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ASYMPTOTICALLY OPTIMAL DISCRETIZATION OF HEDGING
STRATEGIES WITH JUMPS

BY MATHIEU ROSENBAUM AND PETER TANKOV

LPMA, Université Pierre et Marie Curie and LPMA, Université Paris Diderot

In this work, we consider the hedging error due to discrete trad-
ing in models with jumps. Extending an approach developed by Fuka-
sawa [In Stochastic Analysis with Financial Applications (2011) 331–346
Birkhäuser/Springer Basel AG] for continuous processes, we propose a
framework enabling us to (asymptotically) optimize the discretization times.
More precisely, a discretization rule is said to be optimal if for a given cost
function, no strategy has (asymptotically, for large cost) a lower mean square
discretization error for a smaller cost. We focus on discretization rules based
on hitting times and give explicit expressions for the optimal rules within this
class.

1. Introduction. A basic problem in mathematical finance is how to replicate
a random claim with FT -measurable payoff HT with a portfolio involving only
the underlying asset Y and cash. When Y follows a diffusion process of the form

dYt = μ(t, Yt ) dt + σ(t, Yt ) dWt,(1)

it is known that under minimal assumptions, a random payoff depending only on
the terminal value of the asset HT = H(YT ) can be replicated with the so-called
delta hedging strategy. This means that the number of units of the underlying asset
to hold at time t is equal to Xt = ∂P (t,Yt )

∂Y
, where P(t, Yt ) is the price of the option,

which is uniquely defined in such a model. However, to implement such a strategy,
the hedging portfolio must be readjusted continuously, which is of course physi-
cally impossible and irrelevant because of the presence of microstructure effects
and transaction costs. For this reason, the optimal strategy is always replaced with
a piecewise constant one, leading to a discretization error. The relevant questions
are then: (i) how big is this discretization error, and (ii) when are the good times to
readjust the hedge?

Assume first that the hedging portfolio is readjusted at regular intervals of length
h = T

n
. A result by Zhang [27] (see also [3, 18]) then shows that for Lipschitz

continuous payoff functions, assuming zero interest rates, the discretization error

En
T =

∫ T

0
Xt dYt −

∫ T

0
Xh[t/h] dYt
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satisfies

lim
h→0

nE
[(
En

T

)2] = T

2
E

[∫ T

0

(
∂2P

∂Y 2

)2

σ(s, Ys)
4 ds

]
.(2)

Of course, it is intuitively clear that readjusting the portfolio at regular determin-
istic intervals is not optimal. However, the optimal strategy for fixed n is very
difficult to compute.

Fukasawa [15] simplifies this problem by assuming that the hedging portfolio
is readjusted at high frequency. The performance of different families of strategies
can then be compared based on their asymptotic behavior as the number of read-
justment dates n tends to infinity, rather than the performance for fixed n. Consider
a sequence of discretization strategies

0 = T n
0 < T n

1 < · · · < T n
j < · · · ,

with supj |T n
j+1 − T n

j | → 0 as n → ∞, and let Nn
T := max{j ≥ 0;T n

j ≤ T } be
the total number of readjustment dates on the interval [0, T ] for given n. To com-
pare two such sequences in terms of their asymptotic behavior for large n, Fuka-
sawa [15] uses the functional

lim
n→∞E

[
Nn

T

]
E

[〈
En〉

T

]
,(3)

where 〈En〉 is the quadratic variation of the semimartingale (En
t )t≥0. He finds that

when the underlying asset is a continuous semimartingale, the functional (3) ad-
mits a nonzero lower bound over all such sequences, and exhibits a specific se-
quence which attains this lower bound and is therefore called asymptotically effi-
cient.

In the diffusion model (1), the asymptotically efficient sequence takes the form

T n
j+1 = inf

{
t > T n

j ; |Xt − XT n
j
|2 ≥ hn

∂2P(T n
j , YT n

j
)

∂Y 2

}
,

(4)

Xt = ∂P (t, Yt )

∂Y
,

where hn is a deterministic sequence with hn → 0. In this case,

lim
n→∞E

[
Nn

T

]
E

[〈
En〉

T

] = 1

6
E

[∫ T

0

∂2P

∂Y 2 σ(s, Ys)
2 ds

]2

,(5)

whereas for readjustment at equally spaced dates, formula (2) yields

lim
n→∞E

[
Nn

T

]
E

[〈
En〉

T

] = T

2
E

[∫ T

0

(
∂2P

∂Y 2

)2

σ(s, Ys)
4 ds

]
.(6)

Using the Cauchy–Schwarz inequality, we then see that the asymptotically efficient
discretization leads to a gain of at least a factor 3, compared to readjustment at
regularly spaced points.
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Remark that the discretization scheme (4) is very different from the classical
approximation schemes for stochastic differential equations such as Euler or Mil-
stein schemes. In order to be implemented it requires the continuous observation
of (Xt) and (Yt ), which of course makes sense in the mathematical finance con-
text because the prices are, essentially, continuously observable and the need for
discretization is due to the presence of transaction costs.

While the above approach is quite natural and provides very explicit results, it
fails to take into account important factors of market reality. First, the asymptotic
functional (3) is somewhat ad hoc, and does not reflect any specific model for the
transaction costs. Yet, transaction costs are one of the main reasons why contin-
uous (or almost continuous) readjustments are not used. Therefore, they should
be the determining factor for any discretization algorithm. On the other hand, the
continuity assumption, especially at relatively high frequencies, is not realistic. In-
deed, it is well known that jumps in the price occur quite frequently and have a
significant impact on the hedging error. It can even be argued that high-frequency
financial data are best described by pure jump processes; see [7].

The objective of this paper is therefore two-fold. First, we develop a framework
for characterizing the asymptotic efficiency of discretization strategies which takes
into account the transaction costs. Second, we remove the continuity assumption
in order to understand the effect of the activity of small jumps (often quantified by
the Blumenthal–Getoor index) on the optimal discretization strategies.

Models with jumps correspond to incomplete markets, where the hedging issue
is an approximation problem,

min
X

E

(
c +

∫ T

0
Xt− dYt − HT

)2

,(7)

where Y is now a semimartingale with jumps. The optimal strategy X∗ for this
problem is known to exist for any HT ∈ L2; see [9, 10, 13, 14, 19, 24]. If the
expectation in (7) is computed under a martingale probability measure, then for
any admissible strategy X′,

E

(
c +

∫ T

0
X′

t− dYt − HT

)2

= E

(∫ T

0

(
X′

t− − X∗
t−

)
dYt

)2

(8)

+ E

(
c +

∫ T

0
X∗

t− dYt − HT

)2

.

Indeed,
∫

X∗
t− dYt is essentially the orthogonal projection of HT on the subspace

of L2 constituted by the stochastic integrals of the form
∫

Xt− dYt where Xt− is an
admissible hedging strategy. Therefore, the quadratic hedging problem (7) and the
discretization problem can be studied separately. Given that the quadratic hedging
problem has already been studied by many authors, in this paper we concentrate
on the discretization problem.
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Our goal is to study and compare discretization rules for stochastic integrals of
the form ∫ T

0
Xt− dYt ,

where Xt and Yt are semimartingales with jumps, with the aim of identifying
asymptotically optimal rules. In particular we wish to understand the impact of
the small jumps of X on the discretization error, and therefore we assume that X

has no continuous local martingale part; see Remark 3.
A discretization rule is a family of stopping times (T ε

i )ε>0
i≥0 parameterized

by a nonnegative integer i and a positive real ε, such that for every ε > 0,
0 = T ε

0 < T ε
1 < T ε

2 < · · ·. For a fixed discretization rule and a fixed ε, we let
ηε(t) = sup{T ε

i :T ε
i ≤ t} and Nε

T = sup{i :T ε
i ≤ T }. Motivated by decomposi-

tion (8), we measure the performance of a discretization rule with the L2 error
functional

E(ε) := E

[(∫ T

0
(Xt− − Xη(t)−) dYt

)2]
.(9)

Also, to each discretization rule we associate a family of cost functionals of the
form

Cβ(ε) = E

[ ∑
i≥1:T ε

i ≤T

|XT ε
i

− XT ε
i−1

|β
]
,(10)

with β ∈ [0,2]. The case β = 0 corresponds to a fixed cost per transaction, and the
case β = 1 corresponds to a fixed cost per unit of asset. Other values of β often
appear in the market microstructure literature where one considers that transaction
costs are explained by the shape of the order book.

In our framework, a discretization rule is said to be optimal for a given cost
functional if no strategy has (asymptotically, for large costs) a lower discretization
error and a smaller cost.

Motivated by the representation (4) and the readjustment rules used by market
practitioners, we focus on discretization strategies based on the exit times of X out
of random intervals

T ε
i+1 = inf

{
t > T ε

i :Xt /∈ (XT ε
i

− εaT ε
i
,XT ε

i
+ εaT ε

i
)
}
,(11)

where (at )t≥0 and (at )t≥0 are positive F-adapted càdlàg processes.
In Theorems 1 and 2, we characterize explicitly the asymptotic behavior of the

errors and costs associated to these random discretization rules, by showing that,
under suitable assumptions,

lim
ε→0

ε−2E(ε) = E

[∫ T

0
At

f (at , at )

g(at , at )
dt

]
,

lim
ε→0

εα−βCβ(ε) = E

[∫ T

0
λt

uβ(at , at )

g(at , at )
dt

]
,



1006 M. ROSENBAUM AND P. TANKOV

where, for a, a ∈ (0,∞),

f (a, a) = E

[∫ τ∗

0

(
X∗

t

)2
dt

]
, g(a, a) = E

[
τ ∗]

and

uβ(a, a) = E
[∣∣X∗

τ∗
∣∣β]

< ∞,

with τ ∗ = inf{t ≥ 0 :X∗
t /∈ (−a, a)}, where X∗ is a strictly α-stable process deter-

mined from X by a limiting procedure, and the processes A and λ are determined
from the semimartingale characteristics of X and Y .

This allows us to determine the asymptotically optimal intervals as solutions to a
simple optimization problem (Proposition 2). In particular, we show that in the case
where the cost functional is given by the expected number of discretization dates,
the error associated to our optimal strategy with the cost equal to N , converges to
zero as N → ∞ at a faster rate than the error obtained by readjusting at N equally
spaced dates.

As applications of our method, we consider the discretization of the hedging
strategy for a European option in an exponential Lévy model (Proposition 4) and
the discretization of the Merton portfolio strategy (Proposition 5). In the option
hedging problem, we obtain an explicit representation for the optimal discretiza-
tion dates, which is similar to (4), but includes two “tuning” parameters: an index
which determines the effect of transaction costs (fixed, proportional, etc.) and the
Blumenthal–Getoor index measuring the activity of small jumps.

This paper is structured as follows. In Section 2, we introduce our framework
and in particular the notion of asymptotic optimality based on the limiting behavior
of the error and cost functionals. The assumptions on the processes X and Y and
on the admissible discretization rules are also stated here. Section 3.1 contains the
main results of this paper which characterize the limiting behavior of the error and
the cost functionals, and Sections 3.2 to 3.4 provide explicit examples of optimal
discretization strategies in various contexts. Sections 4 and 6 contain the proofs of
the main results and Section 5 gathers some technical lemmas needed in Section 6.

2. Framework. Asymptotic comparison of discretization rules. We are inter-
ested in comparing different discretization rules, as defined in the Introduction, for
the stochastic integral ∫ T

0
Xt− dYt ,

where X and Y are semimartingales, in terms of their limiting behavior when the
number of discretization points tends to infinity.

The performance of a given discretization rule is assessed by the error func-
tional E(ε) : (0,∞) → [0,∞) (which measures the discretization error associated
to this rule) and a cost functional Cβ(ε) : (0,∞) → [0,∞) (which measures the
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corresponding transaction cost), as defined in (9) and (10). We assume that the
cost functional is such that

lim
ε↓0

Cβ(ε) = +∞.

For C > 0 sufficiently large, we define

ε(C) = inf
{
ε > 0 :Cβ(ε) < C

}
and E(C) := E(ε(C)).

DEFINITION 1. We say that the discretization rule A asymptotically domi-
nates the rule B if

lim sup
C→∞

EA
(C)

EB
(C)

≤ 1.

To apply Definition 1, the following simple result will be very useful.

LEMMA 1. Assume that for a given discretization rule, the cost and error
functionals are such that there exist a > 0 and b > 0 with

lim
ε↓0

ε−aE(ε) = Ê and lim
ε↓0

εbCβ(ε) = Ĉ(12)

for some positive constants Ê and Ĉ. Then

E(C) ∼ C−a/b(Ĉ)a/bÊ as C → ∞.

We shall consider discretizations based on the hitting times of the process X.
Recall that such a discretization rule is characterized by a pair of positive
F-adapted càdlàg processes (at )t≥0 and (at )t≥0, and the discretization dates are
then defined by (11).

REMARK 1. Consider the discretization rules A = (a, a) and B = (ka, ka)

with k > 0. These two strategies satisfy EA
(C) = EB

(C) for all C > 0. Therefore,
the optimal strategies will be determined up to a multiplicative constant.

Assumptions on the processes X and Y . Our first main result describing the
behavior of the error functional will be obtained under the assumptions (HY), (HX)

and (HX1
loc) stated below.

(HY) We assume that the process Y is an F-local martingale, whose pre-
dictable quadratic variation satisfies 〈Y 〉t = ∫ t

0 As ds, where the process (At ) is
càdlàg and locally bounded.
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(HX) The process X is a semimartingale defined via the stochastic represen-
tation

Xt = X0 +
∫ t

0
bs ds +

∫ t

0

∫
|z|≤1

z(M − μ)(ds × dz)

(13)

+
∫ t

0

∫
|z|>1

zM(ds × dz),

where M is the jump measure of X, and μ is its predictable compensator, abso-
lutely continuous with respect to the Lebesgue measure in time, μ(dt × dz) =
dt × μt(dz), where the kernel μt(dz) is such that for some α ∈ (1,2) there exist
positive càdlàg processes (λt ) and (K̂t ) and constants c+ ≥ 0 and c− ≥ 0 with
c+ + c− > 0 and, almost surely for all t ∈ [0, T ],

xαμt((x,∞)) ≤ K̂t and xαμt((−∞,−x)) ≤ K̂t for all x > 0;(14)

xαμt((x,∞)) → c+λt and xαμt((−∞,−x)) → c−λt

(15)
when x → 0.

