. If γ is such a path, we shall write γ : (u, s)
DG,λ−→ (v, t).

The following easy-to-see relation explains the connection between ξ· and this
graphical representation. Recall that for a subset of vertices A ⊆ G the WB process
on G with infection parameter λ and initial configuration ξ0 = A is denoted by
ξA,G,λ· . Then, for any A,B ⊆ G,

P
(
ξ

A,G,λ
t ∩ B �= ∅

) = P
(∃γ : (u,0)

DG,λ−→ (v, t) such that u ∈ A,v ∈ B
)
.(2.2)

In other words, if we set

ξ
A,G,λ
t := {

v ∈ G :∃γ : (u,0)
DG,λ−→ (v, t) such that u ∈ A

}
,(2.3)

then (ξ
A,G,λ
t : t ≥ 0) is the Williams–Bjerknes process for A,G, λ.

If G ⊂ G′ has boundary conditions ζ ∈ XG′\G, then with the ordered neighbors
u ∼ v with u ∈ G′ \ G, v ∈ G we also associate the point processes N •

u,v,N ◦
u,v .

Using the same construction as above we define the set DG′,λ, and now

ξ
A,Gζ ,λ
t := {

v ∈ G :∃γ : (u,0)
DG′,λ−→ (v, t) such that u ∈ A ∪ ζ

}
(2.4)

is the Williams–Bjerknes process with boundary conditions ζ . The usefulness of
this graphical representation will become apparent in the next subsections.

2.4. Coupling. The graphical representation gives rise to a natural coupling
between instances of ξA,G,λ· for different initial configurations A, underlying sub-
graphs G ⊆ G′ and infection parameters λ ≥ 1. This is because there is a natural
way to couple DG,λ for different G’s and λ’s and in light of (2.3). From this, for
example, one can immediately get the following monotonicity (or attractiveness)
property. If 1 ≤ λ ≤ λ′ and A ⊆ A′ ⊆ G, then under the above coupling,

ξ
A,G,λ
t ≤ ξ

A′,G,λ′
t for all t ≥ 0,(2.5)

where the comparison is by the standard partial ordering on {−,+}G. This also
extends to the case of graphs with boundary conditions in an obvious way. The
monotonicity property will be used so frequently in the proofs to follow that we
shall often not explicitly state it.

2.5. Duality. If instead of (2.3) we set

ξ̂
B,G,λ
t := {

u ∈ G :∃γ : (u,0)
DG,λ−→ (v, t) such that v ∈ B

}
,(2.6)

then (2.2) can be rewritten as

P
(
ξ̂

B,G,λ
t ∩ A �= ∅

) = P
(∃γ : (u,0)

DG,λ−→ (v, t) such that u ∈ A,v ∈ B
)

(2.7)
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and therefore

P
(
ξ

A,G,λ
t ∩ B �= ∅

) = P
(
ξ̂

B,G,λ
t ∩ A �=∅

)
for any A,B ⊆ G.(2.8)

Since the distribution of N •
u,v and N ◦

u,v is invariant under time reversal, reading
DG,λ from time t down to time 0 and with the orientation of the segments reversed,
we see that ξ̂

B,G,λ
t is distributed as the configuration at time t of the (continuous-

time) branching coalescing random walk whose generator was described in (1.12),
with underlying graph G, initial configuration B and parameter λ. Thus (2.8) gives
one duality relation between ξ· and ξ̂·.

In the presence of boundary conditions ζ on G′ \ G where G′ ⊇ G, we can set
for B ⊆ G

ξ̂
B,Gζ ,λ
t := {

u ∈ G∪ ζ :∃γ : (u,0)
DG′,λ−→ (v, t) such that v ∈ B

}
,(2.9)

which yields a process whose distribution is that of the BCRW in the presence
of boundary conditions, as described in the end of Section 2.2. In this case rela-
tion (2.8) becomes

P
(
ξ

A,Gζ ,λ
t ∩ B �=∅

) = P
(
ξ̂

B,Gζ ,λ
t ∩ (A ∪ ζ ) �= ∅

)
(2.10)

for any A,B ⊆ G.

In particular for −, boundary conditions (2.8) is still valid (with G− replacing G),
while for + boundary conditions, we can rewrite (2.10) as

P
(
ξ

A,G+,λ
t ∩ B �= ∅

) = P
(
ξ̂

B,G+,λ
t ∩ A �= ∅ or ∃s ≤ t : ξ̂ B,G+,λ

s �G
)
,

(2.11)
A,B ⊆ G.

To describe the second duality relation between ξ· and its dual, we have to define
the notion of thinning. Fix p ∈ [0,1]. For a configuration ξ ∈ X we define the p-
thinning ξ (p) of ξ as the random configuration obtained from ξ by independently
flipping the sign of every + vertex with probability 1 − p and retaining it with
probability p.

The following remarkable relation is due to Sudbury and Lloyd [21], Theo-
rem 13. For any λ ≥ 1,

ξ̂
(ξ

(p)
0 )

t
d= (

ξ
ξ0
t

)(p) where p = 1 − λ−1.(2.12)

Note that p = P(�0
g) by (1.4).

2.6. Additional notation. As usual, C,C′ will denote positive constants whose
value may change from one use to another.
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3. Proof of Theorems 1.2, 1.5 and corollaries. In this section we prove The-
orem 1.2, 1.5 and Corollaries 1.3 and 1.4. The proof of Theorem 1.2 is essentially
linear. It consists of a sequence of lemmas, one derived from the other with the the-
orem following from the last. Nevertheless, to put some hierarchical structure in
the proof, we have split it into two main steps which are stated in the next subsec-
tion as key lemmas. They are of interest on their own. The proofs of these lemmas
are deferred to Sections 3.3 and 3.4, so that we can first show how the theorem
follows from them; this is done in the Section 3.2. In this subsection we also prove
the two corollaries and Theorem 1.5. They are only a short step once the theorem
is established.

3.1. Key lemmas. The first key step is an analog of Zhang’s lemma for the
contact process on regular trees [23], Proposition 5. It is the main step in Zhang’s
proof for the Complete Convergence theorem in this setting. The proof was later
simplified by Schonmann and Salzano [18], Proposition 1, and our arguments are
essentially an adaption of the latter to this model.

LEMMA 3.1 (An analog of Zhang’s lemma). Fix d ≥ 3. For λ > λl(T),

inf
t≥0

P
(
0 ∈ ξ̂

0,T−
0

t

)
> 0.(3.1)

Next, we need tail estimates on the distribution of the inclusion time of a neigh-
boring vertex for ξ̂·. The lemma shows that the tail of this distribution decays faster
than any polynomial. We believe that this is not optimal, but for the sake of show-
ing complete survival, this is enough.

