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SIMULATION OF BSDES BY WIENER CHAOS EXPANSION

BY PHILIPPE BRIAND AND CELINE LABART

Université de Savoie

We present an algorithm to solve BSDEs based on Wiener chaos expan-
sion and Picard’s iterations. We get a forward scheme where the conditional
expectations are easily computed thanks to chaos decomposition formulas.
We use the Malliavin derivative to compute Z. Concerning the error, we de-
rive explicit bounds with respect to the number of chaos and the discretization
time step. We also present numerical experiments. We obtain very encourag-
ing results in terms of speed and accuracy.

1. Introduction. In this paper, we are interested in the numerical approxima-
tion of solutions (Y, Z) to backward stochastic differential equations (BSDEs for
short in the sequel). BSDEs were introduced by Bismut in [5] in the linear case,
whereas the nonlinear case was considered later by Pardoux and Peng in [21].
A BSDE is an equation of the following form:

T T
(L.1) Yt=s+/ f(s,Ys,zs)ds—/ Z-dB,, 0<i<T,
t t

where B is a d-dimensional standard Brownian motion, the terminal condition
& is a real-valued Fr-measurable random variable where {F;}o<;<r stands for
the augmented filtration of the Brownian motion B and the generator f is a map
from [0, T] x R x R? into R. A solution to this equation is a pair of processes
{(Y:, Z;)}o<i<r Which is required to be adapted to the filtration {F; }o<;<7. We will
assume the conditions of Pardoux and Peng to ensure existence and uniqueness of
solutions.

Our main objective in this study is the numerical approximation of the solution
(Y, Z) to BSDE (1.1) (even though there exists a large literature on this subject).
The first two contributions to this topic are due to Chevance [9], who considered
generators independent of Z and Bally [1], who used a random time mesh. Ma
and Yong [18] proposed numerical schemes based on the link between Markovian
BSDEs and semilinear partial differential equations (PDEs). Another approach,
based on Donsker’s theorem and close to [9], was proposed by Coquet, Mackevi-
cius and Mémin [10] in the case of a generator f independent of Z; the general
case was treated by Briand, Delyon and Mémin in [7], who later extended it to a
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more general framework [8], including the case of a “stepwise constant Brownian
motion.” This extension led to the formulas

Y, =EYun|F) +hf . Y, Z0),  Zy=h "E(Y,4n(Bisn — B Fr)

known as the dynamic programming algorithm. Even though the convergence was
proved in the case of path-dependent terminal condition &, the rate of convergence
was left as an open question in [8]. This problem was solved by Zhang [23] and
Bouchard and Touzi [6] in the case of Markovian BSDE, namely in the case of a
terminal condition £ = g(X7) where X is the solution to a stochastic differential
equation; in [23], the author considers the path-dependent case as well. Their result
was generalized by Gobet and Labart [13] and also by Gobet and Makhlouf [16].

From a numerical point of view, the main difficulty in solving BSDEs is to effi-
ciently compute conditional expectations. Several approaches have been proposed
using various tools: the Malliavin calculus [6], regression methods [15, 17] and
quantization technics [2].

Finally, let us mention that there exist some works dealing with the discretiza-
tion of solutions to BSDEs in a more general framework: forward—backward
SDEs [11] and quadratic BSDEs [22].

Let us now describe briefly the main points of our approach in the case of a
real-valued Brownian motion. Already used in several quoted papers (see also [3,
4, 14]), our starting point is the use of Picard’s iterations, (YO, ZO) = (0, 0) and for
g €N,

T
it =g+/ fls, ¥4, 29)ds — f Zat'.dB,,  0<i<T.
t
It is well known that the sequence (Y9, Z7) converges exponentially fast toward
the solution (Y, Z) to BSDE (1.1). We write this Picard scheme in a forward way,

T t
i =B(s+ [ s v znaslFm) - [ re vz as,
0 0

T
Z?+‘:D,Y,q+‘:D,E(g+/O f(s.vq, 29 ds’]—',),

where D, X stands for the Malliavin derivative of the random variable X.
In order to compute the previous conditional expectation, we use a Wiener chaos
expansion of the random variable

s Ly

Fq—S—i-/ f(s. Y4, Z9)ds.

More precisely, we use the following orthogonal decomposition of the random
variable F7:

FI=E[F]+) > di [[Kn (f g,<s)st),

k>1|n|=k i>1
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where K; denotes the Hermite polynomial of degree /, (g;);>1 is an orthonormal
basis of L?(0, T) and, if n = (ni)i>1 is a sequence of integers, [n| = ;> n;.
(d})k=1,1n)=k 1s the sequence of coefficients ensuing from the decomposition of
F4. Of course, from a practical point of view, we only keep a finite number of
terms in this expansion:

e we work with a finite number of chaos, p;
e we choose a finite number of functions g1, ..., gn.

This leads to the following approximation with n = (ny,...,nyN):

FI~E[FIl+ Y > 4 [] Knl.</0Tg,-(s)st).

1<k<p|n|=k 1<i<N

One of the key points in using such a decomposition is that, for choices of simple
functions g1, ..., gn, there exist explicit formulas for both

(1.2) E(F|F) and Zz!*'=DE(FI|F);

this plays a crucial role in our algorithm. Using these formulas and starting from
M trajectories of the underlying Brownian motion, we are able to construct M
trajectories of the solution (Y, Z) to the BSDE.

In the following, the functions g; are chosen as step functions:

_ T
gi=1y 70/ Vh,  i=1,...,N, wheref; :=ih,h= 5

and the previous formulas are really simple; see (2.8)—(2.9) and Proposition 2.7.
Eventually, the main advantage of this method is that only one decomposition
has to be computed per Picard iteration: the decomposition of F4. Therein lies
the main difference between our approach and the approach based on regression
technique developed by Bender and Denk in [3]. In their paper, for a given Pi-
card iteration ¢ and for each time # of the mesh grid, two projections have to
be computed, one for Yt(i’ and one for ZZ. The second difference comes from
the way of computing Z7. In our method, once the decomposition of F? is
computed, Z9 is given explicitly as the Malliavin derivative of Y?. Let us also
point out that our algorithm can handle fully path dependent terminal condi-
tions.

The rest of the paper is organized as follows. Section 2 contains the notation
and the preliminary results, Section 3 describes precisely the algorithm, Section 4
is devoted to the study of the convergence of the algorithm and finally Section 5
contains some numerical experiments. Some technical proofs are postponed to the
Appendix.



1132 P. BRIAND AND C. LABART
2. Preliminaries.

2.1. Definitions and notation. Given a probability space (2, F, P) and an R?-
valued Brownian motion B, we consider:

e {(F);t €[0, T]}, the filtration generated by the Brownian motion B and aug-
mented.

o L7 (Fr):=LP(Q2, Fr,P), p € N*, the space of all Fr-measurable random vari-
ables (r.v. in the following) X : Q — R4 satisfying ||X||£ =E(X|?) < o0.

e E;(X) denotes E(X|F;) for any X in L' (F7).

° S‘;(Rd), p € N, p > 2, the space of all cadlag predictable processes ¢ : 2 X
[0, T]+—> R< such that ||¢)||§,, = E(sup;¢jo.1719:17) < o0.

° H? (RY), p e N, p > 2, the space of all predictable processes ¢ : Q x [0, T'] —>
R? such that |||, = i |7 dt < oc.

T

e L2(0,7), the space of all square integrable functions on [0, T'].

e CK! the set of continuously differentiable functions ¢ : (¢, x) € [0, T] x R¢ with
continuous derivatives w.r.t. ¢ (resp., w.r.t. x) up to order k (resp., up to order /).

° Clg’l, the set of continuously differentiable functions ¢ : (¢, x) € [0, T'] x R4 with
continuous and uniformly bounded derivatives w.r.t. ¢ (resp., w.r.t. x) up to or-
der k (resp., up to order /). The function ¢ is also bounded.

° ||85’p f ||go, the norm of the derivatives of f ([0, T'] x R R) w.rt. all the space
variables x which sum equals j: [|3g, f |3, = k=) ||8)]fl1 ---Bffl’fﬂgo, where
k| =ki + -+ kq.

. C;O, the set of smooth functions f:R" —— R with partial derivatives of poly-

nomial growth.

G, -) IIﬁp, p €N, p > 2, the norm on the space S’;(R) X H’T7 (R?) defined by

T
2.1) . D), = E(tes[lépT]W,Ip) +f0 E(1Z|7)dr.

We also recall some useful definitions related to Malliavin calculus. We use the
notation of [19].

e S denotes the class of random variables of the form F = f(W (hy), ..., W (hy)),
where f € CX(R"*4 R), forall j <n hj=(h},....h%) € L*([0, T]; RY) and

foralli <d Wi(h') = [§ h'.(t)dW].
e "2 denotes the closure of S w.r.t. the following norm on S

r T T
2
IFI3,2 :=EIFF+Y. " E(/O /O DG, i F] dtl---dtq),

q=llal1=q

where « is a multi-index (ay,...,aq) €{l,...,d}? |a| := Ziq:] o =q, and
D represents the multi-index Malliavin derivative operator. We recall D2 =
o0 ]D)r,Z
r=1 :
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REMARK 2.1. When d = 1, |F|2, = EIF? + Y, E(fy -

Jo 1D FPdn-edig) =EIFP 4 X IDDFIZ 6 0

Letm € N* and j € N, j > 2. We also introduce the following notation:

e D"™J denotes the space of all Fr-measurable r.v. such that
IFllp = 22 > suwp E[D] ,F|']<occ.
l<l<m |a|y=11==0

where sup, _..., means sup, ). <..<y- .
e S™J denotes the space of all couple of processes (Y, Z) belonging to SJT (R) x
HJ.(R?) and such that

[, = > > swp (DY _,Y.DE 2 <

<.
l<l<m |a|;=11= fl

We recall

Dl = % % s[5 s 0]

<<
I<l<m |a|y=1 1="=0

We also denote §™°° :=( >, SmJ,
2.2. Wiener chaos expansion.

2.2.1. Notation and useful results. We refer to [19] for more details on this
section. Let us briefly recall the Wiener chaos expansion in the simple case of a
real-valued Brownian motion. It is well known that every random variable F €
L2(Fr) has an expansion of the following form:

T
F =E[F] +f0 u1(s1)dBy,

T rso
2.2) +/(; /0 uz(s2,81)dBs, dBg, + - - -

T rsn 52
+/ / / un(sna---asl)stl"'stn+“"
0 0 0

where the functions (u,, n > 1) are deterministic functions. There is an ambiguity
for the definition of these functions u,. We adopt in this paper the following point
of view: the function u, is defined on the simplex

Sp(T):={(s1,...,80) €[0,TT":0<s1 <---<s, <T}.