(HXρ
loc) There exists a Lévy measure ν(dx) such that, almost surely, for all t ,

the kernel μt(dz) is absolutely continuous with respect to λtν(dz),

μt(dz) = Kt(z)λtν(dz)(16)

for a random function Kt(z) > 0. Moreover, there exists an increasing sequence of
stopping times (τn) with τn → T such that for every n,∫ τn

0

∫
R

∣∣√Kt(z) − 1
∣∣2ρ

ν(dz) dt < Cn,(17)

1
Cn

≤ λt ≤ Cn, K̂t ≤ Cn and |bt | ≤ Cn for 0 ≤ t ≤ τn and some constant Cn > 0.

REMARK 2 (Concerning the assumptions on the process Y ). The assumption
that Y is a local martingale greatly simplifies the treatment of quadratic hedging
problems in various settings because it allows us to reduce the problem of mini-
mizing the global quadratic risk to myopic local risk minimization. In particular,
under this assumption, the error functional (9) becomes

E(ε) = E

[∫ T

0
(Xt − Xηε(t))

2At dt

]
.

While it may be unrealistic to assume that the stock price process is a local mar-
tingale for computing the hedging strategy, in the present study we have a differ-
ent objective. We are looking for the asymptotically optimal rule to discretize a
given strategy, that is, the rule which minimizes, asymptotically for large number
of discretization dates, the principal term of the discretization error. In the case of
equally spaced discretization dates, it is known (see [25] for a proof in the context
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of Itô semimartingales with jumps) that this principal term does not depend on the
drift part of the processes X and Y . We conjecture that the same kind of behav-
ior holds in the context of random rebalancing dates, which means that the drift
terms do not need to be taken into account when computing asymptotically opti-
mal discretization rules. Our methodology allows us to determine asymptotically
optimal discretization for a given process X, which may correspond, for example,
to a quadratic hedging strategy computed in the nonmartingale setting.

REMARK 3 (Concerning the assumptions on the process X).

− In this paper, we focus on semimartingales for which the local martingale part is
purely discontinuous, with the aim of determining the effect of small jumps on
the convergence rate of the discretization error. Therefore, we do not include a
continuous local martingale part in the dynamics of X. Indeed, it would asymp-
totically dominate the purely discontinuous part as shown in Proposition 7 in
the Appendix. The dynamics of Y can, in principle, include such a continuous
local martingale part, however in the usual financial models, when X has no
continuous local martingale part, this is also the case for Y . Note that from the
practical viewpoint, many exponential Lévy models popular among academics
and practitioners (Variance Gamma, CGMY, Normal inverse Gaussian etc.) do
not include a continuous diffusion part.

− Assumption (HX) defines the structure of the integrand (hedging strategy) X,
by saying that the small jumps of X ressemble those of an α-stable process,
modulated by a random intensity process (λt ). This assumption introduces the
fundamental parameters which will appear in our limiting results: the coeffi-
cients α, c+ and c− and the intensity process λ. These parameters are deter-
mined uniquely up to multiplying λ by a positive constant and dividing c+ and
c− by the same constant. Note also that these parameters can be estimated from
market data; see [1, 11, 12, 26].

− The parameter α measures the activity of small jumps of the process X. In
the case where X is a Lévy process, the parameter α coincides with the
Blumenthal–Getoor index of X; see [4].

− The assumption 1 < α < 2 implies that X has infinite variation and ensures that
the local behavior of the process is determined by the jumps rather than by the
drift part; see [22]. Note that in a recent statistical study on liquid assets [1],
the jump activity index defined similarly to our parameter α was estimated
between 1.4 and 1.7. However, this assumption does exclude some interesting
models and other statistical studies find that this parameter can be smaller than
one for certain asset classes [2, 8].

− The assumption (HXρ
loc) is a technical integrability condition. In the sequel,

we shall always impose (HX1
loc) and sometimes also (HXρ

loc) with ρ > 1. The
representation (16) of the compensator μ of the jump measure of X implies that
the jump part of X is locally equivalent to a time-changed Lévy process. Indeed,
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time-changing the process with a continuous increasing process �t = ∫ t
0 λs ds

has the effect of multiplying the compensator by λt , and making a change of
probability measure with density given by (30) has the effect of dividing the
compensator by Kt(z). The objects ν(dz) and Kt(z) in this representation are
not unique, but they do not appear in our limiting results. In particular, it is easy
to show that the Lévy measure ν necessarily satisfies a stable-like condition
similar to (15),

xαν((x,∞)) → c+ and xαν((−∞,−x)) → c− when x → 0.(18)

Indeed, there exists a constant c > 0 such that

c(
√

f − 1)2 ≥ (f − 1)21|f −1|≤1/2 + |f − 1|1|f −1|>1/2 for all f > 0.

From this simple inequality, and denoting It = ∫
R
(
√

Kt(z) − 1)2ν(dz), one
can easily deduce, using the Cauchy–Schwarz inequality that for another con-
stant C,∣∣∣∣∫ ∞

x
ν(dz) −

∫ ∞
x

Kt(z)ν(dz)

∣∣∣∣ ≤ CIt + C

{∫ ∞
x

ν(dz)

}1/2

I
1/2
t ,

and also that ∣∣∣∣(∫ ∞
x

ν(dz)

)1/2

−
(∫ ∞

x
Kt(z)ν(dz)

)1/2∣∣∣∣ ≤ CIt

for yet another constant C. By (17), under (HX1
loc), It < ∞ for almost all t . For

any such t , we can multiply the above inequality with xα/2 and take the limit
x → 0; we then get

lim
x→0

xα
∫ ∞
x

ν(dz) = lim
x→0

xα
∫ ∞
x

Kt(z)ν(dz),

but the latter limit is equal to c+ by assumption (15). Moreover, it is always
possible with no loss of generality to choose ν so that it also satisfies

xαν((x,∞)) + xαν((−∞,−x)) ≤ C(19)

for some constant C < ∞ and all x > 0. Indeed, by property (18), it is enough
to show this for all x ≥ ε with some ε > 0. But for this, it is enough to take

Kt(z) = K̂t

λt

for |z| ≥ ε

and use (14). Such a choice clearly does not violate condition (17). In the sequel
we shall assume that ν has been chosen in such a way.
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EXAMPLE 1. In applications, the process X is often defined as solution to a
stochastic differential equation rather than through its semimartingale characteris-
tics. We now give an example of an SDE which satisfies our assumptions. Let X

be the solution of an SDE driven by a Poisson random measure

Xt = X0 +
∫ t

0
b̄s ds +

∫ t

0

∫
|z|≤1

γs(z)Ñ(ds × dz)

(20)

+
∫ t

0

∫
|z|>1

γs(z)N(ds × dz),

where N is a Poisson random measure with intensity measure dt × ν̄(dz), Ñ is the
corresponding compensated measure, and γ : [0, T ]×�×R →R is a predictable
random function.

PROPOSITION 1. Assume that ν̄ is a Lévy measure which has a compact sup-
port U such that 0 ∈ intU and admits a density also denoted by ν̄(x), which is
continuous outside any neighborhood of zero and is such that

xα+1ν̄(x) = αc+ + O(x) and xα+1ν̄(−x) = αc− + O(x)
(21)

when x ↓ 0

for some α ∈ (1,2) and constants c+ > 0 and c− > 0.
Suppose furthermore that for all ω ∈ � and t ∈ [0, T ], γt (z) is twice differ-

entiable with respect to z, γ ′
t (z) > 0 for all z ∈ U , γt (0) = 0, and there exists an

increasing sequence of stopping times (τn) with τn → T and a sequence of positive
constants (Cn) with Cn < ∞ for all n, such that for every n, almost surely,

|bt | ≤ Cn,
1

Cn

≤ γ ′
t (z) ≤ Cn and

∣∣γ ′′
t (z)

∣∣ < Cn

(22)
for all 0 ≤ t ≤ τn, z ∈ U.

Then the process X satisfies the assumption (HX) with λt = γ ′
t (0)α and the as-

sumption (HXρ
loc) for all ρ ≥ 1.

The proof of this result is given in Appendix D.

Assumptions on the discretization rules. Our first main result (asymptotics
of the error functional) requires the following assumptions on the discretization
rule (a, a):

(HA) The integrability condition

E

[
sup

0≤s≤T

max(as, as)
2
∫ T

0
At dt

]
< ∞.
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(HAloc) There exists an increasing sequence of stopping times (τn) with τn →
T such that for every n, 1

Cn
≤ at , at ≤ Cn for 0 ≤ t ≤ τn and some constant Cn > 0.

To obtain our second main result concerning the behavior of the cost functional,
we shall need the following additional technical assumptions:

(HA2) For some δ ∈ (0,1) with β(1 + δ) < α,

E

[
sup

0≤s≤T

(
max

{
aβ−1

s , aβ−1
s

}1+δ + max
{
a(1+δ)β−1

s , a(1+δ)β−1
s

}) ∫ T

0
|bs |1+δ ds

]

+ E

[
sup

0≤s≤T

max{as, as}(β∨(2−α))(1+δ) min{as, as}((β−2)∧(−α))(1+δ)

×
∫ T

0
K̂1+δ

s ds

]
< ∞.

(HA′
2) For some δ ∈ (0,1),

E

[
sup

0≤s≤T

min(as, as)
−α(1+δ)

∫ T

0
K̂1+δ

t dt

+ sup
0≤s≤T

min(as, as)
−1−δ

∫ T

0
|bt |1+δ dt

]
< ∞.

REMARK 4. Condition (HA′
2) replaces condition (HA2) in the case β = 0.

For given β and given processes X and Y , we shall call a discretization rule (a, a)

satisfying assumptions (HA), (HAloc) and (HA2) (if β > 0) or assumptions (HA),
(HAloc) and (HA′

2) (if β = 0) an admissible discretization rule.

3. Main results. In this section, we first characterize the asymptotic behavior
of the error and cost functionals for small ε. From these results we then derive the
asymptotically optimal discretization strategies using Lemma 1.

3.1. Asymptotic behavior of the error and cost functionals.

THEOREM 1. Under assumptions (HY), (HX), (HX1
loc), (HA) and (HAloc),

lim
ε→0

ε−2E(ε) = E

[∫ T

0
At

f (at , at )

g(at , at )
dt

]
,(23)

where, for a, a ∈ (0,∞),

f (a, a) = E

[∫ τ∗

0

(
X∗

t

)2
dt

]
, g(a, a) = E

[
τ ∗]

with τ ∗ = inf{t ≥ 0 :X∗
t /∈ (−a, a)}, where X∗ is a strictly α-stable process with

Lévy density

ν∗(x) = c+1x>0 + c−1x<0

|x|1+α
, x �= 0,
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and the constants c− and c+ are defined in assumption (HX) [equation (15)].

THEOREM 2. We use the notation of Theorem 1.

(i) Let assumptions (HY), (HX), (HX1
loc), (HA), (HAloc) and (HA′

2) be satis-
fied. Then

lim
ε→0

εαC0(ε) = E

[∫ T

0

λt

g(at , at )
dt

]
.(24)

(ii) Let β ∈ (0, α), and assume that (HY), (HX), (HX1
loc), (HXρ

loc) (for some
ρ > α

α−β
∨ 2), (HA), (HAloc) and (HA2) hold true. Then

lim
ε→0

εα−βCβ(ε) = E

[∫ T

0
λt

uβ(at , at )

g(at , at )
dt

]
,(25)

where

uβ(a, a) = E
[∣∣X∗

τ∗
∣∣β]

< ∞.

REMARK 5. Theorems 1 and 2 enable us to apply Lemma 1 and conclude that
for any admissible discretization rule based on hitting times, the error functional
for fixed cost behaves, for large costs, as

E(C) ∼ C−2/(α−β)E

[∫ T

0
At

f (at , at )

g(at , at )
dt

]
E

[∫ T

0
λt

uβ(at , at )

g(at , at )
dt

]2/(α−β)

.

When the cost is equal to the expected number of rebalancings (β = 0), the error
converges to zero at the rate C−2/α . On the other hand, for equidistant rebalancing
dates, under sufficient regularity, the L2 discretization error of the quadratic hedg-
ing strategy in exponential Lévy models is inversely proportional to the number
of rebalancings; see [6]. This means that while in diffusion models, asymptoti-
cally optimal hedging reduces the error without modifying the rate at which the
error decreases with the number of rebalancings [cf. equations (5) and (6)], in pure
jump models, any discretization based on hitting times, and a fortiori the optimal
discretization, also improves the rate of convergence.

3.2. Application: Computing the optimal barriers. In this section, we suppose
that the assumptions of Theorem 2 [part (i) or (ii), depending on β] are satisfied.
In view of Lemma 1, we shall use the following definition of an asymptotically
optimal discretization rule.

DEFINITION 2. A discretization rule (a, a) is said to be asymptotically opti-
mal if it is admissible, and for any other admissible rule (a′, a′),

E

[∫ T

0
At

f (at , at )

g(at , at )
dt

]
E

[∫ T

0
λt

uβ(at , at )

g(at , at )
dt

]2/(α−β)

(26)

≤ E

[∫ T

0
At

f (a′
t , a

′
t )

g(a′
t , a

′
t )

dt

]
E

[∫ T

0
λt

uβ(a′
t , a

′
t )

g(a′
t , a

′
t )

dt

]2/(α−β)

.
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The following result simplifies the characterization of such rules.

