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PROPAGATION OF CHAOS IN NEURAL FIELDS

BY JONATHAN TOUBOUL

Collège de France and INRIA Paris-Rocquencourt

We consider the problem of the limit of bio-inspired spatially extended
neuronal networks including an infinite number of neuronal types (space lo-
cations), with space-dependent propagation delays modeling neural fields.
The propagation of chaos property is proved in this setting under mild as-
sumptions on the neuronal dynamics, valid for most models used in neuro-
science, in a mesoscopic limit, the neural-field limit, in which we can resolve
the quite fine structure of the neuron’s activity in space and where averag-
ing effects occur. The mean-field equations obtained are of a new type: they
take the form of well-posed infinite-dimensional delayed integro-differential
equations with a nonlocal mean-field term and a singular spatio-temporal
Brownian motion. We also show how these intricate equations can be used in
practice to uncover mathematically the precise mesoscopic dynamics of the
neural field in a particular model where the mean-field equations exactly re-
duce to deterministic nonlinear delayed integro-differential equations. These
results have several theoretical implications in neuroscience we review in the
discussion.

Introduction. The brain’s activity is the result of the complex interplay of
different cells, in particular neurons, electrical cells that manifest highly complex
nonlinear behaviors characterized by the intense presence of noise. Neurons form
large population assemblies at the scale of which emerge reliable and adapted re-
sponses to stimuli. Such local neural populations, often termed cortical columns,
have a diameter of about 50 µm to 1 mm, contain a few thousand to one hundred
thousand neurons and are in charge of specific functions [24]. The interaction of
several columns at different spatial locations allows processing of the complex sen-
sory or cortical information and supports brain function. Such groups of cortical
columns organize on the surface of the cortex and form spatially extended struc-
tures called neural fields, the activity of which is precisely at the scale most usual
imaging techniques (e.g., EEG/MEG, optical imaging) record relevant phenomena,
and also correspond to anatomical information revealed experimentally. A paradig-
matic example is given by the primary visual cortex of certain mammals. In such
cortical areas, neurons organize into columns responding preferentially to specific
orientations in visual stimuli and display specific connection patterns [2, 18]. The
communication between neurons is characterized by a delay due to the transport
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of information through axons and to the typical time the synaptic machinery needs
to transmit it. These delays have a clear role in shaping the neuronal activity, as
established by different authors; see, for example, [5, 27]. In such structures, sev-
eral highly populated columns interact, and the number of neurons in each column
is orders of magnitude higher than the number of columns (e.g., orientations) in-
volved. A variety of important brain states rely on the coordinated behaviors of
large neural assemblies and recently raised the interest of physiologists and com-
putational neuroscientists. Among these, we shall cite the rapid complex answers
to specific stimuli [31], decorrelated activity [10, 25], large scale oscillations [4],
synchronization [19] and spatio-temporal pattern formation [6, 12].

The mathematical and computational analysis of the dynamics of neural fields
relies almost exclusively on the use of heuristic models since the seminal work
of Wilson and Cowan [35] and Amari [1]. This approach implicitly considers
that averaging effects counterbalance the prominent noisy aspect of in vivo firing
observed experimentally, and describes the mesoscopic cortical activity through
a deterministic, scalar variable whose dynamics is given by integro-differential
equations. This model was widely studied analytically and numerically, and suc-
cessfully accounted for hallucination patterns, binocular rivalry and synchroniza-
tion [11, 21]. Justifying these models starting from biologically realistic settings
has since then been a great endeavor [3].

In this manuscript we undertake a rigorous analysis of neural fields. From the
biological viewpoint, these are spatially extended cortical structures made of sev-
eral highly populated neuronal ensembles (the neural populations) in charge of
specific functions. From the mathematical viewpoint, neural fields are adequately
described as the limit of a set of nonlinear interacting stochastic processes (gen-
erally governing the neuron’s electrical potential and related variables) gathering
into different homogeneous populations at specific locations on the cortex. Neu-
rons in each population have similar dynamics and communicate with neurons of
different populations depending on the respective positions of the populations on
the cortex and after a specific time delay. In what we will call the neural field
limit, both the number of neurons and the number of populations tend to infinity
so that the populations completely cover a continuous space (a piece of cortex or
a functional space).

This problem is evocative of statistical fluid mechanics and more generally in-
teracting particle systems, and as such has been widely studied in mathematics
and physics, chiefly motivated by thermodynamics or fluid dynamics questions.
In particular, the probability distribution of a typical set of particles in the limit
where the total number of particles goes to infinity, and fluctuations around this
limit where characterized for a number of models [9, 23, 28–30]. It was shown
in several contexts that when considering that all particles have independent iden-
tically distributed initial conditions (chaotic initial conditions), then in the limit
where the number of particles tends to infinity, the behavior of a few particles
remains independent as time goes by, and all particles have the same probability
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distribution, which is the solution of a nonlinear Markov equation, often referred
to as the McKean–Vlasov equation. The underlying biological problem motivates
the Introduction of a notion of spatial labeling of the (fixed) neurons, involving two
mathematical aspects that were not covered in the literature. First is the fact that
this induces the presence of infinitely many types of neurons (corresponding to the
column neurons belong to), and second is the fact that since neurons communi-
cate through the emission of electrical impulses transported at finite speed through
the axons, space-dependent delays occur in the communication between two cells.
These two aspects necessitate the development of the propagation of chaos the-
ory toward infinite-dimensional functional settings that we aim at achieving in the
present manuscript. We will show that in the neural field limit, the propagation
of chaos property holds. Moreover, the activity is shown to converge in a certain
sense toward the solution of a new object, a delayed integro-differential mean-field
equation with space-dependent delays. This object is substantially different from
the usual McKean–Vlasov limits: beyond the presence of delays, the neural field
limit regime is at a mesoscopic scale where averaging effects locally occur, but is
fine enough to resolve brain’s structure and its activity, resulting in the presence
of an integral term over space. The speed of convergence toward the mean-field
equations is quantified and involves two terms, one governing the averaging effect
in each population and the second corresponding to the continuum limit. In the
neural field regime, the limit equations are very singular; in particular, trajectories
are not measurable with respect to the space. These limits are very hard to analyze
at this level of generality. However, in the type of models usually considered in
the study of neural fields, namely the firing-rate model, we show in a companion
article [32] that the behavior can be rigorously and exactly reduced to a system of
deterministic integro-differential equations that are compatible with the usual Wil-
son and Cowan system in the zero noise limit. Noise intervenes in these equations
a nonlinear fashion, fundamentally shaping in the macroscopic dynamics.

The paper is organized as follows. We start in Section 1 by describing the math-
ematical setting of the study, abstracting classical relevant neuronal models that
are specified and reviewed in Appendix A, and more general models are consid-
ered in Appendix B. We then analyze the integro-differential delayed McKean–
Vlasov equations that will constitute our limit neural field equation in Section 2
and demonstrate in particular their well-posedness, before addressing in Section 3
the propagation of chaos property and convergence of the network equations to-
ward the solutions of the mean-field equation. In Section 4 we illustrate how this
approach can be used in practice to analyze the effect of the parameters on the
dynamics of the system in a particular example, reviewing some results of [32]
afresh on a new example where noise, delays and spatial structure interact to shape
the mesoscopic response of the neural field. The results of the mathematical analy-
sis are then confronted to different recent experimental observations on collective
dynamics of neural fields in the brain, and a few open problems of interest are
discussed in the conclusion Section 5.
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FIG. 1. A typical architecture of neural fields: cylinders represent neural populations as cortical
columns spanning across the cortex. Neuron i (red population at ri ∈ �) receives a spike from neu-

ron j (green population at rj ∈ �) after a delay τ (ri , rj ) creating a current b(ri , rj ,Xi
t ,X

j
t ).

1. Mathematical setting. Throughout the manuscript, we work in a complete
probability space (�,F,P) endowed with a filtration (Ft )t satisfying the usual
conditions. We consider a spatially extended network (see Figure 1) composed
of N neurons, each neuron belonging to one of P(N) populations characterized
by their locations (r1, . . . , rP (N)) ∈ �P(N) on the cortex (or the feature space) �,
a finite-dimensional compact set.1 The state of each neuron i in the network is
described by a d-dimensional variable Xi ∈ E := R

d , typically corresponding to
the membrane potential of the neuron and possibly additional variables such as
those related to ionic concentrations and gated channels described in Appendix A,
and satisfy the network equations

dX
i,N
t =

(
f
(
rα, t,X

i,N
t

)

+ 1

P(N)

P(N)∑
γ=1

∑
p(j)=γ

1

Nγ

b
(
rα, rγ ,X

i,N
t ,X

j,N
t−τ(rα,rγ )

))
dt(1)

+ σ(r) dWi
t ,

where f (r, t, x) :� × R × E �→ E governs the intrinsic dynamics of each cell,
(Wi

t ) is a sequence of m-dimensional Brownian motions modeling the external
noise and σ(r) :� �→ R

d×m a bounded and measurable function of r ∈ � mod-
eling the level of noise at each space location and b(r, r ′, x, y) :�2 × E2 �→ E

the interaction function of a neuron located at r ′ with voltage y on a neuron at

1When considering � as the cortex, it will be a compact subset of Rq , q = 2 or 3, and when
considering that populations are defined by the neuron’s function, the shape of � can take different
forms depending on the geometry of the feature space. For instance, in the case of the primary visual
area, neurons code for a preferred orientation of a visual stimuli that can be represented in the torus
� = S

1.
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location r with voltage x. The function τ(r, r ′) :�2 �→ R
+ is the interaction de-

lay between neurons located at r and those at r ′ which is assumed to be a reg-
ular function of its two variables. We assume that all delays are bounded by a
finite quantity τ . The quantity rα is called the location of the population, and α

is the population label. For a neuron i in the network, the population function
p :N �→ N associates to a neuron i the population α it belongs to. The number
of neurons in each population in a network of size N defines a sequence of pop-
ulation size (N1(N), . . . ,NP(N)(N)) [we hence have

∑P(N)
γ=1 Nγ (N) = N ] corre-

sponding to the number of neurons in population γ when the network size is equal
to N . The number of populations P(N) and the number of neurons in each of
these populations is assumed to be deterministic.2 The interaction term presents a
scaling factor 1

P(N)Nγ
ensuring the boundedness of the input received by neurons

from population γ to the other populations, a biological fact related to the brain
function and to the finiteness of the resources available for the synaptic transmis-
sion.