1134 P. BRIAND AND C. LABART

We define the iterated integral for a deterministic function f € L%(S,(T)) as

Ju(f) :=f0T/OS"---/OSZf(sn,...,sl)stl-..st”.

Due to the It isometry, [J,())I* = IIfIf, 1265,y d El(f)In(g)] =
Sum (f, &) L2(S,(T))" Then ||F||2 2 n>0 ””””L2($ (T))”

DEFINITION. Let F be a random variable in L2(Fr) whose chaos expansion
is given by (2.2). We introduce:

e P,(F):= J,(u,) the Wiener chaos of order n of F.
o Cp(F):=3_,<, Pu(F) the chaos decomposition of F" up to order p, that is,

T T pso
C,(F) =E[F] + fo ui(s1)d By, + /O fo us(s2, 51 d By, dBs,

T psp 52
+---+f0/0 /O Up(p,...,51)dBy, ---dBs,.

We state two lemmas useful for the sequel.

(2.3)

LEMMA 2.2 (Nualart). F € D™2 if and only if ||D’”F||L2(QX[0 —
Yoasom+m—1) x---xnx E[| P, (F)|?] < co. In this case, we have

dotm—1)x- xnxE[|Pu(F)P] < I Flfns.

n>0
From Lemma 2.2, we deduce the following:

LEMMA 2.3. Let F € D™2. We have

(120 3 PR
F—C,(F
A SlE (p+m)---(p+1)°
PROOF.
k=p+1
= _ e 1 2
_kzip;rl(k-i_m b kx(k—i—m—l)..,kXEHPk(F)H

- 1
“(pt+m)---(p+1)

3 (k+m—1)---KkE[| Pe(F)[]. .

k>p+1

The following lemma gives some useful properties of the chaos decomposition.
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LEMMA 2.4.

o Let F bearv.inL*(Fr). Vp > 1,wehave E(|C) (F)|%) <E(|F?). If F belongs
to L/ (Fr),¥j >2,E(C,(F)/) < (1+ p(j — 1)”/2)’E(|F|’)

e Let H bein HZT(R). We have Cp(fo Hyds) = fo Cp(Hy)ds.

e Forall F € D'2 and forallt <r, D;E,[C,(F)] =E,[Cp_1 (D, F)].

The first result ensues from the fact that for j > 2 || P,(F)||; < (j — 1)”/2||F||j;
see [19], page 63.

2.2.2. Wiener chaos expansion and Hermite polynomials. Another approach
to Wiener chaos expansion uses Hermite polynomials. This approach can be eas-
ily generalized when considering d-dimensional Brownian motions, and so this is
the one we consider in the following. We present it for d = 1. Let {g;};>1 be an
orthonormal basis of L2(0, 7). The Wiener chaos of order n, P,(F), is the L?-
closure of the vector field spanned by

{l_[\/ntK (/ gl(s)dB) |(I’l )l>1| —an—n}
i>1
where K, is the Hermite polynomial of order n defined by the expansion
Xl t /2 Z K (x)t
n>0

with the convention K_; = 0. With this normalization, we have K, (x) = K,_(x)
for any integer n. It is well known that (K, ), >0 is a sequence of orthogonal poly-
nomials in L?(R, i), where p denotes the reduced centered Gaussian measure.
Moreover, we have

[ Kiman =
R

Every square integrable random variable F, measurable with respect to Jr,
admits the following orthogonal decomposition:

(2.4) F=do+Y_ > di[]Kn (/ g,(s)dBv),

k>1lnj=k  i>1

where n = (n;);>1 is a sequence of positive integers, and where |n| stands for
>_i>1 1i- Taking into account the normalization of the Hermite polynomials we
use, we get

T
=E[F], d,’j:n!E[Fanni</ g,-(s)st)},
i>1 0

where n! = [];> n;!. Before describing the chaos decomposition formulas we use
in the algorithm, we give a lemma useful in the sequel.
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LEMMA 2.5. Let g € L%(0,T), and let U; = fé gz(s)ds. For n e N, let us
define

t
M = UK, (B(9)/VTr).  B(g) = fo ¢(s)dB.

Then {M]'}o<;<T is a martingale and

dM" = g(t)M" ' dB.

2.3. Chaos decomposition formulas. These formulas are based on the decom-
position (2.4). To get tractable formulas, we consider a finite number of chaos
and a finite number of functions (g1, ..., gn). The (g;)1<i<n functions are chosen
such that we can quickly compute E(F|F;) and D,E(F|F;) [as required in (1.2)].
We develop in this section the case d = 1, and we refer to Section B.2 when d > 1.

The first step consists in considering a finite number of chaos. In order to ap-
proximate the random variable F, we consider its projection C,(F) onto the first
p chaos, namely

T
(2.5) Cp(F)=do+ ) Zd,’:]‘[Kn,-(f gi(s)st)-
\<k<plnj=k i1 0

Of course, we still have an infinite number of terms in the previous sum and the

second step consists in working with only the first N functions gy, ..., gy of an
orthonormal basis of L2(0, T).
Let us consider a regular mesh grid of N time steps 7 = {t; = i%, i=0,...,N}
and the N step functions
T
(2.6) gi =1y 710 /Vh, i=1,...,N, where j := —.
We complete these N functions g1, ..., gy into an orthonormal basis of L2 0,7,

(gi)i>1. For instance, one can consider the Haar basis on each interval (f;_1,;),
i=1,..., N. We implicitly assume that N > p. This leads to the following ap-
proximation:

T
(2.7) CY(Fy=do+ Y. > df [] Kni(/() gl-(s)st>,

1<k<p |n|=k 1<i<N

where n = (ny,...,ny) and |n| =ny + --- + ny. Due to the simplicity of the
functions g;, i =1, ..., N, we can compute explicitly
T By, — By,
/0 gi(s)dB; = G; where G; = T

Roughly speaking this means that Py, the kth chaos, is generated by
{Kn,(G1) -+ Kuy(Gn)ing+---+ny =k}.
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Thus the approximation we will use for the random variable F is

p
CY(F)=do+)_ Y diKuy(G1)--Kyy(Gn)
k=1 |n|=k

p
=do+Y_ > df [][ Kn(Gi),

k=l|n|=k 1<i<N

(2.8)

where the coefficients dy and dj are given by
2.9 do =E[F], d} =n'E[FK,,(G1)--- Kny(GN)].

The following lemma, similar to Lemma 2.4, gives some useful properties of
the operator C év .

LEMMA 2.6. Let F be arv.in L*(Fr) and H be in H3(R). Then:

e ¥(p,N) e (N2 E(C) (F)P) <E(C,(F)*) <E(IF?).
o CN(Jy Hyds)= [y CN(Hy)ds.
e Forallt <r, DiE/[C) (F)]=E/[C) (D F)].

From (2.8), we deduce the expressions of [E; (CéV F) and D;E; (C[’)’ (F)), useful
for the approximation of (Y, Z) by the chaos decomposition; see (1.2).

PROPOSITION 2.7. Let F be a real random variable in L*>(Fr), and let r be
an integerin {1,..., N}. Forallt,_| <t <t,, we have

p
E(C)F)=do+Y_ > d'[]Kn(G)

k=1 |n(r)|=k i<r

(r —fr_l)"f/z (Bz - Bzrl)
X Kn, >
h VE—1tr_1

p
DE,CY(F)=h""2%" > @[] Kn (G
k=1 |n(r)|=k i<r
n>0

y (f —Er—l)(n’_l)/zK (Bz - Btr1>
r_l 7— 9
h TT\Vi—1,5

where, ifr <N andn = (ny,...,ny), n(r) stands for (ny, ...,n;).

The proof of Proposition 2.7 is postponed to Section B.1.
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REMARK 2.8. Fort =1, and r > 1, Proposition 2.7 leads to

E;, (C) F) d0+Z > d ] K (GO,

k=1|n(r)|=k i<r

14
D;}_E;V(CIIQVF) = h_l/z Z Z d]? 1_[ Kn[ (Gy) x Knr—l(Gr)-
k=1|n(r)|=k i<r
ny>0

When r =0, we get 7, (C;)V F) = dy, and we define D; 7, (CNF) —de1 [which
is the limit of D;IE; (C[]jv F) when ¢ tends to 0].

Let us end this subsection by some examples.

EXAMPLE 2.9 (Case p =2). From (2.8)-(2.9), we have

N j—1
i 2
CN(F)=do+ Zde’Kl(G )+ > Y d Ki(GHK(G)) + Zd “TK2(G)),
j=l1 j=li=1 j=1
where e; denotes the unit vector whose jth component is one, and ¢;; = e; + ¢;.
Forj=1,...,Nandi=1,...,j—1,itholds

d =E(FK\(G))), dy =E(FKi(G)K(G))),

26]

dy, = (FKZ(Gj)).
Remark 2.8 leads to

E;, do+Zde’K1(G )+ZZd€[lK1(Gi)K1(Gj)
j=li=1

2e;
+ Zdz "K2(G)),
j=1

r—1
D; E; (CYF) = 1/2(der +d> T K1(Gr) + Y d5T K (G ))
i=1

3. Description of the algorithm. The algorithm is based on four types of ap-
proximations: Picard’s iterations, a Wiener chaos expansion up to a finite order, the
truncation of an L2(0, T') basis in order to apply formulas of Proposition 2.7, and
a Monte Carlo method to approximate the coefficients dy and d;' defined in (2.9).
We present the first three steps of the approximation procedure in Section 3.1. The
Monte Carlo method and the practical implementation are presented in Section 3.2.
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3.1. Approximation procedure.

3.1.1. Picard’s iterations. The first step consists in approximating (Y, Z)—
the solution to (1.1)—by Picard’s sequence (Y7, Z%),, built as follows: (Y 0=
0,Z°=0) and forall ¢ > 1

T T
G v =g+ [ fovazds— [ zetaB,  0s=i<T.
t t

From (3.1), under the assumptions that & € D2 and f € Cg’l’l, We express
(Y4t za+1y as a function of the processes (Y4, Z%),

T
62 ¥ =B(e+ [ reviznas).  z =pyt,
t

which can also be written

Ytq—i_1 =LK, (f +/O

1 1
zI = p,y .

T t
po. v,z ds) - [ p(s. v, 28)ds.
(3.3) 0

As we recalled in the Introduction, the computation of the conditional expecta-
tion is the cornerstone in the numerical resolution of BSDEs. Chaos decomposition
formulas enable us to circumvent this problem.

