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STOCHASTICALLY-INDUCED BISTABILITY IN CHEMICAL
REACTION SYSTEMS1

BY JOHN K. MCSWEENEY AND LEA POPOVIC

Rose-Hulman Institute of Technology and Concordia University

We study a stochastic two-species chemical reaction system with two
mechanisms. One mechanism consists of chemical interactions which govern
the overall drift of species amounts in the system; the other mechanism con-
sists of resampling, branching or splitting which makes unbiased perturbative
changes to species amounts. Our results show that in a system with a large
but bounded capacity, certain combinations of these two types of interactions
can lead to stochastically-induced bistability. Depending on the relative mag-
nitudes of the rates of these two sets of interactions, bistability can occur in
two distinct ways with different dynamical signatures.

1. Introduction. Recent advances in measurement technology have enabled
scientists to observe molecular dynamics in single cells and to study the cell-to-
cell variability (Brehm-Stecher and Johnson [5]). Many studies have shown that
variability observed in genetically identical cells is due to noise that is inherent
to biochemical reactions happening within each cell (McAdams and Arkin [22],
Elowitz et al. [10]). Understanding how intracellular mechanisms are affected by
this intrinsic noise is an important challenge for systems biology. Determining
what role this noise plays in creating phenotypic heterogeneity has many practical
consequences (Avery [2]).

An important feature in cellular dynamics is bistability, the alternation between
two different stable states for a molecular species. This feature is present in many
gene-expression systems, where a gene alternates between two types of states
(“on” and “off”) regulating the production of a protein. It is also present in many
phosphorylation switches in signaling pathways. Causes for bistable behavior can
be deterministic, but many bistable switching patterns are enabled by stochastic
fluctuations. It is often assumed that it follows from the existence of two stable
equilibria in the deterministic drift and the ability of infrequent large fluctuations
to pull the system from a basin of attraction of one equilibirum to the other. There
are also cases of chemical dynamics in which bistability is not possible in the de-
terministic model, but is possible in the stochastic model of the same chemical
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reaction system (Samoilov et al. [25], Bishop and Qian [4]). Metastable behavior
is also sometimes observed (Robert et al. [24]).

In addition to noise inherent to biochemical reactions, cells also experience fluc-
tuations in molecular composition due to cell division. This source of noise is sig-
nificant, and also difficult to separate from the noise due to biochemical reactions
(Huh and Paulsson [14, 15]). In this paper we investigate under what conditions a
system of chemical reactions in a cell can use these two sources of noise to exhibit
bistable or metastable behavior in their molecular composition.

We would like to emphasize a couple of points observed in the literature. First,
the rate of switching between two states is important for cellular development and
survival (Acar et al. [1]). Time-scales on which transitions between stable states
happen varies whole orders of magnitude over different systems. For example, in
the lysogenic state of E. coli the time-scale of switching between states is slow
(Zong et al. [29])—once per 108 cell generations—as determined from the ac-
tivity of a controlling protein. In the case of gene expression in S. cerevisiae the
switching time-scale is fast (Kaufmann et al. [17])—once per 8.33 generations—
and switching times between mother and daughter cells are correlated in a way
that takes several generations to dissipate. Second, both the strength and the distri-
bution of noise affects whether bistability will occur and what the final outcomes
will be. Samoilov et al. [25] and Bishop and Qian [4] show that auxiliary chemical
reactions can induce a dynamic switching behavior in the enzymatic PdP cycle,
and that final dynamics is determined by the noise of the additional reactions. In
the bistable switch of lactose operon of E. coli Robert et al. [24] show that both
cellular growth rate and the molecular concentration levels influence the ability to
switch. Huh and Paulsson [15] showed that the type of the cellular division mech-
anism also plays an important role in the form of the final dynamics. We interpret
these observations vis-a-vis our results in the Discussion section.

Finally, we note that bistablility in a stochastic population system is not lim-
ited to chemical dynamics. In a genetic population, mutation and selection may
lead to alternating fixation in one of two genotypes. In an ecological population,
interactions between species can lead to dynamics where two competing species
are switching for dominance. We note that our analysis and results apply to any
population model described by a density dependent Markov jump process.

1.1. Outline of results. We examine qualitatively different ways in which
switching between stable states is a result of a stochastic effect in a population
modeled by density dependent Markov jump processes. In addition to noise inher-
ent to the reaction system, we include an intrinsically noisy splitting/resampling
mechanism in the system. In many stochastic branching models an entity will
(upon reproduction, division, duplication, etc.) produce offspring identical to it-
self. Here we model the division as unbiased but variable. When a cell divides its
molecules are randomly allocated to its daughter cells, only on average replicating
the parent’s molecular composition. We will show that introducing such a splitting
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process at a sufficiently high rate can produce switching dynamics in which previ-
ously unattainable states become attainable. We will exploit the fact that these two
sets of mechanisms (reactions in the system and changes due to unbiased resam-
pling/splitting of the system) may operate on different time-scales.

We consider the following question: which qualitatively different types of be-
havior can we observe and under which time scaling regimes? The short answer is
as follows: (1) If the resampling mechanism is “slower” than the reaction dynam-
ics, then the system behavior will entirely depend on the nonlinear dynamics of
the reactions: in case the underlying deterministic system has multiple stable equi-
libria, the stochastic process will behave as a Markov chain switching between
these states. (2) If the resampling mechanism is much “faster” than the reaction
dynamics, then the system behavior will not depend on the details of the reaction
dynamics, and will behave as a Markov chain switching between two extremes
(zero and capacity) of the system. We define a single parameter based on the rates
of the two mechanisms that makes the meaning of “faster” and “slower” in the
statements above mathematically precise.

We show that a fast but unbiased resampling mechanism may be necessary to
produce bistable behavior that the reaction dynamics cannot exhibit. We further
show that the two cases, (1) and (2), produce qualitatively different dynamical
signatures, in terms of switching times and stable points. Since our analysis only
depends on general features (unbiasedness and time-scale of the rate) of the resam-
pling mechanism, one can also use a set of auxiliary reactions instead of resam-
pling. There are other types of noisy mechanisms that one could consider; however,
our goal is to stress that adding noise with even small changes (relative to the size
of the system) can produce bistable behavior. The additional noise achieves this
either by: (1) introducing small perturbations to a dynamical system that already
has the required properties for bistability or (2) occurring so frequently that the de-
tails of the dynamical system are irrelevant and the system is pushed to its extreme
(zero or capacity) amounts.

2. Description of the process.

2.1. Stochastic model for reaction dynamics. In the customary notation for
interaction of chemical species labeled A,B, . . . ,{

aiA + biB + · · · −→ a′
iA + b′

iB + · · ·}i=1,...,k(1)

denotes a system of reactions indexed by i = 1, . . . , k in which ai, bi, . . . ∈
Z

+ molecules of types A,B, . . . respectively react and produce a′
i , b

′
i , . . . ∈ Z

+
molecules of these types. Each reaction i has a reaction rate λi , a time and
state-dependent rate of occurrences of this reaction. If XA(t),XB(t), . . . de-
note the number of molecules of type A,B, . . . respectively at time t ≥ 0, then
X(t) = (XA(t),XB(t), . . .) evolves as a Markov Jump Process with jump sizes
{(a′

i − ai, b
′
i − bi, . . .)} occurring at rates λi(XA(t),XB(t), . . .).
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The reaction formalism (1) can also be used to describe other systems of inter-
acting entities under a well-mixed spatial assumption. For example, evolution of
an SIS epidemic is expressed as I + S → 2I (infection), I → S (recovery); a two-
allele Moran model with mutation from population genetics can be expressed as
A → B,B → A (mutation), A + B → 2A,A + B → 2B (resampling).

For simplicity, we consider the effect of a system of chemical reactions on es-
sentially a single molecular species A. We include the effect of only one other
species B which satisfies a conservation relation with A. This means that every
reaction involving A and B is of the form aA + bB → (a + ζ )A + (b − ζ )B for
some ζ ∈ {−a, . . . , b}, and it ensures that the state space of our system is one-
dimensional determined by (XA(t), t ≥ 0). The rationale for such a conservation
law could come from a cellular environment which is limited (by a factor such as
space, or availability of nutrients or catalysts), or a molecular species whose type
can take two different forms (e.g., a gene that has two allelic types).

We also assume the following properties for the reaction dynamics:

(1) The amount of species XA(t) is bounded above by the system capacity N

and below by 0. The rate of any reaction that decreases the amount of A is zero
when XA = 0, and the rate of any reaction that increases the amount of A is zero
when XA = N .

(2) The drift at 0 and N of the overall reaction dynamics is directed toward the
interior

d

ds
E

[
XA(s)|XA(t) = 0

]|s=t > 0,
d

ds
E

[
XA(s)|XA(t) = N

]|s=t < 0.

(3) The form of reaction rates λ is governed by the law of (stochastic) mass-
action kinetics. A reaction of the form

aA + bB
κ→ a′A + b′B

has rate λ(X(t)) = κ(XA(t))a(XB(t))b = κ(XA(t))a(N −XA(t))b. Here (Z)c de-
notes the falling factorial (Z)c = Z(Z − 1) · · · (Z − c + 1). When we renormalize
XA(t) by its maximum value N , we will also need the “scaled falling factorial”
(z)c,N defined by

(z)c,N := N−c(Nz)c = z

(
z − 1

N

)(
z − 2

N

)
· · ·

(
z − c − 1

N

)
,

(2)
0 ≤ z ≤ 1.

Note that limN→∞(z)c,N = zc for fixed z and c. The constant κ > 0 is independent
of the state (XA(t),XB(t) = N − XA(t)) but will depend on the scaling param-
eter N , κ = κ(N). We do not necessarily assume that κ(N) has the “standard”
scaling form κ(N) = κ̃N1−(a+b).

(4) The effect on A from any other species in the system is subsumed into the
values of the rate constants κ , and are assumed to be state-independent.
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Assumption (1) ensures that XA(·) ∈ {0, . . . ,N} where N serves as the system-
size parameter, while assumption (2) ensures the reaction system does not get ab-
sorbed at either boundary {0,N}. Assumption (3) is not essential, but with an ex-
plicit scaling of the rate κ(N) in terms of N , the polynomial form of the rates λ

will make it easy to also establish the scaling of the rates λ(X(t)) in terms of N

under a rescaling of the species amounts XA [we will occasionally use the notation
κ(N) for κ when awareness of dependence on N is key]. Assumption (4) is made
to absorb the effect of the environment and other species, the changes of which we
will not keep track of explicitly.

Under these assumptions, our reaction network system can now be expressed
by

{
aA + bB

κab
ζ−→(a + ζ )A + (b − ζ )B

}
a∈{0,...,N},b∈{0,...,N},ζ∈{−a,...,b}(3)

with reaction rates of the form λab
ζ (x) = κab

ζ · (x)a(N − x)b.
Since the dynamics of the system depends on its overall drift, it will be useful

to distinguish a subset of reactions whose combined effect on E[XA(t)] is zero,
irrespective of the value of XA(t). In other words, we will group reactions into
a subset which contributes zero to the drift (“balanced”), and the rest which are
responsible for all of the drift (“biased”). Note that the definition of balance below
is made for subsets of reactions—one cannot determine for a single reaction on its
own whether it is balanced or not—in order for a reaction to be balanced it needs
to belong to a balanced subset.

Let I denote the set of all triples (a, b, ζ ) for which a reaction as written in (3)
is present in the system. A subset of reactions is defined as “balanced” Ibal ⊂ I if
for some fixed reactant amounts a, b, it satisfies∑

ζ :(a,b,ζ )∈Ibal

ζλab
ζ (x) = 0 ∀x ⇐⇒ ∑

ζ : (a,b,ζ )∈Ibal

ζκab
ζ = 0.

A reaction (a, b, ζ ) ∈ I that is part of some balanced subset is called “balanced”
and all the remaining reactions that are not part of any balanced subset are called
“biased,” Ibia = I − Ibal. Note that our notion of balance is very restrictive and is
not related to standard notions of chemical reactions.

For any balanced reaction (a, b, ζ ) ∈ Ibal, there is necessarily a reaction
(a, b, ζ ′) ∈ Ibal with ζ, ζ ′ having opposite signs (though not necessarily of the
same size). Hence, a reaction (a, b, ζ ) ∈ Ibal cannot have nontrivial rate at the
boundaries of the system: if λ

a,b
ζ (0) > 0 for some ζ > 0, then the balance condition

would imply the existence of some ζ ′ < 0 for which λ
a,b
ζ ′ (0) > 0, which would vio-

late assumption (1) by allowing XA to drop below 0 upon a single further (a, b, ζ ′)
reaction. Consequently, the boundaries 0 and N are absorbing for the balanced
subsystem of reactions, and for all (a, b, ζ ′) ∈ Ibal we must have both a > 0 and
b > 0. Since assumption (2) does not allow the boundary {0,N} to be absorbing
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for the full dynamics, this further implies that there is at least one biased reaction
(a, b, ζ ) ∈ Ibia with ζ > 0 and ζλab

ζ (0) > 0, hence a = 0, b > 0; and there is at

least one biased reaction (a, b, ζ ′) ∈ Ibia with ζ ′ < 0, and ζ ′λa,0
ζ ′ (N) < 0, hence

a > 0, b = 0.
The continuous-time Markov jump process model for the reaction dynamics

can be expressed in terms of a set of Poisson processes under a random time
change. Given a collection {Yab

ζ }(a,b,ζ )∈I of independent unit-rate Poisson pro-
cesses, the state of the system can be expressed as a solution to the stochastic
equation (see [21] or [3] for details)

XA(t) = XA(0) + ∑
(a,b,ζ )∈I

ζY ab
ζ

(∫ t

0
λab

ζ

(
XA(s)

)
ds

)

= XA(0) + ∑
(a,b,ζ )∈I

ζ Ŷ ab
ζ

(∫ t

0
λab

ζ

(
XA(s)

)
ds

)
+

∫ t

0
F

(
XA(s)

)
ds,

where {Ŷ ab
ζ }(a,b,ζ )∈I are centered Poisson processes Ŷ (λt) := Y(λt) − λt , and

F(x) = ∑
(a,b,ζ )∈I

ζλab
ζ (x) = ∑

(a,b,ζ )∈Ibia

ζκab
ζ (x)a(N − x)b.