The different locations rγ of the populations are related to the organization
of the neurons on the space �. These locations are distributed according to
a specific probability measure λ on �.3 The locations of the P(N) populations,
(r1, . . . , rP (N)) ∈ �P(N), are assumed to be randomly and independently drawn in
� according to the probability λ(dr) in a different probability space (�′,F ′,P′).
We will denote by E the expectation over the realizations of the space loca-
tions (rα).

It is clear that the larger the number of populations, the smaller the mean num-
ber of neurons per populations. The number of populations will hence compete
with the typical number of neurons per population and hence with averaging ef-
fects. In the present article, motivated by the fact that the number of neurons in
each population is orders of magnitude larger than the number of populations (see,
e.g., [15]), we will make the following assumption, referred to as the neural field
limit:

e(N) := 1

P(N)

P(N)∑
γ=1

1

Nγ (N)
−→

N→∞ 0.(2)

In the case of an infinite number of populations, this assumption ensures heuris-
tically most populations are made of a diverging number of neurons.4

The parameters of the system are assumed to satisfy the following assumptions:

2It is easy to generalize to random population number and population size.
3In the example of the visual area V1, λ is the uniform measure on S

1.
4If all populations have approximately the same number of neurons, each Nk(N) will be of the

order N/P (N), and the condition (2) is satisfied when P(N) = o(N). The condition also ensures the
size of most populations tend to infinity. Indeed, for instance, if all but one population contains just
1 neuron, the last population contains N − P(N) neurons, and the sum is equal to 1 − 1/P (N) +
1/(P (N)(N − P(N))) ≥ 1 − 1/P (N) which will not tend to zero.
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(H1) f (r, t, ·) is uniformly Kf Lipschitz-continuous.
(H2) b(r, r ′, ·, ·) is uniformly L-Lipschitz-continuous.
(H3) There exists a K̃ > 0 such that∣∣b(r, r ′, x, z

)∣∣2 ≤ K̃
(
1 + |x|2).

(H4) The drift satisfies uniformly in space (r) and time (t), the inequality∣∣f (r, t, x)
∣∣2 ≤ C

(
1 + |x|2).

(H5) The drift, delay, diffusion and coupling functions are regular with respect
to space variables (r, r ′) ∈ �2 (at least measurable, in practice generally assumed
continuous).

Let us first state the following proposition ensuring well-posedness of the net-
work system under the assumptions of the section:

PROPOSITION 1. Let (X0
t )t∈[−τ,0] a square integrable process with values

in EN . Under the assumptions of the section, there exists a unique strong solution
to the network equations (1) with initial condition X0, which is square integrable
and defined for all times.

The proof of this proposition is a direct application of Da Prato [7] as used by
Mao [22], and essentially uses the same arguments as those of the proof Theo-
rem 2. The interested reader is invited to follow the steps of the demonstration of
that theorem to prove Proposition 1.

We are interested in the limit of such systems as the number of neurons N goes
to infinity, under the neural field limit condition.

Let us start by briefly bring some results from the analysis of finite populations
networks [i.e., the case where P(N) remains finite as N → ∞], which can be seen
as a particular case of the current setting under the assumption that λ is a sum of
Dirac masses. In that case, the neural field regime (2) amounts assuming that the
number of neurons in each population tends to infinity. Standard theory proves that
the network converges toward P coupled McKean–Vlasov equations

dX̄t (rα) = f
(
r, t, X̄t (rα)

)
dt + σ(rα) dWα

t

+ 1

P

P∑
γ=1

EZ̄

[
b
(
rα, rγ , X̄t (rα), Z̄t−τ(rα,rγ )(rγ )

)]
dt,

where (Wα
t ) are P independent Brownian motions. This model can be seen as

a discrete approximation of the continuous neural field. When the asymptotic num-
ber of populations is infinite, corresponding heuristically to refining the spatial
discretization (or increasing the number of populations), one is likely to face two
main difficulties: (i) the network equations will involve an infinite number of in-
dependent Brownian motions, one for each space location, and (ii) it will involve
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a limit, as P goes to infinity, of a sum of the mean-field interaction terms [it is,
rather, a simultaneous limit under the scaling property (2)].

REMARK. Note that the infinite number of independent Brownian motions is
not a technical artifact, but a fact related to the very nature of the problem: distinct
neurons are driven by independent Brownian motions whatever their respective
locations on the neural field �, and no spatial continuity or measurability is to be
expected in the solution of the limit equations.

In order to handle the first point, we introduce a particular object, the spatially
chaotic5 Brownian motion on �, a two-parameter process (t, r) ∈ R

+ × � �→
Wt(r) such that for any fixed r ∈ �, the process t �→ Wt(r) is a d-dimensional
standard Brownian motion, and for r 	= r ′ in �, the processes Wt(r) and Wt(r

′) are
independent. This process is relatively singular seen as a spatio-temporal process:
in particular, it is not measurable with respect to the Borel algebra B(�) of �. This
object, defined as a collection of independent Brownian motions, clearly exists.
More generally, in what follows, a process ζt (r) will be termed spatially chaotic if
the processes ζt (r) and ζt (r

′) are independent for any r 	= r ′.
We will show that the network equations (1) satisfy the propagation of chaos

property in the limit where N goes to infinity under the neural field assumption,
and that the state of the network converges toward a very particular McKean–
Vlasov equation involving a spatially chaotic Brownian motion. In detail, for al-
most all realizations of the spatial locations (rγ , γ ∈ N) i.i.d. with law λ, the
asymptotic law of neurons located at r in the support of λ will be measurable with
respect to (�,B(�)) and converge toward the stochastic neural field mean-field
equation with delays

dX̄t (r) = f
(
r, t, X̄t (r)

)
dt + σ(r) dWt(r)

(3)
+
∫
�
EZ̄

[
b
(
r, r ′, X̄t (r), Z̄t−τ(r,r ′)

(
r ′))]dλ

(
r ′)dt,

where (Wt(r))t≥0,r∈� is a spatially chaotic Brownian, and the process (Z̄) is inde-
pendent and has the same law as (X̄). In other words, we will show that the law
of the solution Xt(r), noted m(t, r)(dy), is measurable with respect to B(�), and
that the mean-field equation can be expressed as the integro-differential McKean–
Vlasov equation

dX̄t (r) = f
(
r, t, X̄t (r)

)
dt

+
∫
�

∫
E

b
(
r, r ′, X̄t (r), y

)
m
(
t − τ

(
r, r ′), r ′)(dy) dλ

(
r ′)dt

+ σ(r) dWt(r),

5We use the term chaotic in the statistical physics sense as understood by Boltzmann’s in his notion
of molecular chaos “Stoßzahlansatz.”
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which will also be written, denoting Er ′ is the expectation with respect to the dis-
tribution of the population locations over � with distribution λ(·),

dX̄t (r) = f
(
r, t, X̄t (r)

)
dt + σ(r) dWt(r)

+ Er ′
[
EZ̄

[
b
(
r, r ′, X̄t (r), Z̄t−τ(r,r ′)

(
r ′))]]dt.

Let us eventually give the Fokker–Planck equation on the possible density
p(t, r, y) of m(r, t) with respect to Lebesgue’s measure

∂tp(t, r, x)

= −∇x

{(
f (r, t, x)

(4)

+
∫
�

∫
E

b
(
r, r ′, x, y

)
p
(
t − τ

(
r, r ′), r ′, y

)
dλ

(
r ′))p(t, x)

}

+ 1

2
�x

[∣∣σ(r)
∣∣2p(t, x)

]
.

The mean-field equations (3) are of a new type: they resemble McKean–Vlasov
equations but involve delays, spatially chaotic Brownian motions and an “integral
over spatial locations.” This is hence a very unusual stochastic equation we need
to thoroughly study in order to ensure that these make sense and are well-posed.
The existence and uniqueness of solutions to these equations is addressed in Sec-
tion 2, and the proof of the propagation of chaos and convergence of the network
equations toward the solutions of that equations is addressed in Section 3.

REMARK. Note that the setting considered here, though relatively general, can
be further extended using locally Lipschitz-continuous drift and state-dependent
diffusion functions as certain neuronal models require. Such refinements do not
modify the results and the principles of the proofs, but induce an important increase
of complexity in the presentation, and are commented on in Appendix B.

2. Analysis of the mean-field equation. The mean-field equation (3) in-
volves two unusual terms: a stochastic integral involving spatially chaotic Brown-
ian motions and an integrated McKean–Vlasov mean-field term.