3.1.2. Wiener Chaos expansion. Computing the chaos decomposition of the
rv. F =&+ f,T f s, Y& zhds [appearing in (3.2)] in order to compute Ytqul
is not judicious. F depends on ¢, and then the computation of Y4*! on the grid
T={t;= i%, i=0,..., N}wouldrequire N + 1 calls to the chaos decomposition
function. To build an efficient algorithm, we need to call the chaos decomposition
function as infrequently as possible, since each call is computationally demanding
and brings an approximation error due to the truncation and to the Monte Carlo
approximation (see next sections). Then we look for a r.v. 4 independent of ¢
such that Y,qul and Z?H can be expressed as functions of E,;(F?), D;E,;(F?) and
of Y4 and Z4. Equation (3.3) gives a more tractable expression of Y41, Let F4
be defined by F? :=& + [ f(s, Y, Z{)ds. Then

t
GB4) YT =E,/(F9) - / fls, Y9, z9)ds,  ZI™' = DR, (F9).
0
The second type of approximation consists of computing the chaos decomposi-

tion of F'¢ up to order p. Since F¢ does not depend on 7, the chaos decomposition
function C,, is called only once per Picard’s iteration.
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Let (Y?-?, Z9-P) denote the approximation of (Y4, Z7) built at step g using a
chaos decomposition with order p: (Y%7, Z%?) = (0, 0) and

t
VO < B (G, (PN = [ (s vEP Z0)ds,
0
(3.5) 1
ZITHP = DR, [C,(FP)],

where F9'P =& + fOT f(s,YP 717y ds. In the sequel, we also use the following
equality:

(3.6) ZITP =R, [D.C,(FTP)].

3.1.3. Truncation of the basis. The third type of approximation comes from
the truncation of the orthonormal L?(0, T') basis used in the definition of C p (2.5).
Instead of considering a basis of L?(0,7), we only keep the first N func-
tions (gg,...,gn) defined by (2.6) to build the chaos decomposition func-
tion C;,V (2.7). Proposition 2.7 gives us explicit formulas for E,(Cg F) and

D,Et(CII,VF). From (3.5), we build ((Yq’P’N, Zq’P’N)q in the following way:
((YO-r-N_ 70r:Ny = (0,0) and

t
v N =g, (N (FerN)) _/0 s, xr, zgr ) ds,

(3.7)
zg+h N = D, (E(C) (F9-P-N))),

where F4-P-N .= ¢ —i—foT f(s, YN 78PNy g,
Equation (3.7) is tractable as soon as we know closed formulas for the
coefficients d; of the chaos decomposition of IE,(CII,V (F9PNy)  and

D; (Et(CQJ (F4-P-N))); see Proposition 2.7. When it is not the case, we need to
use a Monte Carlo method to approximate these coefficients. The next section is
devoted to this method and to the practical implementation. In particular, we give
the pseudo-code of the algorithm.

3.2. Implementation. In this section, we first explain how to practically com-
pute the chaos decomposition C;V (F) of ar.v. F. Then we give the pseudo-code of
the algorithm.

3.2.1. Monte Carlo simulations of the chaos decomposition. Let F denote a
r.v. of L2(Fr). Practically, when we are not able to compute exactly dy and/or
the coefficients d}/ of the chaos decomposition (2.8)-(2.9) of F, we use Monte
Carlo simulations to approximate them. Let (F"*)1<n<p be a M i.i.d. sample of
F and (G7,...,G)1<m<m be a M ii.d. sample of (Gi,...,Gy). We recall
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that dy and the coefficients (d}/)1<k<p,jnj=k are given by dy = E[F] and d}} =
n'E[FK, (G1)---Kuy(Gpy)]; see (2.9). Then they are solutions of

(3.8) argmin  E[|F — v (c, G)[*],

e=(co, (c})1<k<p,|n|=k)

where ¥ :(c,G) —> co + Z,le > inj=k €t [Ti<i<n Kn; (Gi). We propose two
methods to approximate d := (do, (d})1<k<p,|n|=k):

e the first one consists in approximating the expectations of (2.9) by empirical
means dM = (do, dk | <k<p.jn= _i) Where

~ . ~ ¥
(B9  do:=— Y F",  di:=— " F"K,(G])-- Ky (GR);
Mm:l Mm_l

e the second one is based on a sample average approximation

. . 1 Z
dy := (do, dl’cllgkgp,|n|=k) = argmin  — Y |F" —y(c, Gm)|2.

€0, () 1<k<p,In|=k

REMARK 3.1. In terms of computation time, the first method is much faster
than the second one.

e The first method requires O (M x p) computations per coefficient. Since we are
looking for O (N?) coefficients, its computational costis O(M x p x NP).

. The second method requires O(M x p x NP) computations to evaluate
M Z 1 |1F™ — ¥ (c, G™)|? (in fact, it requires the same number of compu-
tations as the first method, since the function ¥ contains as many additions as
coefficients, and each addition contains as many products as the associated co-
efficient). We still have to compute the argmin, the computational cost of which
depends on the method we use.

From a theoretical point of view, the second method gives better convergence
results than the first one. For the first method, we only know that dm converges
to d a.s. Concerning the second method, we know that dy converges to d a.s., and
under regularity assumptions on i, the uniform strong law of large numbers gives
the a.s. convergence of % ,A,:I:l |F™ — v (dym, G™)|? to E[|F — v (d, G)|?]

In the following, Ci,v M (F) denotes the approximation of the chaos decomposi-
tion of order p of F when using the first method to approximate the coefficients d;’:

p —_
(3.10) CYMFy=do+Y. > df [] Kn(G).

k=1 |n|=k 1<i<N
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E, (C;,V M(F)yand D, (E, (C;,V M (F))) denote the conditional expectations obtained
in Proposition 2.7 when (do, d})1<k<p,jn|=k are replaced by (6/16, le)lfkfmmzk,

p
E(CYMF):=do+Y. Y df[]Kn(G)
k=1|n(r)|=k i<r

(r—fr_l)"r/z (Bz—Bf,.l)
X K | —=).
h Vit —1tr-
p
DE,(CYM(F):=h7123" N di [ Ku (Gi)
k=1 |n(r)|=k i<r
n->0

o <l‘ —Er—l)(n"_l)/zl( (Bt - Bzr_1>
17—
h T\VE=1,5

REMARK 3.2. When M samples of CII,V M(F) are needed, we can either

use the same samples as the ones used to compute c’lz) and Zi? : ((?pﬁ (F)" =
do+ py > inj=k gz [Ti<i<n Kn; (G}"), or use new ones. In the/ﬁ\rst case, we only
require M samples of F and (Gy, ..., Gy). The coefficients d;’ and dj are not
independent of [[;; <y Ky; (G]"). The notation [, (C[])\’ M(Fy) introduc;c\d above
cannot be linked to IE(CIJ,V M F|F,). In the second case, the coefficients d; and c’lz)
are independent of [, ;< Ky, (G"), and we have IE,(CIIJV’MF) = E(Cg’MFl}',).
This second approach requires 2M samples of F and (Gq, ..., Gy), and its vari-
ance increases with N. Practically, we use the first technique.

We introduce the processes (Y¢+1.7-N-M  za+1.p.N.My "\which is useful in the
following. It corresponds to the approximation of (Y+1:7-N  z4+1.P-Ny when we
use C ;,V ‘M instead of C 2’ , that is, when we use a Monte Carlo procedure to compute
the coefficients dj’.

t
A g (e M ) — [ (g ) ds, 2

(3.11) N N
= Dy(E(C) M (FPNMY),

where F4-PNM .— g 4 [T 8PN My gs and 627" M = (5, v2PNM,
q,p.N.M
VA ).

3.2.2. Pseudo-code of the algorithm. In this section, we describe in details
the algorithm. We aim at computing M trajectories of an approximation of (Y, Z)
on the grid 7 = {f; =i%,i =0,..., N}. Starting from (Y%r-N-M Zz0.p.N.M) —
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(0,0), (3.11) enables to get (Y?-P-N-M 7a.p.N.My £51 each of Picard’s iterations

g on T . Practically, we discretize the integral fé f ®&r ’N’M)ds which leads to

approximated values of (Y4:7-N-M 74.p.N.My computed on a grid.

v4+1,p,N.M —q+1,p,N.M v0.p.N.M
Y;]A p , Z?, p p
1 1

Let us introduce ( )i<i<n, defined by (Y ,

70,17’N’M) =(0,0) and for all g >0

i
?;]iJrl,p,N,M =E;i (CIIY’M(fq,p,N,M)) —h Z f(;j,y;]j,p,N,M’i;]j,p,N,M)’

j=1

(3.12) —=q+1,p,N.M —q,p,N,.M
zi " = Dy g (€M (FTTTT),

where FOPNM . E+hYN, f(;iv??,-’

we use in the algorithm:

p.N.M p.N.M

,7?1_ ’ ). Here is the notation
d: dimension of the Brownian motion;

q: index of Picard’s iteration;

K;;: number of Picard’s iterations;

M : number of Monte Carlo samples;

N: number of time steps used for the discretization of Y and Z;

p: order of the chaos decomposition;

Y? € Mp41,.m(R) represents M paths of yorNM computed on the grid 7;

forall I € {1,...,d}, (Z9); € My+1,m(R) represents M paths of (Z**"""
computed on the grid 7.

)i

Since & € L?>(Fr), £ can be written as a measurable function of the Brownian

path. Then one gets one sample of & from one sample of (G, ..., Gy) (where G;
B;. —B:,
represents ”7}:"1).

For the sake of clarity, we detail the algorithm for d = 1.
Let us now deal with the complexity of the algorithm:
For each g:

e the computation of the vector F¢ (loop line 5) requires O (M x N) computa-
tions;

e the computation of the vector d (line 8) requires O (M x p x (N x d)P) compu-
tations [in dimension d we have O ((N x d)?) coefficients, and the computation
of each coefficient requires O (M x p) computations (see Remark 3.1)];

e for each N and M (lines 10-11):

— the computation of (E;j (C;V’MF‘?))'" and of (Dé,» (E;j (CLV’MFq)))Tng
(line 12) requires O(d x p x (N x d)”) computations

— the computation of (Y9th j,m (loop line 13) requires O(N) computations
and the computation of ((Z4 +1)lj,m)1§l§d requires O (d) computations.