Since the capacity N of the system may be arbitrarily large, we will consider
a “standard” rescaling of the system; see, for example, [11], Chapter 11.2. Let
XN(t) = N−1XA(t), then

XN(t) = XN(0)

+ ∑
(ζ,a,b)∈I

N−1ζ Ŷ ab
ζ

(
Na+bκab

ζ

∫ t

0

(
XN(s)

)
a,N

(
1 − XN(s)

)
b,N ds

)
(4)

+
∫ t

0
FN

(
XN(s)

)
ds,

where the local drift of the renormalized system is given by

FN(x) = ∑
(ζ,a,b)∈Ibia

Na+b−1ζκab
ζ (x)a,N(1 − x)b,N .

The most important feature of the Markov jump process model is the relationship
of the variance to the drift. Note that we can write (4) as

XN(t) = XN(0) + MN(t) +
∫ t

0
FN

(
XN(s)

)
ds,

where the second term from (4), a weighted sum of time-changed centered Poisson
processes, is a martingale MN(t) whose quadratic variation satisfies

[MN ]t = ∑
(ζ,a,b)∈I

N−2ζ 2Yab
ζ

(
Na+bκab

ζ

∫ t

0

(
XN(s)

)
a,N

(
1 − XN(s)

)
b,N ds

)
.
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Hence, if Ft = σ(X(s),0 ≤ s ≤ t) denotes the natural filtration of the process,
then

d

ds
E

[
XN(s)|Ft

]|s=t

= E
[
FN

(
XN(t)

)|Ft

]
= ∑

(ζ,a,b)∈Ibia

Na+b−1ζκab
ζ

(
XN(t)

)
a,N

(
1 − XN(t)

)
b,N ,

d

ds
E

[(
XN(s) − E

[
XN(s)

])2|Ft

]|s=t

= d

ds
E

[[MN ]s |Ft

]|s=t

= ∑
(ζ,a,b)∈Ibal∪Ibia

Na+b−2ζ 2κab
ζ

(
XN(t)

)
a,N

(
1 − XN(t)

)
b,N .

Recall that the reaction rates κab
ζ = κab

ζ (N) also depend on the scaling param-

eter N . The standard scaling for a reaction constant is κab
ζ (N) = κ̃ab

ζ N1−(a+b)

for some N -independent constant κ̃ab
ζ . However, regardless of the chosen scal-

ing of κab
ζ , for biased reactions Ibia the order of magnitude for each summand in

the infinitesimal variance d
ds

E[[MN ]s |Ft ]|s=t is N−1 times smaller than the cor-
responding summand in the infinitesimal drift E[FN(XN(s))|Ft ]|s=t . This con-
strains the possible limiting dynamics of XN . Suppose the scaling of the rates is
κab
ζ = N1−(a+b)κ̃ab

ζ , and note that then FN(x) → ∑
(ζ,a,b)∈Ibia ζ κ̃ab

ζ xa(1 − x)b

uniformly for x ∈ [0,1]. As established in [20], in the limit as N → ∞ the
drift overpowers the noise and, provided XN(0) ⇒ x(0), the renormalized pro-
cess (XN(t), t ≥ 0) converges in distribution (in the Skorokhod topology of cadlag
paths) to a solution (x(t), t ≥ 0) of the ordinary differential equation

x(t) = x(0) +
∫ t

0

∑
(ζ,a,b)∈Ibia

ζ κ̃ab
ζ x(s)a

(
1 − x(s)

)b
ds.(5)

In fact, if the scaling of the reaction constants κab
ζ is not standard, but is consistent

for both balanced and biased reactions in terms of the polynomial order of the rate
function λab

ζ , then the same deterministic limit is obtained under an appropriate
time rescaling.

The only way to get a stochastic limiting object for XN is for at least one subset
of balanced reactions to have a rate constant with a different scaling in N . This
different scaling needs to be such that the noise term due to this subset of reactions
will be of the same order of magnitude as the overall drift from the biased reac-
tions. This would require a specific separation of time-scales for balanced versus
biased reactions. Although we do not exclude this possibility from our analysis
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(see definition of εA at the end of this section), our emphasis in this paper is on
separating the time-scales in terms of contribution of an additional source of noise,
and its ability to produce nontrivial random limiting objects for XN .

2.2. Stochastic model for resampling, branching or splitting. We now intro-
duce the additional mechanism in the system that describes changes to species
amounts due to the effect of splitting, branching or resampling, which also ef-
fects the species count. For intracellular molecular populations, our first model of
splitting was motivated by a simple double-then-divide principle: the cell will first
double in size by replicating its constituent molecular species, and then allocate
approximately one half of this doubled material into each daughter cell—the al-
location mechanism is not perfect and will make random error from the original
(undoubled) amount. For genetic populations, common models for resampling fol-
low the Wright–Fisher or the Moran neutral reproduction law: each individual of
the offspring population chooses at random from the diploid version of the cur-
rent population’s genes what to inherit—the resampling mechanism is such that
an allele of one type in one generation may at random be replaced in the subse-
quent generation by an allele of the other type. These two are both examples of
a general mechanism with the following key properties that we assume for split-
ting/resampling:

(5) The splitting/resampling occurs at rate γ (x,N) that depends on: the current
state XA = x of the system and the scaling parameter N ; conditional on XA = x it
is independent of reactions.

(6) The change in the species amount XA due to a splitting/resampling event
has the distribution px,y = P[XA(t) = y|XA(t−) = x] that have absorbing bound-
aries p0,0 = 1,pN,N = 1, and that are unbiased

μN(x) = ∑
y

ypx,y = x ∀x ∈ {0,1, . . . ,N}.

We also assume, for some of our results, that the rate γ (x,N) and distribution
{px,y} are such that:

(7∗) The change sizes are asymptotically uniformly bounded,

(7∗.a) ∀� > 0 sup
x

γ (x,N)
∑

y:N−1|y−x|≥�

px,y → 0 as N → ∞,

and the change size variance σ 2
N(x) = ∑

y(y − x)2px,y is asymptotically
given by

(7∗.b) sup
x

∣∣γ (x,N)N−2σ 2
N(x) − γ̃ 2σ̃ 2(

N−1x
)∣∣ → 0 as N → ∞

for some constant γ̃ > 0 and function σ̃ (·) that are independent of N , and
such that x �→ σ̃ 2(x) is continuous with σ̃ 2(x) > 0,∀x ∈ (0,1) and σ̃ 2(0) =
σ̃ 2(1) = 0.



1234 J. K. MCSWEENEY AND L. POPOVIC

Unbiasedness in assumption (6) could be replaced by an “asymptotic unbiased-
ness” assumption N−1|μN(x) − x| → 0 as N → ∞, but for the sake of simplicity
we assume μN(x) = x. Absorption in assumption (6) implies splitting is noiseless
on the boundaries regardless of its time-scale. When the additional assumption (7∗)
holds (as we will assume for our results in Section 2.3), the splitting mecha-
nism contributes diffusively to the limit of the renormalized species count XN .
However, we will also examine the case when the rate of the splitting mecha-
nism is on a slower time-scale (in Section 3.1), as well as the case when it is on
a faster time-scale (in Section 4.1). The condition that σ̃ 2 has boundary values
σ̃ 2(0) = σ̃ 2(1) = 0 is natural given that any splitting or resampling mechanism
should absorb at the boundaries as indicated by p0,0 = pN,N = 1.

EXAMPLE (HG). One example of a splitting mechanism would be to com-
pletely randomly reallocate the doubled content of a parent cell into daughter
cells. If the initial content is (XA,XB) = (x,N − x), and the doubled content
(2x,2(N − x)) is partitioned in a single swoop (draw without replacement) into
two sets of N molecules (one for each daughter cell), then the content in each
daughter cell has the hypergeometric distribution (below we keep track of an arbi-
trarily chosen single lineage)

px,y = P
[
XA(t) = y|XA(t−) = x

] =
(2x

y

)(2N−2x
N−y

)
(2N

N

) ,

0 ∨ (2x − N) ≤ y ≤ 2x ∧ N.

The change in the species count is clearly unbiased μN(x) = ∑2x∧N
y=0∨N−2x ypx,y =

x, with variance

σ 2
N(x) =

2x∧N∑
y=0∨N−2x

(y − x)2px,y = N2x(2N − 2x)

4N2

(
1 − N − 1

2N − 1

)
= x(N − x)

2N − 1
.

Then assumption (7∗) will hold if γ (x,N) = γ̃ 2N and σ̃ 2(x) = 1
2x(1 − x), since

for (7∗.a) we have

sup
x

∣∣γ (x,N)N−2σ 2
N(x) − γ̃ 2σ̃ 2(

N−1x
)∣∣ = γ̃ 2 sup

x

∣∣∣∣ x(N − x)

N(2N − 1)
− 1

2

x

N

(
1 − x

N

)∣∣∣∣
→ 0

and using tail bounds for the hypergeometric distribution [6]
∑N

y=x+N� px,y ≤
e−2�2N independently of x, and for (7∗.b) we have

γ (x,N) sup
x

∑
y:|y−x|≥N�

px,y ≤ 2γ̃ 2Ne−2�2N → 0.
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EXAMPLE (Bin). Another example would be to sample with replacement from
the population in which each offspring picks its type randomly from any individual
in the parent generation. If the initial count is XA = x, then the count in the next
generation has the binomial distribution

px,y = P
[
XA(t) = y|XA(t−) = x

] =
(

N

y

)(
x

N

)y(
1 − x

N

)N−y

, 0 ≤ y ≤ N.

This form of resampling is used in (the haploid version of) the Wright–Fisher
model for genetic drift (e.g., [9] Section 1.2). It is also used as the prototype of a
splitting mechanism of simple “independent segregation” of division of cells [15].
This distribution is again unbiased, and assumption (7∗) will hold if γ (x,N) =
1
2 γ̃ 2N for some constant γ̃ 2 > 0. Using similar arguments as above, it is then easy
to show that both (7∗.a) and (7∗.b) will hold with σ̃ 2(x) = 1

2x(1 − x).

EXAMPLE (Bern). Finally, the simplest example of a splitting/resampling
mechanism is to have a single amount error in the daughter cell (or the next gen-
eration), and to have the rate at which the error occurs be proportional to both the
current amount XA = x and the amount of XB = N − x. Errors from imperfect
division will result in ± change with equal probability

px,x−1 = px,x+1 = 1/2.

This distribution is clearly unbiased, and assumption (7∗) will hold if the rate of
error occurrences is γ (x,N) = 1

2 γ̃ 2N2 x
N

(1 − x
N

) for some γ̃ 2 > 0, with the limit-
ing variance σ̃ 2(x) = 1

2x(1 − x).
This form of resampling is used in the Moran model for genetic drift (e.g., [9] Sec-
tion 1.5). It is also used in [15] as an example of an “ordered segregation” splitting
mechanism for cell division (self volume exclusion partitioning error, [15] Sup-
porting Information). In a cellular system it could also be described as a set of
balanced reactions A + B → 2A,A + B → 2B with mass-action dynamics and
appropriately scaled rate constants.

We note that, from the perspective of limiting results, the differences in the spe-
cific details of the mechanism will not be important. The only feature of relevance
will be the order of magnitude of the prelimiting rate γ (x,N) and the form of
the limiting variance σ̃ 2(x). There are many other types of splitting, branching or
resampling mechanisms, yielding a different form for the limiting variance. They
are easy to construct in case of small changes that result in single count errors,
via a range of birth–death probability distributions. We shall see, in both Section 3
and Section 4, how the actual form for the variance σ̃ 2(x) affects the qualitative
behavior of the limit of the renormalized process.

The changes due to this additional mechanism can also be expressed in terms
of a Poisson processes under a random time change. Let Yγ be a counting process
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with state-dependent rate γ (x,N), and {Z(x, s)}0≤x≤N be independent random
variables with probability distribution px,· for any s ≥ 0. A change due to split-
ting or resampling can be represented as a stochastic integral

∫ t
0 (Z(X(s−), s) −

X(s−)) dYγ (s). The evolution in species count due to both reaction dynamics and
splitting is

XA(t) = XA(0) + ∑
(ζ,a,b)∈I

ζ Ŷ ab
ζ

(∫ t

0
λab

ζ

(
XA(s)

)
ds

)
+

∫ t

0
F

(
XA(s)

)
ds

+
∫ t

0

(
Z

(
XA(s−), s

) − XA(s−)
)
dYγ (s);

hence for the rescaled system XN = N−1XA we have

XN(t) = XN(0)

+ N−1
∑

(ζ,a,b)∈I
ζ Ŷ ab

ζ

(
Na+bκab

ζ

∫ t

0

(
XN(s)

)
a,N

(
1 − XN(s)

)
b,N ds

)

+
∫ t

0
FN

(
X(s)

)
ds(6)

+
∫ t

0

(
N−1Z

(
NXN(s−), s

) − XN(s−)
)
dŶγ (s)

+
∫ t

0

(
N−1Z

(
NXN(s−), s

) − XN(s−)
)
γ

(
NXN(s),N

)
ds

= XN(0) + MN,γ (t) +
∫ t

0
FN

(
X(s)

)
ds

(6′)
+

∫ t

0
N−1(

Z
(
NXN(s−), s

) − NXN(s−)
)
γ

(
NXN(s),N

)
ds.

