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TIME-CHANGED CIR DEFAULT INTENSITIES WITH TWO-SIDED
MEAN-REVERTING JUMPS

BY RAFAEL MENDOZA-ARRIAGA AND VADIM LINETSKY1

University of Texas at Austin and Northwestern University

The present paper introduces a jump-diffusion extension of the classi-
cal diffusion default intensity model by means of subordination in the sense
of Bochner. We start from the bi-variate process (X,D) of a diffusion state
variable X driving default intensity and a default indicator process D and
time change it with a Lévy subordinator T . We characterize the time-changed

process (X
φ
t ,D

φ
t ) = (X(Tt ),D(Tt )) as a Markovian–Itô semimartingale and

show from the Doob–Meyer decomposition of Dφ that the default time in
the time-changed model has a jump-diffusion or a pure jump intensity. When
X is a CIR diffusion with mean-reverting drift, the default intensity of the
subordinate model (SubCIR) is a jump-diffusion or a pure jump process with
mean-reverting jumps in both directions that stays nonnegative. The SubCIR
default intensity model is analytically tractable by means of explicitly com-
puted eigenfunction expansions of relevant semigroups, yielding closed-form
pricing of credit-sensitive securities.

1. Introduction. The classical Cox, Ingersoll and Ross (1985) (CIR)/ Feller
(1951) square-root diffusion has been a workhorse in the stochastic intensity ap-
proach to the modeling of default risk in financial markets since the seminal work
of Jarrow, Lando and Turnbull (1997) and Duffie and Singleton (1999) on reduced-
form default modeling; see monographs Bielecki and Rutkowski (2004), Duffie
and Singleton (2003) and Jeanblanc, Yor and Chesney (2009) for surveys. In this
framework, the default time can be thought of as the first jump time of a dou-
bly stochastic Poisson process (Cox process) with stochastic intensity following a
diffusion process. The attractiveness of the CIR diffusion as the model for inten-
sity stems from, on one hand, its dynamics and, on the other hand, its analytical
tractability. If the coefficient of the linear term in the drift is negative, and the con-
stant term is positive, then CIR diffusion is mean-reverting, which is an important
empirical feature observed in credit markets. At the same time, the process stays
nonnegative due to vanishing volatility and positive drift near the origin. Its analyti-
cal tractability stems, on one hand, from its close connection with Bessel processes
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[Pitman and Yor (1982), Göing-Jaeschke and Yor (2003), Chapter 6 of Jeanblanc,
Yor and Chesney (2009), Revuz and Yor (1999)] and, on the other hand, from its
membership in the class of affine processes [Duffie and Kan (1996), Duffie, Pan
and Singleton (2000), Duffie, Filipović and Schachermayer (2003), Keller-Ressel,
Schachermayer and Teichmann (2011)]. The former connection yields explicit ex-
pressions for the CIR transition density and the associated Feynman–Kac semi-
group, while the later connection yields an explicit expression for Laplace trans-
form of the time integral of the CIR process, giving rise to a closed-form solution
for the survival probability in the CIR default intensity model that essentially co-
incides with the expression for the bond price in CIR interest rate model. These
properties lead to analytical pricing for a wide range of credit-sensitive instru-
ments in CIR-based models [e.g., Brigo and Alfonsi (2005), Bielecki, Jeanblanc
and Rutkowski (2011)].

A limitation of the CIR default intensity model is its inability to capture jumps in
credit spreads and prices of credit-sensitive securities (other than the default event
itself). This led a number of authors to introduce jumps into the CIR model [Duffie
and Garleanu (2001), Filipović (2001), Brigo and El-Bachir (2006, 2010)]. To pre-
serve analytical tractability, all of the models considered in the literature so far have
been in the affine class. The most general extensions of the one-dimensional CIR
diffusion with jumps that remain in the affine class are continuous state branching
processes with immigration (CBI) of Kawazu and Watanabe (1971); see Filipović
(2001) for a detailed treatment in the context of applications to interest rate term
structure modeling. Roughly speaking, CBI-processes are nonnegative Feller pro-
cesses with CIR-type diffusion components and one-sided, positive jumps with the
compensator measure of the form m(dy) + xμ(dy), where m is the Lévy measure
of a subordinator, and μ(dy) is the Lévy measure of a spectrally positive Lévy
process; see Theorem 4.3 in Filipović (2001) for the explicit expression of their
infinitesimal generator and the summary of their properties.

A limitation of CBI-processes is the one-sided nature of their jumps. From the
standpoint of financial applications, their sample path behavior is somewhat un-
natural. CBI processes can only jump up, and can never jump down. Assuming
the drift of the CBI-process is mean-reverting, if the process experiences a large
jump up bringing it far away from its long-run mean, the only mechanism for it to
return back to its long-run mean is via its continuous mean-reverting drift, with no
possibility to jump back down. Moreover, jumps of CBI-processes are either state
independent (governed by m if μ = 0), or depend linearly of the current state via x

multiplying μ. The one-sided nature of jumps and their affine dependence on the
state are common to general affine processes, for example, Cuchiero et al. (2011a)
and Cuchiero et al. (2011b). However, this is in contrast to the behavior often ob-
served in financial markets where a jump in one direction may be followed by a
jump in the opposite direction. This behavior is often observed in energy markets,
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where mean-reverting models are commonly used to capture the spike-like be-
havior of the spot price of electricity [e.g., Barlow (2002), Geman and Roncoroni
(2006) and Meyer-Brandis and Tankov (2008)]. This is also relevant in credit mar-
kets, where the succession of good and bad news about the financial health of an
obligor, such as a firm or a sovereign viewed by the markets to be in distress, can
result in sharp changes in its market credit spreads over relatively short periods
of time (witness the recent behavior of some European credit spreads sea-sawing
under the influence of the rapidly changing flow of economic and political news).
Recent empirical literature studying positive and negative jumps in credit spreads
includes Zhang, Zhou and Zhu (2009), Elkamhi et al. (2012) and Kita (2012).

This paper proposes a new approach to introducing more realistic two-sided
jump behavior into diffusion intensity models via Bochner’s subordination. We
start with a nonnegative diffusion intensity model and time change it with a sub-
ordinator, that is, a nonnegative Lévy process with positive jumps and nonnega-
tive drift. We show that this results in a jump-diffusion (when the subordinator
has a positive drift) or a pure-jump (when the subordinator is driftless) intensity
model with two-sided jumps that stays nonnegative. In particular, when the dif-
fusion is CIR, the time-changed model possesses a nonnegative intensity process
with two-sided, mean-reverting jumps. The compensator measure of this intensity
process is state-dependent, and the state-dependence is such that it automatically
prevents the process from going negative. While the process can experience down-
ward jumps, the magnitude of negative jumps depends on the pre-jump state of
the process to keep the process nonnegative. While the structure of the process is
highly state-dependent (and obviously nonaffine), remarkably, the model remains
fully analytically tractable by means of eigenfunction expansions.

The rest of the paper is organized as follows. In Section 2 we review diffusion
intensity models in the particular setting convenient for our purposes. Namely, we
consider a bi-variate process (X,D), where X is the state variable following a non-
negative diffusion process (pre-intensity), and D is an event indicator process D.
The bi-variate process is a Markov process on R+ ∪ {0,1} and a semimartingale.
This section contains a detailed discussion of the bi-variate process (X,D) both
from the Markovian and from the semimartingale points of view. While the diffu-
sion intensity model is very well known, this detailed presentation in the bi-variate
form is provided for the reader’s convenience to set up notation in preparation
for our treatment of the time-changed (subordinated) model by both Markovian
and semimartingale methods. We note that this bi-variate point of view of diffu-
sion default intensity models is also followed in some interesting recent papers by
Bielecki et al. (2008), Bielecki et al. (2012) and Bielecki et al. (2013) in the con-
text of pricing multi-name credit derivatives. In Section 3 we time change the bi-
variate process (X,D) with a Lévy subordinator T with Laplace exponent φ. The
resulting time-changed process (Xφ,Dφ) is a Markov process with its infinitesi-
mal generator given by the Phillips theorem. We explicitly compute the generator
from the Phillips theorem and obtain its representation as an integro-differential
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operator. Being a time change of a semimartingale, the bi-variate process is also
a semimartingale. We then identify its predictable characteristics from the gener-
ator and obtain Lévy–Itô decomposition of Xφ , Doob–Meyer decomposition of
Dφ and Itô formula for functions f (t,Xφ,Dφ). We then identify the process Dφ

with the default indicator in our model, so that the default time is the jump time
of Dφ , and from its Doob–Meyer decomposition identify explicitly the default in-
tensity as λ

φ
t = (1 −D

φ
t )kφ(X

φ
t ), where kφ(x) is an explicitly determined positive

function. In Section 4 we apply the results to the pricing of credit-sensitive se-
curities. In Section 5 we detail the eigenfunction expansion approach to calculate
the semigroup associated to the bi-variate process (Xφ,Dφ) and, in particular, to
calculate the survival probability and prices of defaultable securities. In Section 6
we specialize X to be the CIR diffusion and thus obtain the subordinate CIR (Sub-
CIR) default intensity model. This section contains explicit expressions of all the
quantities relevant to the SubCIR model and, in particular, explicit eigenfunction
expansions for the SubCIR semigroups. These explicit solutions are then applied
to give numerical illustrations of the SubCIR default intensity model.