The complexity of the algorithm is then O(K;; x M x p x (N x d)I’H).
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Algorithm 1 Iterative algorithm
1: Pick at random N x M values of standard Gaussian r.v. stored in G.
2: Using G, compute (§™)o<m<m—1-
3: Y'=0,Z2=0.
4: forg=0:K;; —1do
5: form=0:M —1do
6: Compute (FO)" =§&" +h Yo/L £, (YDims (Z9)im)
7: end for .
8 Compute the vector d = (cTO, (d})1<k<p,n|=k) of the chaos decomposition
of F4
9 doi= g7 T) (FOY", d = 5 S0 (FIY" Ky (G- Ky (G3)
10: for j=1:N do

11: form=0:M —1do

12: Compute (E7, (clf,V M payym, (D5, (B, (clfjv M payyym

13: (YO = (Ez, (Cf,V’MFq))m —h Y fE (YD) i, (Z9)im)
14: (Z9Y) j = (Dy, (B, CY-M FO))™

15: end for

16: end for

17: end for . .

18: Return (YXir)g . = dy and (ZKit)g . = ﬁdf‘

4. Convergence results. We aim at bounding the error between (Y, Z)—the
solution of (1.1)—and (Y?-P-N-M ' 74.P.N.MY defined by (3.11). Before stating the
main result of the paper, we introduce some hypotheses.

In the following, (#1, ..., ;) and (s1, ..., S,) denote two vectors such that

O<t1 < <t <T,0<s1<---<s, <T and Vi, s; <t.

HYPOTHESIS 4.1 (Hypothesis H,,). Let m € N*. We say that F satisfies Hy-
pothesis H,, if F satisfies the two following hypotheses:

o H\:Vj=2FeD™ thatis, || Fl}, ; < oo
° ’H,zn:Vj22,Vi e{l,....mh,Vip<i—1,Vl; <m—1i,Vle{l,...,d} and for
all multi-indices ag and oy such that |ag| = lg and |a1| =11 + 1, there exist two
positive constants Br and le such that
sup sup EHD?;?...,UO (Dtoi{,lsiJrlsm,SiHl F— Dgilwn;siﬂl F)|J]

1SSty Sip1 S S8iq
F,: '
<kf ()@ —s1)7PF

where | =1y + 11 + 1. In the following, we denote an (J) = sup;<;, le .
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REMARK 4.2. If F satisfies H,zn, for all multi-index « such that || =1, we
have

4.1) |E(DY

¢ o) =ED P <K (= s)PF 4+ — )P,

.....

where K lF is a constant.

HYPOTHESIS 4.3 (Hypothesis H;,N). Let (p, N) € N>. We say that an r.v. F
satisfies 7—[;’ N if

P N
Vpn(F):=V(F)+ Y > n!V(F I Kn,.(G,-)) < 0.

k=1 |n|=k i=1

REMARK 4.4. If F is bounded by K, we get V, v(F) < K2Y"0_, (]Z) Then
every bounded r.v. satisfies 7-[31’7, N

This remark ensues from E(HlN:1 K,%l_ (G)) = L.

n!

REMARK 4.5. Let X be the R"-valued process solution of
t t

X; =x—|-/ b(s,Xs)ds—i-f o(s, X;)dBsy,
0 0

where B is a d-dimensional Brownian motion and b:[0, 7] x R" — R”" and
0:[0,T] x R" - R™ are two C%” functions uniformly Lipschitz w.r.t. x
and Holder continuous of parameter % w.r.t. £, with linear growth in x and with

bounded derivatives. Then, every random variable & of type g(X ) or g( fOT X, ds)
with g:R" — R in C}° satisfies H,, and H;N, for all p and N.

We refer to Section A.1 for the proof of Remark 4.5.

THEOREM 4.6. Let k be an integer s.t. k < p. Assume that § satisfies Hp14
and H;’N and f € Cg’p+q_1’p+q_l. We have

I(y = yorat, z - oo,

Ao | Ai(g.k) (T >2ﬁf“ A3(g, p, N)

A SRy — AL LR Rty
_2q+( +1)k+ (q.p) + VI

where Ay is given in Section 4.1, A1 is given in Proposition 4.11, A is given in
Proposition 4.15, and As is given in Proposition 4.17.

If f e C,? 0% and & satisfies Hoo and ’Hoo o> We get

lim lim lim hm ||(Y yerNM 7 quNM)” »=0.
q—> 0 pPp—>ON->c0M
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REMARK 4.7. If f is a path-dependent generator, Theorem 4.6 still holds
true under the following hypotheses: VI < p, Vj > 2, for all multi-index « in
{1,...,d+1} (d is the dimension of the Brownian motion) s.t. a(i) = d + 1 means
that the Malliavin derivative w.r.t. ; concerns the path-dependent component, and
we assume

T .
| ElDg £, ve. 28] ds < oo,
[ E(D;

T .
/0 E[|DZ _, f(s,Y9P, Z47)/ds < 00 and
[E(DF . 1q.p) —E(DS 5 1q.p)]
< K" ((ty = s1)Plar 4 -4 (1 — sp)Par),

I .
where I, , = fOT f©®*"ydr,and K,"" and B1, , are two positive constants.

REMARK 4.8. Given the complexity Cq of the algorithm (and a given value
of d), we can choose the parameters p, g, N and M such that they minimize the
error % + '?;Efl’fp) + As(q, p)(%)“ + w, where a :=2p¢ A 1. This boilds

down to solving the following constrained minimization problem:

_l’_

o 2 oy TNe T M

( 1 c1 ol C‘fNP>
q,p,N,M s.t. gpMNP+1=C, .

The Karush—-Kuhn—Tucker theorem gives M ~ %P( p+ 1) pp? /a, N~ (p+t
nela, g ~ —lnéc)pln(p + 1) and p such that (p + 1)2P0+P/D p31n(p + 1) ~
alog(2C)Cy.

PROOF OF THEOREM 4.6. We split the error into 4 terms:

(1) Picard’s iterations. £ = ||(Y — Y4, Z — Z‘1)||iz, where (Y4, Z7) is defined
by (3.1);

(2) the truncation of the chaos decomposition. £97 = ||(Y4 — Y9-P, Z9 —
Z‘I*P)||]2}, where (Y9, Z4-P) is defined by (3.5);

(3) the truncation of the L?(0, T) basis. 9PN = ||(Y9P — YO PN 74P —
zePNy|12,, where (Y4-P-N, 74:P-N) is defined by (3.7);

(4) the Monte Carlo approximation to compute the expectations. £7-7N-M =
l(ye-r-N—yar-N-M_ 740N _ 74.p.NMy 2, where (Y4-7-N-M, 74.p-N.M) s de-
fined by (3.11).
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We have
(v —yor VM 7 _ Zq,p,N,M)Hi2 <4(E9 4 EDP 4 £1PN 4 ga PN My

It remains to combine (4.2), Propositions 4.11, 4.15 and 4.17 to get the first result.
O

4.1. Picard’s iterations. 'The first type of error has already been studied in [20]
and [12], and we only recall the main result.
HYPOTHESIS 4.9. We assume:

o the generator f:RT x R x RY — R is Lipschitz continuous: there exists a
constant L ¢ such that for all t € RY,yi,weRandzi,z0 € R4

|f @, y1.20) = £, 32, 2)| < Lp(Iy1 = y2l + |21 = 221);
o EIIEP + fg 1f(s,0,0)*ds] < oo.
From [12], Corollary 2.1, we know that under Hypothesis 4.9, the sequence

(Y4, 29), defined by (3.1) converges to (¥, Z) dPP x dt as. and in SZT(]R) X
H2T (R%). Moreover, we have

o
&

where Ao depends on T, ||£]|? and on || £ (-, 0, 0)”12}
©.7)

4.2) E1:=|(Y - Y, Z~ 29|}

4.2. Error due to the truncation of the chaos decomposition. We assume that
the integrals are computed exactly, as well as expectations. The error is only due
to the truncation of the chaos decomposition C), introduced in (2.3).

For the sequel, we also need the following lemma. We postpone its proof to the
Appendix A.2.

LEMMA 4.10. Assume that & satisfies 7-[,1"+q and f € Cl(,)’erq_l’mﬂ_l. Then

Vq' <q,V¥peN, (Yq/, Zq/) and (Yq/’p, Z‘]/’p) belong to 8™ °°. Moreover

[,z 5, + 1?22 P) 5,

< CIE hmtq.mtg—nrmj» (108 F loo)kzmiqg—1)-

where C is a constant depending on |&llmiq,(m+g—1)/mn;j and on
(1105, f llooDk<mq1-
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PROPOSITION 4.11. Let m € N*. Assume that & satisfies 7-[m+q and f €
cy" I We recall 9P = || (Y9 — Y9P, Z9 — Z9P)|2,. We get

Ki(q,m)

4.3) EILP < CO\T(T + 1)LZETP + ,
: / (p+1)-(p+m)

where C\ is a scalar and K1(q, m) depends on T, m, |||l ntq.2(n+q—1)1/m—1)! and
on (”8 f||oo)1<k<m+q 1-
Since E9P =0, we deduce from (4.3) that £9°P < A1Gm) yhere A1(g,m) :=

(p+D)™
(C]T(T+1)L )i—1
TRy T P4 7p.4q q 74
C]T(T+1)L2 K1(q m). Then, (Y?4,7ZP9) converges to (Y9,Z1) when p

tends to o0 in ||( Il 2; see (2.1) for the definition of the norm.

REMARK 4.12.  We deduce from Proposition 4.11 that for all 7 and L 7, we
have lim,_, o €97 = 0. When C1T(T + 1)L§( < 1, that is, for 7' small enough,
we also get lim,_, o0 limy o E9°P = 0.

PROOF OF PROPOSITION 4.11. For the sake of clearness, we assume d = 1. In
the following, one notes AY,"” :=Y/"? — v/ AzZ!'" :=7]'" — 77 and Af? .=
f@. Y zZPPy — f@t, Y, Z]). First, we deal with E[supy, <7 Ay TP,
From (3.4) and (3.5) we get

t
AYITP ZE [Cp(FOP) — F1] — / AFIP ds
0
=E[Cp(§) —£]
T T
—HE;[Cp(f fs, YP Z2:P) ds) —/ f(s, Y2 ,Zq)ds}
0 0
t
—/ AfIPds.
0

We introduce +C,( fOT f (s, Yd 7 ds) in the second conditional expectation.
This leads to

AY,qH’p:]E,[Cp(S)— +Et[ (/ Af‘”’ds)}
T
+E,[/O C,(f (5. Y9, 29)) - f(s,Ys‘],Zq)ds]

t
- / AfIP ds,
0

where we have used the second property of Lemma 2.4 to rewrite the third term.
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From the previous equation, we bound E[supy,.7 |AYtq+1’p |2] by using
Doob’s inequality and the Lipschitz property of f
T 2
Cp</0 Afsq’pds> :|

T
+16T/0 E[C,(f (s, Y4, Z8)) — f(s, Y9, Z9)[*]ds

E[ sup [AY/ PP < 16E[|C,(6) — &1 + 16IE[
0<t<T

T
+ 8TL§/O E[|AYSP)? +|AZ8P P ds
To bound the second expectation of the previous inequality, we use the first prop-
erty of Lemma 2.4 and the Lispchitz property of f. Then we bring together this

term with the last one to get

E[ sup [AYTPP] < 16E[[C,(6) — €[]
0<t<T

T
(4.4) + 16Tf E[C,(f (5. Y9, Z9)) — f(s. Y9, 29) "] ds
+40TL> f [|AYEP) +|AazZE P[] ds

Let us now upper bound IE[fOT |AZ§I+1"D|2 ds]. To do so, we use the It6 isometry
ELf] 1Azt P2 ds1 = Bl AZITP dBy)?]. Using the definitions (3.4)—(3.6)
of Z;Hl and th—i-l,p and the Clark—Ocone theorem leads to

T

L, — , ,
| AZEP dB, = FI—E(F) = (C,(F ") = E(C,(F "))
_YqH—i—/ f(s, Y2, Z) ds

+1 +1, , R +1,
o (A (Y; P +f0 (s, YIP, Z8P)ds — Y{ ”).