We still have

FN(x) = ∑
(ζ,a,b)∈Ibia

Na+b−1ζκab
ζ (N)(x)a,N (1 − x)b,N ,(7)

but now MN,γ denotes the martingale formed by the second and fourth summand
in (6) whose quadratic variation is

[MN,γ ]t
= ∑

(ζ,a,b)∈I
N−2ζ 2Yab

ζ

(
Na+bκab

ζ (N)

∫ t

0

(
XN(s)

)
a,N

(
1 − XN(s)

)
b,N ds

)
(8)

+
∫ t

0
N−2(

Z
(
NXN(s−), s

) − NXN(s−)
)2

dYγ (s).



STOCHASTIC BISTABILITY IN CHEMICAL REACTION SYSTEMS 1237

Note that since the two mechanisms are driven by independent Poisson processes,
there is no quadratic covariation contribution. Since Epx,· [Z(x, s) − x] = 0 for all
s ≥ 0 and x ∈ {0, . . . ,N}, the infinitesimal mean still satisfies

d

ds
E

[
XN(s)|Ft

]∣∣∣
s=t

= E
[
FN

(
XN(t)

)|Ft

]
(9)

= ∑
(ζ,a,b)∈Ibia

Na+b−1ζκab
ζ (N)

(
XN(t)

)
a,N

(
1 − XN(t)

)
b,N ;

on the other hand, the infinitesimal variance now satisfies
d

ds
E

[(
XN(s) − E

[
XN(s)

])2|Ft

]∣∣∣
s=t

= d

ds
E

[[MN ]s |Ft

]∣∣∣
s=t

(10)
= ∑

(ζ,a,b)∈Ibal∪Ibia

Na+b−2ζ 2κab
ζ (N)

(
XN(s)

)
a,N

(
1 − XN(s)

)
b,N

+ γ
(
NXN(s),N

)
N−2σ 2

N

(
NXN(s)

)
.

2.3. Possible qualitative behaviors. In order to determine the role that the rate
of the splitting/resampling mechanism may play, we first establish the possible
behavior of the system when N is large. The decisive quantity for the qualitative
behavior of the system is

εA := lim
N→∞ εA(N), εA(N) := cσ 2(N)

cμ(N)
,(11)

where

cσ 2(N) := ∑
(a,b,ζ )∈Ibal

Na+b−2κab
ζ (N) + sup

x∈[0,1]
γ (Nx,N)N−2σ 2

N(Nx)(12)

and

cμ(N) := ∑
(a,b,ζ )∈Ibia

Na+b−1κab
ζ (N);(13)

εA relates the magnitude of the variance due to the splitting mechanism (or possi-
bly a faster set of balanced reactions) to the magnitude of the drift due to reaction
dynamics. If they are of the same order of magnitude, then the rescaled process
will converge to a diffusion. In other words, if εA ∈ (0,∞), then we can assume
(by rescaling time as necessary) that both scaling constants (12) and (13) satisfy
c̃σ 2 = limN→∞ cσ 2(N) ∈ (0,∞), c̃μ = limN→∞ cμ(N) ∈ (0,∞) and c̃σ 2 = εAc̃μ.
If assumption (7∗) is satisfied, the noise of the splitting mechanism is such that
the limiting behavior of the system is diffusive, instead of being deterministic, as
in (5) when only reactions are present.
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PROPOSITION 2.1. If εA ∈ (0,∞), assumption (7∗) holds for XA = NXN ,
and XN(0) ⇒ X̃(0) ∈ [0,1], then XN ⇒ X̃ as N → ∞ in distribution on the
Skorokhod space of cadlag paths on [0,1], where X̃ is a diffusion with drift and
diffusion coefficients given by

φ̃(x) = ∑
(a,b,ζ )∈Ibia

ζ κ̃ab
ζ,μxa(1 − x)b,

(14)
ã(x) = ∑

(a,b,ζ )∈Ibal

ζ 2κ̃ab
ζ,σ 2x

a(1 − x)b + γ̃ 2σ̃ 2(x),

where for each (a, b, ζ ) ∈ Ibia

κ̃ab
ζ,μ = lim

N→∞Na+b−1κab
ζ (N)

for each (a, b, ζ ) ∈ Ibal

κ̃ab
ζ,σ 2 = lim

N→∞Na+b−2κab
ζ (N)

and for some γ̃ 2 > 0

γ̃ 2σ̃ 2(x) = lim
N→∞γ (Nx,N)N−2σ 2

N(Nx).

If all reaction rates have standard scaling κab
ζ = κ̃ab

ζ N1−(a+b), then κ̃ab
ζ,σ 2 = 0 and

ã(x) = γ̃ 2σ̃ 2(x).

PROOF. This is a direct consequence of standard theorems for convergence of
Markov processes to a diffusion (see, e.g., [8] Section 8.7) based on locally uni-
form convergence of the infinitesimal mean and variance to the limiting drift and
diffusion coefficients, respectively, and convergence of jumps so that they disap-
pear in the limit. Recall that the infinitesimal mean of the rescaled process XN

from (6′) is given by (9) and its infinitesimal variance by (10). Since the process
takes values in [0,1], we can check convergence uniformly on the whole space,
and moreover MN,γ (t) = XN(t) − E[XN(t)], whose quadratic variation is given
in (8), is then a square integrable martingale. For the contributions by the splitting
mechanism, the convergence of the infinitesimal mean and variance, as well as the
control of the jumps, are easy to check from the three requirements on the split-
ting mechanism made in assumptions (6) and (7∗). For the contributions by the
reaction dynamics the convergence of the infinitesimal mean and variance, and the
control over jumps, follow from the scaling properties of the counting processes
used in their representation and from the fact that the rates for these counting
processes are Lipschitz and bounded. These same conditions have been checked,
in the case when reaction rates have a more general form, for law of large num-
bers and central limit theorem results for rescaled population-dependent Markov
processes [20]. Alternatively, one could also check that the Markov process XN
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satisfies all the conditions required for convergence of more general Markov jump
processes to a diffusion as stated in Theorem 2.11 of [18] and Theorem 3.1 of [19].
The only thing left to check is whether a diffusion with coefficients as given exists
and is unique in law. This follows easily from the fact that the contributions to ã(x)

and φ̃(x) from reaction rates are polynomial, and we have assumed that σ̃ 2(x) is
Lipschitz. �

A diffusion may or may not hit its boundary points, but it never spends a dis-
proportionate amount of time at any point in its range, including the boundaries,
unless they are absorbing. Hence, we really need to consider the behavior of the
process when either εA → 0 or εA → ∞ (as a function of an additional asymp-
totic parameter which will be discussed below in Section 3.1). The only remark
we make when εA remains bounded away from 0 and ∞ is that the behavior of X̃

at the boundary {0,1} depends on the form for the limiting variance of the split-
ting mechanism. As a consequence of assumption (2), and of the properties of the
splitting variance at {0,1}, we are only guaranteed that φ̃(0) > 0, φ̃(1) < 0 and
ã(0) = ã(1) = 0. Hence, {0,1} are neither absorbing nor natural, but it remains
to determine whether they are entrance or regular boundary points. Further condi-
tions on the reaction and splitting mechanisms for reaching the boundary (i.e., for
{0,1} to be regular boundary points) are guaranteed by interpreting Feller’s test for
explosion; see, for example, [8], Section 6.2. or [16], Section 15.6.

The diffusive case εA ∈ (0,∞) separates two other types of behavior. When
εA ≈ 0 and εA ≈ ∞, the rate of splitting is either slower or faster, respectively,
than prescribed by assumption (7∗). Both cases lead to behavior which exhibits
a type of stochastic bistability, in which the system spends almost all of its time
at two points, or very near them. This bistability is, in the two cases εA ≈ 0 and
εA ≈ ∞, caused by completely different effects of the two stochastic mechanisms
in our model, which we investigate separately in the next two sections.

3. Bistable behavior from slow splitting. Let us consider the case εA ≈ 0,
and assume that time has been rescaled so that c̃μ = limN→∞ cμ(N) ∈ (0,∞) and
c̃σ 2 = limN→∞ cσ 2(N) ≈ 0. In modeling this is a relatively conventional scaling,
in which a small amount of noise (from balanced reactions and splitting) will af-
fect the predominantly deterministic behavior due to drift (of biased reactions).

A precise statement of this depends on how fast εA(N) = c
σ2 (N)

cμ(N)
approaches 0 as

a function of N , and we examine it more carefully by first introducing a separate
perturbation parameter ε and then relating it to the scaling parameter N .

3.1. Small diffusive noise effects. The simplest way to model small diffu-
sive effects is with an enforced separation of time-scales between reactions
and splitting using a perturbation parameter. Suppose all the reaction constants
κab
ζ (N) depend only on the scale of the system N and have the standard scaling
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κab
ζ = κ̃ab

ζ N1−(a+b) for some constants κ̃ab
ζ . Suppose the splitting rate, in addi-

tion to N , also depends on a small parameter ε > 0, so that the splitting rate is
γ (x,N, ε) = ε2γ (x,N) where γ (x,N) satisfies assumption (7∗). The fact that the
splitting rate is slower than diffusive is expressed in terms of the fact that we will
consider the behavior of the system as ε → 0. In this case the quantitiy εA defined
in (11) is just a constant multiple of ε2

εA := lim
N→∞

∑
(a,b,ζ )∈I bal Na+b−2κab

ζ (N) + ε2 supx∈[0,1] N−2γ (Nx,N)σ 2
N(Nx)∑

(a,b,ζ )∈I bia Na+b−1κab
ζ (N)

= ε2c̃σ 2

c̃μ

,

where c̃σ 2 = γ̃ 2 supx∈[0,1] σ̃ 2(x) and c̃μ = ∑
(a,b,ζ )∈I bia κ̃ab

ζ,μ.
We could also assume the rates of balanced reactions depend on the additional

parameter ε2, in the sense that κab
ζ = ε2κ̃ab

ζ N2−(a+b) for (a, b, ζ ) ∈ Ibal. In this
case

c̃σ 2 = ∑
(a,b,ζ )∈I bal

κ̃ab
ζ,μ + γ̃ 2 sup

x∈[0,1]
σ̃ 2(x).

However, if we make no special separation in the way balanced and biased re-
actions are scaled, then the assumption of standard scaling κab

ζ = κ̃ab
ζ N1−(a+b)

implies that this is only possible if the parameter ε satisfies ε2 = N−1, on which
we remark further in the next subsection.

By Proposition 2.1, for any fixed ε > 0, the process obtained in the limit XN ⇒
X̃ε is a diffusion with coefficients φ̃(x) as in (14) and ãε(x) = ε2γ̃ 2σ̃ 2(x) (we will
use the subscript ε in the notation of the limiting diffusion to stress its dependence
on the small parameter ε). X̃ε is a solution of the stochastic differential equation

dX̃ε(t) = φ̃
(
X̃ε(t)

)
dt + εγ̃ σ̃

(
X̃ε(t)

)
dB(t), X̃ε ∈ [0,1],(15)

where B is a standard Brownian motion, a classical case of a diffusion with small
diffusion coefficient.

For many such diffusions ε ≈ 0 will have little qualitative effect relative to ε =
0; however, suppose that φ̃ has two stable and one unstable equilibria, and thus
the potential 
 defined by 
 = − ∫

φ̃ is a double-well potential. Since φ̃ is a
polynomial, this is an assumption on the number and type of zeros of φ̃. Explicitly,
we will assume that

∃0 < x1 < x2 < x3 < 1 : φ̃(xi) = 0,
(16)

i = 1,2,3 and φ̃′(x1) < 0, φ̃′(x2) > 0, φ̃′(x3) < 0.

Recall also that assumption (2) implies that at the boundaries we have φ̃(0) >

0, φ̃(1) < 0. As a consequence, X̃ε is a process whose mean behavior involves
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monotone convergence to one of two stable equilibria (determined by the initial
conditions), but where the small amount of noise allows the process to switch from
one equilibrium to the other, creating a bistable system. Precise statements of this
behavior are described by Freidlin–Wentzell theory for random perturbations of
dynamical systems by diffusive noise, [12], which can also cover processes with
metastability, [13]. We will follow closely the notation of [13], as these results
apply most directly to X̃ε . We first need a transformation to handle the state de-
pendence σ̃ 2(x) of the diffusion coefficient, easily done using [7], Section 5.6.
or [23] Section 2.5.

For X̃ε satisfying (15), large deviation theory for Gaussian perturbations of dy-
namical systems, Dembo and Zeitouni ([7] Theorem 5.6.7 and Exercise 5.6.25),
state that deviations of X̃ε away from an ε-sized neighborhood of x1 and x3 are
characterized by the large deviation rate function for X̃ε given by the quasipoten-
tial (with respect to xi and x2)

Ixi,x2(φ̃, γ̃ σ̃ )

:= inf
s>0

inf
ξ

{∫ s

0
L

(
ξ(u), ξ ′(u)

)
du

∣∣∣ξ ∈ C1([0, s]), ξ(0) = xi, ξ(s) = x2

}
,

i = 1,3,

where L is the action functional

L
(
ξ, ξ ′) =

(
ξ ′ − φ̃(ξ)

γ̃ σ̃ (ξ)

)2

.