LEMMA 3.2 (Super-polynomial decay for inclusion times). Fix d ≥ 3 and λ >

λl(T). For any x ∼ y neighboring vertices of T,

lim
t→∞

logP(τ̂ x,T
y > t)

log t
= −∞.(3.2)

3.2. Proof of the theorem and corollaries.

PROOF OF THEOREM 1.2. Fix d ≥ 3 and λ > λl(T). It is clearly enough to
prove

P
(
ξ

0,T
t � 0 for all t ≥ 0

)
> 0.(3.3)

Indeed, since {ξ0,T
t � 0 for all t ≥ 0} ⊆ (�0,T

c ), this shows that P(�0,T
c ) > 0 as

required.
Equation (3.3) follows from the seemingly weaker statement

P
(
ξ

0,T+
0

t � 0 for all t ≥ 0 large enough
)
> 0.(3.4)



1900 O. LOUIDOR, R. TESSLER AND A. VANDENBERG-RODES

To see this, notice that (3.4) implies that there exists ε > 0, s > 0 such that

P
(
ξ

0,T+
0

t � 0 for all t ≥ s
)
> ε.(3.5)

Therefore, writing T̃ for T rooted at 0, and recalling Section 2.3, we have

P
(
ξ

0,T
t � 0 for all t ≥ 0

)

≥ P
(⋃

x∼0

{
ξ

x,T̃+
x

t � x for all t ≥ s,N ◦
x,0

([0, s]) = 0
})

(3.6)

≥ (
εe−s)d > 0.

To establish (3.4) we will show that for all s ≥ 0

P
(
ξ

0,T+
0

t �� 0 for some t ∈ [
s2, (s + 1)2)) ≤ Cs−2.(3.7)

Since these probabilities are summable in s = 1,2, . . . , the Borel–Cantelli lemma
will imply that (3.4) holds (with probability 1).

To this end, fix s ∈ N, and let t0 < t1 < · · · < ts4 be a partition of [s2, (s + 1)2)

into s4 sub-intervals of equal length. That is, t0 = s2, ts4 = (s +1)2 and tk+1 − tk =
(2s + 1)/s4 ≤ 3s−3. The left-hand side in (3.7) can be bounded above by

P
(∃k ∈ 0, . . . , s4 : ξ

0,T+
0

tk
�� 0

)
(3.8)

+ P
(
∃k ∈ 0, . . . , s4 − 1 :

∑
x∼0

N ◦
x,0

([tk, tk+1)
) +N •

x,0
([tk, tk+1)

) ≥ 2
)
,

where the second term is a bound on the probability that a site is infected and then
healed during any time interval [tk, tk+1]. Using the Union Bound (and the tail of
the Poisson distribution), this second term is bounded above by

Cs4(tk+1 − tk)
2 ≤ C′s−2.(3.9)

The first term can be bounded above by

s4 sup
t∈[s2,(s+1)2)

P
(
ξ

0,T+
0

t �� 0
)
,(3.10)

and it remains to bound P(ξ
0,T+

0
t �� 0).

Let y be the parent of T0. By the duality relation (2.11) and Lemma 3.2, for all
t ≥ 0 large enough,

P
(
ξ

0,T+
0

t � 0
) = P

(
ξ̂

0,T+
0

t � 0 or τ̂
0,T+

0
y ≤ t

) ≥ P
(
τ̂ 0,T

y ≤ t
) ≥ 1 − Ct−3.(3.11)

Therefore (3.10) is bounded above by Cs−2. Combining this with (3.9) we see
that (3.7) holds as desired. This completes the proof of the theorem. �
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In fact, the following lemma, which is required for the proofs of the corollaries,
shows that above λc(T), global and complete survival are equivalent up to an event
with zero probability.

LEMMA 3.3. Let d ≥ 3 and λ > λc(T). Then for any finite ξ0 ∈ X ,

P
(
�ξ0

c

) = P
(
�ξ0

g

)
.(3.12)

PROOF. Recall that definition (1.5) of �
ξ0
c does not depend on the observed

vertex x ∈ T and we can therefore choose x = 0. For s ≥ 0 and u ≥ 0 define

Aξ0(s, u) := {
ξ

ξ0
t � 0 for all t ∈ [s, s + u]}.(3.13)

Since �
ξ0
c = ⋃

s≥0
⋂

u≥0 Aξ0(s, u) we have

lim
s→∞ lim

u→∞P
(
Aξ0(s, u)

) = P
(
�ξ0

c

)
.(3.14)

Now, we claim that as r ↑ ∞,

P
(
�B0(r)

c

) ↑ α = 1.(3.15)

Indeed, by monotonicity the limit exists, and so we may write

P
(
�ξ0

c

) = lim
s→∞ lim

u→∞P
(
�ξ0

c ∩Aξ0(s, u)
)

= lim
s→∞ lim

u→∞P
(
Aξ0(s, u)

)
E

[
P

(
�ξ0

c |ξξ0
s+u

)|Aξ0(s, u)
]

(3.16)

≤ P
(
�ξ0

c

)
α.

The last inequality follows from monotonicity again, since ξ
ξ0
s+u must be included

in some B0(r) for r large enough. Since P(�
ξ0
c ) > 0 it follows that α must be 1.

Now if λ > λl(T), then for any vertex x ∈ T and r ≥ 0, there exists sx,r < ∞
such that

P
(
τx

B0(r)
< sx,r

) ≥ 1
2P

(
�x

l

)
> ε(3.17)

for some ε > 0 independent of x or r . Since on �
ξ0
g infected vertices exist at all

times, it follows from monotonicity and Markov’s property that for all r ≥ 0,

P
(
�ξ0

g ∩ {
τ

ξ0
B0(r)

= ∞}) = 0.(3.18)

Consequently we may write

P
(
�ξ0

c |�ξ0
g

) ≥ P
(
�ξ0

c |τ ξ0
B0(r)

< ∞)
P

(
τ

ξ0
B0(r)

< ∞|�ξ0
g

) ≥ P
(
�B0(r)

c

)
.(3.19)

Taking r → ∞ and using (3.15) we get P(�
ξ0
c |�ξ0

g ) = 1, as desired. �
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PROOF OF COROLLARY 1.3. This is an immediate consequence of Theo-
rem 1.2 and Lemma 3.3. Indeed once λ > λl(T) we have for all ξ0 ∈ X ,

lim
t→∞ ξ

ξ0
t = 1

�
ξ0
g
T+ (1 − 1

�
ξ0
g

)∅, P-almost surely,(3.20)

where we recall that the topology in X , viewed as the space of functions on T, is
that of pointwise convergence. This immediately gives (1.10) and shows that any
invariant measure must be a convex combination of δT and δ∅. �

PROOF OF COROLLARY 1.4. Part (1) follows immediately from (3.20).
Part (2) holds because once λ < λl(T), starting from a finite configuration, the
infection either dies out, or survives globally but not locally. In both cases, every
vertex will eventually become healthy and therefore fixate. �

PROOF OF THEOREM 1.5. Any of the duality relations can be used to prove
this theorem. When λ > λl(T), Corollary 1.3, relation (2.8) and (1.4) imply that
for all nonempty ξ̂0 and any A ⊆ T as t → ∞,

P
(
ξ̂

ξ̂0
t ∩ A �= ∅

) = P
(
ξA
t ∩ ξ̂0 �= ∅

) → P
(
�A

g

) = 1 − λ−|A|.(3.21)

This shows (1.14). On the other hand, if λ ∈ [1, λl(T)), then for all finite A ⊆ T
and finite ξ̂0 ∈ X , the above becomes

P
(
ξ̂

ξ̂0
t ∩ A �= ∅

) = P
(
ξA
t ∩ ξ̂0 �= ∅

) → 0(3.22)

as t → ∞. This shows (1.13). �

3.3. Proof of Lemma 3.1. The proof will be carried out using a number of lem-
mas. For an infinite connected bounded-degree graph G = (V ,E), possibly with
associated boundary conditions, we shall write λg(G) and λl(G) for the threshold
value of λ for the possibility of global and local survival for ξ· when the underlying
graph is G. Formally,

λg(G) := inf
{
λ > 0 :P

(
�ξ0,G

g

)
> 0

}
,

(3.23)
λl(G) := inf

{
λ > 0 :P

(
�

ξ0,G
l

)
> 0

}
,

where �
ξ0,G
g and �

ξ0,G
l are defined as in (1.3) and (1.6) with G being the under-

lying graph, and ξ0 is any finite nonempty initial configuration. Notice that as G
may have associated boundary conditions, it is no longer clear that λg(G) = 1.

Recall that T0 is the sub-tree of T rooted at 0. Our first lemma shows that if
a graph G (with or without boundary conditions) contains a copy of this sub-tree
which is accessible only through its root, then its threshold values are at least as
small as those of T. Note by the monotonicity statement (2.5) it is enough to show
this for G = T−

0 .
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LEMMA 3.4. Fix d ≥ 3. If G is any infinite connected bounded-degree graph,
possibly with associated boundary conditions, that contains a copy of T0, which is
connected to the rest of the graph only through its root 0, then

λg(G) ≤ λg(T) = 1,(3.24)

λl(G) ≤ λl(T).(3.25)

PROOF. By monotonicity it is enough to show this for G = T−
0 . Fix any λ

such that

P
(
�0,T

g \ �
0,T
l

)
> 0.(3.26)

This is always possible, since λg(T) < λl(T) for all d ≥ 3, as shown in part (1) of
Proposition 1.1. Clearly, the distribution of ξ0,T· on Tx is the same for any neighbor
x of 0. Also, at any time t we have |ξ0,T

t | < ∞. These two facts, along with (3.26),
imply that we may find T > 0 and a finite subset of vertices A ⊆ Tx \ {x} such that
the following event has positive probability:

{
ξ

0,T
T ∩Tx = A and ξ

0,T
t ∩Tx �=∅, x /∈ ξ

0,T
t for all t ≥ T

}
.(3.27)

By the Markov property, it follows that

P
(
ξ

A,T
t �= ∅ and x /∈ ξ

A,T
t for all t ≥ 0

)
> 0.(3.28)

Observe that this probability does not change if we add − boundary conditions on
T \ Tx . Since, in addition, any two finite configurations are obtainable from each
other using a finite number of transitions, we arrive at

P
(
ξ

x,T−
x

t �=∅ for all t ≥ 0
)
> 0.(3.29)

This shows (3.24) as T−
x is isomorphic to T−

0 , and λ can be chosen arbitrarily close
to λg(T).

Next, suppose that λ′ > λl(T). Since �
0,T,λ′
l occurs with positive probability,

there must exist δ > 0 and Tx > 0 for all x ∈ T such that

P
(
τ

x,T,λ′
0 < Tx

)
> δ ∀x ∈ T.(3.30)

This still holds, under − boundary conditions, that is,

P
(
τ

x,T−
0 ,λ′

0 < Tx

)
> δ ∀x ∈ T0.(3.31)

Since λ′ > λ, it follows from (3.29) via monotonicity that

{
ξ

0,T−
0 ,λ′

t �= ∅; t ≥ 0
}

(3.32)

occurs with positive probability. But on this event, by (3.31) and monotonicity,

at all times t ≥ 0 there will be a vertex x ∈ ξ
0,T−

0 ,λ′
t , from which there is at least
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δ probability of reinfecting the origin within Tx time. It follows then from the
Markov property that the probability of (3.32) and the origin being infected only

finitely many times is 0. Consequently P(�
0,T−

0 ,λ′
l ) > 0 which implies λl(T

−
0 ) < λ′

and since λ′ is arbitrarily close to λl(T), inequality (3.25) follows. �

For x ∈ T and y ∈ Tx we let Txy := (Tx \Ty) ∪ {y}. Then we have

LEMMA 3.5. Fix d ≥ 3. Let x ∈ T and y ∈ Tx . Then:

(1) λg(T−
x ) = λg(T−

xy) = λg(T) = 1;
(2) λl(T−

x ) = λl(T−
xy) = λl(T),

where for the boundary conditions, both Tx and Txy , are treated as subgraphs
of T.

PROOF. Monotonicity implies that

λg

(
T−

xy

) ≥ λg

(
T−

x

) ≥ λg(T) = 1 and λl

(
T−

xy

) ≥ λl

(
T−

x

) ≥ λl(T).(3.33)

On the other hand, both T−
x and T−

xy contain a copy of T0 which is connected to
the rest of the graph only though its root. Therefore the opposite inequalities are a
consequence of Lemma 3.4. �

PROOF OF LEMMA 3.1. Fix λ > λl(T). By the duality relation (2.8) show-
ing (3.1) is equivalent to showing

inf
t≥0

P
(
0 ∈ ξ

0,T−
0

t

)
> 0.(3.34)

We first argue that there exists r > 0, s > 0 and

p > 1/
√

d − 1(3.35)

such that for any vertex x of T0 whose distance from 0 is r , we have

P
(
ξ

0,T−
0x

s � x
)
> pr.(3.36)

Indeed, by Lemma 3.5 we know that λ > λl(T
−
0 ) = λl(T). Therefore, we may find

p′ > 1/
√

d − 1 and integer r ′ > 0 large enough such that

(
p′)r ′

< 1
2P

(
�

0,T−
0

l

)
.(3.37)

Enumerating the vertices on some path going down from 0 as

0 = x0, x1, x2, . . . ,(3.38)

there exists s′ > 0 such that

P
(
τ

0,T−
0

xr′ ≤ s′) >
(
p′)r ′

.(3.39)
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Using monotonicity and the Markov property we may iterate the above to get for
all k ≥ 1

P
(
τ

0,T−
0x

kr′
xkr′ ≤ ks′) = P

(
τ

0,T−
0

xkr′ ≤ ks′) >
(
p′)kr ′

.(3.40)

Now, write
(
p′)kr ′

e−d

< P
(
τ

0,T−
0x

kr′
xkr′ ≤ ks′, ξ

0,T−
0x

kr′
t � xkr ′ for all t ∈ [

τ
0,T−

0x
kr′

xkr′ , τ
0,T−

0x
kr′

xkr′ + 1
])

(3.41)

≤
�ks′+1�∑
t=0,1,...