PROPOSITION 2. Let (a, a) be an admissible discretization rule, and assume
that there exists c > 0 such that for any other admissible rule (a′, a′),

At

f (at , at )

g(at , at )
+ cλt

uβ(at , at )

g(at , at )
≤ At

f (a′
t , a

′
t )

g(a′
t , a

′
t )

+ cλt

uβ(a′
t , a

′
t )

g(a′
t , a

′
t )

(27)

a.s. for all t ∈ [0, T ]. Then the rule (a, a) is asymptotically optimal.

PROOF. By the nature of assumptions (HA), (HAloc) and (HA2) [resp.,
(HA′

2)], for all κ > 0, the rule (κa, κa) is admissible. In addition, by the scaling
property of strictly stable processes,

f (κat , κat ) = κ2+αf (at , at ), g(κat , κat ) = καg(at , at ),

uβ(κat , κat ) = κβuβ(at , at ).

Using these identities in the left-hand side of (27) and the fact that (27) holds for
any (a′, a′), integrating both sides and taking the expectation, we get

E

[∫ T

0
At

f (at , at )

g(at , at )
dt

]
+ cκα−βE

[∫ T

0
λt

uβ(κat , κat )

g(κat , κat )
dt

]

≤ E

[∫ T

0
At

f (κ ′a′
t , κ

′a′
t )

g(κ ′a′
t , κ

′a′
t )

dt

]
+ cE

[∫ T

0
λt

uβ(κ ′a′
t , κ

′a′
t )

g(κ ′a′
t , κ

′a′
t )

dt

]
.

Under the assumptions of Theorems 1 and 2, all expectations above are finite.
Indeed, the limiting error functional is finite by assumption (HA) since clearly
f (a, a) ≤ max(a, a)2g(a, a). The finiteness of the limiting cost functional is
shown by applying Lemma 6 to the limiting strictly stable process to obtain a
bound on the function uβ and then using assumption (HA2) or (HA′

2).
Now, choose κ so that

E

[∫ T

0
λt

uβ(κat , κat )

g(κat , κat )
dt

]
= 1 ⇒ κ = E

[∫ T

0
λt

uβ(at , at )

g(at , at )
dt

]1/(β−α)

and κ ′ so that

E

[∫ T

0
λt

uβ(κ ′a′
t , κ

′a′
t )

g(κ ′a′
t , κ

′a′
t )

dt

]
= κα−β

⇒ κ ′ = 1

κ
E

[∫ T

0
λt

uβ(a′
t , a

′
t )

g(a′
t , a

′
t )

dt

]1/(α−β)

.

This yields

E

[∫ T

0
At

f (at , at )

g(at , at )
dt

]
≤ (

κ ′)2
E

[∫ T

0
At

f (a′
t , a

′
t )

g(a′
t , a

′
t )

dt

]
.
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Substituting the expression for κ ′, we finally obtain (26). �

The above result shows that we may look for optimal barriers as a and a as
minimizers of

min
{
At

f (at , at )

g(at , at )
+ cλt

uβ(at , at )

g(at , at )

}
,(28)

provided that the resulting at and at are admissible. Moreover if (a, a) is the solu-
tion of (28), then the scaling property shows that the solution of

min
{
At

f (at , at )

g(at , at )
+ c′λt

uβ(at , at )

g(at , at )

}
is given by (κa, κa) with κ = (c′/c)1/(α−β+2). If c′ > c, then κ > 1, resulting in a
smaller cost functional and a bigger error functional. Therefore, in practice c may
be chosen by the trader depending on the maximum acceptable cost: the bigger c,
the smaller will be the cost of the strategy and, consequently the bigger its error.

The functions f , g and u appearing above must in general be computed numeri-
cally. However, when the constants c+ and c− in (15) are equal, which corresponds
for example to the CGMY model very popular in practice [7], the results are com-
pletely explicit, as will be shown in the next paragraph.

3.3. Locally symmetric Lévy measures. In this section we discuss a case im-
portant in applications, when the asymptotically optimal strategy can be computed
explicitly in terms of A and λ.

PROPOSITION 3. Let the cost functional be of the form (10) with β ∈ [0,1].
Let the processes X and Y satisfy the assumptions (HY), (HX) with c+ = c−,
(HX1

loc) and (HXρ
loc) with ρ > α

α−β
∨ 2 (if β > 0). Assume that the processes A, b

and λ satisfy the following integrability conditions for some δ > 0:

E

[(
sup

0≤t≤T

λt

At

)2/(2+α−β) ∫ T

0
At dt

]
< ∞,

E

[(
inf

0≤t≤T

λt

At

)(1+δ)(β−α)/(2+α−β) ∫ T

0
K̂1+δ

t dt

]
< ∞,

and, if β = 1,

E

[(
sup

0≤t≤T

λt

At

)δ ∫ T

0
|bt |1+δ dt

]
< ∞,

or, if β < 1,

E

[(
inf

0≤t≤T

λt

At

)(β−1)(1+δ) ∫ T

0
|bt |1+δ dt

]
< ∞.
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Then the strategy given by

at = at = c

(
λt

At

)1/(2+α−β)

is asymptotically optimal.

PROOF. The fact that X satisfies (HX) with c+ = c− means that the limiting
process X∗ is a symmetric stable process. Let (a, a) be an admissible discretization
rule. With a change of notation at := at+at

2 and θt = at−at

at+at
and using the results

from Appendix A [Proposition 6, equations (53) and (54)], we can compute

f (at , at )

g(at , at )
= α

(α + 2)(α + 1)
a2
t

(
1 + θ2

t (1 + α)
)
,

uβ(at , at )

g(at , at )

= σ�(1 + α) sinπα/2

π

×
∫ ∞

0
z−α/2(z + 2at )

−α/2(∣∣z + at (1 + θt )
∣∣β−1 + ∣∣z + at (1 − θt )

∣∣β−1)
dz.

For fixed at , both ratios are minimal when θ = 0 (for the second functional this
follows from the convexity of the function x �→ xβ−1 for x ≥ 0 and β ≤ 1). More-
over, from the structure of assumptions (HA), (HAloc) and (HA2) [resp., (HA′

2)],
it is clear that the strategy obtained by taking θ = 0, that is, the strategy (a, a) is
also admissible. Therefore, the asymptotically optimal strategy, if it exists, will be
symmetric in this case. By the same arguments as in the previous section, we can
show that the optimal strategy, if it exists, minimizes

At

f (at , at )

g(at , at )
+ cλt

uβ(at , at )

g(at , at )

for each t . Plugging in the explicit expressions computed above, we see that this
functional is minimized by

at = c

(
λt

At

)1/(2+α−β)

for a different constant c. By the assumptions of the proposition, this strategy is
admissible, which completes the proof. �

3.4. Exponential Lévy models. In this section we treat the case when the pro-
cess Y (the asset price or the integrator) is the stochastic exponential of a Lévy
process. More precisely, throughout this section we assume that

Yt = Y0 +
∫ t

0
Ys− dZs,



ASYMPTOTICALLY OPTIMAL DISCRETIZATION 1017

where Z is a martingale Lévy process with no diffusion part and with Lévy mea-
sure ν which has a compact support U ∈ (−1,∞) with 0 ∈ intU and admits a den-
sity ν̄(x) which is continuous outside any neighborhood of zero and satisfies (21).
From the martingale property and the boundedness of jumps of Z, it follows imme-
diately that assumption (HY) is satisfied with At = Y 2

t

∫
R

z2ν̄(dz). For the choice
of the integrator X we consider two examples corresponding to the discretization
of hedging strategies on one hand and to the discretization of optimal investment
policies on the other hand.

EXAMPLE 2 (Discretization of hedging strategies). In this example we assume
that the integrand X (the hedging strategy) is a deterministic function of Y , which
is indeed the case for classical strategies (quadratic hedging, delta hedging) and
European contingent claims in exponential Lévy models; see [6, 19].

PROPOSITION 4. Let Xt = φ(t, Yt ) with φ(t, y) ∈ C1,2([0, T ) ×R) such that
for all Ȳ > 0 and T ∗ ∈ [0, T ),

min
(t,y)∈[0,T ∗]×[−Ȳ ,Ȳ ]

∂φ(t, y)

∂y
> 0.

Then, assumptions (HY), (HX) and (HXρ
loc) (for all ρ ≥ 1) are satisfied with

bt = ∂φ

∂t
(s, Ys) + ∂φ

∂y
(s, Ys)Ys

∫
|z|>1

zν̄(dz) and λt =
(
Yt

∂φ

∂y
(t, Yt )

)α

.

Assume additionally that the function φ is such that the integrability conditions of
Proposition 3 are satisfied for some δ > 0. Then the strategy given by

at = at = c

(
∂φ(t, Yt )

∂y

)α/(2+α−β)

Y
(α−2)/(α−β+2)
t

is asymptotically optimal.

PROOF. Applying Itô’s formula to φ(t, Yt ), we get

Xt = φ(0, Y0) +
∫ t

0
bs ds +

∫ t

0

∫
|z|≤1

γs(z)Ñ(ds × dz)

+
∫ t

0

∫
|z|>1

γs(z)N(ds × dz)

with γt (z) = φ(t, Yt (1 + z)) − φ(t, Yt ), which means that we can apply Proposi-
tion 1. The local boundedness conditions required by this proposition follow from
the local boundedness of Y and the continuity of the derivatives of φ. The second
statement is a direct corollary of Proposition 3. �
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REMARK 6. Using the Cauchy–Schwarz inequality and the fact that Y admits
all moments (because Z has bounded jumps), one can show that the following
more compact condition implies the integrability conditions of Proposition 3: for
some δ > 0,

E
[(

sup
x∈U,0≤t≤T

φ′
y

(
t, Yt (1 + x)

) + sup
0≤t≤T

∣∣φ′
t (t, Yt )

∣∣)2+δ

+
(

inf
0≤t≤T

φ′
t (t, Yt )

)−α(2+δ)]
< ∞.

This condition can be checked for specific strategies and specific parametric Lévy
models using the explicit formulas for the hedging strateigies given in [6, 19], but
these computations are out of scope of the present paper.

REMARK 7. When β = 0 and α → 2, we find that the optimal size of the
rebalancing interval is proportional to the square root of ∂φ(t,Yt )

∂Y
(the gamma),

which is consistent with the results of Fukasawa [15], quoted in the Introduction.

EXAMPLE 3 (Discretization of Merton’s portfolio strategy). A widely popu-
lar portfolio strategy, which was shown by Merton [21] to be optimal in the con-
text of power utility maximization, is the so called constant proportion strategy,
which consists of investing a fixed fraction of one’s wealth into the risky asset.
Since the price of the risky asset evolves with time, the number of units which
corresponds to a given proportion varies, and in practice the strategy must be dis-
cretized. Given the importance of this strategy in applications, it is of interest to
compute the asymptotically optimal discretization rule in this setting.

Assuming zero interest rate, the value Vt of a portfolio which invests a pro-
portion π of the wealth into the risky asset Y and the rest into the risk-free bank
account has the dynamics

VT = V0 +
∫ T

0
πVt−

dYt

Yt−
= V0 +

∫ T

0
Xt− dYt with Xt = π

Vt

Yt

.(29)

The following result provides the asymptotically optimal discretization rule for
this integral.

PROPOSITION 5. Assume that U ⊂ (− 1
π
,∞) if π > 1 and U ⊂ (−1,− 1

π
) if

π < 0. Then the strategy given by

at = at = cV
α/(2+α−β)
t Y

−(2+α)/(2+α−β)
t

is asymptotically optimal for the integral (29).

PROOF. Applying the Itô’s formula, we find the dynamics of the integrator X,

Xt = X0 + (π − 1)

∫ t

0

∫
U

Xs−z

1 + z
Ñ(ds × dz) + (1 − π)

∫ t

0

∫
U

Xs−z2

1 + z
ν(dz) ds.
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Hence, X can be written in the form of (20) with

γs(z) = (π − 1)Xs−z

1 + z
and b̄s = (1 − π)Xs

∫
R

{
z2

1 + z
1|z|≤1 + z1|z|>1

}
ν(dz).

Under the assumption of this proposition, the process X does not change sign, and
we can assume without loss of generality that (π − 1)Xs is always positive (other-
wise all the computations can be done for the process −X). Since X is a stochastic
exponential of a Lévy process with bounded jumps, it is locally bounded, which
means that by Proposition 1, X satisfies the assumption (HX) with

λt = γ ′
t (0)α = ∣∣(π − 1)Xt−

∣∣α
and the assumption (HXρ

loc) for all ρ ≥ 1. Moreover, since the compensator of the
jump measure of X is absolutely continous with respect to the Lebesgue measure
(in time), we can take λt = |(π − 1)Xt |α . Also, one can choose K̂t = CXt for C

sufficiently large in condition (14).
To check the integrability conditions in Proposition 3, observe that the processes

At , λt , K̂t and bt appearing in these conditions, are powers of stochastic exponen-
tials of Lévy processes with bounded jumps. They can therefore be represented as
ordinary exponentials of (other) Lévy processes with bounded jumps, but an expo-
nential of a Lévy process with bounded jumps admits all moments, and its max-
imum on [0, T ] also admits all moments; see Theorem 25.18 in [23]. Therefore,
the integrability conditions in Proposition 3 follow by using the Cauchy–Schwarz
inequality, and the proof is completed by an application of this proposition. �

4. Proof of Theorem 1. Step 1. Reduction to the case of bounded coefficients.
In the proofs of Theorems 1 and 2, we will replace the local boundedness and
integrability assumptions of these theorems with the following stronger one:

(H ′
ρ ) There exists a constant B > 0 such that 1

B
≤ λt , at , at ≤ B , |At | + |bt | +

|K̂t | ≤ B for 0 ≤ t ≤ T . There exists a Lévy measure ν(dx) such that, almost
surely for all t , the kernel μt(dz) is absolutely continuous with respect to λtν(dz):
μt(dz) = Kt(dz)λtν(dz) for a random function Kt(z) > 0. Moreover the process
(Zt ) defined by

Zt = E
(∫ ·

0

((
Ks(z)

)−1 − 1
)
(M − μ)(ds × dz)

)
t

,(30)

is a martingale and satisfies

EQ
[

sup
0≤t≤T

|Zt |−ρ
]
< ∞ and E

[
sup

0≤t≤T

Zt

]
< ∞,

where Q is the probability measure defined by

dQ

dP

∣∣∣
FT

:= ZT .
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Indeed, we have the following lemma.