This identifies the most likely paths which leave a neighborhood of x1 or x3, since
every path between x1 and x3 of the one-dimensional X̃ε has to pass through x2.
We can write L(ξ, ξ ′) in this form for all such paths because X̃ε is nonsingular
away from the boundaries, that is, σ̃ 2(x) > c,∀x ∈ [x1, x3] for some c > 0. If
the diffusion coefficient were constant γ̃ σ̃ ≡ 1, then L(ξ, ξ ′) = (ξ ′ − φ̃(ξ))2 and
Ixi,x2(φ̃,1) would be simply a constant multiple of the potential, Ixi,x2(φ̃,1) =
2(
(x2) − 
(xi)), for i = 1,3. The quasipotential would be determined by the
height of the potential barrier which X̃ε needs to overcome in order to pass from
one equilibrium to the basin of attraction of the other.

To solve the variational problem in our case, we can use a transformation of
the path space ξ = g(ψ) to get an action functional of the form L(ξ, ξ ′) = (ψ ′ −
φ̃(ψ))2, from which we can deduce the explicit form of the rate function Ixi,x2

for state-dependent γ̃ σ̃ (x). For any monotone C1 function g which for all s is
surjective from C1([0, s]) to C1([0, s]), we have

Ixi,x2(φ̃, γ̃ σ̃ ) = inf
s>0

inf
ψ

{∫ s

0
L

(
g
(
ψ(u)

)
,
[
g
(
ψ(u)

)]′)
du

∣∣∣ψ ∈ C1([0, s]),
ψ(0) = g−1(xi),ψ(s) = g−1(x2)

}
.
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We take g which satisfies the (autonomous) first-order ODE g′(y) = γ̃ σ̃ (g(y)), so
that

L
(
g(ψ),

[
g(ψ)

]′) =
(

g′(ψ)ψ ′ − φ̃(g(ψ))

γ̃ σ̃ (g(ψ))

)2

=
(
ψ ′ − φ̃(g(ψ))

γ̃ σ̃ (g(ψ))

)2

.

Note that γ̃ σ̃ (x) > 0,∀x ∈ (0,1) ensures that g is in fact strictly increasing on
(0,1). Let h(x) = g−1(x). Then, if φ̃ is the vector field of a double-well poten-

tial, so is α defined as α = φ̃◦g
γ̃ σ̃◦g , for the following reasons. Let yi = g−1(xi) =

h(xi); these will be the equilibria for α, since α(yi) = φ̃(g(yi))/γ̃ σ̃ (g(yi)) =
φ̃(xi)/γ̃ σ̃ (xi) = 0. As for their stability, we have

α′(yi) = φ̃′(g(yi))g
′(yi)γ̃ σ̃ (yi) − φ̃(g(yi))γ̃ σ̃ ′(g(yi))g

′(yi)

γ̃ 2σ̃ 2(g(yi))

= φ̃′(g(yi))g
′(yi)

γ̃ σ̃ (g(yi))
= φ̃′(g(yi)

)
,

where the first equality holds since φ̃(g(yi)) = 0, and the second by definition
of g. Therefore, for each i, the stability of xi under the vector field φ̃ is the
same as that of yi with vector field α; we may therefore define A = − ∫

α to be
the (double-well) potential associated with α. Since L(ξ, ξ ′) is now in the form
L(g(ψ), [g(ψ)]′) = (ψ ′ − α(g(ψ)))2, we can conclude that

Ixi,x2(φ̃, γ̃ σ̃ ) = Iyi,y2(α,1) = 2
(
A(y2) − A(yi)

)
, i = 1,3.(17)

We can now interpret the results of [13] to characterize the behavior of the pro-
cess X̃ε [defined in (15)] as ε → 0. Let Di denote basins of attraction for the
deterministic process (5) driven by the drift φ̃, that is, D1 = [0, x2) � x1,D2 =
{x2},D3 = (x2,1] � x3, and Bc(xi) denote closed balls of radius c > 0 around
x1, x3 such that Bc(x1) ⊂ D1,Bc(x3) ⊂ D3. If the wells of the transformed poten-
tial A are not at equal depth A(y1) �= A(y3), we will without loss of generality
assume A(y1) < A(y3). Let

Tε = inf
{
t > 0 : X̃ε(t) ∈ Bc(x1)

}
, T̃ε = inf

{
t > Tε : X̃ε(t) ∈ Bc(x3)

}
denote the first hitting time of the neighborhood of the stable equilibrium with the
deeper basin, and the subsequent first hitting time of the neighborhood of the other
stable equilibrium. Let βε be the time-scale on which transitions from D3 to the
neighborhood of x1 happen, defined by P[Tε > βε|X̃ε(0) = x3] = e−1, and β̃ε the
one on which the reverse transition happen, defined by P[T̃ε > β̃ε|X̃ε(0) = x1] =
e−1. The next result establishes that the transition from one stable equilibrium to
the other happens on a time-scale of order O(eε−2(A(y2)−A(yi))) with i = 3 and
i = 1, respectively, and that in the limit as ε → 0 the transition times have an
exponential distribution.
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PROPOSITION 3.1. If φ̃ satisfies (16), then the transitions of X̃ε from D3 to
Bc(x1) and from D1 to Bc(x3) satisfy:

(i) lim
ε→0

P
[
Tε > tβε|X̃ε(0) = x ∈ D3

] = e−t ∀t > 0,

lim
ε→0

P
[
T̃ε > tβ̃ε|X̃ε(0) = x ∈ D1

] = e−t ∀t > 0;

(ii) lim
ε→0

ε2 lnβε = Ix3,x2(φ̃, γ̃ σ̃ ) = 2
(
A(y2) − A(y3)

)
,

lim
ε→0

ε2 ln β̃ε = Ix1,x2(φ̃, γ̃ σ̃ ) = 2
(
A(y2) − A(y1)

)
.

PROOF. (i) is a restatement of Theorem 1 in [13]. (ii) follows from Theo-
rem 4.2 of Chapter 4 in [12], which states that for any δ > 0, limε→0 P[|ε2 lnTε −
Ix3,x2(φ̃, γ̃ σ̃ )| > δ|X̃ε(0) = x3] = 0 and limε→0 P[|ε2 ln T̃ε − Ix1,x2(φ̃, γ̃ σ̃ )| >

δ|X̃ε(0) = x1] = 0, and from our explicit calculation of the value of the quasipo-
tential in (17). �

The following result characterizes the long-term behavior on the natural time-
scale (determined by βε) for transition to the stable point with the deeper basin. Let
Rε = eε−2a for some a ∈ (0,2(A(y2)−A(y3))), so that Rε → ∞ while Rε/βε → 0
as ε → 0. Again following [13], define the measure-valued process (νε

t )t≥0 by

νε
t (f ) = 1

Rε

∫ βεt+Rε

βεt
f

(
X̃ε(s)

)
ds

for any (bounded) continuous function f on [0,1]. The measure νε
t approximates

the law for the location of X̃ε(T ) on the time-scale T = βεt .
Note that if A(y1) < A(y3), then the results of (ii) imply that β̃ε/βε → ∞ as

ε → 0, so that infx∈D1 P[T̃ε/βε > t |X̃ε(0) = x] → 1. Hence, in this case metasta-
bility is characterized by the fact that the transitions into the deeper well are on an
exponentially faster time-scale, relative to which the transitions back into the less
deep well will not be noticed. Let Px[·] denote P[·|X̃ε(0) = x].

PROPOSITION 3.2. For each x ∈ D3, continuous function f on [0,1], and
δ > 0 we have

lim
ε→0

Px

[
sup

s∈[0,(Tε−3Rε)/Rε]
∣∣νε

t (f ) − f (x3)
∣∣ > δ

]
= 0,

lim
ε→0

P
[

sup
s∈[Tε/βε,(T̃ε−3Rε)/Rε]

∣∣νε
t (f ) − f (x1)

∣∣ > δ
]
= 0.

Moreover, we have convergence in law on the space of cadlag paths (with the
Skorokhod topology) of (νε

t )t≥0 to a jump process (νt )t≥0 such that:
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(i) (Metastability). If A(x1) < A(x3), then (νt )t≥0 is given by

νt =
{

δx3, t < T ,

δx1, t ≥ T ,

where T is an exponential mean 1 random variable.
(ii) (Bistability). If A(x1) = A(x3) and a sequence of transition times is defined

by T̃ 0
ε = 0, and

T i
ε = inf

{
t > T̃ i−1

ε : X̃ε(t) ∈ Bc(x1)
}
,

T̃ i
ε = inf

{
t > T i

ε : X̃ε(t) ∈ Bc(x3)
}
, i = 1,2, . . . ,

then (νt )t≥0 is given by

νt =
{

δx3, T2i ≤ t < T2i+1,

δx1, T2i+1 ≤ t < T2i+2,
i = 0,1,2, . . . ,

where T0 = 0, and {Ti}i≥0 are arrival times in a rate 1 Poisson process.

PROOF. (i) is simply a restatement of the main result Theorem 2 in [13], and
(ii) is an easy extension of this result. Since A(y1) = A(y3), we have βε = β̃ε

and the transitions from one stable equilibrium to the other happen on the same
exponential time-scale. By Proposition 3.1(i), on the time-scale T = βεt , in the
limit as ε → 0, T 1

ε is exponentially distributed with parameter 1, and X̃ε(T 1
ε ) ∈

D1. By the strong Markov property of X̃ε , the time increment to the subsequent
transition T̃ 1

ε − T 1
ε is independent of T 1

ε , and the same Theorem implies that on
the time-scale T = β̃εt = βεt , in the limit as ε → 0, T̃ 1

ε − T 1
ε is also exponentially

distributed with parameter 1, and X̃ε(T̃ ε
1 ) ∈ D3. The rest now follows from the

same arguments as in the proof of Theorem 2 in [13]. �

3.2. Finite-system-size effects. The above results relied on using an additional
parameter ε to separate the scaling of the noise from the scaling of the drift, ob-
taining a diffusion approximation for the limiting process first, then applying large
deviation techniques for the diffusion (15) with small perturbation coefficient ε.
A priori, there is no reason why the limits need be taken in that order. Another
approach is to apply large deviations techniques directly to the rescaled process
XN = N−1XA, and obtain results that describe the large time-scale behavior of
XN relative to the equilibrium points of the limiting drift (16). It is natural to
compare these results to those for the associated diffusion with small diffusion co-
efficient. We will identify the exact relation of time-scales of the reaction system
and the splitting mechanism for which large deviation rates of these two methods
can be compared.

This question is most easily answered when the reactions and the split-
ting/resampling mechanism make only unit net changes at each step, so that XA is
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a birth–death process. Assume, as before, all the reaction constants have the stan-
dard scaling κab

ζ = κ̃ab
ζ N1−(a+b), and assume again the splitting rate is of the form

γ (x,N, ε) = ε2
Nγ (x,N), except now the parameter ε2

N depends on N as well.
Since, by assumption (6), the change due to splitting is unbiased, we have px,x+1 =
px,x−1 = 1

2 , and the splitting variance is σ 2
N = 1. As earlier γ (x,N) is assumed to

satisfy condition in assumption (7∗), that is, supx |γ (x,N)N−2 − γ̃ 2σ̃ 2( x
N

)| → 0.
Suppose XA is a Markov jump process with rates Nr̃+(x) dt = P[XA(t +dt) =

x + 1|XA(t) = x] and Nr̃−(x) dt = P[XA(t + dt) = x − 1|XA(t) = x] such that
ln r̃+, ln r̃− are bounded Lipschitz continuous functions, and XN = N−1XA is its
rescaled version. Then, according to the Freidlin–Wentzell large deviation theory
for Markov jump processes, [27] Theorem 6.17, since transitions between the two
stable equilibria x1, x3 of φ̃ are uniquely achieved by crossing the potential barrier
at x2, the deviations of XN away from neighborhoods of x1 and x3 are character-
ized by the large deviation rate function for XN given by the quasipotential (with
respect to xi and x2),

ıxi ,x2(r̃+, r̃−)

:= inf
T >0

inf
ξ

{∫ T

0
�
(
ξ(u), ξ ′(u)

)
du

∣∣∣ξ ∈ C1([0, T ]), ξ(0) = xi, ξ(T ) = x2

}
,

i = 1,3,

where � is the action functional in variational form

�(x, y) = sup
θ

{
θy − (

r̃+(x)
(
eθ − 1

) + r̃−(x)
(
e−θ − 1

))}
determined from the jump rates of the process r̃+ and r̃−. Calculus of variations
results, see [27] Theorem 11.15, give an explicit expression for the quasipotential
as

ıxi ,x2(r̃+, r̃−) =
∫ x2

xi

ln
(

r̃−(x)

r̃+(x)

)
dx, i = 1,3.(18)

If XA is a birth–death process whose rates r+(x), r−(x) are such that rN+ (x) =
N−1r+(Nx) → r̃+(x) and rN− (x) = N−1r−(Nx) → r̃−(x) uniformly in x ∈ [0,1],
then the logarithmic moment-generating function gN(x, θ) of the jump measure
μN(x, ·) = rN+ (x)δ1 +rN− (x)δ−1, for fixed θ , also converges uniformly in x ∈ [0,1]

gN(x, θ) =
∫ (

eθz − 1
)
μN(x, dz) = rN+ (x)

(
eθ − 1

) + rN− (x)
(
e−θ − 1

)

−→
N→∞ r̃+(x)

(
eθ − 1

) + r̃−(x)
(
e−θ − 1

) =
∫ (

eθz − 1
)
μ(x, dz) = g(x, θ)

to the logarithmic moment generating function of the jump measure μ(x, ·) =
r̃+(x)δ1 + r̃−(x)δ−1. Since the Legendre transform �N(x, y) of gN(x, y) has the
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explicit form

�N(x, y) = sup
θ

{
θy − gN(x, θ)

}

= ln
(y +

√
y2 + 4rN+ (x)rN− (x)

2rN+ (x)

)

−
√

y2 + 4rN+ (x)rN− (x) + rN+ (x) + rN− (x)

for fixed y, we also have uniform convergence in x ∈ [δ,1 − δ], for any δ > 0,

�N(x, y) = sup
θ

{
θy − gN(x, θ)

} −→
N→∞ sup

θ

{
θy − g(x, θ)

} = �(x, y).