Rearranging this summation makes AY;H”’ — (AY(‘)HI”’) appear. We get

d 2
E[/ |AZI+P| ds]
0

(4.5) < 6E[OsupT|AY,q+l’p|2]
=I=<

T
+ 6TL§/O E[|AYSP)* 4+ |AZ8P|*]ds
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Since [ E[|AYSP 12+ |AZEP121ds < (T + 1)E9°P, by computing 7x (4.4) +
(4.5) we obtain
gILP < 112E[|C, (6) — £|*]

s Ly v Ly

+112T/0TE[|CP( 5. Y9, Z9)) = £(s, Y9, 29)[*] ds

+286T (T + 1)L5E7.
Since & and f (s, Yy, Z{) belong to D2 (£ satisfies Hm+q7 fechmramtmta-
and (Y4, Z%) € §™° [see Lemma 4.10)], Lemma 2.3 gives

112
gatlr < pDgl? .
112T T 5
D" f(s,¥Yd, 71 o d )
(p+1)...(p+m)</0 | D™ f (s, ¥; s)||L2(§2><[O,T]) §

+286T(T + 1)L25W.

. q q .
Since fo ID™ f(s, Yy, Zg )||L2(QX[0 T]m)d is bounded by C(T,m,
(||8 oS loo)ie<m, 1YY, Zq)||m »m)» Lemma 4.10 gives the result. []

4.3. Error due to the truncation of the basis. We are now interested in bound-
ing the error between (Y77, Z49:P) [defined by (3.5)] and (YZ-PN 79PN [de-
fined by (3.7)].

Before giving an upper bound for the error, we measure the error between C,
and CN for ar.v. satisfying (4.1) when r = p.

REMARK 4.13. Letr € N*, & satisfies H, 4 and f € C0 g =lrg =l . Then,
for all integers p and ¢q, 1, := fo f(s, P, 7zIPy ds satisfies (4.1); that is, for
all multi-index « such that || = r, we have

I
|E(fo o 1g.p) — E(Dgl,...,srlq,p)‘ < K"7((t — s)Plar 4 (4 — sr)ﬁ[q”’)’

I
where g, , = % A Be and K, """ depends on K, 1€llr+4.2¢-+g—1)1/¢——1)t> T and on
(”askpf”oo)lfkfr—l—q—L

We refer to Section A.3 for the proof of Remark 4.13.

LEMMA 4.14. Let F denote a rv. in L>(Fr) satisfying (4.1) for r = p. We
have

T 28Fr P Tl T 2B8F
Blic) —c)@) < (k)(5) LT =®D () Ta+ne.
1

where K 5 and Br are defined in Hypothesis 4.1.

11
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We refer to Section A.4 for the proof of the lemma.

. 0,p+g—1,p+q—1
PROPOSITION 4.15.  Assume that & satisfies Hp14 and [ € C, .

We recall 9PN .= ||(Y?P —Y?P-N 74P — Z‘f’p’N)lliz. We get
172
(4.6) LN < COT(T + LFETPN 4+ Ka(q, p)(N) :

where Cs is a scalar and K2(q, p) depends on Kf,, T, &l p+qg.2(p+g—11/(p—1)
and on (1105, f lloo) 1<k <p+q—1-
Since 4PN =0, we deduce from (4.6) that grN < Aa(q, p)(%)“zﬂ‘E , Where

(CRT(T+1)L2)7—1
Ay(q, p) = Ky(q, p)T(T + 1)eTW. Then, (YP9N zP-4NY con-

verges to (Y9P Z9P) when N tends to oo in || (-, -)||12.

PROOF OF PROPOSITION 4.15. For the sake of clarity, we assume d = 1. In
the following, we note AYtq’p’N = Ytq’p’N —yrr, AZ?’p’N = Z?’P’N -z
and AfTPN = Fe, y0PN Z8PNY _pr,¥EP, Z9P). First, we deal with
Elsupy,7 |AYS 7Y 2] From (3.5) and (3.7) we get

t
1,p,N
AYATPY = F [N (FPN) -, (F1P)] +/0 AfEPN gs.
Following the same steps as in the proof of Proposition 4.11, we get

E[ sup |AY,q+l’p’N|2]

0<t<T

< 16E[|cY &) — C,®)|]

+ 16EH(C;,V —Cp) (/(;T fs, YIP, Z?’p)ds)

4.7) 2}

T
+ 40TL§,/0 E[|AYEPN P 4 |AZEPN P ds.

Let us now upper bound E[foT |AZ§]+1’p’N|2ds]. Following the same steps as
in the proof of Proposition 4.11, we get

d 2
E[/ |AZg+PN | ds]
0

4.8) <6E|[ sup |ay PN 2]

0<t<T

T
+ 6TL§,/O E[|AYS PN [* 4 |AZ2PN ] ds.



1152 P. BRIAND AND C. LABART
Adding 7x(4.7) and (4.8) gives
grHPN < 112E[|(CY - ¢,)®)]

]

Since & and I, , satisfy (4.1) (see Remarks 4.4 and 4.13), Lemma 4.14 gives

T
+ IIZEH(CQ' —cp)</ £ (s, Yf’”,Z?”’)ds)
0

+286T (T + 1)L§5W’N.

gathpN <112 — 2O[SMT(T+1)eT((K5)2+(KI‘“’)Z)
= N p P

+286T (T + 1)L7ETPN,
and (4.6) follows. [

4.4. Error due to the Monte Carlo approximation. We are now interested in
bounding the error between (Y%-P-N, z4:P-N) defined by (3.7) and (Y47 N-M
z4:P-N-My defined by (3.11). C)*M is defined by (3.9) and (3.10). In this section,

we assume that the coefficients dA,Z’ are independent of the vector (G1,...,Gy),
which corresponds to the second approach proposed in Remark 3.2.
Before giving an upper bound for the error, we measure the error between C;,V

and C;,V ‘M for a r.v. satisfying H;’,’ v (see Hypothesis 4.3).
LEMMA 4.16. Let F be a rv. satisfying Hypothesis H;N. We have
1
N N.M 2y
IE(|(Cp _Cp )(F)| )—M p,N(F)'
Moreover, we have IE(|C;,V’M(F)|2) < E(|F|2) + %VP,N(F).
We refer to Section A.5 for the proof of the lemma.

PROPOSITION 4.17.  Let & satisfy Hypothesis 7—[;’ ~ and f be a bounded func-
tion. Let £9-P-N-M .— | (y4-»-N — ya.r.N.M z4.p.N _ Zq’p’N’M)||i2. We get

K3(q,p, N)
M ’
where C3 is a scalar and K3(q, p, N) :=168(V,, y(§) + T2 1% Z/f:o (1Z))
Since E9PN-M — 0, we deduce from the previous inequality that E9-P"N-M <

As(g,p,N (C3T(T+1)L%)7—1
%, where A3(q, p, N) := K3(q, p, N)W- Then (YP4-N-M,

zP4N-My converges to (Y4-PN | Z4PN) when M tends to oo in ||(-, Mz

gattr VM < CyT(T + 1HLFELPNM
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PROOF OF PROPOSITION 4.17. For the sake of clarity, we assume d = 1.
In the following, note that AYtq’p’N’M = Y,q’p’N’M — Ytq’p’N, AZ?’p’N’M =
z P MMz and AfEPN = gy PN 2B p iy
Z{PNy. First, we deal with E[supy, .7 |AY7 7Y 2] From (3.7) and (3.11)
we get

t
+1.p.N.M N.M ,P.N.M N N ,P.N.M
AYFTP T =R (e M (Fer M) — e (FOP )]+/0 AfEPNM s,
By introducing +C) (F¢7-"-M) and by using Lemma 2.6, we obtain

B[ sup [AyThrNM ] < m[| ()M — o) (e N P
0<t<T

+ 12E(|FOP N M _ papN |2y
T
w67 [ ElJarsr M g azgr s

From Lemma 4.16, we get E[|(C[1,VvM — C;)V)(Fq,p,NvM”Z] < %(Vp,N(S) +
Von (g £©OFPM M) ds)). Then

1,p,N,.M 2
E[ sup |[AYIThP | ]
0<t<T

24 L
(4.9) < M(vp,ms)”znfnioz (f))

k=0

T
+ 30TL§,/ E[|AYSPN-M 2 | Az2PN-M 2] g,
0

Let us now upper bound E[foT IAZ?H’I”N’MI2 ds]. Following the same steps
as in the proof of Proposition 4.11, we get

T 2
E[/ | AZIHLPNM| ds]
0

(4.10) <6E[ sup [Ay TN ]

0<t<T
T
+ 6TL§/O E[|AYSP VM2 | AZ8PN-M 2 g

Adding 7x(4.9) and (4.10) gives the result. [

5. Numerical examples. The computations have been done on a PC INTEL
Core 2 Duo P9600 2.53 GHz with 4Gb of RAM.
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N M TABLE 1
Evolution of Yg’p’ * w.rt. Picard’s iterations, M = 105, N =20 and CPU time

Iterations 1 2 3 4 5 6 CPU time
p=2 1.656357 1.017117 1237135 1.186691 1.195462 1.194256 14.06
p=3 1.656357 1.012091 1.234398 1.183544 1.192367 1.191173 174.09

5.1. Nonlinear driver and path-dependent terminal condition. We consider
the cased =1, f(z,y,z) =cos(y) and § = supy,<; B:.