LEMMA 2. Assume that (23) holds under the assumptions (HY), (HX) and
(H ′

1). Then Theorem 1 holds.

PROOF. First, observe that for every n,

E

[{∫ τn

0

∫
R

((
Ks(z)

)−1 − 1
)2

M(ds × dz)

}1/2]

≤ E

[{∫ τn

0

∫
|Ks(z)−1−1|≤1/2

((
Ks(z)

)−1 − 1
)2

M(ds × dz)

}1/2]

+ E

[{∫ τn

0

∫
|Ks(z)−1−1|>1/2

((
Ks(z)

)−1 − 1
)2

M(ds × dz)

}1/2]
.

Using the Cauchy–Schwarz inequality for the first term and the fact that the second
integral is a countable sum together with Proposition II.1.28 in [20] for the second
term, we see that this last expression is finite since by assumption (HX1

loc),

E

[∫ τn

0

∫
|Ks(z)−1−1|≤1/2

((
Ks(z)

)−1 − 1
)2

μ(ds × dz)

]1/2

+ E

[∫ τn

0

∫
|Ks(z)−1−1|>1/2

∣∣(Ks(z)
)−1 − 1

∣∣μ(ds × dz)

]
< ∞.

This implies that the process

Lt =
∫ t

0

∫
R

((
Ks(z)

)−1 − 1
)
(M − μ)(ds × dz)

is a local martingale and satisfies E[[L]1/2
T ∧τn

] < ∞ for every n; see Defini-
tion II.1.27 in [20]. The process Zt := E(L)t is then also well defined, and we
take σn := τn ∧ inf{t :Zt ≥ n}. Then

sup
0≤t≤T

Zt∧σn ≤ n + ∣∣�Zσn

∣∣1σn≤T ≤ n + [Z]1/2
σn∧T = n +

(∫ σn∧T

0
Z2

t−d[L]t
)1/2

≤ n + n[L]1/2
σn∧T ,

the last term being integrable. Therefore, we can define a new probability mea-
sure Qn via

dQn

dP

∣∣∣
Ft

= Zt∧σn.

By Girsanov’s theorem (Theorem III.5.24 in [20]), M is a random measure with
predictable compensator μQn := dt × λtν(dz) under Qn on {t ≤ σn} and

Z−1
t∧σn

= E
(∫ ·

0

(
Ks(z) − 1

)(
M − μQn)

(ds × dz)

)
t∧σn

.
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Therefore, by similar arguments to above, we can find an increasing sequence of
stopping times (γn) with γn → T and such that both

E
[

sup
0≤t≤T

Zt∧γn

]
< ∞ and EQn

[
sup

0≤t≤T

Z−1
t∧γn

]
< ∞.

Now we define Yn
t = Yt∧γn and Xn via equation (13) replacing the coefficients

λt , bt and Kt(z) with λn
t := λt∧γn , bn

t := bt∧γn and Kn
t (z) = Kt(z)1t≤γn + 1t>γn .

Moreover, we define an
t := at∧γn

, an
t := at∧γn . The stopping times T

ε,n
i and ηn(t)

are defined similarly. Note that An
t := At1t≤γn satisfies

∫ t
0 An

s ds = 〈Yn〉t , that Xn

coincides with X on the interval [0, γn] and that the new coefficients satisfy as-
sumption (H ′

1). Consequently,

lim
ε↓0

ε−2E

[∫ γn

0
(Xt − Xη(t))

2At dt

]
= lim

ε↓0
ε−2E

[(∫ T

0

(
Xn

t − Xn
ηn(t)

)2
dYn

t

)2]

= E

[∫ T

0
An

t

f (an
t , a

n
t )

g(an
t , a

n
t )

dt

]

= E

[∫ γn

0
At

f (at , at )

g(at , at )
dt

]
,

which implies, by assumption (HA), that

E

[∫ γn

0
At

f (at , at )

g(at , at )
dt

]
≤ E

[
sup

0≤s≤T

max(as, as)
2
∫ T

0
At dt

]
< +∞,

and so by Fatou’s lemma,

E

[∫ T

0
At

f (at , at )

g(at , at )
dt

]
≤ E

[
sup

0≤s≤T

max(as, as)
2
∫ T

0
At dt

]
< +∞.

Therefore, by dominated convergence

lim
n

E

[∫ T

γn

At

f (at , at )

g(at , at )
dt

]
= 0.

On the other hand,

ε−2E

∫ T

γn

(Xt − Xη(t))
2At dt ≤ E

[
sup

0≤s≤T

max(as, as)
2
∫ T

γn

At dt

]
.

The right-hand side does not depend on ε and converges to zero as n → ∞ by
the dominated convergence theorem. Therefore, the left-hand side can be made
arbitrarily small independently of ε, and the result follows. �

Step 2. Change of probability measure. We first prove the following important
lemma.
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LEMMA 3. Under the assumption H ′
1, almost surely,

lim
ε→0

sup
i:T ε

i ≤T

(
T ε

i+1 − T ε
i

) = 0.

PROOF. In this proof, let us fix ω ∈ �. By way of contradiction, assume
that there exists a constant C > 0 and a sequence {εn}n≥0 converging to zero
such that for every n, there exists i(n) with T

εn

i(n)+1 − T
εn

i(n) > C. From the se-

quences {T εn

i(n)+1}n and {T εn

i(n)}n we can extract two subsequences {T εφ(n)

i(φ(n))+1}n
and {T εφ(n)

i(φ(n))}n converging to some limiting values T1 < T2. For n big enough,
there exists a nonempty interval I which is a subset of both (T1, T2) and
(T

εφ(n)

i(φ(n))+1, T
εφ(n)

i(φ(n))). Now using that sup
t,s∈(T

εφ(n)
i(φ(n))+1,T

εφ(n)
i(φ(n)))

|Xt − Xs | ≤ 2Bεφ(n),

we obtain that sups,t∈I |Xt − Xs | = 0, which cannot hold since X is an infinite
activity process. �

Let �Ti+1 = Ti+1 ∧ T − Ti ∧ T . The goal of this step is to show that

lim
ε↓0

ε−2E

[∫ T

0
(Xt − Xη(t))

2At dt

]
(31)

= lim
ε↓0

EQ

[ ∞∑
i=1

Z−1
Ti∧T ATi∧T ε−2

∫ Ti+1∧T

Ti∧T
(Xt − XTi

)2 dt

]
.

We have

ε−2E

[∫ T

0
(Xt − Xη(t))

2At dt

]

= ε−2
+∞∑
i=0

E

[∫ Ti+1∧T

Ti∧T
(Xt − XTi

)2(At − ATi
) dt

]

+ ε−2
+∞∑
i=0

EQ

[
Z−1

Ti+1∧T ATi

∫ Ti+1∧T

Ti∧T
(Xt − XTi

)2 dt

]
.

Since for t ∈ [Ti, Ti+1), (Xt −XTi
)2 ≤ B2ε2, using the boundedness of A, (31) will

follow, provided we show that

lim
ε↓0

+∞∑
i=0

E

[∫ Ti+1∧T

Ti∧T
|At − ATi

|dt

]
= 0(32)

and

lim
ε↓0

+∞∑
i=0

EQ[∣∣Z−1
Ti+1∧T − Z−1

Ti∧T

∣∣�Ti+1
] = 0.(33)
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Limit (32) follows from the dominated convergence theorem (A is bounded by
assumption (H ′

1) and Aη(t) → At almost everywhere on [0, T ] since A is càdlàg
and by Lemma 3). Using the fact that Z−1 has finite quadratic variation together
with Lemma 3 and the Cauchy–Schwarz inequality, we get that, in probability,

lim
ε↓0

+∞∑
i=0

∣∣Z−1
Ti+1∧T − Z−1

Ti∧T

∣∣�Ti+1 = 0.

Then (33) follows from the integrability of supt∈[0,T ]Z−1
t , which is part of assump-

tion (H ′
1).

Step 3. First, observe that by the dominated convergence theorem, since
supi �Ti tends to zero, (31) is equal to

S1 := lim
ε↓0

Sε
1

with Sε
1 := EQ

[ ∞∑
i=0

1Ti≤T ATi
Z−1

Ti
ε−2E

Q
FTi

[∫ Ti+1

Ti

(Xt − XTi
)2 dt

]]
.

For this expression to be well defined we extend the processes λ, b, a, a by arbi-
trary constant values beyond T and define the process X for t ≥ T accordingly.

Define a family of continuous increasing processes (�s(t))t≥0 indexed by s ≥
0 by �s(t) = ∫ s+t

s λr dr , the family of filtrations Gi
t = FTi+t and of processes

(X̃i
t )t≥0 and (X̂i

t )t≥0 by

X̂i
t = X

Ti+�−1
Ti

(t)
− XTi

−
∫ Ti+�−1

Ti
(t)

Ti

bs ds, X̃i
t = X

Ti+�−1
Ti

(t)
− XTi

.

The process (X̂i
t )t≥0 is a (Gi

t )-semimartingale with (deterministic) characteris-
tics (0, ν,0) under Q, and therefore, it is a (Gi

t )-Lévy process under Q (Theo-
rem II.4.15 in [20]).

Let τ̃i = inf{t ≥ 0 : X̃i
t /∈ [−aTi

ε, aTi
ε]}. Using a change of variable formula we

obtain that ∫ Ti+1

Ti

(Xt − XTi
)2 dt =

∫ τ̃i

0

(X̃i
s)

2

λ(Ti + �−1
Ti

(s))
ds.

Using the càdlàg property of λ together with the various boundedness assumptions
and the integrability of sup0≤t≤T Z−1

t , we easily get that

S1 = lim
ε↓0

EQ

[ ∞∑
i=0

1Ti≤T

ATi
Z−1

Ti

λTi

ε−2E
Q
FTi

[∫ τ̃i

0

(
X̃i

t

)2
dt

]]
.

Then we obviously have that

S1 = lim
ε↓0

EQ

[ ∞∑
i=0

1Ti≤T

ATi
Z−1

Ti

λTi

Ti+1 − Ti

E
Q
FTi

[Ti+1 − Ti]
ε−2E

Q
FTi

[∫ τ̃i

0

(
X̃i

t

)2
dt

]]
.
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Now note that

Ti+1 − Ti =
∫ τ̃i

0

ds

λ(Ti + �−1
Ti

(s))
.(34)

Then

EQ

[ ∞∑
i=0

1Ti≤T

ATi
Z−1

Ti

λTi

Ti+1 − Ti

E
Q
FTi

[Ti+1 − Ti]
ε−2E

Q
FTi

[∫ τ̃i

0

(
X̃i

t

)2
dt

]]

= EQ

[ ∞∑
i=0

1Ti≤T ATi
Z−1

Ti

Ti+1 − Ti

E
Q
FTi

[τ̃i]
ε−2E

Q
FTi

[∫ τ̃i

0

(
X̃i

t

)2
dt

]]
+ Rε

with

∣∣Rε
∣∣ ≤ CEQ

[ ∞∑
i=0

1Ti≤T Z−1
Ti

(Ti+1 − Ti)

×
∣∣∣∣λ−1

Ti
EFTi

[τ̃i] − EFTi
[∫ τ̃i

0 ds/(λ(Ti + �−1
Ti

(s)))]
EFTi

[∫ τ̃i

0 ds/(λ(Ti + �−1
Ti

(s)))]
∣∣∣∣
]
.

Using (34), we obtain that

∣∣Rε
∣∣ ≤ CEQ

[ ∞∑
i=0

1Ti≤T Z−1
Ti

∣∣∣∣λ−1
Ti

EFTi
[τ̃i] − EFTi

[∫ τ̃i

0

ds

λ(Ti + �−1
Ti

(s))

]∣∣∣∣
]

≤ CEQ

[ ∞∑
i=0

1Ti≤T Z−1
Ti

∫ τ̃i

0

∣∣∣∣ 1

λTi

− 1

λ(Ti + �−1
Ti

(s))

∣∣∣∣ds

]

≤ CEQ

[ ∞∑
i=0

1Ti≤T Z−1
Ti

∫ Ti+1

Ti

∣∣∣∣ 1

λTi

− 1

λ(s)

∣∣∣∣ds

]
,

which is easily shown to converge to zero. Consequently, we conclude that

S1 = lim
ε↓0

EQ

[ ∞∑
i=0

1Ti≤T ATi
Z−1

Ti

Ti+1 − Ti

E
Q
FTi

[τ̃i]
ε−2E

Q
FTi

[∫ τ̃i

0

(
X̃i

t

)2
dt

]]
.(35)

Step 4. Comparison of hitting times and associated integrals. We start with the
following lemma:

LEMMA 4. Let κ ∈R+ and n ∈ N. Then

f κ,n

ε
(aTi

, aTi
) ≤ E

Q
FTi

[(∫ τ̃i

0

∣∣X̂i
t

∣∣κ dt

)n]
≤ f

κ,n

ε (aTi
, aTi

)
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whenever the expression in the middle is well defined, where f
ε

and f ε are deter-
ministic functions defined by

f κ,n

ε
(a, b) = EQ

[(∫ τ̂1

0
|X̂t |κ dt

)n]
and

f
κ,n

ε (a, b) = EQ

[(∫ τ̂2∧τ̂ j

0
|X̂t |κ dt

)n]
,

with X̂t = X̂0
t and

τ̂1 = inf
{
t : X̂t ≤ −aε + tB2 or X̂t ≥ bε − tB2}

,

τ̂2 = inf
{
t : X̂t ≤ −aε − tB2 or X̂t ≥ bε + tB2}

,

τ̂ j = inf
{
t : |�X̂t | ≥ ε(a + b)

}
.