P
(
ξ

0,T−
0x

kr′
t � xkr ′

) ≤ (
ks′ + 2

)
P

(
ξ

0,T−
0x

kr′
s′′ � xkr ′

)
,

where s′′ is the index of the maximal term in the last sum. Therefore (for k large
enough),

P
(
ξ

0,T−
0x

kr′
s′′ � xkr ′

)
> C

(
p′)kr ′

/
(
ks′),(3.42)

which implies that (3.36) holds with r := kr ′, s := s′′, x = xr and some p ∈
(1/

√
d − 1,p′), once we choose k large enough. Finally, since the choice of path

in (3.38) is arbitrary, xr can be replaced with any vertex whose distance from 0
is r .

Next we introduce a modified version of ξ
0,T−

0· which we denote by ξ ′· . The
process ξ ′· is still Markovian and takes values in the space of all configurations on

T0. It starts from a single infection at the origin and evolves exactly as ξ
0,T−

0· does,
only that at times t = ks where k = 1, . . . , we heal all vertices whose distance
from the origin is greater than kr , and we heal and keep healed the ones whose
distance from the origin is less than kr . Formally, we set

ξ ′
ks(x) = − for x s.t. ρ(0, x) > kr,

(3.43)
ξ ′
t (x) = − for x s.t. ρ(0, x) < kr and all t ≥ ks.

By monotonicity ξ
0,T−

0
t stochastically dominates ξ ′

t for all t . At the same time, it
is easy to see that the process Zk := |ξ ′

tk
| where k = 0, . . . , is a branching process

with mean reproduction μ := EZ1 = (d − 1)rpr > (d − 1)r/2 > 1 and E(Z1)
2 <

∞. Therefore, there exists ε > 0 such that for all k,

P
(∣∣ξ0,T−

0
ks ∩ S0(kr)

∣∣ > 1
2

(
(d − 1)p

)kr) ≥ P
(
Zk > 1

2μk) > ε,(3.44)

where we recall Sx(r) := {y ∈ T :ρ(x, y) = �r�} for x ∈ T and r ≥ 0.
Now for k whose precise value will be chosen later, set s̃ := ks, r̃ := kr and

p̃ := pr̃ . We now prove by induction that for all positive and even n ∈ N

pn := P
(
ξ

0,T−
0

ns̃
� 0

)
> 1

2εp̃.(3.45)
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For n = 2, iterating (3.36) k times along the path from x ∈ S0(r̃) to 0 and us-
ing (3.44),

p2 ≥ P
(∣∣ξ0,T−

0
s̃

∩ S0(r̃)
∣∣ ≥ 1

)
P

(
ξ

0,T−
0

2s̃
� 0|∣∣ξ0,T−

0
s̃

∩ S0(r̃)
∣∣ ≥ 1

) ≥ εp̃.(3.46)

For n + 2 > 2, we can bound pn+2 below by

P
(∣∣ξ0,T−

0
s̃

∩ S0(r̃)
∣∣ > 1

2

(
(d − 1)p

)r̃)

× P
(∣∣ξ0,T−

0
(n+1)s̃

∩ S0(r̃)
∣∣ ≥ 1|∣∣ξ0,T−

0
s̃

∩ S0(r̃)
∣∣ > 1

2

(
(d − 1)p

)r̃)(3.47)

× P
(
ξ

0,T−
0

(n+2)s̃
� 0|∣∣ξ0,T−

0
(n+1)s̃

∩ S0(r̃)
∣∣ ≥ 1,

∣∣ξ0,T−
0

s̃
∩ S0(r̃)

∣∣ > 1
2

(
(d − 1)p

)r̃)
.

We can bound below the first term by ε using (3.44) and the last term by p̃ using the
argument in (3.46). For the middle one, we use the fact that for any configuration
η on T0

ξ
η,T−

0
t ≥ ∨

x∈S0(r̃)

ξ
ηx,T−

x
t for all t ≥ 0,(3.48)

where (ξ
ηx,T−

x· :x ∈ S0(r̃)) are independent, ηx is the restriction of η to Tx . This
is because of monotonicity (2.5), the tree-structure and the choice of boundary
conditions. Using this and the induction hypothesis for pn, we can bound below
the second term in (3.47) by

1 − (1 − pn)
(1/2)((d−1)p)r̃ ≥ 1 − exp

(−1
4ε

(
(d − 1)p2)kr)

.(3.49)

In light of (3.35), by choosing k large enough we can guarantee that the right-
hand-side above is at least 1

2 and conclude that (3.46) holds for pn+2 as well.
Once we have (3.45) for all even positive n, it is only a short step to complete

the proof of the lemma. Indeed, for any t ≥ 0, find a positive even n such that
ns̃ ≤ t < (n + 2)s̃, and write

P
(
ξ

0,T−
0

t � 0
) ≥ P

(
ξ

0,T−
0

ns̃
� 0

)
P

(
N ◦

x,0
([ns̃, t]) = 0 for all x ∼ 0

)
(3.50)

> 1
2εp̃e−d > 0.

This shows (3.34) and completes the proof. �

3.4. Proof of Lemma 3.2. The proof will consist of a sequence of lemmas.

LEMMA 3.6. Fix d ≥ 3 and λ ≥ 1. For all δ1 > 0 there exists b > 0 such that
for all t ≥ 0 large enough,

P
(
ξ̂

0,T
t ⊆ B0(bt)

) ≥ 1 − e−δ1t .(3.51)
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PROOF. The proof will follow by coupling of ξ̂
0,T
t with a (continuous time)

branching random walk on R, whose growth rate is well controlled. (Alternatively,
one can use a comparison to last passage percolation on T, or just prove this via
elementary methods.) To this end, we first introduce the following variant of ξ̂0,T·
which we denote by (ξ̃

0,T
t : t ≥ 0). The process ξ̃0,T· starts from a single particle

at 0 and evolves as ξ̂· does, except for two differences. First, there are no coales-
cences, that is, more than one particle can share a single vertex. Second, whenever
a particle at vertex v moves to (rate 1) or produces a particle at (rate λ − 1) its par-
ent u ∼ v, one of its children w ∼ v are chosen (according to some fixed method)
instead of u.