2. The diffusion default intensity model. We start with a complete prob-
ability space (�,F,P) on which a one-dimensional standard Brownian motion
{Bt, t ≥ 0} is defined. Let FB = (FB

t )t≥0 denote its completed natural filtration.
We model the state variable as the unique strong solution of the stochastic differ-
ential equation (SDE)

Xt = x +
∫ t

0
b(Xu)du +

∫ t

0
σ(Xu)dBu, t ≥ 0.(2.1)

We assume that the drift and diffusion coefficients b(x) and σ(x) are continuous
on (0,∞), σ(x) > 0 on (0,∞), and are such that for each positive initial condition
X0 = x > 0 this SDE admits a unique strong solution that stays nonnegative for all
t > 0. Thus the state variable (Xt)t≥0 is a one-dimensional diffusion, as well as a
nonnegative continuous semimartingale.

Under our assumptions, the boundary at zero is either natural (in which case
the process cannot reach zero when started from a positive value x > 0, and can-
not be started at zero), entrance [in which case the process cannot reach zero when
started from a positive value x > 0, but can be started at zero, in which case it
instantaneously enters the interval (0,∞) and never comes back to zero], instan-
taneously reflecting, or absorbing (in which case Xt = 0 for all t ≥ T0, where T0
is the first hitting time of zero). We refer the reader to Ethier and Kurtz (1986),
pages 366–367, and Borodin and Salminen (2002), Chapter II, for detailed expo-
sitions of Feller’s classification of boundaries of one-dimensional diffusions. In
this paper we exclude absorption, assuming that zero is either unattainable (natu-
ral or entrance), or an instantaneously reflecting boundary. Since we assume that
the SDE (2.1) has a unique strong solution, the process does not explode to infinity
when started from any x > 0; that is, infinity is an unattainable boundary. The state
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space of the diffusion X will be denoted by I , and I = (0,∞) if 0 is unattainable
(natural or entrance) or I = [0,∞) if zero is instantaneously reflecting.

EXAMPLE 2.1 (The CIR SDE). The key example of interest to us in this paper
is the CIR SDE with

σ(x) = σ
√

x with σ > 0, b(x) = κ(θ − x) with κθ > 0.

Surveys of CIR processes and their relationship with Bessel processes can be
found in Göing-Jaeschke and Yor (2003) and Jeanblanc, Yor and Chesney (2009),
Section 6.3. The drift coefficient b(x) is Lipschitz, and the diffusion coefficient
σ(x) satisfies the Yamada–Watanabe condition [cf. Revuz and Yor (1999), Theo-
rem IX.1.7], so the SDE has a unique strong solution for any x ≥ 0. Since for θ = 0
and x = 0 the solution is Xt = 0, by the comparison theorem for one-dimensional
SDEs [cf. Revuz and Yor (1999), Theorem IX.3.7], the solutions for κθ > 0 and
x ≥ 0 stay nonnegative, Xt ≥ 0 for all t ≥ 0. Furthermore, when the Feller condi-
tion is satisfied, 2κθ ≥ σ 2, the process stays strictly positive when started from any
x > 0, that is, P(T0 = ∞) = 1, where T0 is the first hitting time of zero. It can also
be started from x = 0, in which case it immediately enters the interval (0,∞) and
stays strictly positive for all t > 0. In this case the boundary at zero is an entrance
boundary. When the Feller condition is not satisfied, 0 < 2κθ < σ 2, the process
can reach zero when started from x > 0, and zero is an instantaneously reflecting
boundary.

Let C([0,∞]) denote the Banach space of functions continuous on (0,∞) and
such that the limits limx→0 f (x) and limx→∞ f (x) exist and are finite and en-
dowed with the usual supremum norm. As shown in, for example, Ethier and Kurtz
(1986), page 366, the transition function P 0

t (x, dy) = P(Xx
t ∈ dy) of the diffusion

process Xx started at x defines a Feller semigroup (P0
t )t≥0 acting on C([0,∞])

by

P0
t f (x) = E

x[
f (Xt)

] =
∫
I
f (y)P 0

t (x, dy),(2.2)

where E
x denotes the expectation corresponding to the law P

x of (Xx
t )t≥0 started

at x. The infinitesimal generator of P0 is a second-order differential operator of
the form

A0f (x) = 1
2σ 2(x)f ′′(x) + b(x)f ′(x)

with the domain D(A0) = {f ∈ C([0,∞]) ∩ C2((0,∞)) :A0f ∈ C([0,∞])} if
zero is an unattainable boundary. If zero is an instantaneously reflecting bound-
ary, the Neumann-type boundary condition is additionally imposed at zero [Ethier
and Kurtz (1986), page 367, equation (1.11) with q0 = 0]. We also note that
when zero and infinity are both natural boundaries, the semigroup leaves the space
C0((0,∞)) ⊂ C([0,∞]) of functions continuous on (0,∞) and having zero limits
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limx→0 f (x) = 0 and limx→0 f (x) = 0 invariant and is a Feller semigroup on it.
If zero is not a natural boundary, while infinity is, then the semigroup is Feller on
C0([0,∞)).

We next assume that our probability space supports a unit-mean exponential
random variable E ∼ Exp(1) independent of the Brownian motion B (and hence,
of X). Define a random time ζ

ζ := inf
{
t ≥ 0 :

∫ t

0
k(Xu)du ≥ E

}
,

where k(x) ≥ 0 is a given function assumed continuous on (0,∞). If zero is
an instantaneously reflecting boundary, we assume that there is a finite limit
limx→0 k(x) < ∞. If zero is unattainable, we do not make any assumptions about
the behavior of k(x) as x → 0. Under these assumptions,

∫ t
0 k(Xu)du < ∞ a.s. for

any initial condition X0 = x > 0 [from our assumptions that X does not explode
to infinity, and that k(x) is continuous on (0,∞) and has a finite limit at zero if
zero is an attainable boundary for X]. Key examples of functions k(x) of interest
to us for credit risk applications are given in Examples 2.2–2.6 at the end of this
section.

We denote by (Pβ
t )t≥0 the Feynman–Kac semigroup associated with the posi-

tive continuous additive functional
∫ t

0 βk(Xu)du with β > 0,

Pβ
t f (x) = E

x[
e−β

∫ t
0 k(Xu)duf (Xt)

]
.(2.3)

Under our assumptions, it is a sub-Markovian–Feller semigroup on C([0,∞]) with
the generator

Aβf (x) =A0f (x) − βk(x)f (x)

with the domain D(Aβ) ⊆ D(A0). More precisely, D(Aβ) = {f ∈ C([0,∞]) ∩
C2((0,∞)) :Aβf ∈ C([0,∞])} if zero is an unattainable boundary for a diffusion
with killing at the rate βk(x); see Borodin and Salminen (2002), pages 16–17, for
Feller’s boundary classification of one-dimensional diffusions with killing. If zero
is instantaneously reflecting for the diffusion with killing at the rate βk(x), the
Neumann-type boundary condition is imposed at zero [Ethier and Kurtz (1986),
page 367, equation (1.11) with q0 = 0].