Let us start by discussing properties of stochastic integrals with respect to a spa-
tially chaotic Brownian. Considering �t(r) a Ft -progressively measurable process
indexed by r ∈ � such that for any r ∈ � we have∫ t

0
E
[∣∣�s(r)

∣∣2]ds < ∞.(5)

It is trivial to see that for any r ∈ �, the process Nt(r) := ∫ t
0 �s(r) dWs(r) is a well

defined, square integrable martingale with quadratic variation
∫ t

0 |�s(r)|2 ds.
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The possible solutions (X̄t (r))t,r of the mean-field equation have a law belong-
ing to the set of probability measures on the continuous functions of [−τ, T ] with
values in the set of mappings of � in E. It is important to note at this point that
similar to the spatially chaotic Brownian motion, the solutions of the mean field
equations are not measurable in (�,B(�)) since the solution considered at differ-
ent space locations r and r ′ in �, namely Xt(r) and Xt(r

′), are independent.
Though trajectories of spatially chaotic processes are nonmeasurable, their

probability distribution, defining a set of measures parametrized by r ∈ �, might
be measurable. This is a necessary property to make sense of the mean-field equa-
tions. Handling this subtlety necessitates that we thoroughly define the space in
which we are working and where the mean-field equations are well defined. We
define Z the set of random variables whose law is measurable with respect to
B(�) [the random variable itself is not assumed measurable with respect to B(�)].
More precisely, Z correspond to random variables whose law are given by Markov
kernels from (�,B(�)) to (�,F), that is, mappings p that associate to each point
r ∈ � a probability measure p(r) on (�,F) such that for every measurable set
A ∈ F , the map r �→ p(r)(A) is measurable with respect to (�,B(�)). For a ran-
dom variable (Z(r))r∈� in Z with measurable law p(r, dx), we define with a slight
abuse of notations the L

2
λ(�) norm on � by defining, for r̂ a (�′,F ′,P′) random

variable with law λ,

‖Z‖2
L

2
λ(�)

= E
[
Er̂

[∣∣Z(r̂)
∣∣2]]=

∫
�

∫
E

x2p(r, dx) dλ(r),(6)

where E denotes the expectation on �′. This clearly defines a norm on random
variables indexed by r ∈ �, when identifying processes that are λ ⊗ P-a.s. equal.
We denote L

2
λ(�) the set of random variables in Z such that ‖Z‖

L
2
λ(�) < ∞.

EXAMPLE. (i) The spatially chaotic Brownian motion at fixed time t has, for
all r ∈ �, the law of a standard Brownian motion. This law, independent of r ∈ �,
is hence measurable with respect to (�,B(�)). Moreover, it belongs to L

2
λ(�) and

has a norm equal to t .
(ii) Another example is given by the variable ZT (r) = ∫ T

0 �s(r) dWs(r) where
� is a function of R+ ×� measurable with respect to the σ -algebra B(R+)⊗B(�)

and satisfying the condition
∫ T

0
∫
� |�s(r)|2 dλ(r) ds. The thus defined variable

is not measurable with respect to B(�), but belongs to Z since this variable
is a centered Gaussian process with measurable variance

∫ T
0 |�s(r)|2 ds, hence

the law of Z(r) is B(�)-measurable. Eventually, Z ∈ L
2
λ(�) with ‖Z‖

L
2
λ(�) =∫ T

0
∫
� |�s(r)|2 dλ(r) ds.

We extend this norm to processes with values in L
2
λ(�). For (Zt (r))t∈[u,v]

a stochastic process with continuous paths indexed by r ∈ � such that the law
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of Zt(r) is measurable with respect to B(�), we say that it belongs to M :=
M2([u, v],L2

λ(�)) if we have

‖Z‖M := Er̂

(
E

[
sup

s∈[u,v]
∣∣Zs(r̂)

∣∣2])< ∞

and this quantity defines a norm on M2([u, v],L2
λ(�)) where are identified the

processes that are λ-a.s. and P-a.s. equal for all times.

EXAMPLE. (i) The spatially chaotic Brownian motion on [0, T ] belongs to
M2([0, T ],L2

λ(�)) and has a norm equal to T thanks to the classical property that
the supremum of the Brownian motion has the law of the absolute value of the
Brownian motion.

(ii) The process Zt(r) = ∫ t
0 �s(r) dWs(r) introduced above belongs to M :=

M2([0, T ],L2
λ(�)) and, thanks to Burkholder–Davis–Gundy inequality, has

a norm ‖Z‖M ≤ 4
∫ T

0
∫
� |�s(r)|2 dλ(r) ds.

Now that these norms are introduced, we are in position to show the well-
posedness of the mean-field equations:

THEOREM 2. For any (ζ 0
t (r), t ∈ [−τ,0], r ∈ �) ∈ M2([−τ,0],L2

λ(�))

a square-integrable process, the mean-field equation (3) with initial condition ζ 0

has a unique strong solution on [−τ, T ] for any T > 0.

PROOF. As always for these types of properties, we reduce the problem to the
existence and uniqueness of a fixed point of a map � acting on stochastic processes
X in M2([−τ, T ],L2

λ(�)) (noted MT in the sequel) defined by

�(X)t (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ 0
0 (r) +

∫ t

0
f
(
r, s,Xs(r)

)
ds +

∫ t

0
σ(r) dWs(r)

+
∫ t

0

∫
�
EZ

[
b
(
r, r ′,Xs(r),Zs−τ(r,r ′)

(
r ′))]dλ

(
r ′)ds,

t > 0,

ζ 0
t (r), t ∈ [−τ,0],

(Zt )
L= (Xt), independent of (Xt) and

(
Wt(·)).

The first question we may ask is whether or not this function is well defined, and
if �(X) defines a process that belongs to M2([−τ, T ],L2

λ(�)). The initial con-
dition, Stieltjes integral and stochastic integral with spatially chaotic Brownian
motions are well defined as we have already seen. Moreover, under the assump-
tion that Xt(r) has a law measurable with respect to B(�), each of these terms
have a law measurable with respect to B(�). The mean-field term is slightly more
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complex. Let us denote by m(t, r, dy) the distribution of Xt(r). This term can be
written as ∫ t

0

∫
�

∫
E

b
(
r, r ′,Xs(r), y

)
m
(
s − τ

(
r, r ′), r ′, dy

)
dλ

(
r ′)ds.

This quantity is well defined and has a distribution B(�)-measurable with re-
spect to r since we assumed m(t, r, dy) is measurable with respect to r as well as
(r, r ′) �→ b(r, r ′, x, y) and (r, r ′) �→ τ(r, r ′) [assumption (H5)]. Let us now show
square integrability of �(X). We have

∥∥�(X)
∥∥
MT

≤ 4
(∥∥ζ 0

0

∥∥
L

2
λ(�) + T C

∫ T

0

(
1 + ‖Xs‖L2

λ(�)

)
(7)

+ 4
∫ T

0

∫
�

∣∣σ(r)
∣∣2 dλ(r) ds + T K̃

∫ T

0

(
1 + ‖Xs‖2

L
2
λ(�)

)
ds

)
,

which is finite since X ∈ M2
T .

We may hence iterate the map �. We fix X a process in MT and build the
sequence Xk by induction through the recursion relationship Xk+1 = �(Xk). We
aim to show that these processes constitute a Cauchy sequence in MT , and we
introduce the norm of the process up to time t

‖X‖2
Mt

:= E

[
Er

(
sup

s∈[−τ,t]
∣∣Xs(r)

∣∣2)]= E

[∫
�

sup
s∈[−τ,t]

∣∣Xs(r)
∣∣2 dλ(r)

]
.

We now introduce a sequence of processes (Zk) independent of the collection of
processes (Xk) and having the same law, built recursively as follows:

• Z0 is independent of X0 and has the same law as X0;
• for k ≥ 1, Zk is independent of the sequence of processes (X0, . . . ,Xk)

and is such that the collection of processes (Z0, . . . ,Zk) has the same joint
law as (X0, . . . ,Xk), that is, Zk is chosen such as its conditional law given
(Z0, . . . ,Zk−1) is the same as that of Xk given (X0, . . . ,Xk−1).

We study the norm ‖Xk+1 − Xk‖MT
. We decompose this difference into the sum

of three elementary terms as follows, for t ∈ [0, T ] and r ∈ �:

Xk+1
t (r) − Xk

t (r) =
∫ t

0

{(
f
(
r, s,Xk

s (r)
)− f

(
r, s,Xk−1

s (r)
))}

ds

+
∫ t

0

∫
�

{(
EZ

[
b
(
r, r ′,Xk

s (r),Z
k
s−τ(r,r ′)

(
r ′))]

−EZ

[
b
(
r, r ′,Xk−1

s (r),Zk
s−τ(r,r ′)

(
r ′))])}dλ

(
r ′)ds

+
∫ t

0

∫
�

{(
EZ

[
b
(
r, r ′,Xk−1

s (r),Zk
s−τ(r,r ′)

(
r ′))]

−EZ

[
b
(
r, r ′,Xk−1

s (r),Zk−1
s−τ(r,r ′)

(
r ′))])}dλ

(
r ′)ds

=: At(r) + Bt(r) + Ct(r).
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We hence obviously have

Mk
t := ∥∥Xk+1 − Xk

∥∥2
Mt

≤ 3
(‖A‖2

Mt
+ ‖B‖2

Mt
+ ‖C‖2

Mt

)
.