The proof follows from the fact that |X̃i
t − X̂i

t | ≤ tB2 and that X̂ is a Gi
t -Lévy

process under Q, and that a jump of size greater than ε(a + b) immediately takes
the process X̃i out of the interval.

LEMMA 5.

lim
ε↓0

ε−(κ+α)nf κ,n

ε
(a, b) = lim

ε↓0
ε−(κ+α)nf

κ,n

ε (a, b) = f ∗,κ,n(a, b)(36)

uniformly on (a, b) ∈ [a1, a2] × [b1, b2] for all 0 < a1 ≤ a2 < ∞ and 0 < b1 ≤
b2 < ∞, with

f ∗,κ,n(a, b) = E

[(∫ τ∗

0

∣∣X∗
t

∣∣κ dt

)n]
,

where X∗ is a strictly α-stable process with Lévy density

ν∗(x) = c+1x>0 + c−1x<0

|x|1+α

and τ ∗ = inf{t ≥ 0 :X∗
t /∈ (−a, b)}.

PROOF. For ε > 0, let us define Xε
t = ε−1X̂εαt , X

ε,1
t = Xε

t − tB2εα−1, Xε,2
t =

Xε
t + tB2εα−1 and

τ
ε,1
1 = inf

{
t,X

ε,1
t ≤ −a

}
, τ

ε,2
1 = inf

{
t,X

ε,2
t ≥ b

}
,

τ
ε,1
2 = inf

{
t,X

ε,2
t ≤ −a

}
, τ

ε,2
2 = inf

{
t,X

ε,1
t ≥ b

}
τ

ε,1
3 = inf

{
t,Xε

t ≤ −a
}
, τ

ε,2
3 = inf

{
t,Xε

t ≥ b
}
.
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We write τ ε
i = τ

ε,1
i ∧ τ

ε,2
i for i = 1,2,3. Similarly, we define τ j,ε := inf{t :

|�Xε
t | ≥ (a + b)}. Observe that by a change of variable in the integral,

ε−(κ+α)nf κ,n

ε
(a, b) = EQ

[(∫ τ ε
1

0

∣∣Xε
t

∣∣κ dt

)n]
,

ε−(κ+α)nf
κ,n

ε (a, b) = EQ

[(∫ τ ε
2 ∧τ j,ε

0

∣∣Xε
t

∣∣κ dt

)n]
.

From Lemma 11, we have that Xε
t converges to X∗

t in Skorohod topology. From
Skorohod representation theorem, there exists some probability space on which are
defined a process Y ∗ and a family of processes Y ε such that Y ε and Xε have the
same law, Y ∗ and X∗ have the same law and Y ε converges to Y ∗ almost surely, for
the Skorohod topology.

This implies that Y ε,1 and Y ε,2 also converge to Y ∗ almost surely, where
Y

ε,1
t = Y ε

t − tB2εα−1 and Y
ε,2
t = Y ε

t + tB2εα−1. Now using that the application
which to a function f in the Skorohod space associates its first hitting time of a
constant barrier is continuous at almost all f which are sample paths of strictly
stable processes (see Proposition VI.2.11 in [20] and its use in [22]), we obtain
that σε

i converges almost surely to σ ∗ for i = 1,2,3, where σε
i and σ ∗ are de-

fined through Y ε,1, Y ε,2, Y ∗ in the same way as τ ε
i and τ ∗ through Xε,1, Xε,2,X∗.

Moreover, since σε
3 ≤ σ j,ε for all ε, we also have that σε

2 ∧ σ j,ε → σ ∗ almost
surely.

Now remark that, almost surely, Y ε
t converges almost everywhere in t to Y ∗

t ;
see Proposition VI.2.3 in [20]. Therefore, since |Y ε

t |1t≤σε
1

≤ max(a, b) and

|Y ε
t |1t≤σj,ε∧σε

2
≤ max(a, b) + B2t , using the dominated convergence theorem, we

obtain that almost surely(∫ σε
1

0

∣∣Y ε
t

∣∣κ dt

)n

→
(∫ σ ∗

0

∣∣Y ∗
t

∣∣κ dt

)n

and

(∫ σε
2 ∧σj,ε

0

∣∣Y ε
t

∣∣κ dt

)n

→
(∫ σ ∗

0

∣∣Y ∗
t

∣∣κ dt

)n

.

Finally, we deduce that(∫ τ ε
1

0

∣∣Xε
t

∣∣κ dt

)n

→
(∫ τ∗

0

∣∣X∗
t

∣∣κ dt

)n

and

(∫ τ ε
2 ∧τ j,ε

0

∣∣Xε
t

∣∣κ dt

)n

→
(∫ τ∗

0

∣∣X∗
t

∣∣κ dt

)n

,

in law.
Now note that τ j,ε is the first jump time of a Lévy process with characteristic

triplet given by (0, εαν|(−(a+b)ε,(a+b)ε)c ,0). Using that this process is a compound
Poisson process, we get

P
[
τ j,ε > T

] ≤ exp
{−T εαν

((−∞,−(a + b)ε
] ∪ [

(a + b)ε,∞))}
,
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which, by property (19), implies that the family (τ j,ε)ε>0 has uniformly bounded
exponential moment. This implies that the families(∫ τ ε

2 ∧τ j,ε

0

∣∣Xε
t

∣∣κ dt

)n

and
(∫ τ ε

1

0

∣∣Xε
t

∣∣κ dt

)n

=
(∫ τ ε

1 ∧τ j,ε

0

∣∣Xε
t

∣∣κ dt

)n

,

parameterized by ε, are uniformly integrable, and therefore the proof of the con-
vergence in (36) is complete.

It remains to show that the convergence in (36) is uniform in (a, b) over com-
pact sets excluding zero. To do this, first observe that f ∗,κ,n(a, b) is continuous
in (a, b) on compact sets excluding zero (this is shown using essentially the same
arguments as above: continuity of the exit times for stable processes plus uni-
form integrability). Second, since both f κ,n

ε
and f

κ,n

ε are increasing in a and b,
a multidimensional version of Dini’s theorem can be used to conclude that the
convergence is indeed uniform. �

Step 5. First, let us show that

S1 = lim
ε↓0

EQ

[ ∞∑
i=0

1Ti≤T ATi
Z−1

Ti

Ti+1 − Ti

E
Q
FTi

[τ̃i]
ε−2E

Q
FTi

[∫ τ̃i

0
X̂2

t dt

]]
.

Indeed, the absolute value of the difference between the expressions under the limit
here and in (35) is bounded from above by

EQ

[ ∞∑
i=0

1Ti≤T ATi
Z−1

Ti

Ti+1 − Ti

E
Q
FTi

[τ̃i]
ε−2E

Q
FTi

[∫ τ̃i

0

∣∣(X̃t − X̂t )(X̃t + X̂t )
∣∣dt

]]

≤ CEQ

[ ∞∑
i=0

1Ti≤T Z−1
Ti

Ti+1 − Ti

E
Q
FTi

[τ̃i]
ε−2E

Q
FTi

[
τ̃ 3
i + τ̃ 2

i ε
]]

(37)

≤ CEQ

[ ∞∑
i=0

1Ti≤T Z−1
Ti

(Ti+1 − Ti)
ε−2f

0,3
ε (aTi

, aTi
) + ε−1f

0,2
ε (aTi

, aTi
)

f 0,1
ε

(aTi
, aTi

)

]
,

where C is a constant which does not depend on ε. Using Lemma 5 and the fact
that α > 1, we get

sup
1/B≤a,b≤B

ε−2f
0,3
ε (a, b) + ε−1f

0,2
ε (a, b)

f 0,1
ε

(a, b)
→ 0 as ε → 0.

This, together with the fact that EQ[sup0≤t≤T Z−1
t ] < ∞, enables us to apply the

dominated convergence theorem and conclude that (37) goes to zero.
Finally, we have that

S1 ≤ lim sup
ε↓0

EQ

[ ∞∑
i=0

1Ti≤T ATi
Z−1

Ti
(Ti+1 − Ti)

ε−2−αf
2,1
ε (aTi

, aTi
)

ε−αf 0,1
ε

(aTi
, aTi

)

]
,
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S1 ≥ lim sup
ε↓0

EQ

[ ∞∑
i=0

1Ti≤T ATi
Z−1

Ti
(Ti+1 − Ti)

ε−2−αf 2,1
ε

(aTi
, aTi

)

ε−αf
0,1
ε (aTi

, aTi
)

]
.

Using for (κ, n) = (0,1) and (κ, n) = (2,1) the uniform convergence on [1/B,B]
of ε−(κ+α)nf κ,n

ε
and ε−(κ+α)nf

κ,n

ε toward f ∗,κ,n which is continuous, together
with a Riemann-sum type argument and the dominated convergence theorem, we
obtain that

S1 = EQ

[∫ T

0
AtZ

−1
t

f ∗,2,1(at , at )

f ∗,0,1(at , at )
dt

]
= E

[∫ T

0
At

f ∗,2,1(at , at )

f ∗,0,1(at , at )
dt

]
.

5. Preliminaries for the proof of Theorem 2. In this section, we prove some
technical lemmas concerning the uniform integrability of the hitting time counts
and the overshoots, which are needed for the proof of Theorem 2.

LEMMA 6. Under the assumption (HX), for all β ∈ [0, α) and ε > 0,

EFTi

[|XTi+1 − XTi
|β]

≤ cεβ−1 max
{
a

β−1
Ti

, a
β−1
Ti

}
EFTi

[∫ Ti+1

Ti

|bs |ds

]
(38)

+ cεβ−α max{aTi
, aTi

}β∨(2−α)

× min{aTi
, aTi

}(β−2)∧(−α)EFTi

[∫ Ti+1

Ti

K̂s ds

]
,

provided that the right-hand side has finite expectation.

COROLLARY 1. Under the assumption (HX), for all ε > 0,

εα ≤ cεα−1 min{aTi
, aTi

}−1EFTi

[∫ Ti+1

Ti

|bs |ds

]

+ c min{aTi
, aTi

}−αEFTi

[∫ Ti+1

Ti

K̂s ds

]
,

provided that the right-hand side has finite expectation.

PROOF. Apply Lemma 6 with β ′ = 0, a′
Ti

= a′
Ti

= min{aTi
, aTi

}; then multi-
ply both sides of (38) by εα and use the fact that the hitting time of the new barrier
is smaller than Ti+1. �

PROOF OF LEMMA 6. First of all, from (14) we easily deduce by integration
by parts that ∫

x<|z|≤1
|z|μ(dt × dz) < CK̂tx

1−α and

(39) ∫
|z|≤x

z2μ(dt × dz) < CK̂tx
2−α
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for all x > 0, for some constant C < ∞.
For this proof, let

f (x) := x210≤x≤2aTi
ε(2aTi

ε)β−2 + |x|β1x>2aTi
ε + x21−2aTi

ε≤x≤0(2aTi
ε)β−2

+ |x|β1x<−2aTi
ε.

By Itô’s formula,

2β−2EFTi

[|XTi+1 − XTi
|β]

≤ EFTi

[
f (XTi+1 − XTi

)
]

= EFTi

[∫ Ti+1

Ti

f ′(Xs − XTi
)bs ds

]

+ EFTi

[∫ Ti+1

Ti

∫
R

{
f (Xs + z − XTi

) − f (Xs − XTi
)(40)

− f ′(Xs − XTi
)z1|z|≤1

}
μ(ds × dz)

]

+ EFTi

[∫ Ti+1

Ti

∫
R

{
f (Xs− + z − XTi

)

− f (Xs − XTi
)
}
(M − μ)(ds × dz)

]
.

The first term in the right-hand side satisfies

EFTi

[∫ Ti+1

Ti

f ′(Xs − XTi
)bs ds

]

≤ (2ε)β−1 max
{
a

β−1
Ti

, a
β−1
Ti

}
EFTi

[∫ Ti+1

Ti

|bs |ds

]
.