We next associate to the random time ζ the event indicator process (one-point
process) (Dt)t≥0 defined by

Dt := 1{ζ≤t}, t ≥ 0,

denote by D = (Dt )t≥0 its (completed) natural filtration and define an enlarged
filtration G= (Gt )t≥0 with Gt = FB

t ∨Dt . This filtration is the smallest one which
contains F

B and such that the random time ζ is a stopping time; cf. Jeanblanc,
Yor and Chesney (2009), Section 7.3.3. From Jeanblanc, Yor and Chesney (2009),
Proposition 5.9.1.1 and Remark 7.5.1.2, we observe that the filtrations FB and G,
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F
B ⊂ G, satisfy the H-Hypothesis. As a result, any F

B -local martingale is also a
G-local martingale.

We will now study the bi-variate process (Xt ,Dt)t≥0 of the state variable X

and the event indicator D. Given our assumptions, for any initial conditions X0 =
x > 0 and D0 = d ∈ {0,1}, (X,D) is a Markovian semimartingale taking values
in R+ × {0,1} ⊂ R

2 (D0 = 1 corresponds to ζ = 0, and hence Dt = 1 for all t > 0
when D0 = 1). We first characterize its Markovian nature. To this end, observe that
any function f (x, d) ∈ C([0,∞] × {0,1}) can be written in the form

f (x, d) = f1(x) + (1 − d)
(
f0(x) − f1(x)

)
,(2.4)

where f0(x) := f (x,0) ∈ C([0,∞]) and f1(x) := f (x,1) ∈ C([0,∞]).

THEOREM 2.1 [Markovian characterization of (X,D)]. (i) The bi-variate pro-
cess (X,D) is a Feller process whose Feller semigroup (Pt )t≥0 acts on f ∈
C([0,∞] × {0,1}) according to

Pt f (x, d) = P0
t f1(x) + (1 − d)P1

t (f0 − f1)(x),(2.5)

where f0(x) = f (x,0) ∈ C([0,∞]), f1(x) = f (x,1) ∈ C([0,∞]), (P0
t )t≥0 is the

transition semigroup (2.2) of X on C([0,∞]) and (P1
t )t≥0 is the Feynman–Kac

semigroup (2.3) on C([0,∞]).
(ii) The infinitesimal generator of the Feller semigroup (Pt )t≥0 is given by

Af (x, d) = A0f1(x) + (1 − d)A1(f0 − f1)(x)

= A0f (x, d) + (1 − d)k(x)
(
f (x,1) − f (x,0)

)
,

where A0 and A1 are the generators of (P0
t )t≥0 and (P1

t )t≥0, respectively.
(iii) If f (x, d) ∈ D(A) [i.e., f is of the form (2.4) with f0, f1 ∈ D(A1)] and

(X,D) starts from X0 = x > 0 and D0 = d ∈ {0,1}, then the process

M
f
t := f (Xt ,Dt) − f (x, d) −

∫ t

0
Af (Xs,Ds) ds

is a G-martingale.

PROOF. (i) For all 0 ≤ s < t , we have

E
[
f (Xt ,Dt)|Gs

] = E
[
(1 − Dt)(f0 − f1)(Xt)|Gs

] +E
[
f1(Xt)|Gs

]
= (1 − Ds)E

[
e− ∫ t

s k(Xu)du(f0 − f1)(Xt)|FB
s

] +E
[
f1(Xt)|FB

s

]
= (1 − Ds)P1

t−s(f0 − f1)(Xs) +P0
t−sf1(Xs)

= Pt−sf (Xs,Ds).

The first equality follows from the representation (2.4), the second equality is
a standard result in intensity modeling in credit risk [e.g., Jeanblanc, Yor and
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Chesney (2009), Corollary 7.3.4.2, or Bielecki and Rutkowski (2004), Corol-
lary 5.1.1], the third equality follows from the Markov property and time homo-
geneity of X. Since the operators (P0

t )t≥0 and (P1
t )t≥0 form Feller semigroups

on C([0,∞]), it is then immediate that the operators (Pt )t≥0 form a Feller semi-
group on C([0,∞] × {0,1}). Thus, the bi-variate process (X,D) is a Feller pro-
cess whose semigroup action on C([0,∞] × {0,1}) is given by equation (2.5).
(ii) The expression for the generator A follows from equation (2.5), given A0

and A1 are the generators of P0 and P1. Part (iii) follows from Ethier and Kurtz
(1986), Proposition 1.7, page 162. �

Since X is a continuous semimartingale, and D is a one-point point process, the
bi-variate process (X,D) is a special semimartingale. We can write Itô formula
for functions of time and the bi-variate process in the useful form that separates
the process f (s,Xs,Ds) into a predictable finite variation process, a continuous
local martingale that is the stochastic integral with respect to Brownian motion,
and a discontinuous martingale that is the integral with respect to the compensated
one-point process.

THEOREM 2.2 [Itô formula for (X,D)]. (i) The one-point point process D

has the following Doob–Meyer decomposition:

Dt = At + Mt, At =
∫ t

0
(1 − Ds)k(Xs) ds, Mt = Dt − At,

where A is the predictable G-compensator of D [so that λGt := (1 − Dt)k(Xt) is
its G-intensity] and M is a G-martingale.

(ii) Suppose the semimartingale (X,D) starts from X0 = x > 0 and D0 = d ∈
{0,1}. For any function f (t, x, d) = f1(t, x) + (1 − d)(f0(t, x) − f1(t, x)) with
fi(t, x) ∈ C1,2(R+ × (0,∞)) if zero is an unattainable boundary for the pro-
cess X or fi(t, x) ∈ C1,2(R+ × [0,∞)) if zero is attainable for X, the process
f (t,Xt ,Dt) is a special G-semimartingale with the following canonical decom-
position into a predictable finite variation process, a continuous local martingale,
and a purely discontinuous martingale,

f (t,Xt ,Dt) = f (0, x, d) +
∫ t

0
(∂s +A)f (s,Xs,Ds) ds

+
∫ t

0
σ(Xs)∂xf (s,Xs,Ds) dBs

+
∫ t

0
(1 − Ds−)

(
f (s,Xs,1) − f (s,Xs,0)

)
dMs.

PROOF. (i) This is a standard result; cf. Lemma 7.3.4.3(ii) in Jeanblanc, Yor
and Chesney (2009), page 421.
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(ii) Since X is a nonnegative semimartingale, the functions fi(t, x) only need to
be defined for x ≥ 0. In order for all the terms in Itô’s formula to be well defined,
when X is strictly positive, the functions fi need only be C1,2(R+ × (0,∞)),
while in the case when X can hit zero fi and their first and second deriva-
tives in x and first derivatives in t need to have finite limits as x → 0, so that
fi ∈ C1,2(R+ × [0,∞)). With these observations, this form of Itô’s formula im-
mediately follows from the form of Itô’s formula for special semimartingales in
Jacod (1979), Theorem 3.89, page 109. �

EXAMPLE 2.2 (CIR intensity model, Example 2.1 continued). Assuming that
κ, θ, σ > 0, the CIR diffusion has the gamma stationary density

π(x) = abxb−1

�(b)
e−ax, b := 2κθ

σ 2 , a := 2κ

σ 2 .(2.6)

That is, for all x ∈ I and a, b > 0, limt→∞ P 0
t (x, dy) = π(y)dy. With this choice

of parameters, limt→∞E
x[Xt ] = ∫

I yπ(y) dy = θ , and θ is referred to as the long-
run mean and κ as the rate of mean reversion of the CIR state variable.

Let k(x) = x in the CIR intensity model. Then, the G-intensity of the stopping
time ζ is λGt = (1 − Dt)Xt , and the indicator process Dt has a G-compensator
At = ∫ t

0 (1 − Ds)Xs ds. If D is interpreted as the default indicator, then (under
the assumption of zero recovery) the instantaneous credit spread is equal to the
G-intensity λGt . The corresponding default intensity model goes back to Duffie
and Singleton (1999). Since zero is either an entrance or an instantaneously re-
flecting boundary and infinity is a natural boundary, the CIR Feynman–Kac semi-
group (P1

t )t≥0 is a sub-Markovian–Feller semigroup on C0([0,∞)) [and also on
C0((0,∞)), when the Feller condition is satisfied and zero is a natural boundary].
It coincides with the pricing semigroup in the CIR interest rate model. Explicit
expressions for the densities of the CIR transition semigroup (P0

t )t≥0 and the CIR
Feynman–Kac semigroup (Pβ

t )t≥0 with β > 0 are given in Section 6.