We treat each term separately. We have

‖A‖2
Mt

= E

[∫
�

(
sup

s∈[0,t]

∣∣∣∣
∫ s

0
f
(
r, u,Xk

u(r)
)

− f
(
r, u,Xk−1

u (r)
)
du

∣∣∣∣
2)

dλ(r)

]

(Cauchy–Schwarz) ≤ T K2
fE

[∫
�

(∫ t

0

∣∣Xk
s (r) − Xk−1

s (r)
∣∣2 ds

)
dλ(r)

]

≤ T K2
f

∫ t

0

∥∥Xk − Xk−1∥∥2
Ms

ds

which directly implies ‖A‖2
Mt

≤ T K2
f

∫ t
0 Mk−1

s ds. The terms Bt and Ct can be
controlled using the same techniques. Let us, for instance, treat the case of Ct . We
have

‖C‖2
Mt

= E

[∫
�

sup
s∈[0,t]

∣∣∣∣
∫
�

∫ s

0

(
EZ

[
b
(
r, r ′,Xk−1

u (r),Zk
u−τ(r,r ′)

(
r ′))]

−EZ

[
b
(
r, r ′,Xk−1

u (r),

Zk−1
u−τ(r,r ′)

(
r ′))])dudλ

(
r ′)∣∣∣∣

2

dλ(r)

]

(CS) ≤ t

∫
�2

∫ t

0
E
[
EZ

[∣∣b(r, r ′,Xk−1
u (r),Zk

u−τ(r,r ′)
(
r ′))

− b
(
r, r ′,Xk−1

u (r),Zk−1
u−τ(r,r ′)

(
r ′))∣∣2])du

]
dλ(r) dλ

(
r ′)

(H2) ≤ tL2
∫
�2

∫ t

0
E
[∣∣Xk

s (r) − Xk−1
s (r)

∣∣2]ds dλ(r) dλ
(
r ′)

≤ tL2
∫ t

0
E
[∥∥Xk

s (r) − Xk−1
s (r)

∥∥2
L

2
λ(�)

]
ds = tL2

∫ t

0
Mk−1

s ds.

The term Bt is treated exactly in the same manner and yields the inequality

‖B‖2
Mt

≤ tL2
∫ t

0
Mk−1

s ds.

All together we obtain, using the fact that for all k > 1, t ∈ [−τ,0] and r ∈ � we
have Xk+1

t (r) = Xk
t (r) = ζ 0

t (r)

Mk
t ≤ K ′

∫ t

0
Mk−1

s ds(8)
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with K ′ = 3T (K2
f + 2L2), readily implying

Mk
t ≤ (

K ′)k ∫ t

0

∫ s1

0
· · ·

∫ sk−1

0
M0

sk
ds1 · · ·dsk ≤ (K ′)ktk

k! M0
T(9)

and M0
t is finite since we assumed X ∈ MT and showed that �(X) ∈ MT . Rou-

tine methods starting from inequality (9) using the Benaymé–Chebychev inequal-
ity and the Borel–Cantelli lemma allow us to prove existence and uniqueness of
a fixed point for � (see, e.g., [26], pages 376–377), and that this fixed point is
adapted and almost surely continuous. Moreover, this process has a measurable
law with respect to (�,B(�)) as a limit of measurable laws, and since it satisfies
�(X̄) = X̄, it is a solution to equation (3). Let us eventually show that it belongs
to MT . Using inequality (7) and the fact that X̄ = �(X̄) we have

‖X̄‖Mt ≤ 4
(∥∥ζ 0

0

∥∥
L

2
λ(�) + T

(
C + K̃ + 4‖σ‖

L
2
λ(�)

)+ T (C + K̃)

∫ t

0
‖X‖Ms ds

)

ensuring by Gronwall’s lemma that the solution has a finite norm in MT .
Proving uniqueness of the solution using equation (8) is then folklore. �

Now that we proved strong existence and uniqueness of solutions for the mean-
field equations, we now turn to showing that network equations indeed converge
in law toward this solution and that the propagation of chaos occurs.

3. Limit in law and propagation of chaos. We are now in a position to prove
the main result of the manuscript, namely the convergence in law of the solu-
tions of the network equations (1)–(3) and the fact that the propagation of chaos
property occurs. To this end, we consider that the network equations have chaotic
initial conditions. In detail, let (ζ 0

t (r)) ∈ M2([−τ,0],L2
λ(�)) a spatially chaotic

stochastic process, that is, a stochastic process such that for any r 	= r ′, the pro-
cess (ζ 0

t (r)) is independent of (ζ 0
t (r ′)). We consider that the initial condition of

different neurons in the network are independent and the initial condition (ζ i
t ) ∈

M2([−τ,0],L2
λ(�)) for neuron i in population α, is equal to (ζ 0

t (rα)) ∈ M2(Cτ ).
The classical coupling argument cannot be directly applied here. Indeed, the

usual argument is based on the fact that we are able to define the solution of the
mean-field equation through the use of the same Brownian motion and with the
same initial condition as one of the neurons (or particles). This is no more the case
because individual neurons are governed by finite-dimensional Brownian motions
and the mean-field equation by a spatially chaotic Brownian motion. Notwith-
standing, an argument based on a slightly more subtle couplings holds. In detail, let
us consider neuron i ∈ N of the network, in population α at location rα ∈ �. Denote
by (W̃ i

t ) the Brownian motion governing the evolution of neuron i in the network
and ζ i ∈ M(Cτ ) the initial condition of the network. We aim at defining a spa-
tially chaotic Brownian motion Wi

t (r) on R
m×d such that the standard Brownian
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motion (Wi
t (rα)) is equal to (W̃ i

t ), and proceed as follows. Let (Wt(r))t∈[0,T ],r∈�

be a m × d-dimensional spatially chaotic Brownian motions independent of the
processes (W̃

j
t ). The processes{(

Wi
t (r)

)= (
Wt(r)

)
, r 	= rα ,(

Wi
t (rα)

)= (
W̃ i

t

)
are clearly spatially chaotic Brownian motions and will be used to construct a par-
ticular solution of the mean-field equations. In order to completely define a solu-
tion of the mean-field equations, we need to specify an initial condition, and aim
at coupling it to the initial condition of neuron i. To this end, we define a spatially
chaotic process (ζ̃ 0

t (r)) ∈ M2([−τ,0],L2
λ(�)) equal in law to (ζ 0

t (r)) and inde-
pendent of ζ i

t , and define a coupled process (ζ
i,0
t (r)) ∈M2([−τ,0],L2

λ(�)) as{
ζ

i,0
t (r) = ζ̃ 0

t (r), r 	= rα ,

ζ
i,0
t (rα) = ζ i

t .

Here again, it is clear that this process is spatially chaotic, that is, that for any
r 	= r ′, the processes ζ

i,0
t (r) and ζ

i,0
t (r ′) are independent, and that ζ

i,0
t (r) has the

law of ζ 0
t (r).

Now that these processes have been constructed, we are in a position to define
the process (X̄i

t ) as the unique solution of mean-field equation (3), driven by the
spatially chaotic Brownian motion (Wi

t (r)) and with the spatially chaotic initial
condition (ζ

i,0
t (r))⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dX̄i
t (r) = f

(
r, t, X̄i

t (r)
)
dt +

∫
�
EZ

[
b
(
r, r ′, X̄i

t (r),Zt−τ(r,r ′)
(
r ′))]dλ

(
r ′)dt

+ σ(r) dWi
t (r), t ≥ 0,

X̄i
t (r) = ζ

i,0
t (r), t ∈ [−τ,0],

(Zt )
L= (

X̄i
t

) ∈ M, independent of
(
X̄i

t

)
,
(
Wi

t (·)
)

and
(
Bi

t (·, ·)
)
.

The same procedure applied to all j ∈ N allows us to build a collection of in-
dependent stochastic processes (X̄

j
t (r))j=1,...,N ∈ M2([−τ, T ],L2

λ(�)) such that
all neurons j in population α have the same law as (X̄(rα)). Let us denote by
m(t, r) the probability distribution of X̄t (r) solution of the mean-field equation (3).
As previously, the process (Zt (r)) generically denotes a process belonging to
M2([−τ, T ],L2

λ(�)) and distributed as m.
Let us fix l ∈ N

∗ and (i1, . . . , il), a collection of neuron indexes, respectively,
belonging to populations located at (r1, . . . , rk) (possibly identical). We now prove
the almost sure convergence of a collection of processes (X

ik,N
t , k = 1, . . . , l)

toward (X̄
ik
t (rk), k = 1, . . . , l), implying its convergence of the law toward the

chaotic distribution m(t, r1) ⊗ · · · ⊗ m(t, rk) as N goes to infinity. We start by
proving this property for l = 1 before extending that result to l > 1.
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THEOREM 3. Let i ∈ N a fixed neuron in population α. Under assump-
tions (H1)–(H5) and the neural field assumption (2), for almost all realizations
of the population locations (rα,α ∈ N), the process (X

i,N
t , t ≤ T ) solution of the

network equations (1) converges in law toward the process (X̄t (rα), t ≤ T ) solu-
tion of the mean-field equations (3) with initial condition (ζ 0

t (r)), and moreover,
the speed of convergence is given by

E
(
E

[
sup

−τ≤s≤T

∣∣Xi,N
s − X̄i

s(rα)
∣∣2])= O

(
e(N) + 1

P(N)

)
.(10)

REMARK. We recall that E denotes the expectation on the distribution of the
space locations (rk)k=1,...,P (N) and e(N) = 1

P(N)

∑P(N)
γ=1

1
Nγ (N)

.