. . =q.p,N.M
e Convergence in p. Tables 1 and 2 represent the evolution of Yg P and

Zg’p NM et q (Picard’s iteration index), when p =2 and p = 3. We also
give the CPU time needed to get 78’”’N’M and 78’p’N’M. We fix M = 10° and

N =20. The seed of the generator is also fixed.

- —4.2.N.M —4.3.N.M
Note that the difference between the values of Y and Y (resp.,

73’2’N’M and 7%’3’N’M) does not exceed 0.2% (resp., 0.6%). This is due to the
fast convergence of the algorithm in p. The CPU time is 12 times higher when
p = 3 than when p = 2. Then, the use of order 3 in the chaos decomposition is

not necessary. In the following, we take p = 2.
. . . . <~4,p,N.M —4,p,.N,.M
e Convergence in M. Figure 1 illustrates the evolution of Y and Z,

w.rt. ¢ when p =2 and N = 20 for different values of M. The seed of the
generator is random. When M equals 10* and 10° the algorithm stabilizes after

very few iterations. When M = 103, there is no convergence.

. . . . —=q¢.p,N.M —=q¢,p,N.M
e Convergence in N. Figure 2 illustrates the evolution of Y 3 b and Zg P

w.rt. ¢ when p =2 and M = 10’ for different values of N. The seed of the
generator is random. The algorithm converges even when N = 10, but 78’[7 10.M

o —6.p.40,M
is quite below ¥;'” .

5.2. Linear driver-financial benchmark. We consider the case of pricing and
hedging a discrete down and out barrier call option, that is, f(¢,y,z) = —ry and

N TABLE 2
Evolution of Zg’p’ * w.rt. Picard’s iterations, M = 105, N =20 and CPU time

Iterations 1 2 3 4 5 6 CPU time

0.969128 0.249148 0.525273  0.459326 0.470069 0.469117 14.06

p=2
p=3 0.969128 0.242977 0.523846  0.455827 0.466903 0.465939  174.09
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Evolution of YAq_0 Evolution of Zq_0
— M=10"3

1.6 — . M=10"4

L\ o+ M=10A5
L5\
14+
1.3
1.2+
L1+
1.0+~
09 &= I . I . I .

1 2 3 4 5 6

iterations iterations

FiG. 1. Evolution of Yg,p,N,M and 7g’p’N’M wrt. g and M when N = 20,

p=2—§&=supy<;<1 Br, f(t,y,2) =cos(y).

& := (ST — K)+1vpepo, N1s,,>L»> Where § represents the Black—Scholes diffusion

S, = Spe=(/DoNi+oWe i o0, T).

The option parameters are r =0.01,0 =0.2, T =1, K =0.9, L =0.85, So =1
and N =20 (N is also the number of time discretizations of the chaos decomposi-
tion).

We can get a benchmark for Yy and Zj by using a variance reduction Monte
Carlo method. For this set of parameters, the reference values are Yy = 0.134267
with a confidence interval 7.9468¢ — 05 and §p = f—soo = 0.8327. We compare them

q.p.N.M Z4rNM

with Y and 06730 when N =20, p =2, g =5 (we choose the first value

of g from which the algorithm has converged) for different values of M. Figure 3

Evolution of YAq_0 Evolution of Zq_0

1.0 — N=10
I3
0.9 . N=40

0.8

0.7
0.6
0.5
0.4

0.3

v/,

A4 n 1 n 1 n 1 n
2 3 4 5 6
iterations iterations

—_

F1G. 2. Evolution ong’p’N’M andfg’p’N’M w.rt. N when M =107, p=2—& = supo<;<1 Br,
[y, z) =cos(y).
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Evolution of Y_0 Evolution of delta_0
134e-3 -
0.80
133e-3 0.76
0.72
132e-3 - L
0.68
131e-3 - ¥
0.64 -
— ref L — ref
7 8 9 10 11 12 13 14 T 8 9 10 11 12 13 14
log(M) log(M)
o —4,p.N.M
F1G. 3. Evolution of Yg,p,N,M and 8 = ZOO’SU w.rt. log(M) when N =20, p =2, q =5,
discrete down and out barrier call option.
: vo.p.N.M 5,p,N.M .
represents the evolution of Y P and &, P w.r.t. log(M). Notice that for

M = 10° the computed values are very close to the reference values.

5.3. Nonlinear driver in dimension 5, financial benchmark. We consider the
pricing and hedging of a put basket option in dimension 5, that is, § = (K —
% 21-5:1 S7)+, where

Vi=1,...,5 Si= S(i)e(u"—(o”)z/Z)tJra"B;"

w' (resp., o) represents the trend (resp., the volatility) of the ith asset. B =
(B, ..., BY) is a 5-dimensional Brownian motion such that (B?, B/), = ptlixj+
t1;—;. We suppose that p € (—%, 1), which ensures that the matrix C = (p1;; +
1;—;)1<i, j<5 is positive definite. We also assume that the borrowing rate R is
higher than the bond rate r. In such a case, pricing and hedging the put bas-
ket option is equivalent to solving a BSDE with terminal condition § and with
driver f defined by f(¢t,y,z)=—-ry—60-z4+(R—r)(y — Z?ZI(E_lz)i)_, where
0= E_l(u —r1) (1 is the vector whose every component is one), and X is the
matrix defined by %;; = o'L; j (L denote the lower triangular matrix involved in
the Cholesky decomposition C = LL*). We refer to [12], Example 1.1, for more
details.

The option parameters are r = 0.02, R=0.1, T =1, K =95, p =0.1, and
foralli=1,...,5, Sé = 100, Mf) = 0.05 and cré = 0.2. Figure 4 represents the

. =5,p,.N.M . . . .
evolution of Y, P , the approximated price at time O and the relative error on
_155.p.N,M |
86 = %—the quantity of asset 1 to possess at time O—w.r.t. log(M).

We compare our results with the ones obtained using the Algorithm proposed
in [14] (cited here as reference values). The CPU time needed to compute price
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Evolution of Y_0 Evolution of the relative error on delta_0(1)
2.1 p—
L — Y-app
20 04
1.9+
1.8
1.7+
t t t t t t t 0 L L L L L L L
7 8 9 10 11 12 13 7 8 9 10 11 12 13

log(M) log(M)

F1G. 4. Evolution ong’p’N’M and 8o (1) w.rt. log(M) when N =20, p=2,q =5, d =5, basket
put option with different interest and borrowing rates.

and delta when M = 50,000 and N =20 is 161 s. Notice that the convergence is
very fast and quite accurate for M = 50,000.

Conclusion. In this paper, we use Wiener chaos expansions together with the
Picard procedure to compute the solution to (1.1). Once the chaos decomposition
of F is computed, we get explicit formulas for both conditional expectations and
the Malliavin derivative of conditional expectations. This enables us to easily com-
pute (Y4, Z9). Numerically, we obtain fast and accurate results, which encourage
us to extend these results to other type of BSDEs, like 2-BSDE:s. It is also possible
to couple these Wiener chaos expansions together with the dynamic programming
approach. This will be the subject of a forthcoming publication.

APPENDIX A: TECHNICAL RESULTS OF SECTION 4

.....

(D(ll+1) F— D§51+1) F)

1isSiq1seemsSi) seees il

A.1. Proof of Remark 4.5. Before proving Remark 4.5, we prove the follow-
ing lemma.

LEMMA A.1. Let X be the R"-valued process solution of
t t

Xt=x+/ b(s,Xs)ds+f o (s, Xs)dBg,
0 0

where B is a d-dimensional Brownian motion and b:[0,T] x R" — R" and
0:[0,T] x R* — R"*? gre two CO™ functions uniformly lipschitz w.rt. x and
Holder continuous of parameter % w.r.t. t, with linear growth in x (of constant K)
and with bounded derivatives. Then:
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o Vi <m,Vj>2we have

(A.1) Mlj = sup E( sup ]D,(]l) ,1X,|j)<oo,

.....

the upper bound depends on (||b(l/)||oo)l/§l, (||o(1,)||oo)l/§l, x and K,
e Vji=>2 Vief{l,...,m},Vip<i—1,Vly <m — i, we have

A2) sup  sup  E( sup [DIVADIDX|) <k () — s,

=Sy Sip 1 = SSitlg relsivy,T1

where 1 :=lo+ 11 + 1 and k¥ depends on T, (M} Yy < jr<i» (I16© |oo)i<i» and

on (|6 |loo)rr<-

PROOF OF LEMMA A.1. The first point is proved in [19], Theorem 2.2.2. For
the sake of clarity, we prove the second result for d = 1. We also assume that the
vectors (¢1,...,t;,)and (s1,...,s,)aresuchthat 0 <s1 < <s$» <--- <5, <1, <
T. We do it by induction on /oy and /1. We detail the case b and o only depending
on x and do the proof for /o =1; =0 and /[y =0, /1 = 1. We recall that under these
hypotheses on b and o, we have VI <m

I ‘ ;
sup E[‘Dl‘(]) 0 X — X D] < Cltisr — si01)772,

n<e<y

where C depends on T, j, (MIJ/./)I’SI,j’Slj and on (||b(j/)||oo)j/5j, and on

oY o) jr<;-
Case ly =11 = 0. We have

.
D, X, = [ b'(X,)Dy, X, du+o(X;,)

In

,
+ 0/(Xu)DtnXudBu.

In

Then
ApX,:=D; X, — D, X,

r ty
= b (X,)Ap Xy du —/ b(Xy) Dy, (X,)du
Sn

In

i
+0(Xy) =0 (Xe) + [ 0 (XA X, dBu
In

n
- [ o' XDy, (X dBu
Sn
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In the following, C denotes a generic constant depending only on 7 and j, and L,
denotes the Lipschitz contant of 0.

. . r . . . In .
|AnX, | < c(nb/ug,o / An Xl du 4 (1 — s0)7 V0] / Dy, (X[ du

. , J
+ L1Xi, — X5, 1) +

-
/ o' (X)) A X, dBu

tl‘l

+

j>'

We introduce \Dno’j(T) := E[sup,¢(,, .7 |A,X,|/]. Doob’s inequality and the
Burkholder—Davis—Gundy inequality lead to

tﬂ
[ o XDy, (X dBu
Sn

W) < (W1 + 1oI) [ 08 ) du+ [ ] 1, = 5,)

+ (L + o M =519

Gronwall’s lemma yields the result.
Case lp = 0,11 = 1. We consider A,_ 1Dy, X, =Dy, _, 1, X, — D
have

X,. We

Sn—1,In

r
Dtn_l,t,, Xr = b//(Xu)Dt,,_lqutn Xu + b/(Xu)Dtn_l,tn Xu dM
In

+0/(th)Dt,,_1Xt,,
r
+ 0//(XM)D11171Xth’1Xu + 0/(XM)D[n71’[nXu dBu.