If R̂
0,T
t , R̃

0,T
t , denote the maximal graph-distance of a particle in ξ̂

0,T
t , respec-

tively, ξ̃
0,T
t , from the origin, then by a straightforward coupling,

R̂
0,T
t ≤s R̃

0,T
t .(3.52)

At the same time, the process (Nt : t ≥ 0) defined as

Nt := ∑
x∈ξ̃

0,T
t

δρ(0,x),(3.53)

is a continuous time branching random walk on R+ with N0 = δ0 and whose repro-
duction measure on R is δ1 at rate d and δ1 + δ0 at rate (λ− 1)d . That is, a particle
at displacement r ≥ 0 is replaced by a particle at displacement r + 1 at rate d and
by two particles: at r and r + 1, at rate (λ − 1)d .

Writing

P
(
ξ̂

0,T
t ⊆ B0(bt)

) = P
(
R̂

0,T
t ≤ bt

) ≥ P
(
R̃

0,T
t ≤ bt

)
(3.54)

= 1 − P
(
Nt(bt,∞) ≥ 1

) ≥ 1 −E
(
Nt(bt,∞)

)
.

Now Theorem 4 in [1] says (note that “nonlattice” there refers to the distribution
of times between reproductions, not the support of the reproduction measures)

logE(Nt [bt,∞))

t
→ α∗(b),(3.55)

where α∗(b) depends on the Laplace transform of the reproduction measures (an
analog of the Legendre transform in Cramér’s theorem) and in the case of repro-
duction measures with finite support and exponential reproduction times, can be
made arbitrarily small by choosing b large enough. �

LEMMA 3.7. Let d ≥ 3 and λ > 1. There exist a > 0, δ2 > 0 such that for all
t ≥ 0 large enough,

P
(∣∣ξ̂0,T

t

∣∣ ≥ eat ) ≥ 1 − e−δ2t .(3.56)
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PROOF. We shall omit the superscript T as all processes in this proof run on T.
By the thinning relationship (2.12) with initial state δ0, we can write for p = P(�0

g)

and any a > 0,

P
(∣∣(ξ0

t

)(p)∣∣ ≥ eat ) = P
(∣∣ξ̂ (δ

(p)
0 )

t

∣∣ ≥ eat ) = pP
(∣∣ξ̂0

t

∣∣ ≥ eat ).(3.57)

Since every infected vertex in ξ0
t stays infected in (ξ0

t )(p) with probability p

independently of other vertices, it follows from Cramér’s theorem applied to this
sequence of Bernoulli(p) random variables that

P
(∣∣(ξ0

t

)(p)∣∣ ≥ eat ) ≥ P
(∣∣ξ0

t

∣∣ ≥ 2

p
eat

)
P

(∣∣(ξ0
t

)(p)∣∣ ≥ eat |∣∣ξ0
t

∣∣ ≥ 2

p
eat

)

(3.58)
≥ P

(∣∣ξ0
t

∣∣ ≥ ea′t )(1 − e−C′eCat )
,

where a′ = 2a and t ≥ 0 is large enough. Therefore it is enough to show that for
some δ > 0 and all large t ,

p−1P
(∣∣ξ0

t

∣∣ ≥ ea′t ) ≥ P
(∣∣ξ0

t

∣∣ ≥ ea′t |�0
g

) ≥ 1 − e−δt .(3.59)

As discussed in the Introduction [see the discussion above (1.2)], the transitions
of |ξ0· | are those of a nearest neighbor random walk with drift λ−1

λ+1 and an absorbing
state at 0. These transitions occur at rate

(λ + 1)
∣∣∂Tξ0

t

∣∣ ≥ (λ + 1)
∣∣ξ0

t

∣∣,(3.60)

where we recall that ∂Tξ0
t denotes the set of edges of T with exactly one vertex

in ξ0
t , and the last inequality holds since |∂TA| ≥ (d − 2)|A| for any finite A ⊂ T.

It follows that we can couple (|ξ0
t | : t ≥ 0) with a continuous time birth-and-

death process (Yt : t ≥ 0) on N with birth rates p(y) = λy and death rates q(y) = y

such that both processes start from 1, make the same transitions and that times
between successive transitions of |ξ0· | are less or equal than the corresponding
ones of Y·. Thus if we define

T := inf
{
s ≥ 0 :

∣∣ξ0
s

∣∣ ≥ 2ea′s} and S := inf
{
s ≥ 0 :Ys ≥ 2ea′s},(3.61)

it follows from this coupling that for all t ≥ 0,

P
(
T ≤ t |�0

g

) ≥ P(S ≤ t |Ys > 0, s ≥ 0).(3.62)

For Yt , either explicit calculation or, for example, [15] shows that there exist a′ > 0
and δ′ > 0 such that for all large t ≥ 0,

P(S ≤ t |Ys > 0, s ≥ 0) ≥ P
(
Yt ≥ 2ea′t |Ys > 0, s ≥ 0

) ≥ 1 − e−δ′t .(3.63)

At the same time,

P
(∣∣ξ0

t

∣∣ > ea′t |�0
g, T ≤ t

)

≥ P
(∣∣ξ0

T +s

∣∣ − ∣∣ξ0
T

∣∣ > −ea′t ,∀s ≥ 0|�0
g, T ≤ t

)
(3.64)

≥ P
(∣∣ξ0

T +s

∣∣ − ∣∣ξ0
T

∣∣ > −ea′t ,∀s ≥ 0|T ≤ t
) = 1 − λ−ea′t

,
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where 1 − λ−ea′t
is the standard gambler-ruin probability.

Combining (3.62), (3.63) and (3.64) we arrive at

P
(∣∣ξ0

t

∣∣ > ea′t |�0
g

) ≥ 1 − e−δ′t − λ−ea′t ≥ 1 − e−δt(3.65)

for a suitable 0 < δ < δ′, as required in (3.59). The result follows. �

As an immediate consequence of Lemmas 3.6 and 3.7, we get

LEMMA 3.8. Fix d ≥ 3 and λ > 1. There exists δ > 0, a > 0, b > 0 such that
for all t ≥ 0 large enough,

P
(∣∣ξ̂0,T

t ∩ B0(bt)
∣∣ ≥ eat ) ≥ 1 − e−δt .(3.66)

PROOF. Use Lemmas 3.6 and 3.7 and the union bound. �

The next lemma shows that when λ > λl(T), starting from a single occupied
vertex x, any neighboring vertex y ∼ x will eventually become occupied, with
high probability, even if we restrict the underlying graph to a finite subset of T, but
as long as this sub-graph is large enough.