PROOF. The proof is based on evaluating the distance E[sup−τ≤s≤T |Xi,N
s −

X̄i
s |2], and breaking it into a few elementary, easily controllable terms. A substan-

tial difference with usual mean-field proofs is that we need to prove a convergence
in the infinite-dimensional space L

2
λ(�), and that the interaction term in networks

equations consists of a sum over a finite number of populations, whereas the effec-
tive interaction term arising in the mean-field equation is an integral over �.

Throughout the demonstration, we will generically denote by rβ ∈ � the
location of population β ∈ {1, . . . ,P (N)}. We use the following elementary
decomposition [each line of the righthand side corresponds to one term of the
decomposition, At(N) − Et(N)]:

Xi
t − X̄i

t (rα)

=
∫ t

0

(
f
(
rα, s,Xi

s

)− f
(
rα, s, X̄i

s(rα)
))

ds

+ 1

P(N)

P(N)∑
γ=1

∫ t

0

1

Nγ

Nγ∑
j=1

(
b
(
rα, rγ ,Xi

s,X
j
s−τ(rα,rγ )

)

− b
(
rα, rγ , X̄i

s(rα),X
j
s−τ(rα,rγ )

))
ds

+ 1

P(N)

P(N)∑
γ=1

∫ t

0

1

Nγ

Nγ∑
j=1

(
b
(
rα, rγ , X̄i

s(rα),X
j
s−τ(rα,rγ )

)

− b
(
rα, rγ , X̄i

s(rα), X̄
j
s−τ(rα,rγ )(rγ )

))
ds

+ 1

P(N)

P(N)∑
γ=1

∫ t

0

(
1

Nγ

Nγ∑
j=1

b
(
rα, rγ , X̄i

s(rα), X̄
j
s−τ(rα,rγ )(rγ )

)

−EZ

[
b
(
rα, rγ , X̄i

s(rα),Zs−τ(rα,rγ )(rγ )
)])

ds
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+ 1

P(N)

P(N)∑
γ=1

∫ t

0

(
EZ

[
b
(
rα, rγ , X̄i

s(rα),Zs−τ(rα,rγ )(rγ )
)]

−
∫
�
EZ

[
b
(
rα, r ′, X̄s(rα),Zs−τ(rα,r ′)

(
r ′))]dλ

(
r ′))ds

=: At(N) + Bt(N) + Ct(N) + Dt(N) + Et(N).

Due to the exchangeability of neurons belonging to the same population, the prob-
ability distribution of these terms does not depend on the particular neuron i con-
sidered, but only on the population it belongs to. The terms At(N), Bt(N) and
Ct(N) involve the Lipschitz continuity of the functions involved, the term Dt(N)

correspond to averaging effects (mean-field limit) at single populations levels and
the term Et(N) corresponds to the continuous limit. The terms At(N) through
Ct(N) are treated using the Lipschitz continuity of the functions involved. Using
Cauchy–Schwarz (CS) inequalities, we easily obtain

E

[
sup

0≤s≤t

∣∣As(N)
∣∣2]≤ K2

f T

∫ t

0
E

[
sup

−τ≤u≤s

∣∣Xi,N
u − X̄i

u(rα)
∣∣2]ds,

E

[
sup

0≤s≤t

∣∣Bs(N)
∣∣2]≤ T L2

∫ t

0
E

[
sup

−τ≤u≤s

∣∣Xi,N
u − X̄i

u(rα)
∣∣2]ds,

E

[
sup

0≤s≤t

∣∣Cs(N)
∣∣2]≤ T L2

∫ t

0
max

j=1,...,N
E

[
sup

−τ≤u≤s

∣∣Xj,N
u − X̄j

u(rp(j))
∣∣2]ds.

Let us, for instance, treat the case of Bt(N),

E

[
sup

0≤s≤t

∣∣Bs(N)
∣∣2]

= 1

P(N)2E

[
sup

0≤s≤t

∣∣∣∣∣
P(N)∑
γ=1

∫ s

0

1

Nγ

Nγ∑
j=1

(
b
(
rα, rγ ,Xi,N

u ,X
j,N
u−τ(rα,rγ )

)

− b
(
rα, rγ , X̄i

u,X
j,N
u−τ(rα,rγ )

))
du

∣∣∣∣∣
2]

(CS) ≤ T

P (N)

P(N)∑
γ=1

∫ t

0

1

Nγ

Nγ∑
j=1

E
[∣∣b(rα, rγ ,Xi,N

s ,X
j,N
s−τ(rα,rγ )

)

− b
(
rα, rγ , X̄i

s,X
j,N
s−τ(rα,rγ )

)∣∣2]ds

(H2) ≤ T L2
∫ t

0
E
[∣∣Xi,N

s − X̄i
s

∣∣2]ds

≤ T L2
∫ t

0
E

[
sup

−τ≤u≤s

∣∣Xi,N
u − X̄i

u

∣∣2]ds.
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The mean-field term Dt(N) involves the difference between an empirical mean of
a function of processes and an expectation term, and all have bounded second mo-
ment thanks to Theorem 2 and assumption (H3). We have, using a (CS) inequality,

E

[
sup

0≤s≤t

∣∣Ds(N)
∣∣2]

≤ T

P (N)

P(N)∑
γ=1

∫ t

0
E

[∣∣∣∣∣ 1

Nγ

Nγ∑
j=1

b
(
rα, rγ , X̄i

s, X̄
j
s−τ(rα,rγ )

)

−EZ

[
b
(
rα, rγ , X̄i

s,Z
γ
s−τ(rα,rγ )

)]∣∣∣∣∣
2]

ds

and hence involves an expectation of the following type:

E

[∣∣∣∣∣ 1

Nγ

Nγ∑
j=1

�
(
X̄i

s, X̄
j
s

)−EZ

[
�
(
X̄i

s,Z
γ
s

)]∣∣∣∣∣
2]

= 1

N2
γ

Nγ∑
k,l=1

E
[(

�
(
X̄i

s, X̄
j
s

)−EZ

[
�
(
X̄i

s,Z
γ
s

)])T

· (�(
X̄i

s, X̄
k
s

)−EZ

[
�
(
X̄i

s,Z
γ
s

)])]
,

where �(x,y) = b(rα, rγ , x, y). Routine methods allow us to show that all the
terms of the sum corresponding to indexes j and k such that the three condi-
tions j 	= i, k 	= i and j 	= k are satisfied are null. One simple way to show this
property consists of writing the expectations as integrals with respect to the mea-
sure m(t, rα) and observing that all terms annihilate. Therefore, there are no more
than 3Nγ nonnull terms in the sum (in the case α = γ there are just Nγ nonnull
terms), and moreover, all of these terms are uniformly bounded. The terms related
to indexes j = k 	= i satisfy the inequality

E
[∣∣�(

X̄i
s, X̄

j
s

)−EZ

[
�
(
X̄i

s,Z
γ
s

)]∣∣2]
≤ 2E

[∣∣�(
X̄i

s, X̄
j
s

)∣∣2 + ∣∣EZ

[
�
(
X̄i

s,Z
γ
s

)]∣∣2]
≤ 2

{
K̃
(
1 +E

[∣∣X̄i
s

∣∣2])+E

[∣∣∣EZ

[√
K̃
(
1 + ∣∣X̄i

s

∣∣2)]∣∣∣2]}
≤ 4K̃

(
1 + C′(s)

)
with C′(s) given by Theorem 2. The terms related to the cases j = i (or symmet-
rically k = i) are bounded by the same constant, since we have for all k such that
p(k) = α, using the Cauchy–Schwarz inequality. We note C = 4K̃(1 + C′(T )).
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We hence conclude that

E

[
sup

0≤s≤t

∣∣Ds(N)
∣∣2]≤ T 2C

1

P(N)

P(N)∑
γ=1

3Nγ − 1

N2
γ

≤ 3T 2C
1

P(N)

P(N)∑
γ=1

1

Nγ

= 3T 2Ce(N).

It hence only remains to control the term Et(N) corresponding to the difference
between an integral over the space � weighted by the density dλ(r) and a sum,
weighted by 1/P (N) of the same integrand at P(N) discrete values (rγ ) ∈ �N

independently drawn in � with the probability density dλ(r). This sum hence
resembles a Monte Carlo approximation of the integral term, and we now show
that our sums over populations converge for almost all choices of (rγ ) ∈ �N to-
ward the integral, using an argument similar to the one we just used to control
Dt(N). In detail, we show that E(E[sup0≤s≤t |Es(N)|2]) converges toward 0, us-
ing the same method as that used for the convergence of the mean-field term.
Let us denote for the sake of compactness of notations F(s, r, r ′) the expectation
EZ[b(r, r ′, X̄i

s(r),Zs−τ(r,r ′)(r ′)].
We have

E
(
E

[
sup

0≤s≤t

∣∣Es(N)
∣∣2])

≤ T

∫ t

0
E
(
E

[∣∣∣∣∣
∫
�

1

P(N)

P(N)∑
γ=1

F(s, rα, rγ ) − Er ′
[
F
(
s, rα, r ′)]∣∣∣∣∣

2

ds

])
.