EXAMPLE 2.3 (Reciprocal CIR intensity model). Let X follow the CIR pro-
cess as in Example 2.1 and assume that the Feller condition is satisfied, but take
k(x) = 1/x instead of k(x) = x. This choice leads to the reciprocal CIR inten-
sity model. It was applied in credit modeling by Andreasen (2001). Applying Itô’s
formula to the process Yt = 1/Xt (justified when the Feller condition is satisfied,
since in that case the process stays strictly positive), we obtain the SDE for Y ,

Yt = y +
∫ t

0
κ̃(θ̃ − Ys)Ys ds −

∫ t

0
σY 3/2

s dBs,

where Y0 = y = 1/x and κ̃ = κ/(κθ − σ 2) and θ̃ = κθ − σ 2. This SDE has
quadratic drift and the so-called 3/2 volatility. When θ̃ > 0 and κ̃ > 0, which re-
quires κθ > σ 2 for the CIR process X, this SDE also appeared as the model for the
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instantaneous inflation rate in Cox, Ingersoll and Ross (1985) and as the model for
the instantaneous nominal interest rate in Lewis (1994) and Ahn and Gao (1999)
(the so-called 3/2 model). In this case the process has a stationary density

π(y) = αβ

�(β)
y−β−1e−α/y where α := 2κ̃ θ̃

σ 2 , β := 2(σ 2 + κ̃)

σ 2 .

The G-intensity in this model is λGt = (1 − Dt)Yt = (1 − Dt)/Xt , where Y is the
3/2-diffusion, or equivalently X is the CIR diffusion. The semigroup (P1)t≥0 can
be obtained explicitly in this case and coincides with the pricing semigroup in the
3/2 interest rate model.

EXAMPLE 2.4 [Quadratic Ornstein–Uhlenbeck (OU) model]. Consider an
SDE (2.1) with

σ(x) = 2σ
√

x, b(x) = 2κ(a + θ
√

x − x)(2.7)

with σ > 0, κ > 0, θ ≥ 0, and a = σ 2/(2κ). This SDE is similar to the CIR SDE,
but has an extra term with

√
x in the drift. Let Yt be the OU process solving the

SDE Yt = y + ∫ t
0 κ(θ − Yu)du + σBt . Applying Itô’s formula to the square of

the OU process, Xt = Y 2
t , we verify that X satisfies the SDE with the coeffi-

cients (2.7). The Feynman–Kac semigroup (P1
t )t≥0 of the quadratic OU model

coincides with the pricing semigroup in the quadratic OU interest rate model stud-
ied in Beaglehole and Tenney (1992) and Jamshidian (1996).

EXAMPLE 2.5 [Carr and Linetsky (2006) JDCEV credit-equity model]. A jump-
to-default extended constant elasticity of variance (JDCEV) diffusion of Carr and
Linetsky (2006) models the pre-default stock price of a firm as the diffusion
with

σ(x) = axβ+1, b(x) = (
r − q + k(x)

)
x,

k(x) = b + cσ 2(x) = b + ca2x2β,

where a > 0 fixes the volatility scale, the constant elasticity of variance β < 0
is assumed negative to capture the leverage effect (volatility of the stock price
increases as the stock price falls), r ≥ 0 is the risk-free rate, q ≥ 0 is the dividend
yield, and k(x) is the function defining the default intensity in the JDCEV model,
where b ≥ 0 is the constant part and c ≥ 0 is the sensitivity of the default intensity
to the instantaneous variance of the stock price. k(x)x is added to the drift to
compensate for a jump to default to ensure that, under the risk-neutral measure,
the discounted stock price with dividends reinvested and subject to default is a
martingale. Thus, in the JDCEV model the stock price of a firm subject to default
risk is St = (1 − Dt)Xt , where Dt is the default indicator (stock price drops to
zero when the firm defaults on its debt). The G-intensity is λGt = (1 − Dt)(b +
ca2X

2β
t ).
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For any a > 0, μ := r − q + b ∈ R, β < 0 and c ∈ [(1/2 + β)+,∞), the JD-
CEV SDE can be reduced to the CIR SDE as follows. Let (Yt )t≥0 be the unique
strong solution of the CIR SDE with Y0 = y > 0 and parameters satisfying κθ > 0
and σ > 0. For all t ≥ 0 define a new process Xt = (Yt )

1/(2|β|) with the ini-
tial condition X0 = x = y1/(2|β|) > 0. Then by Itô’s formula (the application is
justified since |β| > 0), the process Xt solves the JDCEV SDE with a = σ

2|β| ,
μ = − κ

2|β| , and c = 1/2 + |β|(2κθ
σ 2 − 1). Since we are only interested in nonnega-

tive default intensities, we impose the condition 1/2 + |β|(2κθ
σ 2 − 1) ≥ 0. When

the CIR process Y satisfies Feller’s condition, 2κθ ≥ σ 2, the JDCEV parame-
ter satisfies c ∈ [1/2,∞). In this case, the boundary at zero is entrance for both
the CIR and JDCEV diffusions. When 2κθ ∈ (0, σ 2), the resulting JDCEV pa-
rameter satisfies c ∈ ((1/2 + β)+,1/2). In this case, the boundary at zero is in-
stantaneously reflecting for both CIR and JDCEV. In both cases, the killing rate
k reduces to k(x) = b + ca2/y in terms of the CIR variable y, and hence the
JDCEV FK semigroup (P1

t )t≥0 reduces to the Feynman–Kac semigroup in the
reciprocal CIR model of Example 2.3 (with the constant b added). Finally, we re-
mark that while the JDCEV diffusion can also be defined when −1/2 < β < 0
and c ∈ [0, (1/2 + β)+) (in this case zero is an exit boundary), it cannot be re-
duced to the CIR diffusion for this set of parameters. Since in this paper we do
not consider exit boundaries, we are not concerned with this case in the present
paper.

EXAMPLE 2.6 [Linetsky (2006) credit-equity model]. Also in the context of
credit-equity models, Linetsky (2006) studies an extension of the Black–Scholes–
Merton (BSM) model with bankruptcy where the killing rate is a negative power
of the state variable. The pre-default dynamics of the stock price are determined
by

σ(x) = σx, b(x) = (
r − q + k(x)

)
x, k(x) = αx−p,

where σ > is the constant volatility, r ≥ 0 is the risk-free rate, q ≥ 0 is the dividend
yield and k(x) is the killing rate specified to be a negative power of the stock price
with α > 0 and p > 0. As in Example 2.5, the killing rate k(x) is added into the
drift to compensate for the jump to default that makes the stock price worthless in
default. By specifying k(x) to be the negative power of the stock price, this model
is able to exhibit implied volatility skews in stock option prices, with the param-
eters α and p of the killing rate specification controlling the slope of the skew,
thus establishing a link between implied volatility skews and credit spreads (as the
stock price drops, the implied volatility and the probability of default increase). In
this case, the stock price is St = (1 − Dt)Xt and the G-intensity of default in this
model is λGt = (1 − Dt)αX

p
t .
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3. The subordinated diffusion default intensity model. We next assume
that our probability space (�,F,P) also supports a Lévy subordinator (Tt )t≥0 in-
dependent of both the Brownian motion B and the exponential random variable E
and thus is independent of the bi-variate process (X,D). Recall that a Lévy sub-
ordinator is a nondecreasing Lévy process, that is, a Lévy process with one-sided
positive jumps and nonnegative drift and no diffusion component. The Laplace
transform of a Lévy subordinator (Tt )t≥0 is given by the Lévy–Khintchine for-
mula

E
[
e−λTt

] =
∫
[0,∞)

e−λsπt (ds) = e−tφ(λ)

with φ(λ) = γ λ +
∫
(0,∞)

(
1 − e−λs)ν(ds).

Here πt(ds) is the transition kernel, φ(λ) is a Lévy exponent, γ ≥ 0 is the non-
negative drift and ν(ds) is a Lévy measure of the subordinator that satisfies the
integrability condition

∫
(0,∞)(s ∧ 1)ν(ds) < ∞ [standard references on subordi-

nators are Bertoin (1996, 1999), Sato (1999) and Schilling, Song and Vondraček
(2010)].