LEMMA 3.9. Fix d ≥ 3 and λ > λl(T). Let x and y be neighboring vertices
in T. For all β > 0, there exists r > 0, u > 0 such that

P
(
τ̂

x,B−
x (r)

y ≤ u
) ≥ e−β,(3.67)

where Bx(r) is the ball of radius r (in the graph-distance) around x, viewed as a
sub-graph of T.

PROOF. Fix λ > λl(T). Without loss of generality, we can assume that x = 0
and that y is the parent of 0. We first show that

P
(
τ̂ 0,T

y < ∞) = 1.(3.68)

This will be a consequence of the existence of ε > 0 and Tz < ∞ for all z ∈ T such
that

P
(
τ̂ z,T

y ≤ Tz

) ≥ ε ∀z ∈ T.(3.69)

Indeed, since ξ̂0,T· never dies, at any time t ≥ 0, there will be at least one occupied
vertex z, which (by monotonicity and the Markov property) will give rise to a
particle at y within Tz time with probability at least ε. It follows that the probability
of y never being occupied is 0, which is what we need for (3.68). To see (3.69),
write

P
(
τ̂ z,T

y ≤ Tz

) ≥ P
(
ξ̂

z,T
Tz

� y
) = P

(
ξ

y,T
Tz

� z
)

(3.70)
= P

(
ξ

y,T
Tz

� z, τ y,T
z ≤ Tz

) ≥ E
(
P

(
ξ

z,T

Tz−τ
y,T
z

� z
)
1{τy,T

z ≤Tz}
)
.
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The first factor in the last expectation is bounded below by some δ1 > 0 indepen-
dently of z due to Lemma 3.1, duality and monotonicity. At the same time, as
in (3.30) there exists δ2 > 0 and a choice for {Tz > 0, z ∈ T} such that

P
(
τy,T
z ≤ Tz

) ≥ 1
2P

(
�

y,T
l

) ≥ δ2 ∀z ∈ T.(3.71)

Using this in (3.70) we obtain (3.69) with ε = δ1δ2 and this choice for (Tz)z. There-
fore also (3.68) holds.

Since at all times t we have |ξ̂0,T
t | < ∞,

{
τ̂ 0,T

y < ∞} =
∞⋃

r=1

∞⋃
u=1

{
τ̂ 0,T

y ≤ u, ξ̂t ⊆ B0(r); t ∈ [
0, τ̂ 0,T

y

]}
,(3.72)

and as the sequence of events on the right-hand side is monotone increasing in
(r, u), it follows that

lim
r→∞ lim

u→∞P
(
τ̂ 0,T

y ≤ u, ξ̂t ⊆ B0(r); t ∈ [
0, τ̂ 0,T

y

]) = 1.(3.73)

As a consequence we get that for any β > 0 there exist u > 0, r > 0 large enough
such that

P
(
τ̂ 0,T

y ≤ u, ξ̂t ⊆ B0(r − 1); t ∈ [
0, τ̂ 0,T

y

]) ≥ e−β,(3.74)

but the above event is equivalent to that in (3.67) for x = 0. �

PROOF OF LEMMA 3.2. Without loss of generality, we can assume that x = 0,
and that y is the parent of 0 in T. Let α > 0 be arbitrarily large and δ, a, b be given
by Lemma 3.8. Setting a′ := (αa) ∧ 1, b′ := αb, Lemma 3.8 implies that for all
s ≥ 0 large enough, the event

Â := {∣∣ξ̂0,T
αs ∩ B0

(
b′s

)∣∣ ≥ ea′s}(3.75)

satisfies

P(Â) ≥ 1 − e−αδs.(3.76)

For any vertex z ∈ T, let γz denote the set of vertices on the unique path from z

to y. For r > 0 let �z(r) := ⋃
w∈γz

Bw(r). With

β := a′

5b′ ,(3.77)

where a′ and b′ are as above and with r , u given by Lemma 3.9, set

B̂z := {
τ̂

z,�−
z (r)

y ≤ 2b′us
}
.(3.78)

By iterating Lemma 3.9, if z ∈ B0(b
′s), we have

P
(
B̂z) ≥ P

(
τ̂

z,�−
z (r)

y ≤ (
b′s + 1

)
u
) ≥ e−β(b′s+1) ≥ e−2βb′s .(3.79)
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Now suppose that Ât occurs, and pick z0 ∈ ξ̂0,T
αs ∩B0(b

′s). Henceforth, we shall
assume that there is some fixed order among all vertices of T and that every time
we arbitrarily pick a vertex from a subset of T, we pick the minimal one with
respect to this order. Notice that if the set from which we choose is random, the
chosen vertex, for example, z0 above, is a random variable.

For what is coming, it will be useful to employ the following notation. For any
t ≥ 0, we denote θt the “shifting forward of time by t ,” that is, θt acts on the
underlying sample space, such that

N •(·)u,v ◦ θt = N •
u,v(· + t),

(3.80)
N ◦(·)u,v ◦ θt = N ◦

u,v(· + t)

for any neighboring vertices u ∼ v of T.
Then using (3.79), the Markov property and monotonicity we may write

P
(
B̂z0 ◦ θαs |Â) ≥ e−2βb′s .(3.81)

On Â∩ (B̂z0 ◦θαs) we have τ̂ 0,T
y < αs +2b′su, and if this indeed happens, we stop.

If not, we pick z1 ∈ ξ̂0,T
αs ∩ B0(b

′s) \ �z0(r) (which must exists, as argued below).
Notice that by “removing” (from consideration) all vertices in �z0(r), conditioned

on Â and the choice of z1, the process (ξ̂
z1,T−

z1
t ◦ θαs : t ≥ 0) is independent of

B̂z0 ◦ θαs . Therefore, Lemma 3.1 guarantees that there exists a universal ε > 0
such that

P
(
ξ̂

z1,T−
z1

αs+2b′us � z1|Â,
(
B̂z0 ◦ θαs

)c) ≥ P
(
ξ̂

z1,T−
z1

2b′us � z1
) ≥ ε.(3.82)

The event in the first term can be written as Ĉz1 ◦ θαs+2b′us once we set for z ∈ T,

Ĉz := {
ξ

z,T−
z

0 � z
}
.(3.83)

If this happens, then by monotonicity z1 ∈ ξ̂
0,T
αs+2b′us , and we now check whether

B̂z1 ◦ θαs+2b′us occurs. Since we are only conditioning on events that depend on
(measurable w.r.t.), the process up to time αs + 2b′us, by the Markov property we
still have by virtue of (3.79)

P
(
B̂z1 ◦ θαs+2b′us |Â,

(
B̂z0 ◦ θαs

)c
, Ĉz1 ◦ θαs+2b′us

) ≥ e−2βb′s .(3.84)

On the intersection of all the events in (3.84), then we have τ̂ 0,T
y < αs + 4b′us.