Similar to what was done for the term Dt(N), since Er ′ [F(s, rα, r ′)] is precisely
the expectation of F(s, rα, rγ ) under the law of rγ over which the sum is taken,
developing the squared sum into a double sum over populations (say, γ and γ ′),
it is easy to show that, because of the independence of the rγ , that all terms that
do not correspond to γ = γ ′, γ = α or γ ′ = α vanish, leaving less than 3P(N)

possibly nonnull terms, and these terms are uniformly bounded. Indeed, for rγ =
rγ ′ (the case rγ = rα is treated in the same manner), we have

E
(
E
[∣∣F(s, rα, rγ ) − Er ′

[
F
(
s, rα, r ′

γ

)]∣∣2])
≤ 2E

(
E
[∣∣F(s, rα, rγ )

∣∣2 + ∣∣Er ′
[
F
(
s, rα, r ′

γ

)]∣∣2])
≤ 2E

(
E
[∣∣F(s, rα, rγ )

∣∣2 + Er ′
[∣∣F (s, rα, r ′

γ

)∣∣2]])
≤ 4K̃

(
1 + C(s)

)
implying eventually that

E
(
E

[
sup

0≤s≤t

∣∣Es(N)
∣∣2])≤ 4T 2K̃

P (N)

(
1 + C(T )

)
.
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All together, we hence have

E

[
sup

0≤s≤t

∣∣Xi,N
s − X̄i

s(rγ )
∣∣2]

≤ K ′
∫ t

0
max

j=1,...,N
E

[
sup

−τ≤u≤s

∣∣Xj,N
u − X̄j

u(rp(j))
∣∣2]ds

+ C1e(N) +E

[
sup

0≤s≤t

∣∣Es(N)
∣∣2]

valid for all i ∈ N, and hence we have

E
[

max
i=1,...,N

E

[
sup

0≤s≤t

∣∣Xi,N
s − X̄i

s(rγ )
∣∣2]]

≤ K ′
∫ t

0
E
[

max
j=1,...,N

E

[
sup

−τ≤u≤s

∣∣Xj,N
u − X̄j

u(rp(j))
∣∣2]]ds + C1e(N) + C2

P(N)
,

where K ′ = 4T (K2
f + 2L2), C1 = 12T 2C and C2 = 16T 2K̃(1 + C(T )) neither

depend upon N nor in the particular neuron considered. By Gronwall’s inequality,
we hence obtain

E
[

max
j=1,...,N

E

[
sup

−τ≤s≤t

∣∣Xj,N
s − X̄j

s (rγ )
∣∣2]]≤

(
C1e(N) + C2

P(N)

)
eK ′T

K ′ ,

which completes the proof. �

COROLLARY 4. Let l ∈ N
∗ and fix l neurons (i1, . . . , il) ∈ N

∗. Under the as-
sumptions of Theorem 3, the law of (X

i1,N
t , . . . ,X

il,N
t ,−τ ≤ t ≤ T ) converges

toward mt(rp(i1)) ⊗ · · · ⊗ mt(rp(il)) for almost all realization of the population
locations (rα,α ∈ N).

PROOF. We have

E
(
E

[
sup

−τ≤t≤T

∣∣(Xi1,N
t , . . . ,X

il,N
t

)− (
X̄

i1
t , . . . , X̄

il
t

)∣∣2])

≤
l∑

k=1

E
(
E

[
sup

−τ≤t≤T

∣∣Xik,N
t − X̄

ik
t

∣∣2])≤ l

(
C1e(N) + C2

P(N)

)
eK ′T

K ′ ,

which tends to zero as N goes to infinity; hence the law of (X
i1,N
t , . . . ,X

il,N
t ,−τ ≤

t ≤ T ) converges toward that of (X̄
i1
t , . . . , X̄

il
t ,−τ ≤ t ≤ T ) whose law is equal by

definition to m(t, rp(i1))⊗· · ·⊗m(t, rp(il)). Since the expectation E of the distance
between the processes considered tend to zero, these processes converge P′-almost
surely, that is, for almost all realizations of the space locations, which ends the
proof. �

IMPORTANT REMARK. The speed of convergence toward the mean-field
equation is hence governed by e(N) and 1/P (N). In the case of a finite number
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of populations, the speed of convergence is hence driven by the size of the small-
est population. In the infinite population case, the speed of convergence toward
the mean-field limit is a balance between the averaged number of neurons in each
population through the term e(N), and the total number of populations through the
term 1/P (N). The first term quantifies the speed at which averaging effects occur
in the network and is related to the averaged inverse number of neurons in each
population. The other term controls the convergence of the interaction related to
all populations toward an effective interaction term given by an integral over � of
mean-field interactions, that is, convergence of finite-populations networks toward
their continuous limit. For networks with homogeneous population sizes, e(N)

will be approximately equal to P(N)/N . The optimal network size ensuring the
fastest convergence in that case hence corresponds to P(N) ∼ √

N [minimizing
the functional x �→ P(x)/x + 1/P (x)], and in that case the convergence will be in
1/

√
N , and we conjecture that this speed of convergence is optimal (though we did

not achieve to prove it). This convergence speed is hence very slow compared to
finite-size networks and usual mean-field limits in which the speed of convergence
is of order 1/N .

4. Neural fields equations in action. It is folklore that McKean–Vlasov lim-
its have dynamics that are complex to analyze. Very refined methods are generally
set up to analyze the behavior of the system in the mean-field limit, such as en-
tropy methods or spectral methods; see, for example, [33]. This statement could
be even more true in our spatialized context, and the present, general approach
might appear to be bounded to remain formal.

Fortunately, for relevant neuroscience applications, it happens that solutions to
these equations are not out of reach. This is the topic of a companion article [32]
where networks of firing-rate neurons (see Appendix A.2), are considered, the
neuronal model usually considered for neural fields analysis. Let us briefly review
here the main results of that article and concretely use the proposed approach to
analyze the dynamics of a simple network.

Considering firing-rate neurons, we show in [32] that the solutions of the mean-
field equations are Gaussian processes when the initial condition is as well (and
equilibria are Gaussian) and that their mean M(r, t) and standard deviation v(r, t)

(fully describing the process since the covariance is a simple function of these
two quantities in that case) reduces to the set of deterministic delayed integro-
differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tM(r, t) = − 1

θ(r)
M(r, t) + I (r, t)

+
∫
�

J
(
r, r ′)

× F
(
r ′,M

(
r ′, t − τ

(
r, r ′)), v(r ′, t − τ

(
r, r ′)))λ(r ′)dr ′,

∂tv(r, t) = − 2

θ(r)
v(r, t) + σ(r)2,

(11)
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where F(r, x, y) denote the expectation of S(r,U) for U a Gaussian random vari-
able of mean x and variance y, and can be made explicit for particular choices
of sigmoids S. These equations are consistent with the heuristically derived ex-
tremely widely used Wilson–Cowan models for finite-populations neural assem-
blies [34, 35] in the limit where noise levels vanish. These equations are shown to
be well-posed, and grant access to the dynamics of the network. In [32], the choice
of the parameters, driven by biological constraints, did not reveal any qualitative
effect of the delays on the solutions except during transient phases.

In order to illustrate how the use of the present approach can be used to uncover
the dynamics of the neural field, we proceed to the analysis of a single population
network with inhibitory interactions (i.e., negative interactions), a case that was not
treated in [32] and which will turn out show a particularly rich variety of behaviors
as a function of delays.

To this end, let us fix the parameters of the system. We consider � = S
1

the 1-dimensional torus, and λ the uniform distribution on it. We consider that
S(r, x) = ∫ gx

0 e−x2/2/
√

2π =: erf(gx), θ(r) = 1 and σ independent of r , and one

can easily show by changing variables that F(x, y) = erf(gx/
√

1 + g2y). We fur-

ther fix J (r, r ′) = J̄ e−|r−r ′|/δ (δ represents the typical connectivity length in the
neural field) and τ(r, r ′) = |r − r ′|/c + τs (c represents the speed of transmission
in the neural field and τs the typical transmission time of the synapse).

Since F(0, y) = 0 for any y ∈ R, the Gaussian solutions with zero mean and
standard deviation σ 2/2 are stationary solutions of the system that are spatially
homogeneous in law (i.e., their law does not depend on the space variable). Char-
acterizing the stability of this solution consists of analyzing the characteristic roots
equation of the linearized system around the spatially homogeneous stationary so-
lution. Computing the eigenvalues of the integral convolution operator similarly
to [32], Section 3.1, we obtain the dispersion relationship

ξ + 1 = F ′
0
e−ξτs (1 − e−(1/δ+ξ/c))

1/δ + ν/c + i2πk

for k ∈ Z and F ′
0 = g√

1+g2v0

1√
2π

. The spatially homogeneous equilibrium is sta-

ble if and only if all solutions ξ to the dispersion relationship (characteristic roots)
have negative real parts. A Turing bifurcation point is defined by the fact that there
exists an integer k such that �(ξ) = 0. It is said to be static if at this point �(ξ) = 0,
and dynamic if �(ξ) = ωk 	= 0. In that latter case, the instability is called a Turing–
Hopf bifurcation, and generates a global pattern with wavenumber k moving co-
herently at speed ωk/k as a periodic wavetrain.