For the second term, we denote As := {z :Xs + z − XTi
∈ (−2aTi

ε,2aTi
ε)} and

decompose it into two terms,

EFTi

[∫ Ti+1

Ti

∫
Ac

s

{
f (Xs + z − XTi

)

− f (Xs − XTi
) − f ′(Xs − XTi

)z1|z|≤1
}
μ(ds × dz)

]

≤ CEFTi

[∫ Ti+1

Ti

∫
(−aTi

ε,aTi
ε)c

{|z|β + εβ−1 max
{
a

β−1
Ti

, a
β−1
Ti

}
× |z|1|z|≤1

}
μ(ds × dz)

]
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≤ Cεβ−α{
max

{
a

β−α
Ti

, a
β−α
Ti

} + max
{
a

β−1
Ti

, a
β−1
Ti

}
max

{
a1−α

Ti
, a1−α

Ti

}}
× EFTi

[∫ Ti+1

Ti

K̂s ds

]
and

EFTi

[∫ Ti+1

Ti

∫
As

{
f (Xs + z − XTi

) − f (Xs − XTi
)

− f ′(Xs − XTi
)z1|z|≤1

}
μ(ds × dz)

]
,

which is smaller than

EFTi

[∫ Ti+1

Ti

∫
As

{∫ z

0
f ′′(Xs − XTi

+ x)(z − x)dx

}
μ(ds × dz)

]

− EFTi

[∫ Ti+1

Ti

∫
As

{
f ′(Xs − XTi

)z1|z|>1
}
μ(ds × dz)

]

≤ Cεβ−2 max
{
a

β−2
Ti

, a
β−2
Ti

}
EFTi

[∫ Ti+1

Ti

∫ 3aTi
ε

−3aTi
ε
z2μ(ds × dz)

]

+ Cεβ−1 max
{
a

β−1
Ti

, a
β−1
Ti

}
EFTi

[∫ Ti+1

Ti

∫ 3aTi
ε

−3aTi
ε
z2μ(ds × dz)

]
≤ Cεβ−α(

max
{
a

β−2
Ti

, a
β−2
Ti

} + ε max
{
a

β−1
Ti

, a
β−1
Ti

})
× max

{
a2−α

Ti
, a2−α

Ti

}
× EFTi

[∫ Ti+1

Ti

K̂s ds

]
,

where we used (39) in the last inequality. Assembling the terms and doing some
simple estimations yields the statement of the lemma, provided we can show that
the third term on the right-hand side of (40) is equal to zero. Splitting it, once
again, in two parts, we then get

EFTi

[∫ Ti+1

Ti

∫
Ac

s

∣∣f (Xs− + z − XTi
) − f (Xs − XTi

)
∣∣μ(ds × dz)

]

≤ CEFTi

[∫ Ti+1

Ti

∫
(−∞,−aTi

ε)∪(aTi
ε,∞)

|z|βμ(ds × dz)

]

≤ C max
{
a

β−α
Ti

, a
β−α
Ti

}
EFTi

[∫ Ti+1

Ti

K̂s ds

]
,
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and for the other term, using the “isometry property” of the stochastic integral with
respect to the random measure together with (39), we obtain

EFTi

[(∫ Ti+1

Ti

∫
As

f (Xs− + z − XTi
) − f (Xs − XTi

)

max{aβ−2
Ti

, a
β−2
Ti

}
(M − μ)(ds × dz)

)2]

≤ Cε2β−4EFTi

[∫ Ti+1

Ti

∫ 3aTi
ε

−3aTi
ε
z2μ(ds × dz)

]

≤ Cε2β−2−α max
{
a2−α

Ti
, a2−α

Ti

}
EFTi

[∫ Ti+1

Ti

K̂s ds

]
.

Using the fact that both these terms have finite expectation by the assumption of
the lemma, we can now apply standard martingale arguments to show that the third
term in (40) is equal to zero. �

LEMMA 7. Assume (HX) and (HA2). Let {τn} be a sequence of stopping times
converging to T from below. Then there exists ε∗ > 0 such that

sup
0<ε<ε∗

E

[(
εα−β

Nε
T∑

i=1

|XTi
− XTi−1 |β

)1+δ]
< ∞(41)

and

lim
n→∞ lim

ε↓0
E

[(
εα−β

Nε
T∑

i=Nε
τn

+1

|XTi
− XTi−1 |β

)1+δ]
= 0.(42)

PROOF. In this proof, we shall use the notation

�t = sup
0≤s≤T

(
max

{
aβ−1

s , aβ−1
s

}1+δ + max
{
a(1+δ)β−1

s , a(1+δ)β−1
s

})|bt |1+δ

+ sup
0≤s≤T

max{as, as}(β∨(2−α))(1+δ) min{as, as}((β−2)∧(−α))(1+δ)K̂1+δ
t .

We now use a martingale decomposition of the sum of the increments. So we write

n∑
i=1

|XTi
− XTi−1 |β = M1

n + M2
n + Zn,

M1
n =

n∑
i=1

{|XTi
− XTi−1 |β − EFTi−1

[|XTi
− XTi−1 |β

]}
,

M2
n =

n∑
i=1

EFTi−1

[|XTi
− XTi−1 |β

]{
1 −

∫ Ti

Ti−1
�

Ti−1
s ds

EFTi−1
[∫ Ti

Ti−1
�

Ti−1
s ds]

}
,
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Zn =
n∑

i=1

EFTi−1

[|XTi
− XTi−1 |β

] ∫ Ti

Ti−1
�

Ti−1
s ds

EFTi−1
[∫ Ti

Ti−1
�

Ti−1
s ds]

,

where we write

�Ti
s := εα−1 max

{
a

β−1
Ti

, a
β−1
Ti

}|bs |
+ max{aTi

, aTi
}β∨(2−α) min{aTi

, aTi
}(β−2)∧(−α)K̂s.

The processes M1 and M2 are martingales with respect to the discrete filtration
Fd

n := FTn . Note that for every F -stopping time τ ≤ T , Nε
τ is an Fd -stopping

time. The Burkholder inequality for a discrete-time martingale M then writes

E
[|MNε

T
− MNε

τ
|1+δ] ≤ CE

[( Nε
T∑

i=Nε
τ +1

(Mi − Mi−1)
2

)(1+δ)/2]

≤ CE

[ Nε
T∑

i=Nε
τ +1

|Mi − Mi−1|1+δ

]
,

and therefore,

E
[∣∣εα−β(

M1
Nε

T
− M1

Nε
τ

)∣∣1+δ]
≤ Cε(α−β)(1+δ)E

[ Nε
T∑

i=Nε
τ +1

∣∣|XTi
− XTi−1 |β − EFTi−1

[|XTi
− XTi−1 |β

]∣∣1+δ

]

≤ Cε(α−β)(1+δ)E

[ Nε
T∑

i=Nε
τ +1

EFTi−1

[|XTi
− XTi−1 |β(1+δ)]].

By Lemma 6, this is smaller than

CE

[
εα(1+δ)−1 sup

0≤s≤T

max
{
aβ ′−1

s , aβ ′−1
s

} ∫ TNε
T

TNε
τ

|bs |ds

+ εαδ sup
0≤s≤T

max{as, as}β ′∨(2−α) min{as, as}(β ′−2)∧(−α)
∫ TNε

T

TNε
τ

K̂s ds

]

≤ Cεαδ

(
E

[∫ TNε
T

TNε
τ

�s ds

]
+ E

[∫ TNε
T

TNε
τ

�s ds

]1/(1+δ))
,

with β ′ = β(1 + δ), where the last estimate can be obtained, for example, by
Hölder’s inequality.
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Similarly, the process M2 satisfies

E
[∣∣εα−β(

M2
Nε

T
− M2

Nε
τ

)∣∣1+δ]
≤ CE

[ Nε
T∑

i=Nε
τ +1

{∫ Ti

Ti−1

�
Ti−1
s ds − EFTi−1

[∫ Ti

Ti−1

�
Ti−1
s ds

]}1+δ
]

≤ CE

[ Nε
T∑

i=Nε
τ +1

{∫ Ti

Ti−1

�
Ti−1
s ds

}1+δ
]

≤ CE

[∫ TNε
T

TNε
τ

(
�ηs

s

)1+δ
ds

]

≤ CE

[∫ TNε
T

TNε
τ

�s ds

]
.

The process Z can be treated along the same lines as well, since by Lemma 6,

E
[∣∣εα−β(ZNε

T
− ZNε

τ
)
∣∣1+δ] ≤ CE

[{∫ TNε
T

TNε
τ

�ηs
s ds

}1+δ]
≤ CE

[∫ TNε
T

TNε
τ

�s ds

]
.

The three expressions above are uniformly bounded by the assumption of the
lemma, proving (41). To show (42), observe that

E

[∫ TNε
T

TNε
τn

�s ds

]
≤ E

[∫ T

τn

�s ds

]
+ E

[
sup

i:Ti≤T

∫ Ti

Ti−1

�s ds

]
.

The first term does not depend on ε and converges to zero as n → ∞ by the as-
sumption of the lemma and the dominated convergence. For the second term, we
use Lemma 3 and the absolute continuity of the integral. �

In the case β = 0, assumption (HA2) can be somewhat simplified.

LEMMA 8. Assume (HX) and (HA′
2). Let {τn} be a sequence of stopping times

converging to T from below. Then there exists ε∗ > 0 such that

sup
0<ε<ε∗

E
[(

εαNε
T

)1+δ]
< ∞

and

lim
n→∞ lim

ε↓0
E

[(
εα(

Nε
T − Nε

τn

))1+δ] = 0.

PROOF. We follow the proof of Lemma 7, taking β = 0 and

�Ti
s := εα−1 min{aTi

, aTi
}−1|bs | + min{aTi

, aTi
}−αK̂s

and using Corollary 1 instead of Lemma 6. �
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6. Proof of Theorem 2. Step 1. Reduction to the case of bounded coefficients.
As before, we start with the localization procedure.

LEMMA 9. Assume that (24) holds under the assumptions (HY), (HX) and
(H ′

1) and (25) holds under the assumptions (HY), (HX) and (H ′
ρ) for some ρ >

α
α−β

∨ 2. Then Theorem 2 holds.

PROOF. The arguments related to the localization of Z are the same or very
similar to those in Lemma 2, and so they are omitted. We set u0(a, b) = 1 for any
(a, b). With the same notation as in the proof of this lemma, and using (42) in the
first equality we then get, for 0 ≤ β < α,

lim
ε↓0

εα−βE

[Nε
T∑

i=1

|XTi
− XTi−1 |β

]

= lim
n→∞ lim

ε↓0
εα−βE

[Nε
γn∑

i=1

|XTi
− XTi−1 |β

]

= lim
n→∞ lim

ε↓0
εα−βE

[ ∑
i≥1:T n

i ≤γn

∣∣Xn
Ti

− Xn
Ti−1

∣∣β]

= lim
n→∞E

[∫ γn

0
λt

uβ(at , at )

g(at , at )
dt

]

= E

[∫ T

0
λt

uβ(at , at )

g(at , at )
dt

]
,

where the assumptions of the lemma are used to pass from the second to the third
line.

Step 2. Change of probability measure. The goal of this step is to show that

S2 := lim
ε↓0

εα−βE

[Nε
T∑

i=1

|XTi
− XTi−1 |β

]
(43)

= lim
ε↓0

εα−βEQ

[ ∞∑
i=1

1Ti−1≤T Z−1
Ti−1

|XTi
− XTi−1 |β

]
.

For the right-hand side to be well defined we extend the processes λ, b, a, a by
arbitrary constant values beyond T and define the process X for t ≥ T accordingly.
The case β = 0 being straightforward, we assume that β > 0.

To prove (43), it is enough to show that

lim
ε↓0

EQ

[
εα−β

∞∑
i=1

1Ti≤T

(
Z−1

Ti
− Z−1

Ti−1

)|XTi
− XTi−1 |β

]
= 0(44)
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and

lim
ε↓0

εα−βEQ[
Z−1

TNε
T

|XTNε
T

+1
− XTNε

T
|β] = 0.(45)

The second term can be shown to converge to zero using Lemma 6. For the first
term, for 1 < κ <

αρ
α+βρ

, Hölder’s inequality yields

EQ

[(
εα−β

∞∑
i=1

1Ti≤T

(
Z−1

Ti
− Z−1

Ti−1

)|XTi
− XTi−1 |β

)κ]

≤ EQ
[

sup
0≤t≤T

Z
−ρ
t

]κ/ρ

× EQ

[(
εα−β

∞∑
i=1

1Ti≤T |XTi
− XTi−1 |β

)κρ/(ρ−κ)](ρ−κ)/ρ

,

which is bounded by a constant for ε sufficiently small by Lemma 7 (applied
under Q) (the assumptions are satisfied because we are working under H ′

ρ and
therefore all coefficients are bounded). Therefore, the expression under the expec-
tation in (44) is uniformly integrable under Q as ε ↓ 0. On the other hand, by the
Cauchy–Schwarz inequality,

εα−β
∞∑
i=1

1Ti≤T

∣∣Z−1
Ti

− Z−1
Ti−1

∣∣|XTi
− XTi−1 |β

≤ ε(α−β)/2

(Nε
T∑

i=1

(
Z−1

Ti
− Z−1

Ti−1

)2
)1/2

× sup
0≤t≤T

|Xt |β/2

(
εα−β

Nε
T∑

i=1

|XTi
− XTi−1 |β

)1/2

.

Since Z−1 has finite quadratic variation, and the last factor is uniformly integrable
under Q by Lemma 7, due to the first deterministic factor, the whole expression
converges to zero in probability, and (44) follows.

Step 3. Using the same notation as in the proof of Theorem 1 (step 3), we have

εα−βEQ

[ ∞∑
i=1

1Ti−1≤T Z−1
Ti−1

(Ti − Ti−1)
E

Q
FTi−1

|X̃τ̃i
|β

E
Q
FTi−1

[Ti − Ti−1]

]

= εα−βEQ

[ ∞∑
i=1

1Ti−1≤T Z−1
Ti−1

λTi−1(Ti − Ti−1)
E

Q
FTi−1

|X̃τ̃i
|β

E
Q
FTi−1

[τ̃i]

]
+ Rε,
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where one can show, using first Lemma 6 and then exactly the same arguments as
in the proof of Theorem 1, that Rε → 0 as ε ↓ 0. Then, from the previous step,

S2 = lim
ε↓0

εα−βEQ

[ ∞∑
i=1

1Ti−1≤T Z−1
Ti−1

(Ti − Ti−1)
E

Q
FTi−1

|XTi
− XTi−1 |β

E
Q
FTi−1

[Ti − Ti−1]

]

= lim
ε↓0

εα−βEQ

[ ∞∑
i=1

1Ti−1≤T Z−1
Ti−1

λTi−1(Ti − Ti−1)
E

Q
FTi−1

|X̃τ̃i
|β

E
Q
FTi−1

[τ̃i]

]
.

Our next goal is to replace X̃τ̃i
with X̂τ̂i

in the above expression, where τ̂i = inf{t ≥
0 : X̂t /∈ [−aTi

ε, aTi
ε]}. Let a = min(aTi

, aTi
) and define

f (x) = (εa)β
(β − εa)(x/(εa))2 + 2 − β

2 − εa
1|x|<εa + |x|β1|x|>εa.

f is a twice differentiable function satisfying for small enough ε∣∣f ′(x)
∣∣ ≤ Cεβ−1 and

∣∣f ′′(x)
∣∣ ≤ Cεβ−2,(46)

and hence Itô’s formula can be applied. Then,∣∣EQ
FTi−1

[|X̃τ̃i
|β − |X̂τ̂i

|β]∣∣
≤ ∣∣EQ

FTi−1

[
f (X̃τ̃i

) − f (X̂τ̃i
)
]∣∣ + ∣∣EQ

FTi−1

[
f (X̂τ̃i

) − f (X̂τ̂i
)
]∣∣.