EXAMPLE 3.1 (Tempered stable and related subordinators). A family of sub-
ordinators important in financial applications is defined by the following three-
parameter family of Lévy measures:

ν(ds) = Cs−α−1e−ηs ds(3.1)

with C > 0, η > 0, and α < 1. For α ∈ (0,1) these are the so-called tempered sta-
ble subordinators [exponentially dampened counterparts of the α-stable subordi-
nators with ν(ds) = Cs−α−1 ds]. The special case α = 1/2 is the inverse Gaussian
process [Barndorff-Nielsen (1998)]. The limiting case α = 0 is the gamma process
[Madan, Carr and Chang (1998)]. Subordinators with α ∈ [0,1) are infinite ac-
tivity processes. Subordinators with α < 0 are compound Poisson processes with
gamma distributed jump sizes. The compound Poisson process with the Lévy mea-
sure ν(ds) = ωηe−ηs ds with exponential jumps is a special case with α = −1 and
C = ωη, where ω is the jump arrival rate, and 1/η is the mean of the exponential
jump size distribution. The Laplace exponent is given by

φ(λ) =
{

γ λ − C�(−α)
[
(λ + η)α − ηα

]
, α �= 0,

γ λ + C ln(1 + λ/η), α = 0,

where �(x) is the gamma function.

We now time change the bi-variate process (X,D) of the previous section with
a subordinator T . That is, we define a new bi-variate process (X

φ
t ,D

φ
t )t≥0 by

X
φ
t := X

(
T (t)

)
, D

φ
t := D

(
T (t)

)
(3.2)
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and assume that (D
φ
t )t≥0 is the default indicator process (i.e., the default time is

the first time Dφ is equal to one), and Xφ is the state variable that models the credit
health of the obligor. We also define the time changed filtration as follows. Define
an inverse subordinator process as the right inverse (Lt := inf{s ≥ 0 :Ts > t})t≥0.
Since T is cádlág, so is L. Let L = (Lt )t≥0 be its completed natural filtration. Let
H = (Ht )t≥0 denote the enlarged filtration with Ht = Gt ∨ Lt , where Gt refers to
the filtration G = (Gt )t≥0 of Section 2. Then (Tt )t≥0 is an increasing family of
H-stopping times, and we can define the time changed filtration H

φ = (Hφ
t )t≥0

by Hφ
t = HTt for all t ≥ 0. The time changed bi-variate process (X

φ
t ,D

φ
t )t≥0 is

obviously H
φ-adapted and cádlág.

PROPOSITION 3.1. The process (X
φ
t ,D

φ
t )t≥0 is an H

φ-semimartingale.

PROOF. Since (X
φ
t ,D

φ
t )t≥0 is a time change of a semimartingale (X,D), it is

a semimartingale by Corollary 10.12 in Jacod (1979), page 315. �

We will now investigate its properties. In particular, we show that (X
φ
t ,D

φ
t )t≥0

is a Feller process with the Feller semigroup on C([0,∞] × {0,1}), explicitly
compute its infinitesimal generator, obtain its predictable semimartingale charac-
teristics and give Itô’s formula.

We first recall some key results about the subordination in the sense of Bochner
of semigroups of operators in Banach spaces. The procedure of subordination goes
back to Bochner (1949). The expression for the generator constitutes the Phillips
theorem [Phillips (1952)]. The formulation below is reproduced from Sato (1999),
Theorem 32.1.

THEOREM 3.1 (Subordination in the sense of Bochner; Phillips theorem). Let
(Tt )t≥0 be a subordinator with Lévy measure ν, drift γ , Laplace exponent φ(λ)

and transition function πt(ds). Let (Pt )t≥0 be a strongly continuous contraction
semigroup of linear operators on a Banach space B with infinitesimal genera-
tor A.

(i) Define

Pφ
t f (x) =

∫
[0,∞)

Psf (x)πt (ds), t ≥ 0, f ∈ B.(3.3)

Then (Pφ
t )t≥0 is a strongly continuous contraction semigroup of linear operators

on B called subordinate semigroup of (Pt )t≥0 with respect to the subordinator
(Tt )t≥0.

(ii) Denote the infinitesimal generator of (Pφ
t )t≥0 by Aφ . Then the domain of

A is a core of Aφ and

Aφf = γAf +
∫
(0,∞)

(Psf − f )ν(ds), f ∈ Dom(A).(3.4)
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We will need the following corollary.

COROLLARY 3.1. If (Pt )t≥0 is a Feller semigroup on C([0,∞]), then the
subordinate semigroup (Pφ

t )t≥0 is also a Feller semigroup on C([0,∞]).

PROOF. The space C([0,∞]) consists of continuous functions on [0,∞]
or, equivalently, continuous functions on (0,∞) with finite limits at 0 and ∞.
A strongly continuous contraction semigroup on C([0,∞]) is Feller if it is pos-
itivity preserving. Suppose (Pt )t≥0 is Feller on C([0,∞]). Then (Pφ

t )t≥0 is a
strongly continuous contraction semigroup on C([0,∞]) by Theorem 3.1(i) with
B= C([0,∞]). Since Bochner’s integral in equation (3.3) is positivity preserving,
for all u ∈ C([0,∞]) such that 0 ≤ u ≤ 1, we have 0 ≤ Pφ

t u ≤ 1. Thus (Pφ
t )t≥0 is

positivity preserving and, hence, Feller on C([0,∞]). �

Recall that I = (0,∞) if 0 is unattainable and I = [0,∞) if 0 is reflect-
ing. Under our assumptions, the transition kernels of the semigroups (Pβ

t )t≥0

have densities with respect to the Lebesgue measure, P
β
t (x, dy) = pβ(t, x, y) dy,

where pβ(t, x, y) are jointly continuous in t, x, y. This follows from the fact that
any one-dimensional diffusion has a density with respect to the speed measure
that is jointly continuous in t, x, y; cf. McKean (1956) or Borodin and Salmi-
nen (2002), page 13. Under our assumptions, the speed measure is absolutely
continuous with respect to the Lebesgue measure [cf. Borodin and Salminen
(2002), page 17], and hence the semigroups have densities with respect to the
Lebesgue measure. For β = 0 the density is the proper probability density on I ,
P 0

t (x, I ) = ∫
I p1(t, x, y) dy = 1 for each x ∈ I . For β > 0, the density is gen-

erally defective, P
β
t (x, I ) = ∫

I pβ(t, x, y) dy ≤ 1. For notational convenience we
extend the densities from I to R by setting pβ(t, x, y) ≡ 0 for y < 0 for all x ∈ I

and t > 0. We are now ready to give the Markovian characterization of the time-
changed process (Xφ,Dφ) defined by (3.2) based on Phillips Theorem 3.1 and
Corollary 3.1.

THEOREM 3.2 [Markovian characterization of (Xφ,Dφ)]. (i) The bi-variate
process (Xφ,Dφ) is a Feller process with the Feller semigroup (Pφ

t )t≥0 acting on
f ∈ C([0,∞] × {0,1}) by

Pφ
t f (x, d) =P0,φ

t f1(x) + (1 − d)P1,φ
t (f0 − f1)(x),(3.5)

where f0(x) = f (x,0) ∈ C([0,∞]), f1(x) = f (x,1) ∈ C([0,∞]) and (P0,φ
t )t≥0

and (P1,φ
t )t≥0 are Feller semigroups obtained by subordination in the sense of

Bochner from Feller semigroups (P0
t )t≥0 and (P1

t )t≥0.
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(ii) The infinitesimal generator Aφ of the Feller semigroup (Pφ
t )t≥0 has the

following representation:

Aφf (x, d) = A0,φf1(x) + (1 − d)A1,φ(f0 − f1)(x),
(3.6)

f0, f1 ∈ Dom
(
A1)

,

where Aβ,φ , β ∈ {0,1}, are generators of (Pβ,φ
t )t≥0.