Possible Turing–Hopf bifurcations hence arise when there exists ωk > 0 such
that

iωk + 1 = F ′
0e

−iωkτsZk(ω)
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FIG. 2. Turing–Hopf bifurcations and delay-induced synchronization, J = −3, g = 3, δ = c = 1.
(a): bifurcation diagram, shows a transition from stationary to periodic activity as delays are in-
creased (b) → (c). (b) σ = 0.1, τs = 0.4, (c) σ = 0.1, τs = 0.5, (d) σ = 0.3, τs = 0.5. When noise
is increased, synchronization is lost (c) → (d). (b)–(d): spatio-temporal dynamics as a function of
space (abscissa) and time (ordinate).

with Zk(ω) = (1−e−(1/δ+ξ/c))
1/δ+ν/c+i2πk

, which yields bifurcation curves (parametrized by ω)
in the parameter space⎧⎪⎪⎪⎨

⎪⎪⎪⎩
σ 2 = 2

g2

(
−1 + J̄ 2g2|Zk(ω)|2

2π(1 + ω2)

)
,

τs = − arctan(ω) + Arg(F ′
0Zk(ω)) + 2mπ

ω
.

This provides a curve of Turing–Hopf bifurcations corresponding to transitions
from stationary independent solutions to perfectly synchronized independent so-
lutions, as displayed in Figures 2 and 3. In Figure 2, we display the bifurcation
curve in the parameter space (σ, τs) for a specific set of parameters. This curve has
a convex shape. Small enough delays hence correspond to stationary solutions.
Increasing delays yields periodic activity, which disappears as noise is increased.
This example shows the importance of delays in the qualitative dynamics of the
neural field. The typical connectivity length also shapes the qualitative dynamics
of the neural field, as shown in Figure 3. This variety of behaviors correspond to
bifurcations corresponding to a wavenumber k = 0, and correspond to spatially ho-
mogeneous solutions. Nontrivial spatial structures can be searched for considering
nonspatially homogeneous initial conditions. In this case, a number of complex
spatio-temporal behaviors can appear, such as the metastable polychronization
shown in Figure 3, where the neural field splits into two clusters oscillating in
antiphase during very long transient periods before a sudden synchronization of
the whole neural field.

5. Discussion. In this paper, we addressed the problem of the asymptotic be-
havior of networks composed of a large number of neuronal assemblies in a par-
ticular asymptotic regime, the neural-field limit. We took into account a num-
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FIG. 3. (a) δ = 1, (b) δ = 5, (c) and (d) antiphase, (e) synchronization. Spatial effects: increasing
δ destroys the synchronization. For δ = 1 [case (c) of Figure 2], choosing nonspatially homogeneous
initial conditions yields to complex situations, for instance, an antiphase synchronization during long
transients (bottom row). (c): t ∈ [0,200], (d): orange: M(t,0.1), blue: M(t,0.9), black: M(t,0.5),
(e): t ∈ [600,650]. The synchronization becomes visually perfect for times above 1500.

ber of specificities relevant to neuronal dynamics: intrinsic noise at the level of
each neuron, the spatial structure and propagation delays. We demonstrated that
for a relatively general class of models, that includes the most prominent mod-
els in neuroscience (reviewed in Appendix A), the propagation of chaos property
took place and showed convergence of the mean-field equations toward mean-field
equations of a new type, analogous to the classical McKean–Vlasov equations,
but including delayed interactions, a spatial integration term and a singular spatio-
temporal stochastic process, the spatially chaotic Brownian motion.

The question of the scale at which relevant phenomena occur is essential to
the modeler. Descriptions coarser than our neural field limit, for instance, those
involving finite numbers of populations, correspond to cases where our measure
λ is a sum of Dirac masses. This case can be seen as a particular case of the
present analysis, and hence the propagation of chaos occurs and network equa-
tions converge toward mean-field equations that correspond to a finite system of
delayed McKean–Vlasov equations. In contrast, scales finer than the neural field
limit (taking, e.g., into account possible individual heterogeneities between neu-
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rons) are not covered by the analysis and seem relatively hard to understand. It is
likely that the dynamics of such networks will be considerably distinct from that
of networks in the neural field regime. The neural-field regime seems particularly
well suited to describe the activity of large neuronal assemblies, since it was ob-
served that population sizes are orders of magnitude larger than the total number
of populations [15]. Moreover, it seems to be at the scale of biological recordings
and phenomena such as the emergence of patterns of activity in the cortex. We
illustrated how such an analysis could be rigorously developed with a simple ex-
ample in Section 4. More relevant states may be analyzed with this model, since the
usual heuristic equations that were successfully used in a number of situations [11]
are compatible, in the zero noise limit, with our equations, and the rigorously de-
rived model will shed new light on the role of noise in such neuronal systems,
but also on the individual behaviors of neurons. For instance, the propagation of
chaos property ensures that finite sets of neurons are independent in the neural field
limit. This result contradicts the classical view considering that since neurons of
the same population are highly connected and receive similar input, their activity
shall be correlated. However, with recent experimental findings using high-quality
recordings [10, 25] showed that levels of correlations between two neurons (of
the same population or not) were extremely small, way below what was usually
considered. The propagation of chaos hence offers a universal explanation to this
phenomenon.

A number of open questions remain widely open in the theoretical understand-
ing of the behavior of neural fields and large-scale neural networks. For instance,
a particularly interesting phenomenon is the plasticity of neuronal connections.
Considered constant and homogeneous in the present manuscript, it happens that
the synaptic coefficients describing pairwise interactions between neurons evolve,
very slowly, as a function of the network activity and in particular as a function of
the correlations between the activity of pairs of neurons. This kind of phenomena
was never considered in the mathematical literature, and seems relatively rich. In
particular, this mechanism can break the propagation of chaos property and yield
weakly correlated states. This is a problem we are currently investigating.

APPENDIX A: NEURON MODELS

For the sake of completeness we quickly review in this appendix different clas-
sical neuron models motivating the present study. This appendix takes a mathe-
matical viewpoint, is obviously very selective and lacunar. The interested reader
will find more details in classical neuroscience textbooks, for example, [13, 20].
Basically, neurons are electrically excitable cells whose activity, measured through
the voltage of the cell (difference of electrical potential between the intracellular
and extracellular domains), is governed by ionic transfers through specific proteins
(ion voltage-gated ion channels) located on the cellular membrane. We present
here detailed neuron models (Appendix A.1) that approximate the biophysics of
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ion channels, and firing-rate models (Appendix A.2) that reproduce qualitatively
the dynamics of the firing rate of neurons and that are used in the application Sec-
tion 4.

A.1. Hodgkin–Huxley and Fitzhugh–Nagumo models. Probably the most
biologically relevant, versatile and precise neuron model is the Hodgkin–Huxley
(HH) model [17]. This model describes the membrane potential v of a neurons as a
function of the dynamics of several ionic currents that enter or exit the cells through
voltage-gated channels. The mathematical description we choose here involves
Langevin approximation of the random proportion open of ion channel; see, for
example, [16] and references therein. The proportion of open channels satisfies in
that model a stochastic differential equation,

dxt = (
Ax(v)(1 − x) − Bx(v)x

)
dt +√

Ax(v)(1 − x) + Bx(v)xχ(x) dWx
t ,

where Wx
t are independent standard Brownian motions, Ax(v) and Bx(v) are

smooth bounded functions accounting, respectively, for the opening and closing
probability intensity of a given channel and χ(x) is a function vanishing outside
[0,1] to ensure that the variables x remain in [0,1] (since these variables describe
proportions). Generally, three ionic currents (and channels) are considered: potas-
sium (m), calcium activation (n) and inactivation (h) and Ohmic leak current, IL

(carried by Cl− ions). Considering that the neuron receives an external current
composed of a deterministic part I (t) and a white noise with standard deviation
σext, the voltage is governed by the equation⎧⎪⎨

⎪⎩
C dvt = (

I (t) − ḡKn4(v − EK) − ḡNam
3h(v − ENa) − ḡL(v − EL)

)
dt

+ σext dWt,

dxt = (
Ax(v)(1 − x) − Bx(v)h

)
dt + σx(v, n) dWx

t x ∈ {n,m,h}.
(12)

This model satisfies assumptions (H1) and (H4) used in the general theory,
since though polynomial nonlinearities arise in the dynamics, the boundedness
of the variables (n,m,h) ensure Lipschitz continuity and linear growth. Assump-
tion (H5) is not satisfied since the noise depends on the state of the neuron. This
refinement does not make the proofs substantially more intricate as discussed in
Appendix B.

The HH model is often too complex for practical purposes, and several reduc-
tions were proposed. A particularly interesting one is the Fitzhugh–Nagumo (FN)
bidimensional model [14] capturing from the biological viewpoint the most promi-
nent behaviors of the Hodgkin–Huxley model. From the mathematical viewpoint,
it is important to specify this model since that model does not satisfy assump-
tions (H1) and (H4), and motivates the additional mathematical developments of
Appendix B. This model describes the evolution of the membrane potential vari-
able v and a slower recovery variable w, through the equations{

dvt = (
P(vt ) − wt + I

)
dt + σv dWv

t ,

dwt = a(bvt − wt) dt + σw dWw
t ,

(13)
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where P(v) = v(1 − v)(v − a), generally chosen f (v) = v − v3.
The state of the neuron X in our abstract model (1) in the HH model is given

by (v, n,m,h) and for the FN model by (v,w), and their intrinsic dynamics is
enclosed in the functions f and g.