If either the event in (3.82) or the event in (3.84) fail, we pick a new vertex z2 ∈
ξ̂0,T

αs ∩ B0(b
′s) \ (�z0(r) ∪ �z1(r)).

Proceeding in this fashion we obtain vertices z0, z1, . . . , zn, for n to be defined
later. Indeed, vertex zk is chosen from

ξ̂0,T
αs ∩ B0

(
b′s

)∖ ⋃
0≤l<k

�zl
(r),(3.85)
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and at time αs + 2kb′us we have [as in (3.82), (3.84)]

P
((
Ĉzk , B̂zk

) ◦ θαs+2kb′us |Â,
⋂
l<k

((
Ĉzl , B̂zl

)c ◦ θαs+2lb′us

)) ≥ εe−2βb′s,(3.86)

and if the above event occurs, then τ̂ 0,T
y < αs + 2(k + 1)b′us, and we stop. To

make sure that we do not “run out” of vertices in (3.85), observe that on Â when
we pick zk , ∣∣∣∣ξ̂0,T

αs ∩ B0
(
b′s

)∖ ⋃
0≤l<k

�zl
(r)

∣∣∣∣ ≥ ea′s − kdr(b′s + 1
)
.(3.87)

Thus, choosing n := ea′s/2 guarantees that the above is positive for all k ≤ n.
Combining (3.76), (3.77) and (3.86), we obtain for all s large enough,

P
(
τ̂ 0,T

y < ea′s/3)

≥ P
(
τ̂ 0,T

y < αs + 2(n + 1)b′us
)

≥ P
( ⋃

0≤l≤n

((
Ĉzl , B̂zl

) ◦ θαs+2lb′us

)∣∣∣Â
)
P(Â)(3.88)

≥ 1 − (
1 − εe−2βb′s)n+1 − e−αδs ≥ 1 − e−εe(a′/2−2βb′)s − e−αδs

≥ 1 − Ce−αδs = 1 − C
(
ea′s/3)−3αδ/a′

.

Substituting t := ea′s/3 and q := 3αδ/a′ we rewrite the above as

P
(
τ̂ 0,T

y > t
) ≤ Ct−q(3.89)

for all t large enough. But since α was arbitrary, δ is fixed and independent of it
and a′ ≤ 1 we can make q as large as we want. This shows (3.2). �

4. Proof of Proposition 1.1. Beginning with part (1), the upper bound easily
follows from a comparison with the contact process. Indeed, consider the contact
process (ζ

ζ0
t : t ≥ 0) on Td starting from some ζ0 ∈ X , where each site heals inde-

pendently at rate d and infected sites infect their neighbors at rate λ. Employing
a standard coupling (e.g., using the graphical representations of both models), we
can have

ζ
ζ0
t (x) ≤ ξ

ζ0
t (x), t ≥ 0, x ∈ T.(4.1)

Then local survival of ζ
ζ0· implies local survival of ξ

ζ0· . By the first inequality in
part (vi) of Theorem 2.2 in [16], this occurs with positive probability for ζ

ζ0· as
soon as λ > min(2d, 4d

(
√

d−1−4)∨0
). Observe that in the notation there n = d − 1

and that all threshold values should be multiplied by d as the healing rate there is
d times smaller.
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Before proving the lower bound in part (1), let us first address part (2) of the
proposition, as its proof is similar and at the same time slightly simpler. For α ≥ 0
consider the function f :X → R+ given by

f (ξ) = ∑
x∈ξ

αρ(0,x).(4.2)

If α < (d − 1)−1 this function is uniformly bounded. At the same time, we claim
that if λ−1 < α < λ, then M

ξ0
t := f (ξ

ξ0
t ) is a sub-martingale for all finite nonempty

ξ0 ∈ X (this is still true even if ξ0 is infinite, but our argument below needs to be
modified in this case). Indeed, let t ≥ 0 and consider the next transition of ξ

ξ0·
after t . Such transition must be due to a pair of neighboring vertices u ∼ v ∈ T
such that ξ

ξ0
t (u) = + while ξ

ξ0
t (v) = −, for which there is either an “arrival” of an

infection event, whereby u infects v, or an “arrival” of a healing event, whereby v

heals u and in any case this arrival is the first to occur after time t .
Conditioned on u, v being the vertices for which one of these arrivals occurred

first, the probability that it is an infection event is λ
λ+1 , while the probability that

it is a healing event is 1
λ+1 . There are two cases to consider: either ρ(0, u) =

ρ(0, v) + 1 or ρ(0, u) = ρ(0, v) − 1. The expected change in M
ξ0
t due to this

transition is then, respectively,

αρ(0,v)

(
λ

1 + λ
− α

1 + λ

)
and αρ(0,u)

(
λα

1 + λ
− 1

1 + λ

)
.(4.3)

Both are nonnegative when λ−1 < α < λ, and hence M
ξ0· is a sub-martingale.

If λ > d − 1, we may find λ−1 < α < (d − 1)−1 for which (M
ξ0
t : t ≥ 0) is

a bounded sub-martingale and therefore must converge to some finite value with
probability 1. Consequently, for any vertex v there is some time sv after which it
is either always infected or never infected; otherwise there would have been an
unbounded sequence of times at which M

ξ0
t changed by αρ(0,v), a contradiction

to the convergence. Furthermore, two neighboring vertices cannot have different
limits, and hence almost-surely ξ

ξ0
t converges either to T or ∅. The latter cannot

happen once �
ξ0
l occurs, but �

ξ0
l occurs with positive probability when λ > λl(T).

Thus, when λ > (d − 1) ∨ λl(T), then with positive probability ξ
ξ0
0 converges to T

and the process survives completely.
We now come back to the proof of the lower bound in part (1). Let u ∈ T, and set

w ∈ T to be the first common ancestor of u and 0. Note that it might be 0 or u. Now
define the “height” of u relative to 0 as h(u) := ρ(w,u)−ρ(w,0). Next, for α > 0
let f (u) := αh(u) and for a subset of vertices U ⊆ T we set f (U) := ∑

u∈U f (u).
Notice that f (u) may be ∞. Finally, define the process Mt := f (ξ0

t ).
We would like to claim that as soon as α and λ satisfy

λ(d − 1)α2 − dα + λ ≤ 0,(4.4)
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then (Mt : t ≥ 0) is a nonnegative super-martingale and therefore must have an
almost-sure finite limit M∞. As before this will imply that ξ0

t converges to either
∅ or T with probability 1. Since EM∞ ≤ EM0 < ∞, it must be that M∞ is finite
almost-surely, which is only possible if the convergence of ξ0

t is to ∅. Thus, the
probability of local survival is 0 and hence λ is a lower bound for λl(T). It is not
difficult to see that (4.4) has a solution with α > 0 if and only if λ ≤ d