(iii) The generator Aβ,φ has the following Lévy–Khintchine-type representa-
tions with state-dependent coefficients

Aβ,φf (x) = 1

2
γ σ 2(x)f ′′(x) + bβ,φ(x)f ′(x) − kφ(x)f (x)

(3.7)
+

∫
R

(
f (x + y) − f (x) − 1{|y|≤1}yf ′(x)

)
πβ,φ(x, y) dy

for all f ∈ D(Aβ), where the state-dependent Lévy density πβ,φ(x, y) is defined
for all y �= 0 by

πβ,φ(x, y) =
∫
(0,∞)

pβ(s, x, x + y)ν(ds),(3.8)

and satisfies the integrability condition
∫
R
(|y|2 ∧ 1)πβ,φ(x, y) dy < ∞ for each

x ∈ I [recall that we extended p(t, x, y) to R by setting p(t, x, y) = 0 for y < 0],
the drift with respect to the truncation function x1{|x|≤1} is given by

bβ,φ(x) = γ b(x) +
∫
(0,∞)

(∫
{|y|≤1}

ypβ(s, x, x + y)dy

)
ν(ds),(3.9)

and the killing rate is given by

kφ(x) = γβk(x) +
∫
(0,∞)

(
1 − P β

s (x, I )
)
ν(ds),(3.10)

where P
β
s (x, I ) = ∫

I p1(s, x, y) dy.
(iv) If f (x, d) ∈ D(A) [i.e., f is of the form (2.4) with f0, f1 ∈ D(A1)] and

(Xφ,Dφ) starts with X
φ
0 = x > 0 and D

φ
0 = d ∈ {0,1}, then the process

M
f
t := f

(
X

φ
t ,D

φ
t

) − f (x, d) −
∫ t

0
Aφf

(
Xφ

s ,Dφ
s

)
ds(3.11)

is an H
φ-martingale.

PROOF. (i) The semigroup (Pφ
t )t≥0 of (Xφ,Dφ) is Feller by Corollary 3.1.

The explicit representation (3.5) for the semigroup results from combining equa-
tion (2.5) with (3.3) of Theorem 3.1.

(ii) Representation (3.6) for the generator Aφ in terms of generators of subordi-
nate semigroups (Pβ,φ

t )t≥0 follows from (3.4).
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(iii) Explicit representation (3.7) for the generator Aβ,φ is shown as follows.
We start by observing that by Theorem 4.5 of McKean (1956) for each x ∈ I the
density pβ(t, x, y) satisfies the following estimates:∫

{|y−x|>1}
pβ(t, x, y) dy ≤ C1t,(3.12)

∫
{|y−x|≤1}

(y − x)2pβ(t, x, y) dy ≤ C2t,(3.13)

∣∣∣∣
∫
{|y−x|≤1}

(y − x)pβ(t, x, y) dy

∣∣∣∣ ≤ C3t,(3.14)

1 −
∫
I
pβ(t, x, y) dy ≤ C4t.(3.15)

For each x ∈ I write

Pβ
s f (x) − f (x) =

∫
R

(
f (x + y) − f (x) − 1{|y|≤1}yf ′(x)

)
pβ(s, x, x + y)dy

+
(∫

{|y|≤1}
ypβ(s, x, x + y)dy

)
f ′(x) − (

1 − P β
s (x, I )

)
f (x).

Substitute the result into the Phillips representation (3.4) of the generator of the
subordinate semigroup, integrate term-by-term against the Lévy measure ν(ds) of
the subordinator and interchange the integration in y and in s in the first of the three
integrals. The result yields the representation (3.7)–(3.10). These operations are
justified and the three resulting integrals are well defined due to estimates (3.12)–
(3.15) and the integrability of the Lévy measure of the subordinator,

∫
(0,∞)(1 ∧

s)ν(ds) < ∞. Specifically, estimates (3.12) and (3.13) ensure that the application
of Fubini’s theorem to interchange the integrations in s and y is justified, and
the resulting integral in (3.7) is well defined for each f ∈ D(Aβ), as they ensure
that the measure πβ,φ(x, y) dy with the density (3.8) is a Lévy measure for each
x ∈ I [it is similar to Sato (1999), pages 200–201, proof that (30.8) is the Lévy
measure of the subordinate Lévy process]. Estimate (3.14) ensures that the integral
in (3.9) is well defined [it is similar to Sato (1999), proof that the drift (30.9) of the
subordinate Lévy process is well defined]. Finally, estimate (3.15) ensures that the
integral in (3.10) is well defined due to the integrand tending to zero at the rate s

as s → 0.
Part (iv) follows from Ethier and Kurtz (1986), Proposition 1.7, page 162. �

To obtain predictable characteristics of the semimartingale (Xφ,Dφ) from the
explicit form of the Feller generator Aφ , it is convenient to first re-write the gen-
erator in the following equivalent form.
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COROLLARY 3.2 (Alternative representation of the generator Aφ). The gen-
erator Aφ admits the following alternative representation:

Aφf (x, d)

= 1

2
γ σ 2(x)∂2

xf (x, d) + b0,φ(x)∂xf (x, d) + (1 − d)kφ(x)∂df (x, d)

(3.16)
+

∫
R2

(
f (x + y, d + z) − f (x, d) − y1{|y|≤1}∂xf (x, d) − z∂df (x, d)

)
× �φ(x, d;dy dz),

where

�φ(x, d;dy dz)

= (1 − d)γ k(x)δ0(dy)δ1(dz)
(3.17)

+ [
π0,φ(x, y) − (1 − d)

(
π0,φ(x, y) − π1,φ(x, y)

)]
dy δ0(dz)

+ (1 − d)
(
π0,φ(x, y) − π1,φ(x, y)

)
dy δ1(dz),

where πβ,φ(x, y) are the Lévy densities defined in equation (3.8) with β = 0,1,
and δa is the Dirac measure charging a.

PROOF. Denote the operator defined by equations (3.6)–(3.10) by Âφ . We
need to show that Âφf (x, d) = Aφf (x, d) for all x ∈ I and d ∈ {0,1}, where Aφ

is the operator in equation (3.16). The case with d = 1 is immediate, Âφf (x,1) =
Aφf (x,1) = A0,φf (x,1). Next consider the case d = 0. From (3.6) we have

Âφf (x,0) = 1

2
γ σ 2(x)∂2

xf (x,0)

+ b1,φ(x)∂xf (x,0) + (
b0,φ(x) − b1,φ(x)

)
∂xf (x,1)

+ kφ(x)
(
f (x,1) − f (x,0)

)
(3.18)

+
∫
R

(
f (x + y,0) − f (x,0) − 1{|y|≤1}y∂xf (x,0)

)
π1,φ(x, y) dy

+
∫
R

(
f (x + y,1) − f (x,1) − 1{|y|≤1}y∂xf (x,1)

)
× (

π0,φ(x, y) − π1,φ(x, y)
)
dy.

The last integral can be written as∫
R

(
f (x + y,1) − f (x,1) − 1{|y|≤1}y∂xf (x,1)

)(
π0,φ(x, y) − π1,φ(x, y)

)
dy

=
∫
R

(
f (x + y,1) − f (x,0) + f (x,0) − f (x,1)
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− 1{|y|≤1}y
(
∂xf (x,1) − ∂xf (x,0) + ∂xf (x,0)

))
× (

π0,φ(x, y) − π1,φ(x, y)
)
dy(3.19)

=
∫
R

(
f (x + y,1) − f (x,0) − 1{|y|≤1}y∂xf (x,0) − ∂df (x,0)

)
× (

π0,φ(x, y) − π1,φ(x, y)
)
dy

− (
∂xf (x,1) − ∂xf (x,0)

) ∫
R

1{|y|≤1}y
(
π0,φ(x, y) − π1,φ(x, y)

)
dy.

From equation (3.9) observe that∫
R

1{|y|≤1}y
(
π0,φ(x, y) − π1,φ(x, y)

)
dy = b0,φ(x) − b1,φ(x).

Substituting this result into (3.19) and substituting the result into (3.18) and com-
paring with (3.16)–(3.17), we establish that Âφf (x,0) = Aφf (x,0). �

Next we are ready to give semimartingale characterization of (Xφ,Dφ). For
the definition of predictable characteristics of a semimartingale, see Jacod and
Shiryaev (2002), page 76.