Consequently, the large deviation behavior for XN = N−1XA is determined by the
same action functional �(x, y) and exit times in terms of the same quasipotential
ıxi ,x2(r̃+, r̃−), i = 1,3 as above.

For the system of reactions and splitting, birth and death rates for the process
XN , r+ and r−, respectively, are of the form

r+(x) = N
∑

(a,b,1)∈I
κ̃ab

1

(
x

N

)
a,N

(
1 − x

N

)
b,N

+ 1

2
ε2
Nγ (x,N),(19)

r−(x) = N
∑

(a,b,−1)∈I
κ̃ab−1

(
x

N

)
a,N

(
1 − x

N

)
b,N

+ 1

2
ε2
Nγ (x,N).(20)

We wish to obtain results for the time-scale of exit from a neighborhood of a
stable equilibrium for the rescaled process XN that are analogous to those for X̃ε

obtained in Proposition 3.1. To this end, we will have to make some assumptions
about the behavior of r+ and r− in order to use the quasipotential ıxi ,x2(r̃+, r̃−).
Let βεN

and β̃εN
denote time-scales of the transitions of the process XN from D3

to Bc(x1), and from D1 to Bc(x3), respectively, in the analogous way as βε and β̃ε

were for the singularly perturbed diffusion. The next result establishes the time-
scale of transition for XN from one stable equilibrium to the other.

PROPOSITION 3.3. If XA is a birth–death chain, whose rates satisfy

r+(N ·)
N

→ r̃+(·), r−(N ·)
N

→ r̃−(·) uniformly in [0,1](21)

such that φ̃ = r̃+ − r̃− satisfies (16), then the mean times βεN
and β̃εN

for transi-
tions of XN from D3 to Bc(x1), and from D1 to Bc(x3), respectively, are given in
terms of ıxi ,x2(r̃+, r̃−) from (18) by

lim
N→∞

1

N
lnβεN

= ıx3,x2(r̃+, r̃−), lim
N→∞

1

N
ln β̃εN

= ıx1,x2(r̃+, r̃−).
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PROOF. This is just the statement of results for the exit problem for the
jump Markov chain XN in terms of its quasipotential, obtained by Freidlin and
Wentzell [12]; see Theorems 1.2 and 2.1 of Chapter 5, the discussion at the be-
ginning of Section 4 and Theorem 4.3 of Chapter 5; also see Theorem 5.7.11 of
Chapter 5 in [7]. Uniform convergence of the action potential, that is, the Legen-
dre transform �N , is necessary in order to express the quasipotential ıxi ,x2 in terms
of the limiting rates r̃+, r̃−. All of the assumptions on the equilibrium points of
φ̃(x) = r̃+(x)− r̃−(x) in (16) are also necessary, since φ̃ determines the fluid limit
of the jump Markov chain XN . �

Finally, we can establish the time-scale separation under which the switching
results for the rescaled jump process XN and the diffusion X̃ε with the small dif-
fusion coefficient can be compared.

THEOREM 3.1. If the reaction system has increments of size {1,−1} only, its
rates have standard scaling κab

ζ = κ̃ab
ζ N1−(a+b), its limiting drift φ̃ satisfies (16)

and if the splitting mechanism has increments of size {1,−1}, its rate is ε2
Nγ (x,N)

where γ (x,N) satisfies assumption (7∗) and

Nε2
N → 1,

then results based on large deviations for XN in Proposition 3.3 are more infor-
mative than results based on large deviations for the diffusion X̃ε with the small
perturbation parameter εN in Proposition 3.1, that is,

ıxi ,x2(r̃+, r̃−) ≤ Ixi,x2(φ̃, γ̃ σ̃ ).

PROOF. For rN+ (x) = N−1r+(Nx) and rN− (x) = N−1r−(Nx) by (19)–(20),
we have

rN+ (x) = ∑
(a,b,1)∈I

κ̃ab
1 (x)a,N(1 − x)b,N + 1

2
N−1ε2

Nγ (Nx,N),

rN− (x) = ∑
(a,b,−1)∈I

κ̃ab−1(x)a,N(1 − x)b,N + 1

2
N−1ε2

Nγ (Nx,N).

Since γ (x,N) is such that |γ (Nx,N)N−2 − γ̃ 2σ̃ 2(x)| → 0 uniformly in x ∈
{0, 1

N
, . . . ,1}, then given that Nε2

N → 1, we have uniform convergence of rN+ →
r̃+ and rN+ → r̃+ to

r̃+(x) = ∑
(a,b,1)∈I

κ̃ab
1 xa(1 − x)b + 1

2
γ̃ 2σ̃ 2(x),

r̃−(x) = ∑
(a,b,−1)∈I

κ̃ab−1x
a(1 − x)b + 1

2
γ̃ 2σ̃ 2(x).
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Let ω(x) = 1 − r̃−(x)
r̃+(x)

, so

ω(x) = r̃+(x) − r̃−(x)

r̃+(x)
= φ̃(x)∑

(a,b,1)∈I κ̃ab
1 xa(1 − x)b + (1/2)γ̃ 2σ̃ 2(x)

,

ω(x)

1 − ω(x)
= r̃+(x) − r̃−(x)

r̃−(x)
= φ̃(x)∑

(a,b,−1)∈I κ̃ab−1x
a(1 − x)b + (1/2)γ̃ 2σ̃ 2(x)

and (18) implies that ıxi ,x2(r̃+, r̃−) = ∫ x2
xi

ln(1 − ω(x)) dx satisfies

−
∫ x2

xi

φ̃(x) dx∑
(a,b,−1)∈I κ̃ab−1x

a(1 − x)b + (1/2)γ̃ 2σ̃ 2(x)

≤ ıxi ,x2(r̃+, r̃−)

≤ −
∫ x2

xi

φ̃(x) dx∑
(a,b,1)∈I κ̃ab

1 xa(1 − x)b + (1/2)γ̃ 2σ̃ 2(x)
.

On the other hand by (17) and the fact that g′(y) = γ̃ σ̃ (g(y)) we also have

Ixi,x2(φ̃, σ̃ ) = −2
∫ y2

yi

α(y) dy = −2
∫ y2

yi

φ̃(g(y)) dy

γ̃ σ̃ (g(y))
= −

∫ x2

xi

φ̃(x) dx

(1/2)γ̃ 2σ̃ 2(x)

≥ ıxi ,x2(r̃+, r̃−).

Hence if Nε2
N → 1, we get a comparison using quasipotentials for XN and X̃ε of

the time-scales for transitions between stable equilibria, as

lnβε ≈ 1

ε2
N

Ixi,x2(φ̃, σ̃ ) � Nıxi,x2(r̃+, r̃−) ≈ lnβεN
. �

If ε2
N = N−1, transitions between stable equilibria are more often due to finite-

system-size effects than due to the effects of an additional mechanism. This
is understandable in light of the fact that the diffusion X̃ε is a limit of the
rescaled process XN in which the contribution of any subdiffusive noise disap-
pears. As remarked earlier, when ε2

N = N−1, we could use this informally prior
to obtaining a diffusion limit X̃ε . If, for rates of balanced reactions we write
κab
ζ (N) = N1−(a+b)κ̃ab

ζ = ε2
NN2−(a+b)κ̃ab

ζ , then the diffusion coefficient would

become ãε(x) = ε2
N(

∑
(a,b,ζ )∈I bal κ̃ab

ζ,μxa(1 − x)b + γ̃ 2σ̃ 2(x)). However, even this
“adjusted” diffusion coefficient would not change the conclusion of Theorem 3.1,
since the contribution of the rates from biased reactions is still missing from the
quasipotential of X̃ε .

If N−1 � ε2
N � 1, it is clear from Theorem 3.1 that the noise of the splitting

is the dominant factor in effecting the transitions, while if ε2
N � N−1, the noise

from reactions dominates, and both rates r̃+, r̃− and the quasipotential ıxi ,x2 are
determined by the reaction system only.
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3.3. Example: bistable behavior from slow splitting. Here is an example of a
simple reaction system that yields a limiting system with a double-well potential:

A
κ10−1→ B,(22)

B
κ01

1→ A,(23)

A + B
κ11−1→ 2B,(24)

2A + B
κ21

1→ 3A.(25)

The trimolecular reaction (25) produces a term in the drift which is cubic in XA,
which is needed in order to obtain the three desired equilibria. With standard
mass-action scaling κab

ζ = N1−(a+b)κ̃ab
ζ , the limit of FN(XN(t)) = E[XN(t)] =

E[XA(t)/N] ∈ [0,1] as N → ∞ is

φ̃(x) = lim
N→∞FN(x) = −κ̃10−1x + κ̃01

1 (1 − x) − κ̃11−1x(1 − x) + κ̃21
1 x2(1 − x),

x ∈ [0,1].
With the special choice of κ̃10−1 = κ̃01

1 = 1, κ̃11−1 = 16
3 , κ̃21

1 = 32
3 we have

φ̃(x) = 1
3

(
3 − 22x + 48x2 − 32x3) = −32

3

(
x − 1

4

)(
x − 1

2

)(
x − 3

4

)
(26)

with two stable points at x1 = 1
4 and x3 = 3

4 and one unstable point at x2 = 1
2 for the

system, and thus 
 = − ∫
φ̃ is a double-well potential. Since φ̃ is antisymmetric

about the line x = 1
2 the potential can be expressed as


(x) = 1
6(2x − 1)4 − 1

12(2x − 1)2 + C,

which is symmetric about the line x = 1
2 , and thus 
 has equally deep wells


(1
4) = 
(3

4).
This system bears resemblance to the so-called Schlögl model [26], which con-

sists of four reactions A + 2X � 3X,B � X, with the resulting drift for X cubic.
In [28] the authors formulate the Kolmogorov forward equation (chemical master
equation) to analyze the stochastic model for this reaction system.

For this example we take the simplest splitting/resampling mechanism [Ex-
ample (Bern) in Section 2.2] in which at each split an error in the molecu-
lar count of A from the parent to the daughter cell is at most 1. Its rate is
γ (x,N) = γ (N)x/N(1 − x/N) and its probabilities are px,x+1 = px,x−1 = 1/2
for x �= 0,N , and p0,0 = pN,N = 1. Note that here the factor γ (N) will depend
on N , but is state independent. This mechanism can also be represented in terms
of reactions as

A + B
N−2γ (N)−→ 2A, A + B

N−2γ (N)−→ 2B.(27)
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We stress that this representation (27) of the resampling in terms of reactions is
done merely to illustrate the mechanism in a similar way to the reactions, and is
not to be confused with an actual set of biological reactions as in (22)–(25). This
can be done in the particular case of Moran-type resampling, since the rates of
this mechanism depend on the product of both the count of A and of B . This is a
consequence of the fact that each resampling event picks either one molecule of A

or one molecule of B with probabilities relative to their proportions in the cell, and
replaces it in the daughter cell with a random choice of either A or B with equal
probability.

As shown in Section 2.2, if we choose the splitting parameter to be γ (N) =
1
2ε2N2 for some small constant ε2 > 0, then γ (x,N) satisfies all the conditions
of assumption (7∗), and the limiting process X̃ε satisfies the stochastic differential
equation with drift (26) and diffusion coefficient ε2 1

2x(1 − x)

dX̃ε(t) = 1
3

(
3 − 22X̃ε(t) + 48X̃2

ε (t) − 32X̃ε(t)
3)

dt
(28)

+ ε

√
X̃ε(t)

(
1 − X̃ε(t)

)
dB(t).

To find the value of the quasipotential for this problem we find the transformation
of the potential via α(y) = φ̃(g(y))/σ̃ (g(y)), where g is the solution to g′(y) =
σ̃ (g(y)) = √

g(y)(1 − g(y)), given explicitly by

g(y) = cos2
(

1

2

(
y − π

2

))
= cos2

(
y

2
− π

4

)
, y ∈

[
−π

2
,
π

2

]
.

We chose the constant of integration so that g(0) = 1
2 , and g(−y) = 1 − g(y). The

inverse of g is given by

h(x) = g−1(x) = 2 arctan
(
−

√
1

x
− 1

)
+ π

2
, x ∈ [0,1];

hence, the transformed equilibrium points yi = h(xi) are

y1 = 2 arctan(−√
3) + π

2
= −π

6
, y3 = 2 arctan

(
−

√
1

3

)
+ π

2
= π

6

and

y2 = 2 arctan(−1) + π

2
= 0.