In

Then

r
Anletan = b//(Xu)AanXthnXu + b/(Xu)AnletnXu du

In
+0'(Xy,) An-1X,
,
+ O—N(Xu)AanXthnxu +O—,(Xu)An71Dt,,XudBu-
In

Doob’s inequality and the Burkhdlder—-Davis—Gundy inequality lead to

B[ swp (8,10, %]
relt,,T]

T . . .
([ 10 1Bl -1 X 1D X,

+ [V [ BT Anm1 Dy, Xl ] du
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+ o | E[l An-1 X4, 1]
T . . . . .
+/ IIO”HZ,OIE[IAn—lXuI’IDanulf]+IIG’IIéoE[IAn—lDrnXu|’]d”)‘

We introduce \Il 1(T) =sup, -7 E[sup,e[t 1118n—1Dy, Xy |/]. The Cauchy-
Schwarz 1nequa11ty yields

. . . T .
B < (101 + 12 [ 9w dn
j j 2j\1/2 02 1/2
81+ Lo L) 0 (e )
+Ho L),

Since W (T) < K(ty—1 — sp_1)7, and W7 (T) < K (t_1 — sp_1)7/2, Gron-
wall’s lemma ompletes the proof. [

PROOF OF REMARK 4.5.  We prove the result for d = 1. We first prove that
g(Xr) belongs to D™/ for all j > 2, that is,

lsxn)l, ; Z Z E[|D" ,e(xm))] <

.....

varies in {1 ,1, 1711 =1 and a(j) = k [a(j) denotes the number of nonzero
components of j ]. Since g € C%°, and X satisfies (A.1), we get the result.

Let us now prove that g(X7) satisfies H2,. (IO)A le(ll)g(XT) contains a

l /
sum of terms of type g(k) (X7) H (D(]‘)X )D( O)Ah 5; D(l X7, where k varies

in{l,...,0},|jh=1—-1 —l{)—li,a(])_ — 1,1 <lp and [} <. Then, since
g € C%°, X satisfies (A.1) and (A.2), we get g(X7) satisﬁes 7—[,%1, with Bg(x,) = %
and kf X" depends on (g lloo)r'<1» on (M) )y <1.<;j and on KX,

It remains to prove that g(Xr) satisfies ’H% ~N- V(g(X7)) is bounded by
E((g(XT))Z). Since g € C;O and X satisfies E(]X7]/) < oo for all j, we get that

V(g(Xr)) is bounded. We prove that V(g(X7) HzNzl K,,;(G;)) is bounded by the
same way. [J

A.2. Proof of Lemma 4 10. We complete the proof for d = 1. We prove by
induction that Vg’ < ¢, (ye',z4 belongs to "™, that is, Vj > 2

[, z%);,
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Using (3.4) gives

/ ! / I / -
D ¥¢ =EAD P~ [ D0 du,
1

,,,,, r yeensl] yeees
1,

—1 —1 —1
where 6 =, Y] T, ZI ).

Using the definition of F 9'~1 and applying Doob’s inequality leads to
I I ' I SNNY
E[ sup |D() zerq ] [iD( ,).‘.Jlé:i]] +E / iD( ,).,.,r,f(fo l)i] du) |,
n<r<T

where C is a generic constant depending on 7" and ;.

.....

v VT, DY 20 where 1711+ 16 =1, a) = o a6 =y and o + 1y <.
Then Holder’s inequality gives

(A.3)
<c(Zua fuf) (v =,z

and

S s B[ sup |00, e}

I<ism1="=t “h=r=T
(A4)

<C(||s||,’n]+Z(lea 71, )n (ro-, zq—1>||l,])
=1 \k=1

) ! ! [ '—1
From (3.4), we get D’ 74 = E,[D{*D & + [T DD r6d ") dul.
Then

TE D(l) Zq’j d
1 [| tyeennt] &7 i] r
T
1
Using (A.3) yields

D sup [ID(Z,)...,I,Z?/Ij]dr

I<i<m="=h0

m l
i /__ /_ l 1 i
< (et + (I 1L 2 I )

j)dr).

I+1 _
/ Dlgl ,,,,, ) 1, r 961 l)du
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Combining this equation with (A.4) gives

[, 25

m m
: ; r_ /I I+1)7
SC(IISII,’HLJ-Jr(leafpfﬂéo)ZH(Yq Lz 1)”Eli1;,j(l+l)j>‘
k=1 =1

Iterating this inequality yields the result. We prove that V¢’ < ¢, (y4-p, z4r)
belongs to S™*° in the same way. In this case, the generic constant C depends
on T, j and p, since we need to use the first part of Lemma 2.4 to upper bound

E(ICp—1(DP Fla=1))J),

A.3. Proof of Remark 4.13. For the sake of clarity, we assume that Vi <r,
ti-1 <s; <t and d = 1. Then we show that if & satisfies H,,, and f €

cy bt hen 1, o= [T f(s, YEP, Z8P) ds satisfies

..........

Since Iy, = 0, we deal with the case g > 1. Since we have Dt(lr) wlg.p —

fo)s, Iy, =0, D,(i_l)AiDS(r_i)I%p, it is enough to prove that E(D,(i_l) X
AiDs(r_i)Iq,p) < K;(t; — s,-)ﬂ’q’l’ (we refer to the beginning of Section A for the
definition of Dt(i_l)AiDs(r_i)F).

We introduce 677 = (u, Y,I'?, ZI'P), two vectors j and m, and four integers
ko, k1, lp and [y such that o <i — 1,1y <r —i,|jl1+|ml1=r—1—1Ip—1; and
ko+ ki <r.Ifi<r, Dt(i_l)A,-Dé(,r_i)Iq,p contains a sum of terms of type

T ko—1 ki
/ oy 9% £(63°7) TT phiv? T D 28 ? (D A DIV YP) du,

tstu

Sr i=1 i=1

where a(j) = ko — 1 [a(j) denotes the number of nonzero components of j] and
a(m) = ky and of type
T ko ) k1—1 :
| okoat popr) [T pikveer TT piizger (D & D0 Z47) du,
Sr i=1 i=1
where a(j) = ko, a(m) = ki — 1. By using the Cauchy—Schwarz inequality, we get
that IE[Dt(l_l)AiDs(r_’)Iq’p] is bounded by

lole* 11..
Th-1 ki r 12
< [ T kv Tl 27 au [ (008000577
S Sy

=1 i=1
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(and the same type of term in DiOA,- D‘gll) ZPy which leads to
k
(A‘S) = C(T’ (|aspf||oo)k§r’

i—1 r—i

x5 3 /(0@ atr M),

lp=01,=0

(Yer, Zq’p)Hr—l,Z(r—l))

where (DI(IO)A?’pD‘ﬁll))j = E[sup,, <7 |Dt(l°)AiD§ll)Y,f’p|j] + IE(ff |Dt(l°) X
AiDs(ll)Zz’p|2du)j/2. Ifi=r, Dt(r_l)Ailq,p contains the same type of inte-
grals between s, and T plus an integral between s, and #., which is bounded
by C(T, (Ilafpflloo)kgr, |(Y©P, ZTP) ||, 2 ) (8 — 7). Then, since (Y97, Z9P) €
S and f € Cg’r+q_1’r+q_l, it remains to take the supremum over 11, ..., #;,
Si+1, ..., 84+ in (A.5) and to apply Lemma A.2 to end the proof. K; depends on
IENr+g.20-+g—Dt/—1y15 (188 Flloo) 1<k <r+g—1, T and K7 := sup,_, k[*” (where
k{"? is defined in Lemma A.2).

LEMMA A.2. Assume & satisfies Hfﬂ and f € Cg’r+q_1’r+q_1. Then Vi €

{1,....,r1,Vip<i—1,Yl1<r—iandVj>?2

sup sup  E[(DIVARTDIV) ] < kT i) ),
1S ee Sl Sip1 S SSiy
where l =1y + 11 + 1 and qu’p depends on klg, T |IEN14g—1,a+9—2)1/a—1)!j and on
(1108 f loo) 1<k <t+q—2-

PROOF. We complete the proof by induction on ¢g. We distinguish cases /; > 0
and /1 = 0. We first consider /1 > 0. Let u be in [s,, T] and [ < p (if [ > p, the
first term on the right-hand side of the following equality vanishes). From (3.5)

and Lemma 2.4, we get DY A, DIVyd? = E,[C, (D! A; D! Fa—1.7)] —
st:Hl D,(IO)A,-DAEI‘)f(Qg_I) dv. Using the definition of F4~17 [see (3.5)], Doob’s
inequality and Lemma 2.4 yields

E[ sup (Dt(IO)AinmYL?’p)j]
uels,,T]

(A.6) < C<E[1D§l°)AiD§“)5V]

T 00 A ) £(ag—1 i
+E[ [ D a0 f677 ) dv] ).
Si+ly

where C denotes a generic constant depending on 7', j and p.
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Let us now upper bound E(fsf |D,(10)AiDS(II)ZZ’plzdu)j/z. Using (3.6) and the

Clark—Ocone formula gives fOT AR :C,,(F‘f_l’p) —E(Cp(Fq_l*p)). Hence,
for v € [s,, T], we have [ Zi'" dB, = Ey(C,(FI~"P)) — K, (C,(FI~1P)) =

ylP +f;’f f(eg_l’p)du — qu,_’p. Then, we get

v
/ Dt(lO)AiD§ll)ZZ’p dB, = DZ(IO)AiD§ll)Y1,q’p _ D;lO)AiD§ll)Yg’p
Sr
’ o)
+ / DY A; DIV £(0471P) du.
Sy
The left-hand side of the Burkholder-Davis—Gundy inequality gives

T o) 2, V2
E(f |D; A; DIV 7P| a’u)
Sr

gc’(E[ sup [D" a;DWyer|/]
uels,,T]

T o) x o j
+E| [ D080 070 au] ).
Sr

where C’ denotes a generic constant depending on 7 and j. Adding (C’ + 1)x
(A.6) to the previous equation leads to

(D AT D),

(A7) < C(E[|D,(’0)A,~D§ll>g|f]