2
√

d−1
. This

gives the lower bound in part (1).
To see that once (4.4) holds, Mt is a super-martingale, we argue as before. Given

ξ0
t for some t ≥ 0, the expected change in Mt at the next transition of ξ0· is

1

(λ + 1)|∂Tξ0
t |

∑
u∼v

v∈ξt ,u/∈ξt

λf (u) − f (v).(4.5)

It is therefore enough to argue that for any finite U ⊆ T,
∑
u∼v

v∈U,u/∈U

λf (u) − f (v) ≤ 0,(4.6)

and by linearity, we can also assume that U is connected.
The proof of (4.6) will follow by induction on the size of U . It is easy to check

that (4.4) is necessary and sufficient for (4.6) to hold for U = {x}. Now suppose
that it holds for all U with |U | < n, and let U be a set with n vertices. Choose
some leaf w ∈ U and set U ′ := U \ {w}. From the induction hypothesis we know

∑
u∼v

v∈U ′,u/∈U ′

λf (u) − f (v) ≤ 0 and
∑
u∼w

λf (u) − f (w) ≤ 0.(4.7)

Adding the two inequalities and letting w′ denote the parent of w, we obtain

(λ − 1)
(
f (w) + f

(
w′)) + ∑

u∼v
v∈U,u/∈U

λf (u) − f (v) ≤ 0,(4.8)

but since λ ≥ 1, this implies that (4.6) holds as desired.

5. Proof of Theorem 1.6. Starting with part (1), for u ∼ v ∈ T and t ≥ 0,
denote by e+

t (u, v) the number of times v becomes infected because of u, up to
time t , and let E+

t (u, v) := Ee+
t (u, v). If P(ξ0 ∈ ·) ∈ I , the latter does not de-

pend on the choice of u, v and we shall therefore just write E+
t . Similarly, define

e−
t (u, v) as the number of times v becomes healthy because of u, up to time t and

let E−
t = E−

t (u, v) := Ee−
t (u, v). Since for all v ∈ T,

∑
u:u∼v

e+
t (u, v) − ∑

u:u∼v

e−
t (u, v) ∈ {−1,0,+1},(5.1)
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by taking expectations we see that − 1
d

≤ E+
t − E−

t ≤ 1
d

. On the other hand,

E+
t (u, v) = λE−

t (v, u), as every time ξ
ξ0· (u) = + but ξ

ξ0· (v) = − and an infec-
tion or healing event occurs along the edge {u, v}, the probability of an infection
of v by u is larger by a factor of λ than the probability of a healing of u by v

(formally, this is just a simple martingale argument). Thus (1 − λ−1)E+
t ≤ 1/d ,

and so E+
t is bounded by a constant that does not depend on t .

Consequently, e+∞(u, v) := limt→∞ e+
t (u, v), which exists by monotonicity, has

a bounded expectation and therefore must itself be bounded almost-surely. The
same holds for e−∞(u, v), and we see that the number of sign flips at any vertex v

must be finite almost surely, as desired.
Turning to part (2). Let x, y be two neighboring vertices in T and t ≥ 0. Define

ρt := P
(
ξ

ξ0
t (x) = +)

, δt := P
(
ξ

ξ0
t (x) = +, ξ

ξ0
t (y) = −)

.(5.2)

Clearly, the above does not depend on the choice of x, y since the initial distribu-
tion is automorphism-invariant. We claim that for all t ≥ 0,

dρt

dt
= d(λ − 1)δt .(5.3)

To see this, fix some t, h ≥ 0, and for u ∼ v ∈ T, let

f (u, v) := [
e+
t+h(u, v) − e+

t (u, v)
] − [

e−
t+h(u, v) − e−

t (u, v)
]
,

(5.4)
F(u, v) := Ef (u, v).

Since T is transitive and unimodular, by the mass-transport principle (see,
e.g., [13]) for all w ∈ T,

∑
u:u∼w

F(u,w) = ∑
v:v∼w

F(w,v).(5.5)

The left-hand side above is equal to E1
2(ξt+h(w) − ξt (w)) = ρt+h − ρt . The right-

hand side is∑
v:v∼w

E
[
e+
t+h(w, v) − e+

t (w, v)
] − ∑

v:v∼w

E
[
e−
t+h(w, v) − e−

t (w, v)
]

(5.6)
= dδth(λ − 1) + O

(
h2)

.

Equating the two sides, dividing by h and taking h → 0, we obtain (5.3).
Now from the previous part we know that ξ

ξ0∞ := limt→∞ ξ
ξ0
t exists almost-

surely, and its distribution is supported on {∅,T}. Since ergodicity is preserved in
the (strong) limit, it follows that ξ

ξ0∞ is either ∅ a.s. or T a.s. If P(ξ0 ∈ ·) �= δ∅,
then ρ0 > 0, and since the right-hand side of (5.3) is nonnegative it must be that
also ρ∞ := P(ξ

ξ0∞(x) = +) > 0. This leaves only the option ξ
ξ0∞ = T almost surely,

which implies P(�
ξ0
c ) = 1.
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It remains to show that infinite infected components must form in finite time.
We first show that if at time t ≥ 0 all components are finite almost-surely, then

δt ≥ Cρt(5.7)

for some C > 0 (which is independent of t). This follows again from the mass-
transport principle. Denote by ∂−

T U the internal vertex boundary of U , that is, the
set of vertices in U with neighbors that are not in U . Let every infected vertex v

under ξ
ξ0
t , send one unit of mass to the interior vertex boundary of its component,

divided equally among these boundary vertices. The expected amount of mass a
vertex sends is ρt . Thus, by the mass-transport principle, the expected amount of
mass a vertex receives is ρt as well.

On the other hand, a vertex receives a positive mass if and only if it is infected
and lies in ∂−

T U where U is the infected component to which it belongs. In this
case it receives a total mass of |U |/|∂−

T U |. Since T is nonamenable, this ratio is
bounded above by a constant C′ < ∞. If we let βt be the probability a given vertex
is in the interior boundary of an infected component of ξt , then these considerations
lead to the inequality βt ≥ C′−1ρt . Since δt ≥ βt/d , we have shown (5.7).

Now suppose that P(ξ0 ∈ ·) is as in part (2) of the theorem and that for all
time t ≥ 0, the probability of the existence of an infinite infected component in
ξ

ξ0
t is 0. Then (5.3) and (5.7) together imply that ρt ≥ ρ0e

C′′t for some C′′ > 0.
Since ρ0 > 0, this would imply ρt > 1 for some t > 0, which is a contradiction.
Therefore, there is some t ≥ 0, for which ξ

ξ0
t has infinite components with positive

probability. Since the latter event is automorphism-invariant and since ergodicity
is carried over to ξ

ξ0
t for every t > 0, the latter probability must be 1.
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