By definition of X̃ and X̂ and because all coefficients are bounded, the first term
satisfies ∣∣EQ

FTi−1

[
f (X̃τ̃i

) − f (X̂τ̃i
)
]∣∣ ≤ Cεβ−1E

Q
FTi−1

[τ̃i].
For the second term, we use Itô’s formula,

E
Q
FTi−1

[
f (X̂τ̃i

) − f (X̂τ̂i
)
]

= E
Q
FTi−1

[∫ τ̂i∨τ̃i

τ̂i∧τ̃i

∫
R

{
f (X̂s + z) − f (X̂s) − z1|z|≤1f

′(X̂s)
}
ν(dz) ds

]

+ E
Q
FTi−1

[∫ τ̂i∨τ̃i

τ̂i∧τ̃i

∫
R

{
f (X̂s− + z) − f (X̂s−)

}(
M̂(ds × dz) − ν(dz) ds

)]
,

where M̂ is the jump measure of X̂. It follows by standard arguments that the local
martingale term has zero expectation. To deal with the first term we use the bounds
in (46) and decompose the integrand as follows:∣∣∣∣∫

R

{
f (X̂s + z) − f (X̂s) − z1|z|≤1f

′(X̂s)
}
ν(dz)

∣∣∣∣
≤ Cεβ−2

∫
|z|≤ε

z2ν(dz) + Cεβ−1
∫
|z|>ε

|z|ν(dz) ≤ Cεβ−α,
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so that finally∣∣EQ
FTi−1

[|X̃τ̃i
|β − |X̂τ̂i

|β]∣∣ ≤ Cεβ−1E
Q
FTi−1

[τ̃i] + Cεβ−αE
Q
FTi−1

[|τ̃i − τ̂i |].
Substituting this estimate into the formula for S2, we then get

S2 = lim
ε↓0

εα−βEQ

[ ∞∑
i=1

1Ti−1≤T Z−1
Ti−1

λTi−1(Ti − Ti−1)
E

Q
FTi−1

|X̂τ̂i
|β

E
Q
FTi−1

[τ̃i]

]
+ lim

ε↓0
Rε

with ∣∣Rε
∣∣ ≤ Cεα−1EQ

[ ∞∑
i=1

1Ti−1≤T Z−1
Ti−1

λTi−1(Ti − Ti−1)

]

+ CEQ

[ ∞∑
i=1

1Ti−1≤T Z−1
Ti−1

λTi−1(Ti − Ti−1)
E

Q
FTi−1

|τ̃i − τ̂i |
E

Q
FTi−1

[τ̃i]

]
.

The first expectation is bounded (because λ is bounded) and Z−1 is integrable, and
therefore the first term converges to zero. For the second term, we observe (using
the notation of the proof of Theorem 1, step 4) that

f 0,1
ε

(aTi
, aTi

) ≤ E
Q
FTi−1

[τ̃i] ≤ f
0,1
ε (aTi

, aTi
)

and

E
Q
FTi−1

|τ̃i − τ̂i | ≤ EQ[
τ̂2 ∧ τ̂ j − τ̂1

] ≤ f
0,1
ε (aTi

, aTi
) − f 0,1

ε
(aTi

, aTi
).

In view of Lemma 5 we then conclude that the second term converges to zero as
well. Finally, we have shown that

S2 = lim
ε↓0

εα−βEQ

[ ∞∑
i=1

1Ti−1≤T Z−1
Ti−1

λTi−1(Ti − Ti−1)
u

β
ε (aTi−1

, aTi−1)

E
Q
FTi−1

[τ̃i]

]
,

where u
β
ε is a deterministic function defined by

uβ
ε (a, b) = E

[|X̂τ̂ |β
]
, τ̂ = inf

{
t ≥ 0 : X̂t /∈ (−aε, bε)

}
.

Similar to the last step of the proof of Theorem 1, we can now write

S2 ≤ lim sup
ε↓0

EQ

[ ∞∑
i=1

1Ti−1≤T Z−1
Ti−1

λTi−1(Ti − Ti−1)
ε−βu

β
ε (aTi−1

, aTi−1)

ε−αf 0,1
ε

(aTi−1
, aTi−1)

]
,

S2 ≥ lim sup
ε↓0

EQ

[ ∞∑
i=1

1Ti−1≤T Z−1
Ti−1

λTi−1(Ti − Ti−1)
ε−βu

β
ε (aTi−1

, aTi−1)

ε−αf
0,1
ε (aTi−1

, aTi−1)

]
.
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Using Lemma 11 we obtain uniform convergence of

ε−βu
β
ε (a, b)

ε−αf
0,1
ε (a, b)

toward uβ(a,b)

f ∗,0,1(a,b)
and conclude that

S2 = EQ

[∫ T

0
λtZ

−1
t

uβ(at , at )

f ∗,0,1(at , at )
dt

]
= E

[∫ T

0
λt

uβ(at , at )

f ∗,0,1(at , at )
dt

]
. �

APPENDIX A: SOME COMPUTATIONS FOR STABLE PROCESSES

PROPOSITION 6. Let X be a symmetric α-stable process on R with character-
istic function E[eiuXt ] = e−tσ |u|α , 0 < α < 2, and τa,b = inf{t ≥ 0 :Xt /∈ (−a, b)}
with a, b > 0. Then

f (a, b) := E

[∫ τa,b

0
X2

t dt

]
= α(ab)1+(α/2)

2σ�(3 + α)

{(
a

b
+ b

a

)(
1 + α

2

)
− α

}
.

The proof of this result is based on the following lemma, where we consider the
exit time from the interval [−1,1] by a process starting from x.

LEMMA 10. Let X be as above and τ1 = inf{t ≥ 0 :Xt /∈ (−1,1)}. Then

f (x) := Ex

[∫ τ1

0
X2

t dt

]
= 1

σ

2(1 − x2)α/2{x2 + (α/2)}
�(3 + α)

1x∈(−1,1).

PROOF. Without loss of generality, we let σ = 1 in this proof. Let f̂ (u) =∫
R

eiuxf (x) dx. Using the arguments similar to the ones in [16], one can show
that the function f satisfies the equation Lαf (x) = −x2 on x ∈ (−1,1) with the
boundary condition f (x) = 0 on x /∈ (−1,1), where Lα is the fractional Laplace
operator

Lαf (x) =
∫
R

(
f (x + y) − f (x) − yf ′(x)

) dy

|y|1+α
, 1 < α < 2,

Lαf (x) =
∫
R

(
f (x + y) − f (x) − y1|y|≤1f

′(x)
) dy

|y|1+α
, α = 1,

Lαf (x) =
∫
R

(
f (x + y) − f (x)

) dy

|y|1+α
, 0 < α < 1.

Moreover, the function f̂ satisfies the system of integral equations

1

π

∫ ∞
0

f̂ (u)|u|α cos(ux) du = x2, |x| < 1,

1

π

∫ ∞
0

f̂ (u) cos(ux) du = 0, |x| > 1.
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Let f̂1(u) = u−(1+α)/2J(1+α)/2(u) and f̂2(u) = u−(3+α)/2J(3+α)/2(u), where J is
the Bessel function; see [17], Section 8.40. Then, from [17], Integral 6.699.2, we
get ∫ ∞

0
f̂1(u) cos(ux) du =

∫ ∞
0

f̂2(u) cos(ux) du = 0, |x| > 1,(47) ∫ ∞
0

f̂1(u)|u|α cos(ux) du = 2(α−1)/2�

(
1 + α

2

)
, |x| < 1,(48) ∫ ∞

0
f̂2(u)|u|α cos(ux) du = 2(α−3)/2�

(
1 + α

2

)(
1 − (1 + α)x2)

,

(49)
|x| < 1,∫ ∞

0
f̂1(u) cos(ux) du = 2−(α+1)/2 �(1/2)

�((α + 2)/2)

(
1 − x2)α/2

,

(50)
|x| < 1,∫ ∞

0
f̂2(u) cos(ux) du = 2−(α+3)/2 �(1/2)

�((α + 4)/2)

(
1 − x2)1+(α/2)

,

(51)
|x| < 1.

From (47)–(49),

f̂ (u) = π
f̂1(u) − 2f̂2(u)

2(α−1)/2�((1 + α)/2)(1 + α)
.

To conclude, we compute the inverse Fourier transform of f̂ from (50)–(51). �

PROOF OF PROPOSITION 6. Once again, we set σ = 1 without loss of gener-
ality. Recall a result of Blumenthal, Getoor and Ray [5]: the law of a symmetric
stable process starting from the point x with |x| < 1 and observed at time τ1 has
density given by

μ(x, y) = 1

π
sin

πα

2

(
1 − x2)α/2(

y2 − 1
)−α/2|y − x|−1, |y| ≥ 1.

By the scaling property, we then deduce that the density of a symmetric stable
process starting from zero, and observed at time τa,b is given by

μa,b(z) = 1

π
sin

πα

2
(ab)α/2(

(z − b)(z + a)
)−α/2 1

|z| .(52)

Similarly, from the preceding lemma, we easily deduce by the scaling property
that

fA(x) := Ex

[∫ τA,A

0
X2

t dt

]
= 2(A2 − x2)α/2{x2 + (α/2)A2}

�(3 + α)
1x∈(−A,A).
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This function satisfies the equation LαfA(x) = −x2 on [−A,A] with the boundary
condition fA(x) = 0 on x /∈ [−A,A]. Taking A ≥ max(a, b), we then get by Itô’s
formula

E
[
fA(Xτa,b

)
] = fA(0) − E

[∫ τa,b

0
X2

t dt

]
.

By symmetry, it is sufficient to prove the proposition for a ≥ b. Taking A = a in
the above formula, we finally get

E

[∫ τa,b

0
X2

t dt

]

= αaα+2

�(3 + α)
−

∫ a

b
fA(x)μa,b(x) dx

= αaα+2

�(3 + α)
− 2 sinπα/2

π�(3 + α)
(ab)α/2

∫ a

b

(
z2 + α

2
a2

)(
a − z

z − b

)α/2 dz

z
.

Computing the integral (using [17], Integral 3.228.1 and the standard integral rep-
resentation for the beta function) then yields the result. �

REMARK 8. Let us list here several other useful results which are already
known from the literature or can be obtained with a simple computation. By a
result of Getoor [16]: under the assumptions of Proposition 6,

Ex[τ1] = 1

σ

2−α�(1/2)

�((2 + α)/2)�((1 + α)/2)

(
1 − x2)α/2

= 1

σ

(1 − x2)α/2

�(1 + α)
.

By the scaling property we then deduce that for general barriers

E[τa,b] =
(

a + b

2

)α

E(a−b)/(a+b)[τ1] = (ab)α/2

σ�(1 + α)
.(53)

Similarly, from (52), we easily get, for β < α,

E
[|Xτa,b

|β] = sinπα/2

π
(ab)α/2

(54)
×

∫ ∞
0

z−α/2(z + a + b)−α/2(|z + a|β−1 + |z + b|β−1)
dz.

This integral can be expressed in terms of special functions and is equal to

aβ

(
b

a + b

)α/2 sinπα/2

π
B(1 − α/2, α − β)

× F

(
α/2,1 − α/2, α/2 + 1 − β,

b

a + b

)
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+ bβ

(
a

a + b

)α/2 sinπα/2

π
B(1 − α/2, α − β)

× F

(
α/2,1 − α/2, α/2 + 1 − β,

b

a + b

)
,

where B is the beta function and F is the hypergeometric function; see [17], Inte-
gral 3.259.3.

APPENDIX B: CONVERGENCE OF RESCALED LÉVY PROCESSES

LEMMA 11. Let X be a Lévy process with characteristic triplet (0, ν, γ ) with
respect to the truncation function h(x) = −1 ∨ x ∧ 1 with

xαν((x,∞)) → c+ and xαν((−∞,−x)) → c− when x → 0

for some α ∈ (1,2) and constants c+ ≥ 0 and c− ≥ 0 with c+ + c− > 0. For ε > 0,
define the process Xε via Xε

t = ε−1Xεαt . Then Xε converges in law to a strictly
α-stable Lévy process X∗ with Lévy density

ν∗(x) = c+1x>0 + c−1x<0

|x|1+α
.(55)

Assume in addition that there exists C < ∞, such that for all x > 0,

ν((−x, x)c) < Cx−α

and for a, b ∈ (0,∞) and β ∈ (0, α), let

uβ
ε (a, b) = E

[∣∣Xε
τε

∣∣β]
, τ ε = inf

{
t ≥ 0 :Xε

t /∈ (−a, b)
}
.

Then

lim
ε↓0

uβ
ε (a, b) = uβ(a, b)

uniformly on (a, b) ∈ [B−1,B]2 for all B < ∞, with

uβ(a, b) = E
[∣∣X∗

τ∗
∣∣β]

and τ ∗ = inf{t ≥ 0 :X∗
t /∈ (−a, b)}.