T ) D) f(ag—1 i
+E[ [ D8 fos ) au] ).
Si+1}

We introduce two vectors j and m, and four integers ko, ki, 16 and l{ such that
I <lo, Iy <li,1jli+lmh =1—1—1)—1; and ko+ki <L DYV A; DIV F0~"7)
contains a sum of terms of type
ko—1 ki ) )
ook f(og="r) T phva="r T i za="r (D> &V vg~1r),
i=1 i=1
where a(j) = ko — 1 and a(m) = k; and of type
ko ki—1 ) )
ol ol f (g~ [ phve="r T] D zg="r (D% a; DV zg 1),
i=1 i=1

where a(j) = ko, a(m) =k; — 1.
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By using Cauchy—Schwarz inequality, we get that E[ fsz-THl |D,(l°)AiD§l‘) X
£ P)|du}’ is bounded by

ko 1 ki Jj/2
g s1e(( 1 oo Hlonzgopa)
5 i=1

l+ll i= 1
T 1 Jj/2
x (/ (D" A DV Y1) du )
Sl +i

a

(and the same type of term in D A D! Zq_l’p ) which leads to

T (lo) ) q—1,p i
E/ 1D A; DIV £ (69717 | du
Si+ly

<C((] o o loo) <> |(ya=tr, Zq_l’p)HZ—l,(z—l)j)

lo

XZZ\/ <10>Aq lpD(l))

1=01/=0

It remains to plug this result into (A.7), to take the supremum in 1, ..., 7, Si+1,
., Si+1, and to apply the induction hypothesis to obtain

(A8) sup  sup E[(DAITDM) ]

1SSty i1 S eSSy

<k1 (t; — s;)77% +C((H3 Flloo)i<k<rs

x qu_l’p(ti _Si)j(l/QAﬁs)

(A9) (ya=tr, Zq_l’p)”1—1,(1—1)j)

and the result follows. If /| = 0, we get
D A;YIP =E,[Cpr (D A FI71P)]
u a t I
~ [ DD f0r ) dv+ [ DV 8D f(03 ) dv.
N Si

When bounding E[sup, els,. T] |D,(l°)A,~ Y'P171, we deal with the first two terms as
we did before, we bound the term IE[fstlf |Dt(l°)Aif(93_l’p)| dv)/ by

C((105 o) 1<k=t-

which completes the proof. [J

(ya=tr, za=br)|, )@ = si),
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A.4. Proof of Lemma 4.14. We prove the result by induction. Lemma 4.14

is true for p = 0, since C}/ (F) = Co(F). Assume that E(|(cj;’_ L= CrmD)(F)P) <

(KF D2(E)2er yh” lllZT Since we have

(C;,V —Cp)(F) = (C;JV—I —Cp—1)(F) + (szov — Pp)(F),

it remains to show that E(|(P) — P,)(F)[*) < (k} )2(L)2er p”p—’,’. We recall

T rsp 52
(A.10) P,,(F):// / Up(sp,....s1)dBs, -+ dB;,,
0 Jo 0
whereup:sp,...,sl|—>E(D§f’.?.spF),
(A.11) PY(F)y= Y dy [] Ku(G.

ln|=p 1<i<N

where d"; =n!E(F [[;<j<n Kn;(G)). Let us rewrite PIJ,V(F) as a sum of stochas-
tic integrals Let r € N. Applying Lemma 2.5 to g:t +—— 1y, | 7,1(¢) yields

=h"?K, ( fl L) is a martingale and M, = f{H M!~'dB;. Then, M/ =
ft, lfl, L flyz M0 dBy, ---dBs,.Forr =n; and t =7;, we get

1

1 Sn; s
Kn (G = s / [T [ anyas,,.

tzl

For |n|:=n;+---+ny = p, we obtain

K S|n(N— 1)H—2
[T K@ e /N | /

1<i<N
ny integrals
(A.12)
Sln(1)]+2 52
/ / f [ dBSl ”‘dBS[”
t t O
ny mtegrals nj lntegrals
4" — nl 1 /T /1|n<1v1>+z
2 |- _
P hp/ IN—1 IN—1
A3 ny integrals
(A.13)

2 Iny+2 ph 15

// // wpp, ... 1)) dly --dl,.
11 I3 0 04

—_—

ny integrals ny integrals



SIMULATION OF BSDES BY WIENER CHAOS EXPANSION 1167

To compare P, (F) and PN (F), we split the integrals in (A.10),

Sln(N— 1)|+2
-y [
IN-1

In|=p
ny integrals
(A.14) ) )

/U /S\numz /tl /Sz ( \dB B
.. ... u S e Sl ... .

- - p\°p> ’ N K

f t 0 0 P
n, integrals ny integrals

Combining (A.11), (A.12), (A.13) and (A.14) yields E(|(PY — P,)(F)|?) =

/ /V\n(N l)|+2
IN—1

In|=p
ny integrals
(A.15)
/ /Y\n(l)\+2 /h / ( )2d 4
P _u Spy ooy 8] s1---ds
51 1 hp/2 PP p
ny integrals ny integrals
dﬂ
Moreover, hp/2 —up(sp,...,81) =
/ /lN 1+1
IN—1
ny integrals
iy ln]+1 11 I
ﬁ [ / / (up(lpsu-’ll)_up(spy---’sl))dll"'dlp.
5l 1 0 0
ny integrals ny integrals
Since u, satisfies Hypothesis 4.1, we get |u,(/p,... ll) up(sp,...,s1)| <

KE(lLy = splP7 4+ 1l — s11P7) < pkERPF. Then |15 — up(sp. .50l <
pkg hPF . Plugging this result into (A.15) completes the proof.

A.5. Proof of Lemma 4.16. Using definitions (2.8) and (3.10) leads to

P N
Cy—=clM@F)=do—do+_ Y (df —d}) ] Kn;(Gi).
k=1 |n|=k i=1
Since dA,? is independent of (Gj;);,

P 1
]E(|(C;,V—C;,V’M)(F)|2) E(ldo — dol*) Z Z n— E(dy —dp[*).
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The definition of the coefficients dy and d}/ given in (2.9) leads to

N P 1 A
E(|(C) — M) (F)*) = V(do) +; l;k —V(d),

and the first result follows. To get the second result, we write CI];] Mg )=(C ;’ M _
CIY(F) +CI (F). Since E(CY-M — CI)/(F)CY (F)) =0, we get

E(lcy M (F)|*) =E(|(C)" - )PP + E(cy (F)]).

Lemma 2.6 completes the proof.

APPENDIX B: WIENER CHAOS EXPANSION FORMULAS

B.1. Proof of Proposition 2.7. First, we compute IEt(Cf)V (F)) for t e
lt—1,t,]. From (2.8), we get

p
E(C)F) =do+ Y. Y & [T K0 (G < B ([T Kn(G)

k=1 |n|=k i<r i>r

Since Brownian increments are independent, we get K (Hin K, (G))) =
K, (Gr)[1i~, E[K,, (G;)], which is null as soon as n,41 + --- + ny > 0. Then,
nested conditional expectations give

P
E(CYF)=do+ Y, > di[]Kn(Gi) xEi(Kn (G))).
k=1|n(r)|=k i<r
By applying Lemma 2.5 when g:7 +— 1y | 7,(1), we get E,(K,, (G,)) =
— B 7B_
(51" /2Ky, (——==L), which yields the first result. Since K, (x) = Ky—1(x),

—Ir—1

the second result follows.

B.2. Wiener chaos expansion formulas in RY. We want to approximate F €
L?(Fr) using its chaos decomposition up to order p. We assume N > dp. We
consider the following truncated basis of L%([0, T]; RY):

1]71'—1,?1'](”6
Vh

where {t; :=ih,i =0, ..., N} is aregular mesh grid, and (e;)1<j<q represents the
canonical basis of R?. Py, the kth chaos, is generated by

T
I8 i=1,....N,j=1,....d, whereh:N,

N

(G- J_ J_Bi Ai_pi_p
.]_[. Kn{(Gi).Zv 1n,._k}, Gi_ﬁ,Ai—B;i B .
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For j =1,....d, n/ = (n{,....nY), one notes I.njl =ni + -+ ny, 0/l =
n{!---nfvl, and for r < N, n/(r) = (n{,...,ni). n = (n', ,nd)*, n| =
'+ -+ n¢], nt =n"-- 0 and n(r) = (n'(r), ..., n%@r))*. Since the r.v.

(ITTi<j<alli<i<n Kn{ (G{)),, are orthogonal ones, the projection of F' is given by

CY(F) = d0+22dk [T II %, (GY).

k=1 |n|=k 1<j<d 1<i<N

where the coefficients d;' are given by

d,'gzan[F IT TI Kn,(G{)].

l<jsdl<i<N '

PROPOSITION B.1. Fort,_1 <t <t,, we have

ECYF) =dy+ Y 2. di ] T1 &,

k=1|n(r)|=k i<rl<j<d

I (r—tr 1)"5/21( (Bj B 1)
X j - — b
m\ V=1,

1<j<d

andforl=1,...,d,
Dj(E:(C)) F))

np 172 NG
= dih K (GY)
=3 > Rl Ky
In(r)|=k i<rl<j<d
nl>0

B! — B!
tr—1
XK”Z’_1<\/t 3 1)
—7_

J J J
Xl—[<t—tr I)WK .(B - B ,)
m\ V=11 /)

J#

REMARK B.2. In particular, fort =%,,r >1landl=1,...,d,

BV r)=d+Y. Y #T] T1 K,

k=1 |n(r)|=k i<rl<j<d
p

: (Bz,(C) F) Z > a2 [T K,i(GD Ky (G T K, (GY).
k=1 n(r)l k i<rl<j<d J#l
>0
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)

When r =0, we get IE;O(C;)’F) = dpy, and we define DéO(E;O(Cl’;’F)) = ﬁdf‘,
where (ei/-) is a matrix of size d x N whose component (i, j) equals 1 and the
other ones are null.

PROOF OF PROPOSITION B.1. We first compute JE,(C;,\’ F) fort €t _1,1,].
We have

EC ) =d+Y Y dT] K,(G)) xE,(H [ 6, )

k=1 |n|=k i<rl<j<d i>rl<j<d

Since Brownian motions and their increments are independents, we get

2, (1T T1 &,(6D) = T1 %,GHIT T 2K, (G,

i>rl<j<d 1<j<d i>rl<j<d

which is null as soon as n}H +--- +n11\, +--- +anrl +--- +n§l\, > 0. Then nested
conditional expectations give

E,(F) = do—i-Z > 4l Il &, xE,( [T K, >
k=1 |n(r)|=k i<rl<j<d 1<j<d

J

From L 25, for j=1.....d M = (t — 7, 2K (D
rom Lemma 2.5, for j =1,..., Ji= (0 —t—1) ni(ﬁ) is a
ingale and dM™ = M1, - (t)dB’. Th 7, )2
martmgae an =M, 1510 dB; . Then []i<;<q(t — 1) X

B]
,( ——=1) is also a martingale, and the first result follows. Since K ! (x) =

AVi= o1

K, _1(x), we get the second result. [
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