THEOREM 3.3 [Semimartingale characterization of (Xφ,Dφ)]. (i) The bi-
variate H

φ-semimartingale (Xφ,Dφ) has the following predictable characteris-
tics. The predictable quadratic variation of the continuous local martingale com-
ponent X

φ,c
t is

CXφXφ

t =
∫ t

0
γ σ 2(

Xφ
s

)
ds

(CDφDφ

t = 0 and CXφDφ

t = 0 since Dφ is purely discontinuous). The predictable

process of finite variation associated with the truncation function (hXφ
(x, d) =

x1{|x|≤1}, hDφ
(x, d) = d) is

BXφ

t =
∫ t

0
b0,φ(

Xφ
s

)
ds, BDφ

t =
∫ t

0

(
1 − Dφ

s

)
kφ(

Xφ
s

)
ds,(3.20)

where the function b0,φ(x) is defined in equation (3.9), and kφ(X
φ
s ) is defined

in equation (3.10). The compensator of the random measure μ(ω;dt, dy dz) as-
sociated to the jumps of (Xφ,Dφ) is a predictable random measure on R+ ×
(R2\{(0,0)}),

ν(ω;dt, dy dz) = �φ(
X

φ
t−,D

φ
t−; dy dz

)
dt(3.21)

with the measure �φ(x, d;dy dz) given by equation (3.17).
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(ii) The Lévy–Itô canonical representation of Xφ with respect to the truncation
function x1{|x|≤1} is

X
φ
t = x + BXφ

t + X
φ,c
t

+
∫ t

0

∫
R

y1{|y|≤1}
(
μXφ

(ds, dy) − νXφ

(ds, dy)
)

+
∫ t

0

∫
R

y1{|y|>1}μXφ

(ds, dy),

where the compensator of the random measure μXφ
(ω;dt, dy) associated to the

jumps of Xφ is a predictable random measure on R+ × (R\{0}),
νXφ

(ω;dt, dy) = π0,φ(
X

φ
t−, y

)
dy dt,(3.22)

where π0,φ(x, y) is defined in equation (3.8).
(iii) The Doob–Meyer decomposition of D

φ
t is

D
φ
t = ADφ

t + M
φ
t

with the martingale M
φ
t = D

φ
t − ADφ

t and the predictable compensator ADφ

t =
BDφ

t given in equation (3.20), so that the H
φ-intensity is λH

φ

t = (1 − D
φ
t )kφ(X

φ
t ).

PROOF. (i) By Theorem 2.42 of Jacod and Shiryaev (2002), page 86, the fol-
lowing two statements are equivalent: (i) the n-dimensional semimartingale Z ad-
mits characteristics (B,C, ν) with respect to the truncation function h, and (ii) for
each bounded function f of class C2 the process [using notation of equation (2.43)
in Jacod and Shiryaev (2002), page 86]

f (Z) − f (Z0) − ∑
i≤n

∂if (Z−) • Bi − 1

2

∑
i,j≤n

∂i∂jf (Z−) • Cij

(3.23)

−
(
f (Z− + z) − f (Z−) − ∑

i≤n

hi(z)∂if (Z−)

)
� ν

is a local martingale. In our case Z = (Xφ,Dφ) is a two-dimensional semimartin-
gale such that for any f ∈ D(A) the process (3.23) is a martingale. Substituting
expression (3.16) for the generator into (3.11), we immediately identify the char-
acteristics of (Xφ,Dφ) since the characteristics are unique (up to a null set).

(ii) The result is shown by observing that Xφ is itself one-dimensional Markov
with the generator A0,φ given by (3.7) with β = 0, and identifying its predictable
characteristics (BXφ

,CXφXφ
, νXφ

) with νXφ
given by (3.22) from the generator

A0,φ , as we did in (i) for the bi-variate process. The canonical representation of
Xφ is then immediate by Theorem 2.34 of Jacod and Shiryaev (2002), page 84.

(iii) Immediate by Theorem 3.15 of Jacod and Shiryaev (2002) (the one-point
point process Dφ is a class D submartingale) and the fact that Dφ = BDφ +
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Mφ is the canonical decomposition of the special semimartingale Dφ [Proposi-
tion 2.29(a) of Jacod and Shiryaev (2002)]. �

From Theorem 3.3, we see that (Xφ,Dφ) is a Markovian Itô semimartingale or
Itô process in the terminology of Çinlar et al. (1980), page 165. In particular, when
γ > 0, Xφ is an Itô jump-diffusion with the continuous local martingale compo-
nent with quadratic variation γ

∫ t
0 σ 2(Xs) ds and with jumps with the predictable

compensator (3.22). When γ = 0, Xφ is a pure-jump process. Recall that every Itô
semimartingale can be represented as a solution of a stochastic differential equa-
tion driven by a standard Brownian motion, Lebesgue measure and a Poisson ran-
dom measure, generally defined on an extended probability space [Çinlar and Ja-
cod (1981a, 1981b), Jacod and Protter (2011), Section 2.1.4]. If γ > 0, we can thus
represent the continuous local martingale component as X

φ,c
t = ∫ t

0
√

γ σ(X
φ
s ) dB̃s ,

where B̃ is a standard Brownian motion (possibly defined on an extended proba-
bility space). The jump measure can be expressed in terms of a Poisson random
measure. Such explicit representation is useful in applications for Monte Carlo
simulation of Itô semimartingales as solutions of SDEs [Jacod and Protter (2011)].
Since our model arises as the time change, an alternative way to simulate it is by
simulating the “background” process (X,D) and the independent subordinator T .

We now formulate Itô’s formula for functions of the bi-variate process in the
form convenient for our application. We first formulate Itô’s formula for functions
of Xφ only.

THEOREM 3.4 (Itô’s formula for Xφ). Suppose Xφ starts from X
φ
0 = x > 0.

For any function f (t, x) ∈ C1,2(R+ × (0,∞)) if zero is an unattainable boundary
for the process X or f (t, x) ∈ C1,2(R+ ×[0,∞)) if zero is an attainable boundary
for X, Itô’s formula can be written in the following form:

f
(
t,X

φ
t

) = f (0, x) +
∫ t

0

(
∂s + 1

2
γ σ 2(

Xφ
s

)
∂2
x + b0,φ(

X
φ
t

)
∂x

)
f

(
s,Xφ

s

)
ds

+
∫ t

0

∫
R

(
f

(
s,X

φ
s− + y

) − f
(
s,X

φ
s−

) − y∂xf
(
s,X

φ
s−

))
× 1{|y|≤1}νXφ

(ds, dy)

+
∫ t

0

∫
R

(
f

(
s,X

φ
s− + y

) − f
(
s,X

φ
s−

))
1{|y|>1}μXφ

(ds, dy)

+
∫ t

0

∫
R

(
f

(
s,X

φ
s− + y

) − f
(
s,X

φ
s−

))
× 1{|y|≤1}

(
μXφ

(ds, dy) − νXφ

(ds, dy)
)

+
∫ t

0
∂xf

(
s,Xφ

s

)
dXφ,c

s ,
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where μXφ
is the random measure associated to jumps of Xφ , and νXφ

is its com-
pensator measure (3.22).

PROOF. This form of Itô’s formula based on characteristics can be found in
Jacod and Protter (2011), equation (2.1.20), page 32. �

This useful form of Itô’s formula gives the canonical representation of the semi-
martingale f (t,X

φ
t ) in terms of the predictable process of finite variation (“drift”),

optional process of finite variation (“large jumps”), continuous local martingale
component that is the stochastic integral with respect to Xφ,c, and the purely dis-
continuous local martingale that is the stochastic integral with respect to the mar-
tingale random measure μXφ − νXφ

of compensated jumps of Xφ (“compensated
small jumps”). We are now ready to present Itô’s formula for the bi-variate process.
Due to the decomposition

f
(
t,X

φ
t ,D

φ
t

) = f1
(
t,X

φ
t

) + (
1 − D

φ
t

)(
f0

(
t,X

φ
t

) − f1
(
t,X

φ
t

))
and Theorem 3.4, it is sufficient to give Itô’s formula for the product (1 −
D

φ
t )f (t,X

φ
t ).