The communication between neurons is maintained by two possible types of
synapses: electrical or chemical. Electrical synapses, in charge of rapid and stereo-
type signal transmission, operate through direct contact of the intracellular do-
main of the two communicating cells through specialized protein structures called
gap-junctions. The ions passively flow from one neuron to the other: the interac-
tion is not delayed, and the current produced by neuron j on neuron i is equal to
Jij (v

j
t − vi

t ) where Jij is called the synaptic conductance [this defines our inter-
action function b in the abstract model (1)]. When including the dependence on
vi
t in the drift function, the interaction function

∑
j Jij v

j
t clearly satisfies assump-

tions (H2) and (H3), and (H5) as soon as the dependence of Jij with respect to
space is sufficiently regular. The chemical synapse is the most common type of
interconnection. When a spike is fired from a pre-synaptic neuron j , it is trans-
ported through the axons to the synaptic button where it is transmitted to neuron
i through a complex process of release of neurotransmitter (from j ) binding to
specific receptors on neuron i. The transmission takes a time τij in the order of
a few milliseconds. Similar to HH ion channels dynamics, the proportion of open
neurotransmitter channels yi has the dynamics (see [8]),

dy
j
t = (

AS
(
vj )(1 − yj (t)

)− Dyj (t)
)
dt + σY

(
vj , yj )dW

j,y
t

with S is a smooth sigmoidal function. In our abstract model, the variable yi is
added to the state Xi of neuron i, and the functions f and g take into account
that dynamics. The synaptic current induced at time t on neuron i by the arrival of
a spike from neuron j (fired at time t − τij ) is equal to Jij y

j (t − τij )(v
i(t) − vrev)

governing our interaction function b clearly satisfying assumptions (H2) and (H3),
and (H5) as soon as the dependence of Jij with respect to space is sufficiently
regular.

The synaptic efficacies Jij of electrical or chemical synapses are given by the
connectivity of the cells. Such functions are generally considered continuous func-
tions J (ri, rj ) depending on the population of i and j .

Putting all these elements together and assuming that all the parameters of the
equations only depend on the neural populations of the cells involved, we can
write the equation of a network of FN neurons with chemical synapses, external
and synaptic noise,⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dvi
t =

(
P
(
vi
t

)+ I i(t) +
N∑

j=1,j 	=i

(
Jij y

j (t − τij )
(
vi
t − vrev

)))
dt,

dwi
t = aα

(
bαvi

t − wi
t

)
dt,

dyi
t = (

AαSα

(
vi
t

)(
1 − yi

t

)− Dαyi
t

)
dt + σY (v, y) dB

i,Y
t .

(14)
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A similar (but more complex) expression is obtained for the HH model using equa-
tions (12) and with distributed delays.

A.2. Stochastic firing-rates models. A phenomenological neuron model
consists of considering that neurons interact through their mean firing-rate. The
firing-rate model considers that the membrane potential has a linear dynamics, and
its mean-firing rate is a smooth sigmoidal transform of the membrane potential
S(rα, ·) depending on the neural population α. In other words, an incoming fir-
ing rate provokes postsynaptic potentials that linearly sum. The neurons receive
additional inputs that are the sum of a deterministic current I (rα, t) and noise
σ(rα) dWi

t . The network equations hence read

dV i(t) =
(
− 1

θ(rα)
V i(t) + I (rα, t)

+
P∑

γ=1

Jαγ

1

Nγ

∑
j,p(j)=γ

S
(
rγ ,V j (t − ταγ )

))
dt + σ(rα) dWi

t .

It is easy to check that assumptions (H1)–(H5) are satisfied for the firing-rate
model.

APPENDIX B: GENERALIZED MODELS

In the main section we choose to concentrate on the cornerstone mathematical
problems arising in the modeling of neural fields, and choose to deal with relatively
general models, yet simplified. Indeed, as discussed in Appendix A, we see that
two technicalities were not taken into account in our general analysis. These were
(i) nonglobally Lipschitz drift that do not satisfy the linear growth condition (for
Fitzhugh–Nagumo models) and (ii) state-dependent diffusion coefficients. Rela-
tively classical methods allow us to extend our proofs to these two refinements.
In this section we will explain how one can extend to present analysis to models
including this kind of dynamics. We consider the network equations

dX
i,N
t =

(
f
(
rα, t,X

i,N
t

)

+ 1

P(N)

P(N)∑
γ=1

∑
p(j)=γ

1

Nγ

b
(
rα, rγ ,X

i,N
t ,X

j,N
t−τ(rα,rγ )

))
dt(15)

+ g
(
rα, t,X

i,N
t

)
dWi

t .

Hence make the following generalized assumptions:

(H1′) f (r, t, ·) and g(r, ·) are locally Lipschitz-continuous;
(H4′) xT f (r, t, x) + 1

2 |g(r, t, x)|2 ≤ K(1 + |x|2) uniformly in (r, t).
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The main difficulty is the nonglobal Lipchitz continuity of the drift and diffu-
sion functions. However, under assumption (H4′), we can show that any possible
solution is in M2([−τ, T ],L2

λ(�)), thanks to the following lemma:

LEMMA 5. Let (ζ 0
t (r)) ∈ M2([−τ,0],L2

λ(�)) be an initial condition for the
mean-field equation (3). Any possible solution (X̄t )t∈[−τ,T ] of the equation (3) with
initial condition ζ 0 and measurable law with respect to B(�) is square integrable,
in the sense

sup
t∈[−τ,T ]

E
[
Er

∣∣Xt(r)
∣∣2]≤ C(T ),(16)

where C(T ) is a quantity depending on the horizon T and the parameters of the
system.

PROOF. The proof is based on the application of Itô’s formula for the squared
modulus of Xt , standard inequalities and Gronwall’s lemma. In details, let X be
a solution of the mean-field equations, and

τn = inf
{
t > 0; ‖Xt‖L2

λ(�) > n
}
.

Due to the nonstandard nature of the equation, let us underline the fact that Itô’s
formula is valid, that is, that for any r ∈ �, t �→ Xt(r) is a semimartingale. By
definition, it is clear that for any r ∈ � both Xt+s(r) and Zt+s(r) are Ft measurable
for all s ∈ [−τ,0] since these are driven by a standard Brownian motion Wt(r),
implying that Xt(r) is the sum of a continuous adapted process of finite variation∫ t

0

(
f
(
r, s,Xs(r)

)+ Er ′ [EZ̄

[
b
(
r, r ′, X̄s(r), Z̄s−τ(r,r ′)

(
r ′))])ds,

a continuous (Ft ,P)-local martingale which is a stochastic integral of a pro-
gressively measurable processes with respect to a Brownian motion,

∫ t
0 g(r, s,

X̄α
s ) dWs(r).
We can therefore apply Itô’s formula (see, e.g., [7], Chapter 4.5, in the context

of delayed equations) to E[|X̄t∧τn |2], and obtain

Er

[
E
[∣∣X̄s∧τn(r)

∣∣2]]
= E

[
Er

(∣∣ζ 0
0 (r)

∣∣2
+ 2 sup

s∈[0,t]

∫ s∧τn

0
du

{
X̄T

u (r)f
(
r, u, X̄u(r)

)+ 1

2

∣∣g(r, u, X̄u(r)
)∣∣2

+ Er ′
(
X̄T

u (r)EZ

[
b
(
r, r ′, X̄u(r),

Zu−τ(r,r ′)
(
r ′))])})]

≤ E
[
Er

[∣∣ζ 0
0 (r)

∣∣2]]+ 2(K +
√

K̃)

∫ t∧τn

0
duE

[
Er

(
1 + ∣∣X̄u(r)

∣∣2)],
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yielding, using Gronwall’s lemma,

sup
t∈[0,T ]

E
[
E
[∣∣X̄t∧τn

∣∣2]]≤ E
[
Er

[∣∣ζ 0
0 (r)

∣∣2]]eK ′T =: C′(T )

with K ′ = 2(K +
√

K̃κ). This estimate is valid for any n, thus for n sufficiently
large, the probability of |Xt | to exceed n prior to time T vanishes. Letting n go to
infinity, we obtain

sup
t∈[−τ,T ]

E
[‖X̄t‖2

L
2
λ(�)

]≤ max
(

sup
s∈[−τ,0]

E
[∥∥ζ 0

s

∥∥2
L

2
λ(�)

]
,C′(T )

)
=: C(T ). �

The same result can be shown when considering the network equations. These
results being proved, it is then possible to prove analogous versions of Theo-
rems 2 and 3. The state dependent diffusion function is easily controlled using
the Burkholder–Davis–Gundy theorem, and the proofs of Theorems 2 and 3 are
hence valid when considering the truncated drift and diffusion functions

fU(r, t, x) =
{

f (r, t, x), |x| ≤ U ,
f (r, t,Ux/|x|), |x| > U

and

gU(r, t, x) =
{

g(r, t, x), |x| ≤ U ,
g
(
r, t,Ux/|x|), |x| > U ,

which are both globally Lipschitz-continuous, and from these results and Lemma 5,
it is folklore to extend these results to the original problem.

Let us, for instance, focus on the existence and uniqueness of solutions for
f and g functions that are not globally Lipschitz. Denoting X̄U the unique so-
lution to the truncated problem, and defining the stopping time τU = inf{t ∈
[0, T ],‖X̄U (t)‖

L
2
λ(�) ≥ U}, it is easy to show that

X̄U (t) = X̄U ′(t) if 0 ≤ t ≤ τU ,U ′ ≥ U,

implying that the sequence of stopping times τU is increasing. Using Proposition 5
which implies that the solution to (3) is almost surely bounded, ensures existence
and uniqueness of solutions of the mean-field equations (3) by letting U go to
infinity. a similar argument applies for the propagation of chaos property.
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