Note as well that the wells of the transformed potential are of equal depth, which
follows from the fact that α is an odd function

α(−y) = φ̃(g(−y))

σ̃ (g(−y))
= φ̃(1 − g(y))

σ̃ (1 − g(y))
= −φ̃(g(y))

σ̃ (g(y))
= −α(y),
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FIG. 1. Sample path XN(t) (left: x-axis = t , y-axis = XN(t) = N−1X(t)) and its occupation den-
sity (right: x-axis = state space of XN ⊂ [0,1], y-axis = proportion of time XN spends in each state
by time t = 2500) from the system (22)–(25) with birth–death splitting, under standard mass-action
scaling for reactions and γ (ε,N) = 1

2ε2N2 (parameters N = 1500, ε2 = 0.02). Dashed red lines
indicate quasi-equilibria at 1/4 and 3/4.

and thus A = − ∫
α(y)dy is an even function. Since y1 = −y3, y2 = 0, and

A(y1) = A(y3) = 0, we have A(y2) = ∫ π/6
0 α(y)dy with a rather complicated ex-

pression

A(y2) =
∫ π/6

0

φ̃(cos2((y/2) − (π/4)))

σ̃ (cos2((y/2) − (π/4)))
dy = 1

3

∫ 3/4

1/2

3 − 22x + 48x2 − 32x3

x(1 − x)
dx

·= 0.0913.

By Proposition 3.1 on a time-scale of O(e−ε−22A(y2)), the process exists a neigh-
borhood of the stable equilibria x1 = 1

4 , x3 = 3
4 . Symmetry of A around y2 = 0

implies that we are in the bistable case (ii) of Proposition 3.2, and the occupation
measure of the process X̃ε converges to the occupation measure of a two-state
Markov chain, which transitions between states {1

4 , 3
4} with equal rates. Figure 1

shows an exact simulation of a sample path of the rescaled process XN = N−1XA

with choice of parameters N = 1500, ε2 = 0.02; since ε2 � 1/N , we expect the
ε-perturbation of the limiting diffusion to be driving the switching. Indeed, the pro-
cess appears to be spending most of its time in neighborhoods B0.1(x1)∪B0.1(x3),
switching between them at the approximate rate R = e−ε−22A(y2) ·= 0.0001083.

If we take ε2 � 1/N , then transitions between stable equilibria are based only
on the scaled rates for the reaction system (22)–(25),

r̃+(x) = 1 − x + 32
3 x2(1 − x) and r̃−(x) = x + 16

3 x(1 − x).

By Proposition 3.3 the values of the quasipotential for the birth–death Markov
process are

ıx1,x2 =
∫ x2

x1

ln
(

r̃−(x)

r̃+(x)

)
dx =

∫ 1/2

1/4
ln

(
x + (16/3)x(1 − x)

1 − x + (32/3)x2(1 − x)

)
dx

·= 0.006713
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FIG. 2. Sample path XN(t) [left: x-axis = t , y-axis = XN(t)] and its occupation density (right:
x-axis = state space of XN ⊂ [0,1], y-axis = proportion of time XN spends in each state by time
t = 4000) for the system (22)–(25) with birth–death splitting, under standard mass-action scaling for
reactions and γ (ε,N) = 1

2ε2N2 (parameters N = 500, ε2 = 2 × 10−4). Dashed red lines indicate
quasi-equilibria at 1/4 and 3/4 as above.

and

ıx3,x2 =
∫ x2

x3

ln
(

r̃−(x)

r̃+(x)

)
dx

·= 0.005534.

Note that here the values for the quasipotential are no longer equal, and the process
will take longer to get out of the neighborhood of the equilibrium x1 = 1

4 . Figure 2
shows a simulation of a sample path of the rescaled process XN for γ (N) = ε2N

with the choice of parameters N = 500, but ε2 = 2 × 10−4. In this case 1/N � ε2

and we expect the transitions to be due to noise from the reactions arising from
finite-N effects. Based on the above calculation we expect the process to be switch-
ing away from B0.1(x1) at rate R = e−Nıx1,x2 = e−3.356629 ·= 0.035 and away from
B0.1(x3) at a rate R′ = e−Nıx3,x2 = e−2.769957 ·= 0.062; indeed, the time spent near
x1 is appreciably larger than the time spent near x3.

We make a particular note that the reaction system considered here is very sen-
sitive to the exact values given for the reaction constants; a small change in these
would preserve the double-well potential, but would lead to nonequal depth of the
two wells for the quasipotential, and hence instead of a limiting bistable behavior
would lead to a limiting metastable behavior as in case (i) of Proposition 3.2. In
the next section we discuss the conditions on the scaling of the reaction and split-
ting/resampling which yield behavior that can also be described as bistable, but
where the underlying mechanism is qualitatively different and the restrictions on
the reaction system are negligible.

4. Bistable behavior from fast splitting. We next consider the case εA ≈ ∞,
and assume that time has been rescaled so that c̃σ 2 = limN→∞ cσ 2(N) ∈ (0,∞)
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and c̃μ = limN→∞ cμ(N) ≈ 0. This is a more unconventional scaling, in which
the noise (from balanced reactions and splitting) overwhelms the contribution due
to the drift (from biased reactions).

One way to model this with a diffusion would be to introduce a time-scale
separation with an additional small parameter ε in the scaling of all reactions
rather than in the rate of splitting. Suppose all reaction constants scale as κab

ζ =
εκ̃ab

ζ N1−(a+b), while the rate of splitting γ (x,N) satisfies assumption (7∗). For
any fixed ε > 0, the resulting limit of the rescaled process XN would be

dX̃ε(t) = εφ̃
(
X̃ε(t)

)
dt + γ̃ σ̃

(
X̃ε(t)

)
dB(t), X̃ε ∈ [0,1],(29)

where B is a standard Brownian motion, and we have the case of a diffusion with a
small drift. Note that although σ̃ 2(0) = σ̃ 2(1) = 0 [by assumption (7)], the bound-
aries {0,1} are not absorbing, since there is at least one biased reaction that allows
escape from either boundary φ̃(0) > 0, φ̃(1) < 0 [by assumption (2)]. Other than
at the boundaries the contribution of the drift is essentially negligible, and X̃ε is
approximately a martingale. Most attempts to escape a boundary are followed by
the return to the same boundary point; only some end up at the opposite one. In the
limit as ε → 0, the rate of escapes from the boundaries for X̃ε vanishes, and there
is no switching.

However, under the right conditions, the limit of the original rescaled process
will spend almost all of its time at one boundary or the other, switching between
the two on a reasonable time-scale, creating again a bistable system. How the effect
of the attempts to escape the boundary appears in the limit depends on the rate of
the attempts, and the time spent between the boundaries. In order to make a precise
statement we need to examine the behavior of the rescaled process XN directly and
specify a general set of conditions for a Markov jump process to exhibit this type
of switching behavior.

4.1. Stochastic switching. The unscaled process XA is a Markov chain on
{0,1, . . . ,N} with transitions that are due to the reactions (a, b, ζ ) ∈ I , as
well as the splitting mechanism with distribution px,y, (x, y) ∈ {0,1, . . . ,N}2.
The rates of these transitions from XA = x are equal to

∑
(a,b,ζ )∈I λab

ζ (x) =∑
(a,b,ζ )∈I κab

ζ (N)(x)a(N − x)b from the reaction system and γ (x,N) from the
splitting, respectively. We denote the total combined rate of XA from i ∈ {0, . . . , n}
to j ∈ {0, . . . , n} by

rij = ∑
(a,b,j−i)∈I

κab
j−i (N)ia(N − i)b + γ (i,N)pi,j .

Transitions due to splitting can have jumps whose size can in principle be as large
as N − 1 (such as those of the Wright–Fisher splitting process example in Sec-
tion 2.2), although with very small probability. However, a splitting mechanism is
absorbing at {0,N}, p0,0 = pN,N = 1, and the rates of jumps off the boundaries
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x ∈ {0,N} are created by reactions using only molecules of B (for x = 0), or using
only molecules of A (for x = N ), with rates

r0j = ∑
(0,b,j)∈I

κ
0j
j (N)(N)b, rNj = ∑

(a,0,N−j)∈I
κa0
N−j (N)(N)a.

By assumption (2) in Section 2.1, there exist j, j ′ ∈ {1, . . . ,N − 1} such that
r0j , rNj ′ �= 0. The leading powers of N , max(0,b,j)∈I{b} > 0 and
max(a,0,N−j)∈I{a} > 0, respectively, will determine the rate at which attempts
to counteract absorption at the boundaries happen, and in particular, this implies
that r0j , rNj → ∞ as N → ∞ [allowing for upcoming condition (30)].

Define an excursion of XA to be any segment XA(t), t ∈ [t1, t2) such that
XA(t1−),XA(t2) ∈ {0,N} and XA(t) /∈ {0,N} for t ∈ [t1, t2). Call an excursion
on [t1, t2) “successful” if XA(t1−) �= XA(t2), and “unsuccessful” otherwise. For
0 ≤ j ≤ N , let τj := inf{t ≥ 0 :XA(t) = j} be the first hitting time of state j , and
let τ0,N = τ0 ∧ τN denote the first hitting time of either boundary state. Let

ej0 = E
[
τ0,N |XA(0) = j,XA(τ0,N ) = 0

]
,

ejN = E
[
τ0,N |XA(0) = j,XA(τ0,N ) = N

]
be the expected hitting time of the two boundaries from j and πjN be the proba-
bility that an excursion from j hits the N boundary first

πjN = P
[
XA(τ0,N ) = N |XA(0) = j

]
,

and thus πj0 = 1 −πjN is the probability it first hits the 0 boundary. The values of
{ej ·, πjN }j∈{1,...,N−1} can be determined by setting up and solving the appropriate
linear functionals of the generator for the Markov process XA; explicit expressions,
however, may be hard to come by for general processes.

Excursions of XA depend on transitions from both reactions and the splitting
mechanism. However, if the noise overwhelms the drift, then at each step in the
interior transition rates are dominated by those from the balanced reactions and
the splitting mechanism. In particular, this will imply that in the interior XA be-
haves approximately like a martingale, and will allow us to approximate the prob-
ability of switching from one boundary point to the other in terms of the relative
rates of biased reactions versus balanced reactions and splitting. We will estimate
ej0, ejN ,πjN in an example to come, and exhibit more explicit conditions than the
ones below in the case when the reactions and splitting yield a birth–death process
for XA.

We first state general conditions under which the rescaled process XN = XA/N

can be approximated by a simple Markov jump process. Suppose that there exists
two scaling parameters: the order of magnitude of the rate of reactions on the
boundary ωN → ∞, and a time scaling parameter βN > 0 for the rescaled process
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XN , such that
1

ωN

∑
j

r0j → r̃+,
1

ωN

∑
j

rNj → r̃−,(30)

βN

∑
j

r0jπjN → r̃01, βN

∑
j

rNjπj0 → r̃10,(31)

1

βNωN

∑
j

r0j ejN ,
∑
j

r0j ej0,

(32)
1

βNωN

∑
j

rNj ej0,
∑
j

rNj ejN → 0,

with r̃+, r̃−, r̃01, r̃10 ∈ (0,∞). Since r0j , rNj → ∞, there is no need to change the
time-scale for the process. These conditions imply that there are many excursions
in any finite time interval [0, t], only a small fraction of which are successful,
and during which the total time spent is very small. Consequently, the rescaled
process will spend most of its time on one boundary until the first time a successful
excursion takes it to the other boundary. Let T̃ 0

N = inf{t ≥ 0 :XA(t) = 0}, and

T i
N = inf

{
t > T̃ i−1

N :XA(t) = N
}
, T̃ i

N = inf
{
t > T i

N :XA(t) = 0
}
,

i = 1,2 . . .

be a sequence of times at which XA first reaches a boundary different from the one
where it was most recently. Also, define the measure-valued process (νN

t )t≥0 for
some ρN > 0 such that ρN

βN
→ 0 by

νN
t (f ) = 1

ρN

∫ βN t+ρN

βN t
f

(
XN(s)

)
ds

for any (bounded continuous) function f on {0, 1
N

, . . . ,1}; this (νN
t ) approximates

the law of the location of the rescaled process XN(t) = XA(t)/N on a short time
interval of length ρN .

PROPOSITION 4.1. If XA satisfies (30)–(32), then

lim
N→∞ P

[
T i

N − T̃ i−1
N > tβN

] = e−r̃01t , lim
N→∞ P

[
T i+1

N − T̃ i
N > tβN

] = e−r̃10t

∀t > 0,

and we have convergence in law on the space of cadlag paths (with the Skorokhod
topology) (νN

t )t≥0 ⇒ (νt )t≥0 to a jump process

νt =
{

δ0, T2i ≤ t < T2i+1,

δ1, T2i+1 ≤ t < T2i+2,
i = 0,1,2, . . . ,

where {T2i+1 − T2i}i≥0 and {T2i+2 − T2i+1}i≥0 are two independent sequences of
i.i.d. exponential variables with rates r̃01 and r̃10, respectively.
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The rescaled process XN can therefore be approximated by a jump Markov
process (J (t))t≥0 on {0,1} with transition rates r̃01 from 0 → 1, and r̃10 from
1 → 0 in the following sense: the occupation times of XN on {0,1} converge to
the respective occupation times of J , and the times of successful excursions of XN

from 0 → 1 and from 1 → 0 converge to the respective transitions of J . We cannot
expect a stronger kind of convergence than stated, since, for example, convergence
in law of XN to J in the Skorokhod topology is precluded by the fact that for
arbitrarily large N , there remain unsuccessful excursions of XN that stray from
their originating boundary by a distance which is bounded away from 0.