PROOF. Part (i). From the Lévy–Khintchine formula it is easy to see that the
characteristic triplet (Aε, νε, γ ε) of Xε is given by

Aε = 0,

νε(B) = εαν
({x :x/ε ∈ B}), B ∈ B(R),

γ ε = εα−1
{
γ +

∫
R

ν(dx)
(
εh(x/ε) − h(x)

)}
.
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Under the conditions of the lemma, by Theorem VII.2.9 and Remark VII.2.10
in [20], in order to prove the convergence in law, we need to check (a) that

γ ε → − c+ − c−
α(α − 1)

,

where the right-hand side is the third component of the characteristic triplet of
the strictly stable process with Lévy density (55) with respect to the truncation
function h, and (b) that |x|2 ∧ 1 · νε(dx) converges weakly to |x|2 ∧ 1 · ν∗(dx).
Since α > 1 and h is bounded, for η sufficiently small, using integration by parts
and the assumption of the lemma, we obtain

lim
ε↓0

γ ε = lim
ε↓0

εα−1
∫
|x|≤η

ν(dx)
(
εh(x/ε) − h(x)

)
= lim

ε↓0
εα−1

{∫ −ε

−η
(−ε − x)ν(dx) +

∫ η

ε
(ε − x)ν(dx)

}

= lim
ε↓0

εα−1
{∫ −ε

−η
ν
([−η, x])dx −

∫ η

ε
ν
([x,η])dx

}

= lim
ε↓0

εα−1
{∫ −ε

−η
ν
(
(−∞, x])dx −

∫ η

ε
ν
([x,∞)

)
dx

}

= lim
ε↓0

εα−1
{∫ −ε

−η

c−
|x|α dx −

∫ η

ε

c+
|x|α dx

}
= − c+ − c−

α(α − 1)
.

For property (b), it is sufficient to show that for all x ≥ 0,∫ ∞
x

|z|2 ∧ 1 · νε(dz) →
∫ ∞
x

|z|2 ∧ 1 · ν∗(dz) and∫ −x

−∞
|z|2 ∧ 1 · νε(dz) →

∫ −x

−∞
|z|2 ∧ 1 · ν∗(dz).

This is done using integration by parts and the assumption of the lemma as in the
previous step.

Part (ii). First, similar to the proof of Proposition 3 in [22], it is easy to show that
Xε

τε converges in law to X∗
τ∗ as ε ↓ 0. To complete the proof of the convergence

of u
β
ε (a, b) to uβ(a, b) for fixed a and b, it remains to show that for all β ∈ (0, α),

E
[∣∣Xε

τε

∣∣β]
is bounded uniformly in ε. From Lemma 6,

E
[∣∣Xε

τε

∣∣β] ≤ Cε−αE
[
τ ε]

for some constant C which does not depend on ε. On the other hand, for ε small
enough,

E
[
τ ε] ≤ E

[
inf

{
t : |�Xt | ≥ ε(a + b)

}] = 1

ν((−εa, εb)c)
≤ C′εα
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for a different constant C′ [the equality above holds because inf{t : |�Xt | ≥ ε(a +
b)} is an exponential random variable with parameter ν((−εa, εb)c) by the Lévy–
Itô decomposition].

It remains to show that the convergence is uniform in a and b. First, let us
show that uβ(a, b) is continuous in (a, b) for (a, b) ∈ [B−1,B]2 and therefore also
uniformly continuous on this set. Let (an) and (bn) be two sequences with an →
a ∈ [B−1,B] and bn → b ∈ [B−1,B]. For any process Y , we write τ(a,b)(Y ) :=
inf{t ≥ 0 :Yt /∈ (−a, b)} and O(a,b)(Y ) := Yτ(a,b)(Y ). Then

O(an,bn)

(
X∗) = an + bn

a + b
O(a,b)

(
Xn)

where Xn = ban − abn

an + bn

+ a + b

an + bn

X∗.

Since clearly Xn converges in law (in Skorokhod topology) to X∗, we can
once again proceed similar to the proof of Proposition 3 in [22] to show that
O(an,bn)(X

∗) converges in law to O(a,b)(X
∗). Then, as above, we use the uniform

integrability of |O(an,bn)(X
∗)|β for β ∈ (0, α) to show that E[|O(an,bn)(X

∗)|β] con-
verges to E[|O(a,b)(X

∗)|β ].
Next, letting δ > 0, we use the uniform continuity of uβ to choose ρ such that

for all (a, b) and (a′, b′) belonging to [B−1,B], |a − a′| + |b − b′| ≤ ρ implies
|uβ(a, b) − uβ(a′, b′)| ≤ δ/2.

Next, for every λ > 0,

uβ
ε (λa,λb) = λβu

β
ελ(a, b),

which means that u
β
ε (λa,λb) converges to uβ(λa,λb) uniformly on λ ∈ [λ1, λ2]

for 0 < λ1 < λ2 < ∞. For B−1 = a0 < a1 < · · · < aN = B with ai+1 − ai ≤ ρ

for i = 0, . . . ,N − 1, this enables us to find ε0 such that for all ε < ε0, every
i = 0, . . . ,N and all λ ∈ [B−2,1],∣∣uβ

ε (λai, λB) − uβ(λai, λB)
∣∣ ≤ δ

2
.(56)

Now, let (a, b) ∈ [B−1,B] be arbitrary, but to fix the ideas, assume without loss of
generality that a ≤ b. Since u

β
ε (a, b) is increasing in a on a ≤ b,

uβ
ε (a, b) ∈

[
uβ

ε

(
ai

b

B
,b

)
, uβ

ε

(
ai+1

b

B
,b

)]
,

where i is such that ai ≤ a B
b

≤ ai+1, and by the property (56), also

uβ
ε (a, b) ∈

[
uβ

(
ai

b

B
,b

)
− δ

2
, uβ

(
ai+1

b

B
,b

)
+ δ

2

]
.

We finally use the uniform continuity of uβ to conclude that u
β
ε (a, b) ∈ [uβ(a, b)−

δ, uβ(a, b) + δ]. �



1044 M. ROSENBAUM AND P. TANKOV

APPENDIX C: A TOY MODEL WITH A CONTINUOUS COMPONENT

Through a toy model, we show in the next proposition that if we include a
continuous local martingale part in X, it dominates the purely discontinuous part.

PROPOSITION 7. Assume (HY) and there exists B > 0, σ > 0 and α′ ∈ (1,2)

such that |At | ≤ B , 1
B

≤ at , at ≤ B and X is a Lévy process with characteristic
triplet (σ 2, ν,0) with respect to the truncation function h(x) = −1 ∨ x ∧ 1 where
ν is a Lévy measure with Lévy density

ν(x) = c+1x>0 + c−1x<0

|x|1+α′ .

Then Theorems 1 and 2 hold with λ ≡ 1, α = 2, β < α′ and X∗
t = σWt , where Wt

is a Brownian motion.

PROOF. We first show that Theorem 1 holds with X∗
t = σWt . We follow the

steps of the proof in Section 4. Step 1 follows from the assumptions of the propo-
sition, and there is now no need to change probability. Also, Lemma 3 easily holds
in the setting of Proposition 7. For step 3, note that λt = 1 and therefore

X̂i
t = X̃i

t = XTi+t − XTi
, τ̃i = Ti+1 − Ti.

Thus we easily get (35) with Q = P and Zt = 1. Then for step 4 we have

EFTi

[(∫ τ̃i

0
|X̂t |κ dt

)n]
= f κ,n

ε
(aTi

, aTi
),

with B2 taken equal to zero in the definition of τ̂1 defining f κ,n
ε

(a, b). Then note
from [22], τ ε

1 has uniformly bounded polynomial moments of any order and Xε
t

(with α = 2) converges toward σWt . Following the proof of Lemma 5, this gives
that

lim
ε↓0

ε−(κ+2)f κ,n
ε (a, b) = f ∗,κ,n(a, b).

Finally, we obtain that the preceding convergence is uniform in (a, b) as in steps 4
and 5 follows easily.

In the same spirit, in order to show that Theorem 2 holds with X∗
t = σWt and

α = 2, it is enough to follow the steps of the proof in Section 6. This can be done as
in the preceding paragraph. However, we still need to prove part (ii) in Lemma 11
in the case where a Brownian component is present, meaning we take X∗

t = σWt

for the limiting process and α = 2 in the definition of Xε
t . To this end, remark that

in the setting of Proposition 7,∣∣Xε
τε

∣∣β ≤ c
(
1 + ∣∣X̌ε

τ̌ ε

∣∣β)
,
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with X̌t = Xt − σWt and τ̌ ε = inf{t ≥ 0 : X̌ε
t /∈ (−(a + b), a + b)}. Thus, using

Lemma 11, we get that

E
[∣∣Xε

τε

∣∣β]
is bounded uniformly in ε. Then we can replicate the end of the proof of
Lemma 11. �

APPENDIX D: PROOF OF PROPOSITION 1

PROOF. The process X can be written as

Xt = X0 +
∫ t

0
b̄s ds +

∫ t

0

∫
|z|≤1

z(M − μ)(ds × dz) +
∫ t

0

∫
|z|>1

zM(ds × dz),

where M is a random measure whose compensator μ is given by μ(ω,dt × dz) =
dt × ν̄(γ −1

t (dz))1z∈γt (U) = ν̄(γ −1
t (z))

γ ′
t (γ

−1(z))
1z∈γt (U) dt × dz. Hence,

μt((x,∞)) =
∫ ∞
γ −1
t (x)

ν̄(y)1y∈U dy,

μt((−∞,−x)) =
∫ γ −1

t (−x)

−∞
ν̄(y)1y∈U dy.

By assumption (21),∫ ∞
x

ν̄(y)1y∈U dy = c+
xα

+ O
(
x1−α)

and
∫ −x

−∞
ν̄(y)1y∈U dy = c−

xα
+ O

(
x1−α)

as x → 0 and ∫ ∞
x

ν̄(y)1y∈U dy +
∫ −x

−∞
ν̄(y)1y∈U dy ≤ C

xα

for some C < ∞ and all x > 0. On the other hand, by Taylor’s theorem, γ −1
t (x) =

x
γ ′
t (x

∗) with x∗ ∈ [0, x]. Therefore, we easily obtain that for some C < ∞,

xαμt((x,∞)) + xαμt((−∞,−x)) ≤ C max
x∈U

γ ′
t (x)α for all x;(57)

lim
x↓0

xαμt((x,∞)) = c+γ ′
t (0)α and

(58)
lim
x↓0

xαμt((−∞,−x)) = c−γ ′
t (0)α,

which proves assumption (HX).
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To show (HXρ
loc), let ν be a strictly positive Lévy density satisfying (21), contin-

uous outside any neighborhood of zero. We need to prove that the random function
Kt(z) defined by

Kt(z) = ν̄(γ −1
t (z))1z∈γt (U)

γ ′
t (γ

−1
t (z))γ ′

t (0)αν(z)
,

satisfies the integrability condition (17). Let (τn) be the sequence of stopping times
from condition (22), let t < τn and ε be small enough so that {|z| ≤ ε} ⊂ γt (U),
t ≤ τn. Clearly,∫

R

∣∣√Kt(z) − 1
∣∣2ρ

ν(dz) ≤
∫
|z|≤ε

∣∣√Kt(z) − 1
∣∣2ρ

ν(dz)

(59)
+

∫
|z|>ε,z∈γt (U)

K
ρ
t (z)ν(dz) + ν

({
z : |z| > ε

})
.

The third term above is clearly bounded. To deal with the second term, observe
that by the fact that ν and ν̄ are continuous outside any neighborhood of zero,
condition (22) and the fact that U is compact, on the set {z : |z| > ε, z ∈ γt (U)} for
t ≤ τn,

Kt ≤ C1+α
n

max{ν̄(z) : z ∈ U, |z| ≥ ε/Cn}
min{ν(z) : |z| ≥ ε, z ∈ CnU} < ∞.

Therefore, the second term in (59) is also bounded for t ≤ τn. We finally focus on
the first term in (59). First, observe that on the set where |z| ≤ ε,

∣∣Kt(z) − 1
∣∣ ≤

∣∣∣∣ |z|1+α

|γ −1
t (z)|1+αγ ′

t (0)1+α
− 1

∣∣∣∣ γ ′
t (0)

γ ′
t (γ

−1
t (z))

|γ −1
t (z)|1+αν̄(γ −1

t (z))

|z|1+αν(z)

+
∣∣∣∣ γ ′

t (0)

γ ′
t (γ

−1
t (z))

− 1
∣∣∣∣ |γ −1

t (z)|1+αν̄(γ −1
t (z))

|z|1+αν(z)
(60)

+
∣∣∣∣ |γ −1

t (z)|1+αν̄(γ −1
t (z))

|z|1+αν(z)
− 1

∣∣∣∣.
For the first term in (60), by Taylor’s formula and using condition (22),∣∣∣∣ |z|1+α

|γ −1
t (z)|1+αγ ′

t (0)1+α
− 1

∣∣∣∣ =
∣∣∣∣γ ′

t (z
∗)1+α

γ ′
t (0)1+α

− 1
∣∣∣∣ ≤ (1 + α)C2α+1

n

∣∣γ ′
t

(
z∗) − γ ′

t (0)
∣∣

≤ (1 + α)C2α+2
n |z|,

where z∗ ∈ [z ∧ 0, z ∨ 0]. In the second term, similarly,∣∣∣∣ γ ′
t (0)

γ ′
t (γ

−1
t (z))

− 1
∣∣∣∣ ≤ Cn

∣∣γ ′
t

(
γ −1
t (z)

) − γ ′
t (0)

∣∣ ≤ C2
n

∣∣γ −1
t (z)

∣∣ ≤ C3n|z|.
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For the third term, it follows from (21) that for some constant C < ∞,∣∣∣∣ |γ −1
t (z)|1+αν̄(γ −1

t (z))

|z|1+αν(z)
− 1

∣∣∣∣ ≤
∣∣∣∣1 + C|γ −1

t (z)|
1 − C|z| − 1

∣∣∣∣ ≤ C

1 − Cε

(∣∣γ −1
t (z)

∣∣ + |z|)
≤ C(1 + Cn)

1 − Cε
|z|.

In addition, assume that ε is chosen small enough so that Cε < 1. Therefore,∣∣Kt(z) − 1
∣∣ ≤ cn|z|

for some constant cn < ∞ (which may later change from line to line). This easily
implies that for ρ ≥ 1, ∫

|z|≤ε

∣∣√Kt(z) − 1
∣∣2ρ

ν(dz) ≤ cn. �
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