A different set of conditions from those in (32) for the length of excursions away
from the boundaries, where in the limit we get four nonzero limiting constants
ẽ01, ẽ00, ẽ10, ẽ11, would imply convergence to a limiting process which spends a
nontrivial fraction of time away from the boundary. The limiting process would
behave similar to a diffusion with “sticky” boundaries; see [16], Section 15.8C.

PROOF OF PROPOSITION 4.1. For each i ≥ 0, define a sequence of times after
T̃ i

N at which excursions from 0 start σ̃
i,i′
N and end τ̃

i,i′
N , by letting τ̃

i,0
N = T̃ i

N , and
for i′ = 1,2, . . .

σ̃
i,i′
N = inf

{
τ̃

i,i′−1
N < t :XA(t) �= 0,XA(t−) = 0

}
,

τ̃
i,i′
N = inf

{
τ̃

i,i′−1
N < t :XA(t) = 0,XA(t−) �= 0

}
and let s(i) = inf{i′ ≥ 1 : τ̃ i,i′

N > T i+1
N } be the index of the first excursion from 0

that is successful, hence τ̃
i,s(i)
N = T̃ i+1

N . Note that XA(t) = 0,∀t ∈ [τ̃ i,i′−1
N , σ̃

i,i′
N )

and that
∑

i′≤s(i)(σ̃
i,i′
N − τ̃

i,i′−1
N ) is the time spent at 0 between successful excur-

sions, while XA �= 0 for t ∈ [σ̃ i,i′
N , τ̃

i,i′
N ), and thus

∑
i′<s(i)(τ̃

i,i′
N − σ̃

i,i′
N ) is the time

spent on unsuccessful excursions.
Consider the time interval [T̃ i

N , T i+1
N ] − ⋃

i′<s(i)[σ̃ i,i′
N , τ̃

i,i′
N ) from which subin-

tervals for unsuccessful excursions are excised. Excursions from 0 are started at
overall rate

∑
j ′ r0j ′ , and since excursions whose first step is to j are successful

with probability πjN , successful excursions are started at rate
∑

j r0jπjN . So

Wi
N := σ̃

i,s(i)
N − T̃ i

N − ∑
i′<s(i)

(
τ̃

i,i′
N − σ̃

i,i′
N

) ∼ exponential
(∑

j

r0jπjN

)

and

s(i) ∼ geometric
(∑

j r0jπjN∑
j r0j

)
.

Also, for any i′ < s(i), the unsuccessful excursion times τ̃
i,i′
N − σ̃

i,i′
N are indepen-

dent and identically distributed with

E
[
τ̃

i,i′
N − σ̃

i,i′
N

] = ∑
j

r0j∑
j ′ r0j ′

E
[
τ0,N |XA(0) = j,XA(τ0,N ) = 0

]
,
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while T i+1
N − σ̃

i,s(i)
N is a subinterval for a successful excursion with

E
[
T i+1

N − σ̃
i,s(i)
N

] = ∑
j

r0j∑
j ′ r0j ′

E
[
τ0,N |XA(0) = j,XA(τ0,N ) = N

]
.

Let

Ui
N := ∑

i′<s(i)

(
τ̃

i,i′
N − σ̃

i,i′
N

)
and Si

N := T i+1
N − σ̃

i,s(i)
N ,

so that T i+1
N − T̃ i

N = Wi
N + Ui

N + Si
N . Assumption (31) implies Wi

N/βN ⇒
exponential(r̃01) as N → ∞. We next show convergence for both Ui

N →0 and
Si

N →0 in probability as N → ∞, which will imply that (T i+1
N − T̃ i

N )/βN ⇒
exponential(r̃01).

We first note that

E
[
Si

N

] = E
[
T i+1

N − σ̃
i,s(i)
N

] = ∑
j

r0j∑
j ′ r0j ′

ejN

= 1∑
j ′(r0j ′/ωN)

1

βNωN

∑
j

r0j ejN · βN ;

therefore, E[Si
N/βN ] → 0, since the first fraction converges to 1/r̃+, and the sec-

ond to 0, by (30) and (32), respectively. Similarly, for each unsuccessful excursion
1 ≤ i′ < s(i)

E
[
τ̃

i,i′
N − σ̃

i,i′
N

] = 1

ωN

1∑
j ′(r0j ′/ωN)

∑
j

r0j ej0,

and since s(i) is geometric,

E
[
s(i)

] =
∑

j r0j∑
j r0jπjN

= ωN

∑
j r0j /ωN∑
j r0jπjN

.

We have

E
[
Ui

N

] = E
[ ∑
i′<s(i)

(
τ̃

i,i′
N − σ̃

i,i′
N

)] ≤ E
[
s(i)

]
E

[
τ̃

i,i′
N − σ̃

i,i′
N

] =
∑

j r0j ej0

βN

∑
j r0jπjN

· βN

and so E[Ui
N/βN ] → 0, since by (31) the denominator converges to r̃01, and

by (32) the numerator goes to 0. Hence for any δ > 0 we have P[Si
N > δ] ≤

E[Si
N ]

δ
→ 0 and P[Ui

N > δ] ≤ E[Ui
N ]

δ
→ 0.

A completely analogous proof shows that (T̃ i
N − T i

N)βN ⇒ exponential(r̃10),
and the claim about the probability measure νt is immediate from the fact that
E[Ui

N + Si
N ] → 0. �
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To verify condition (30) one only needs to use the rates of biased reactions
on the boundary. For (31), note the fact that if not for biased reactions, the process
would be a martingale; if the rates of the biased reactions are overpowered by those
of the balanced reactions and splitting [as quantified in (31)], then the process is
approximately a martingale. Conditions in (32) predominantly depend on how fast
the rates of the balanced reactions and splitting are, as they determine the length
of excursions of the process.

These conditions are the easiest to verify when the reactions as well as split-
ting/resampling mechanism make only unit net changes at each step, so that XA

is a birth–death process with rij = 0 if |i − j | > 1. In this case one can specify
more precise conditions on the rates rij that will ensure that (30)–(32) hold. We
consider the case when the time is already rescaled, that is, βN = 1, and the rate
of reactions on the boundaries is ωN = N . We use the following notation for birth
and death rates:

r+(i) := ri(i+1), r−(i) := ri(i−1), εN(i) = r−(i)

r+(i)
− 1,

with εN(i) quantifying the strength of the bias at state i [we stress its dependence
on N via transition rates r±(i)].

PROPOSITION 4.2. If XA is a birth–death chain whose rates satisfy

r+(0)

N
→ r̃+ ∈ (0,∞),

r−(N)

N
→ r̃− ∈ (0,∞),(33)

N−1∑
i=1

∣∣εN(i)
∣∣ → 0 and(34)

N−1∑
i=1

N − i

r+(i)
→ 0,

N−1∑
i=1

i

r−(i)
→ 0,(35)

then conditions (30)–(32) hold with ωN = N , βN = 1 and r̃01 = r̃+, r̃10 = r̃−.

Analogous to the general case, (33) depends only on the rates of biased reac-
tions on the boundaries, (34) reflects the fact that off of the boundaries the drift
of the biased reactions is much weaker than the noise of the balanced reactions
and splitting and (35) is an estimate on the speed of the balanced reactions and
splitting.

PROOF OF PROPOSITION 4.2. (30) is immediate from (33) and ωN = N . To
verify (31) we solve for πjN, j ∈ {1, . . . ,N − 1}.

LEMMA 4.1. If (34) holds, then Nπ1N → 1 and Nπ(N−1)0 → 1.
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PROOF. Let ϕ be such that ϕ(XA) is a martingale, that is, let ϕ(x) =
E[ϕ(XA(τ0,N ))|X(0) = x] for x ∈ {1, . . . ,N − 1} and ϕ(0) = 0, ϕ(1) = 1. Stan-
dard result for birth–death processes, using a recursive equation for ψ(x) =
ϕ(x) − ϕ(x − 1), gives

ϕ(x) =
x∑

i=1

ψ(i) =
x∑

i=1

i−1∏
j=1

r−(j)

r+(j)
.

By the optional stopping theorem for the stopping time τ0,N ,

ϕ(i) = E
[
ϕ

(
XA(τ0,N )

)|X(0) = i
] = πi0ϕ(0) + πiNϕ(N),

so πiN = (ϕ(i) − ϕ(0))/(ϕ(N) − ϕ(0)) = ϕ(i)/ϕ(N), and

π1N = 1

ϕ(N)
=

(
N∑

i=1

i−1∏
j=1

r−(j)

r+(j)

)−1

=
(

N∑
i=1

i−1∏
j=1

(
1 + εN(j)

))−1

= 1

Nc(N)
,

where c(N) = 1
N

∑N
i=1

∏i−1
j=1(1 + εN(j)).

Condition (34) implies that sup1≤j≤N−1{|εN(j)|} → 0, so let N0 be such that
∀N > N0 and ∀j ∈ {1, . . . ,N − 1}, |εN(j)| < 1/3. Since ∀x ∈ [0,1/3),1 − x ≥
e−x−x2

, and ∀x ∈ R,1 + x ≤ ex , we have that uniformly for all 1 ≤ a, b ≤ N − 1,
where N > N0

b∏
j=a

(
1 + εN(j)

) ≤
N−1∏
j=1

(
1 + ∣∣εN(j)

∣∣) ≤
N−1∏
j=1

e|εN (j)| = exp

(
N−1∑
j=1

∣∣εN(j)
∣∣)(36)

and
b∏

j=a

(
1 + εN(j)

) ≥
b∏

j=a

(
1 − ∣∣εN(j)

∣∣) ≥
N−1∏
j=1

(
1 − ∣∣εN(j)

∣∣)

≥
N−1∏
j=1

exp
(−∣∣εN(j)

∣∣ − ∣∣εN(j)
∣∣2)

(37)

= exp

(
−

N−1∑
j=1

(∣∣εN(j)
∣∣ + ∣∣εN(j)

∣∣2))

hence Nπ1N = 1/c(N) → 1.
To get Nπ(N−1)0 → 1, if we flip the state space by letting ι̌ = N − i, then

the new boundaries are 0̌ = N and Ň = 0, and we get a birth–death process X̌A

whose rates are precisely the flip of those for XA. That is, the rates of X̌A are
ř+(ι̌) = r−(N − i), ř−(ι̌) = r+(N − i), and their ratio is

1 + ε̌N (ι̌) = ř−(ι̌)

ř+(ι̌)
= r+(N − i)

r−(N − i)
,
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giving the same product of ratios as for the original process.
N−1∏
ι̌=1

(
1 + ε̌N (ι̌)

) =
N−1∏
j=1

(
1 + εN(j)

)
.

Hence, the exact argument above now applied to X̌A gives Nπ̌1̌Ň
= Nπ(N−1)0 →

1 as well. �

Once we have the result of Lemma 4.1, it is immediate that Nπ1N →
1,Nπ(N−1)0 imply (31) with r̃01 = r̃+, r̃10 = r̃−.

To verify (32) we next solve for ej , j ∈ {1, . . . ,N − 1}, where ej = E[τ0,N |
XA(0) = j ] for j ∈ {1, . . . ,N − 1}, and e0 = eN = 0.

LEMMA 4.2. If (34) and (35) hold, then Ne1 → 0 and NeN−1 → 0.

PROOF. The expected time of an excursion satisfies the recursion

ei = 1

r−(i) + r+(i)
+ r−(i)

r−(i) + r+(i)
ei−1 + r+(i)

r−(i) + r+(i)
ei+1,

which gives

r+(i)(ei+1 − ei) − r−(i)(ei − ei−1) = −1;
letting f (i) = ei − ei−1 gives the recursive equation

f (i + 1) = − 1

r+(i)
+ r−(i)

r+(i)
f (i) = − 1

r+(i)
+ (

1 + εN(i)
)
f (i).

Note that except for the − 1
r+(i)

term, this is reminiscent of the recursion for ψ(i) =
r−(i)
r+(i)

ψ(i − 1). Hence

f (k) = f (1)

k−1∏
j=1

(
1 + εN(j)

) −
k−1∑
i=1

1

r+(i)

k−1∏
j=i+1

(
1 + εN(j)

)
.

To find f (1) = e1 − e0 = e1 we impose the condition
∑N

i=1 f (i) = eN − e0 = 0
and get

e1 =
(

N∑
k=1

k−1∑
i=1

1

r+(i)

k−1∏
j=i+1

(
1 + εN(j)

))/(
N∑

k=1

k−1∏
j=1

(
1 + εN(j)

))
.

Let ηN = sup1≤a,b≤N−1 |∏b
a(1 + εN(j)) − 1|. Then (34) implies ηN → 0 for

N > N0 via (36) and (37). We have

e1 ≤
(

N∑
k=1

k−1∑
i=1

1

r+(i)
(1 + ηN)

)/(
N∑

k=1

(1 − ηN)

)

= 1 + ηN

(1 − ηN)N

N∑
k=1

k−1∑
i=1

1

r+(i)
= 1 + ηN

(1 − ηN)N

N−1∑
i=1

N − i

r+(i)
,
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and thus (35) implies Ne1 → 0.
To obtain NeN−1 → 0 we can flip the process and consider X̌A with the flipped

rates as in the proof of Lemma 4.1. Now, in addition to (34), we also require the
flip version of the first condition in (35),

N−1∑
ι̌=1

Ň − ι̌

ř+(ι̌)
=

N−1∑
i=1

N − i

r−(N − i)
=

N−1∑
i=1

i

r−(i)
→ 0,

which are guaranteed by the second condition in (35). �

Once we have the results of both Lemmas 4.1 and 4.2, we can deduce that
Ne1 → 0 and NeN−1 → 0, which imply (32). Namely, from e1 = e1Nπ1N +
e10π10,

e1N ≤ e1

π1N

= Ne1

Nπ1N

→ 0

since Lemma 4.1 ensures convergence of the denominator to 1 and Lemma 4.2 of
the numerator to 0. Similarly

Ne10 ≤ Ne1

π10
≤ Ne1

r−(0)/(r+(0) + r−(0))
→ 0

since π10 contains the positive probability (independent of N ) of an immediate
return to 0. �

For a reaction system and splitting with unit net changes only, since splitting
is unbiased we have pi,i+1 = pi,i−1 = 1

2 , for i �= 0,N , and the contribution to
r+(i) and r−(i) from splitting is 1

2γ (i,N). Let us write γ (i,N) = γ (N)pi where
γ (N) depends on N only (i.e., is state independent) and pi = O(1). Then, in any
state, the contribution of the splitting is of O(γ (N)), while the contribution of the
reaction system is of O(N) due to the standard scaling of reaction rates. Hence,
we have the following result.

THEOREM 4.1. If the reaction system has increments of size {1,−1} only;
contains reactions aA → (a − 1)A + B , bB → A + (b − 1)B some a, b > 0; has
rates with standard scaling κab

ζ (N) = κ̃ab
ζ N1−(a+b); and if the splitting mechanism

has increments of size {1,−1}, p0,0 = pN,N = 1, with rate is γ (i,N) = γ (N)pi

where γ (N) and pi = O(1) satisfy

N

γ (N)

N−1∑
i=1

1

pi

→ 0,
1

γ (N)

N−1∑
i=1

i

pi

→ 0,
1

γ (N)

N−1∑
i=1

N − i

pi

→ 0;(38)

then the results of Proposition 4.2 apply with βN = 1 and r̃01 = ∑
(0,b,1)∈I κ̃0b

1 ,

r̃10 = ∑
(a,0,−1)∈I κ̃a0−1.



1262 J. K. MCSWEENEY AND L. POPOVIC

PROOF. The transition rates for XA are given by

r+(i) = 1

2
γ (N)pi + N

∑
(a,b,1)∈I

κ̃ab
1 (i/N)a,N(1 − i/N)b,N ,

i = 0, . . . ,N − 1,

r−(i) = 1

2
γ (N)pi + N

∑
(a,b,−1)∈I

κ̃ab−1(i/N)a,N(1 − i/N)b,N , i = 1, . . . ,N.

On the boundary the rates are

r+(0) = N
∑

(0,b,1)∈I
κ̃0b

1 , r−(N) = N
∑

(a,0,−1)∈I
κ̃a0−1,

and (33) holds with r̃+ = ∑
(0,b,1)∈I κ̃0b

1 , r̃− = ∑
(a,0,−1)∈I κ̃a0−1. Also,

εN(i) = (1/2)γ (N)pi + N
∑

(a,b,−1)∈I κ̃ab−1(i/N)a,N(1 − i/N)b,N

(1/2)γ (N)pi + N
∑

(a,b,1)∈I κ̃ab
1 (i/N)a,N(1 − i/N)b,N

− 1

=
(
N

( ∑
(a,b,1)∈I

κ̃ab−1(i/N)a,N(1 − i/N)b,N

− ∑
(a,b,1)∈I

κ̃ab
1 (i/N)a,N(1 − i/N)b,N

))

/(
(1/2)γ (N)pi + N

∑
(a,b,1)∈I

κ̃ab
1 (i/N)a,N(1 − i/N)b,N

)

≤ 2NR max(a,b,ζ )∈I κ̃ab
ζ

γ (N)pi

since κ̃ab
ζ ≥ 0, where R < ∞ is the number of reactions in the system. Therefore

N−1∑
i=1

∣∣εN(i)
∣∣ ≤ 2R max

(a,b,ζ )∈I
{
κ̃ab
ζ

} N

γ (N)

N−1∑
i=1

1

pi

,

and the first condition in (38) ensures that
∑N−1

i=1 |εN(i)| → 0 and (34) holds. On
the other hand,

N−1∑
i=1

i

r−(i)
=

N−1∑
i=1

i

(1/2)γ (N)pi + ∑
(a,b,−1)∈I κ̃ab−1(i/N)a−1(1 − i/N)b

≤ 2

γ (N)

N−1∑
i=1

i

pi
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and
N−1∑
i=1

N − i

r+(i)
≤ 2

γ (N)

N−1∑
i=1

N − i

pi

so the last two conditions in (38) ensure that (35) is satisfied as well. �

4.2. Example: Bistable behavior from fast splitting. We revisit the same ex-
ample of the reaction system we analyzed in Section 3.3:

A
κ10−1→ B,(39)

B
κ01

1→ A,(40)

A + B
κ11−1→ 2B,(41)

2A + B
κ21

1→ 3A(42)

with the standard mass-action scaling, κab
ζ = N−(a+b)+1κ̃ab

ζ . In this system the
only reactions which counteract the absorption on the boundaries are the first two
unimolecular reactions. Also, note that all system reactions change the molecular
count of A only by increments of size 1.

We chose the same simple splitting mechanism as before, since conditions (34),
(35) and (38) are much easier to verify than conditions (31), (32). Recall that, if we
were to assume γ (N) = 1

2ε2N2 for some small ε2 > 0, then the limiting process
for XN would be the diffusion process X̃ε in (28); the splitting noise is even less
present if we were to assume γ (N) = 1

2N , as shown in Section 3.3. In contrast,
if we assume the rate γ (N) grows fast enough so that N2 lnN/γ (N) → 0, then
we can show that the conditions in Proposition 4.2 are satisfied, and the behavior
of the limiting process for XN is described by a different two-state jump Markov
process.

There are only two reactions in (39)–(42) active on the boundaries, so r̃01 = κ̃01
1

and r̃10 = κ̃10−1. To verify (38), note that we have γ (i,N) = γ (N)pi with pi =
i
N

(1 − i
N

) = i(N − i)/N2, so

N

γ (N)

N−1∑
i=1

1

pi

= N3

γ (N)

N−1∑
i=1

1

i(N − i)
= N2

γ (N)

N−1∑
i=1

(
1

i
+ 1

N − i

)
= 2N2hN

γ (N)

using partial fractions 1
i(N−i)

= 1
N

(1
i
+ 1

(N−i)
), where hN is the N th harmonic sum.

Also

1

γ (N)

N−1∑
i=1

i

pi

= N2

γ (N)

N−1∑
i=1

1

N − i
= N2hN

γ (N)
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and

1

γ (N)

N−1∑
i=1

N − i

pi

= 1

γ (N)

N−1∑
i=1

1

i
= N2hN

γ (N)

as well. Hence, N2lnN/γ (N) → 0 ensures that all conditions in (38) hold.
This example shows that for any reaction system with unit increments whose

drift has a double well potential, and for this particular choice of the splitting
mechanism, we can identify orders of magnitude for γ (N) that lead to different
limiting behaviors:

• If γ (N) � N , bistability is caused by large deviations of the Markov jump
process, and the rescaled process transitions between neighborhoods of the drift

equilibirum points on a time-scale of order eN(γ (N))−1ıxi ,x2 , with N(γ (N))−1 → ∞.
• If γ (N) ∼ ε2N2, ε2 > 0 a constant, bistability is caused by large deviations of

a diffusion with a small perturbation coefficient, with transitions between neigh-

borhoods of the drift equilibirum points on a time-scale of order eε−2Ixi ,x2 .
• If γ (N) � N2 lnN , bistability is caused by excessive noise, and switching

between the boundary points occurs on a time-scale of order 1.
Note that the order of magnitude N2 only represents the scale on which we have

assumed that the variance of the splitting mechanism is in the diffusive case [see
assumption (7∗) in Section 2.2]. Also note that existence of two stable states in
the deterministic model for the reaction system is not needed for the result of this
section. We chose the same reaction system in order to make the comparison with
the results in Section 3 and emphasize the difference between the effects of “slow”
and “fast” splitting on the same reaction system.

Figure 3 shows an exact simulation of a sample path of the rescaled pro-
cess XN = N−1XA for a relatively short period of time, spending most of its

FIG. 3. Sample path XN(t) (left: x-axis = t , y-axis = XN(t) = N−1X(t) ⊂ [0,1]) of the system
(22)–(25) with (27) splitting, under standard mass-action scaling for reactions and γ (N) = 1

2N3

(parameter N = 200); and the distribution of switching times plotted (dots) in terms of quantiles
(right: x-axis = t , y-axis = fraction of switching times of length ≤ t). Solid line (1 − e−t ) indicates
the quantiles of the exponential (mean 1) distribution for comparison.
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time at boundaries {0} ∪ {1}, switching between them at approximately rates
r̃01 = κ̃01

1 = 1, r̃10 = κ̃10−1 = 1; see Section 3.3 for coefficient values. Switching be-
tween states occurs at a time-scale βN = 1, and since r̃01 = κ̃01

1 = 1, r̃10 = κ̃10−1 = 1
the distribution of switching times should approximately be an exponential distri-
bution (mean 1) distribution. This is shown in the quantile plot in Figure 3, where
the fraction of switching times of length ≤ t is plotted against the same fraction
1 − e−t for the exponential (mean 1) distribution.

5. Discussion. We showed that there are two different types of stochastic
bistable behavior in which the system spends most of its time at or near one of two
states and switches between them. For one of these types of bistability, because
the magnitude of noise is high, it can occur even in a system whose deterministic
model would not allow for a possibility of bistability at all. The detreministic sys-
tem can have unique stable points, as, for example, in the neutral Wright–Fisher
model with mutation. For the other type of bistability, where the noise is relatively
low, one needs the reaction system to have two deterministic stable points, as, for
example, in the Schlögl model. The important point is what constitutes “high” and
“low” levels of noise: the determining quantity εA(N) (11) depends on the relative
size in terms of N of the variance to the average change in the system, where N is
a scaling parameter for the size of the system. We referred to εA(N) ≈ 0 as “slow”
splitting, and to εA(N) ≈ ∞ as “fast” splitting, interpreted relative to the reaction
dynamics.

We discussed the differences in the qualitative signatures of bistability in the
two cases:

• In case of “slow” splitting, the states where the process spends most of its time
are determined by the drift of the deterministic model for the reaction system;
in contrast, in case of “fast” splitting, they are simply the two extremes for the
size of the system.

• In case of “slow” splitting, the rate of switching is determined by the relative
magnitude of the splitting variance to the reaction drift and by the size of the
potential barrier in the deterministic model for the system; on the other hand,
in case of “fast” splitting, the rates of switching are determined only by the
standardized rates of the reactions that are realizable from one of the extremes
for the system size.

• In case of “slow” splitting, the time-scale βε or βεN
on which the switching

happens is exponential in (some increasing function of) the size of the system;
in contrast, in case of “fast” splitting, the time-scale βN is at most polynomial.

We also showed that the observables of bistability (switching states and rates)
are not sensitive to precise specification of the reaction system, as they depend
only on: equilibrium points, size of potential barrier in “slow” splitting, and drift
values at boundaries in “fast” splitting. However, bistability is very sensitive to
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the distributional form of the splitting/resampling mechanism: the variance of its
distribution determines the potential barrier in “slow” splitting, and the harmonic
sum of its transition probabilities determines the threshold for appearance of “fast”
splitting.

In the context of cellular systems of biochemical reactions, the problem of de-
termining the partitioning errors due to cell division is experimentally extremely
challenging (Huh and Paulsson [14, 15]). The measurements for single cells rely
on count estimates for related species rather than the molecular species of inter-
est. In addition, in order to estimate the magnitude of intracellular noise, one has
to separate the intrinsic from the extrinsic sources of randomness. How random
is cell division, and how it compares in magnitude to the biochemical noise is a
question that is very much open. However, since our analysis only depends on a
few general features of the splitting mechanism (unbiasedness and time-scale of
the rate), it is also possible that stochastic bistability is achieved by a set of auxil-
iary reactions, instead of splitting, acting on a different time-scale from the rest of
the system. For example, the protein bursting mechanism may act as the driver of
stochastic bistability (Zong et al. [29], Kaufman et al. [17]).

One can try to rely on the qualitative signatures of bistability in order to assess
which of the two types of bistability we discussed is relevant in a specific cellular
biochemical systems. When the switching times are orders of magnitude greater
than the molecular count of the switching species, as in the lysogenic switch of
E. coli, the “slow” splitting may be the more likely mechanism. This evaluation
is sensitive to the choice of time units, given which both the splitting and reac-
tion rates should be of reasonable orders of magnitude in terms of the molecular
count. It is natural to chose units of time corresponding to cell-doubling or cell-
division time (the splitting rate is then of order 1—and the range of splitting rates
in our model, in any of the different cases, is at most linear). In an experimen-
tal analysis of this system, Zong et al. [29] observed that the switching times of
the cell are exponential in the number of protein burst events, and correspond to
a calculation of the rare event probability of the bursts, as can be interpreted by
large deviations in our “low” auxiliary noise (“slow” splitting) type of bistability.
In contrast, when the switching times are relatively short, as in the gene expression
switch in S. cerevisiae, the “fast” splitting is the probable mechanism. In the en-
gineered chemical reaction network version of this system, Kaufmann et al. [17]
show that increasing the protein burst size (increasing the auxiliary noise) leads to
more highly correlated switching behavior in different cell lineages, as could be
inferred from properties of our “high” auxiliary noise (“fast” splitting) bistability
type.
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