THEOREM 3.5 [Itô’s formula for (Xφ,Dφ)]. Suppose (Xφ,Dφ) starts from
X

φ
0 = x > 0 and D

φ
0 = d ∈ {0,1}. For any function f (t, x) ∈ C1,2(R+ × (0,∞))

if zero is an unattainable boundary for the diffusion process X or f (t, x) ∈
C1,2(R+ × [0,∞)) if zero is an attainable boundary for X, we have(
1 − D

φ
t

)
f

(
t,X

φ
t

)
= (1 − d)f (0, x)

+
∫ t

0

(
1 − D

φ
s−

)(
∂s + 1

2
γ σ 2(

Xφ
s

)
∂2
x + b1,φ(

X
φ
t

)
∂x − kφ(

Xφ
s

))
f

(
s,Xφ

s

)
ds

+
∫ t

0

∫
R

(
1 − D

φ
s−

)(
f

(
s,X

φ
s− + y

) − f
(
s,X

φ
s−

) − y∂xf
(
s,X

φ
s−

))
× 1{|y|≤1}ν̂(ds, dy)(3.24)

+
∫ t

0

∫
R

(
1 − D

φ
s−

)(
f

(
s,X

φ
s− + y

) − f
(
s,X

φ
s−

))
1{|y|>1}μ̂(ds, dy)

+
∫ t

0

(
1 − D

φ
s−

)
∂xf

(
s,Xφ

s

)
dXφ,c

s −
∫ t

0

(
1 − D

φ
s−

)
f

(
s,X

φ
s−

)
dMφ

s

+
∫ t

0

∫
R

(
1 − D

φ
s−

)(
f

(
s,X

φ
s− + y

) − f
(
s,X

φ
s−

))
× 1{|y|≤1}

(
μ̂(ds, dy) − ν̂(ds, dy)

)
,
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where we introduced a random measure associated to those jumps of Xφ that do
not coincide with jumps of Dφ ,

μ̂(ω;ds, dy) = ∑
u

1{�X
φ
u (ω) �=0}1{�D

φ
u (ω)=0}δ(u,�X

φ
u (ω))

(ds, dy),

and its compensator measure

ν̂(ω;ds, dy)
(3.25)

= [
π0,φ(

X
φ
s−, y

) − (
1 − D

φ
s−

)(
π0,φ(

X
φ
s−, y

) − π1,φ(
X

φ
s−, y

))]
dy ds.

PROOF. We start with Itô’s product rule,

(
1 − D

φ
t

)
f

(
t,X

φ
t

) = (1 − d)f (0, x) +
∫ t

0

(
1 − D

φ
s−

)
df

(
s,Xφ

s

)

−
∫ t

0
f

(
s,X

φ
s−

)
dDφ

s − ∑
s≤t

�Dφ
s

(
f

(
s,Xφ

s

) − f
(
s,X

φ
s−

))
.

Due to Theorem 3.4, the second term is∫ t

0

(
1 − D

φ
s−

)
df

(
Xφ

s

)

=
∫ t

0

(
1 − D

φ
s−

)(
∂s + 1

2
γ σ 2(

Xφ
s

)
∂2
x + b0,φ(

X
φ
t

)
∂x

)
f

(
s,Xφ

s

)
ds

+
∫ t

0

∫
R

(
1 − D

φ
s−

)(
f

(
s,X

φ
s− + y

) − f
(
s,X

φ
s−

) − y∂xf
(
s,X

φ
s−

))
× 1{|y|≤1}νXφ

(ds, dy)

+
∫ t

0

∫
R

(
1 − D

φ
s−

)(
f

(
s,X

φ
s− + y

) − f
(
s,X

φ
s−

))
1{|y|>1}μXφ

(ds, dy)

+
∫ t

0

∫
R

(
1 − D

φ
s−

)(
f

(
s,X

φ
s− + y

) − f
(
s,X

φ
s−

))
× 1{|y|≤1}

(
μXφ

(ds, dy) − νXφ

(ds, dy)
)

+
∫ t

0

(
1 − D

φ
s−

)
∂xf

(
s,Xφ

s

)
dXφ,c

s .

The third term is∫ t

0
f

(
s,X

φ
s−

)
dDφ

s

=
∫ t

0

(
1 − D

φ
s−

)
f

(
s,X

φ
s−

)
dDφ

s

=
∫ t

0

(
1 − D

φ
s−

)
f

(
s,X

φ
s−

)
dMφ

s +
∫ t

0

(
1 − D

φ
s−

)
f

(
s,X

φ
s−

)
kφ(

X
φ
s−

)
ds.
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The first equality is due to the fact that∫ t

0
D

φ
s−f

(
X

φ
s−

)
dDφ

s = ∑
s≤t

D
φ
s−f

(
X

φ
s−

)
�Dφ

s = 0,

since D
φ
s−�D

φ
s = 0 (if �D

φ
s = 1, then D

φ
s− = 0). In the second equality we used

the Doob–Meyer decomposition of Dφ .
The fourth term is (in the first equality we again use D

φ
s−�D

φ
s = 0)∑

s≤t

�Dφ
s

(
f

(
Xφ

s

) − f
(
X

φ
s−

))

= ∑
s≤t

(
1 − D

φ
s−

)
�Dφ

s

(
f

(
Xφ

s

) − f
(
X

φ
s−

))

=
∫ t

0

∫
R

(
1 − D

φ
s−

)(
f

(
X

φ
s− + y

) − f
(
X

φ
s−

))
× 1{|y|≤1}

(
μ̃(ds, dy) − ν̃(ds, dy)

)
+

∫ t

0

∫
R

(
1 − D

φ
s−

)(
f

(
X

φ
s− + y

) − f
(
X

φ
s−

))
1{|y|>1}μ̃(ds, dy)

+
∫ t

0

∫
R

(
1 − D

φ
s−

)(
f

(
X

φ
s− + y

) − f
(
X

φ
s−

) − y∂xf
(
s,X

φ
s−

))
× 1{|y|≤1}ν̃(ds, dy)

+
∫ t

0

(
1 − D

φ
s−

)
∂xf

(
s,X

φ
s−

) ∫
R

y1{|y|≤1}ν̃(ds, dy),

where we introduced a random measure associated to those jumps of Xφ that occur
contemporaneously with jumps of Dφ ,

μ̃(ω;ds, dy) = ∑
u

1{�X
φ
u (ω) �=0}1{�D

φ
u (ω)=1}δ(u,�X

φ
u (ω))

(ds, dy),

and its compensator measure

ν̃(ω;ds, dy) = (
1 − D

φ
s−

)(
π0,φ(

X
φ
s−, y

) − π1,φ(
X

φ
s−, y

))
dy ds.

To prove that this is the compensator of μ̃, we note that for any Borel set B ∈R\{0}
the process

μ̃t (B)(ω) := μ̃
(
ω; (0, t] ×B

)
is a one-point point process equal to one at time t if D

φ
t − D

φ
0 = 1 (i.e., a jump of

Dφ (default) occurs during the time interval (0, t]) and the process Xφ experiences
a jump at the time of default τ with size in B, �X

φ
τ ∈ B. The compensator of
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this process is readily computed from the compensator ν (3.21) of the measure μ

associated to the jumps of (Xφ,Dφ)

ν̃t (B) = ν̃
(
(0, t] ×B

)
=

∫ t

0

∫
B×R

yzν(ds, dy dz)

=
∫ t

0

∫
B

(
1 − D

φ
s−

)(
π0,φ(

X
φ
s−, y

) − π1,φ(
X

φ
s−, y

))
dy,

where the last equality follows by substituting equation (3.17) into equation (3.21)
and doing the integration. Then (μ̃t (B) − ν̃t (B)) + ν̃t (B) is the Doob–Meyer de-
composition of μ̃t (B).

We now put the pieces together and use the following identities to combine
similar terms and arrive at the final result (3.24). First we observe that

μXφ = μ̂ + μ̃.

This immediately follows from∑
u

1{�X
φ
u (ω) �=0}δ(u,�X

φ
u (ω))

(ds, dy)

= ∑
u

1{�X
φ
u (ω) �=0}1{�D

φ
u (ω)=0}δ(u,�X

φ
u (ω))

(ds, dy)

+ ∑
u

1{�X
φ
u (ω) �=0}1{�D

φ
u (ω)=1}δ(u,�X

φ
u (ω))

(ds, dy)

and accordingly for the compensators

νXφ = ν̂ + ν̃.

These identities allow us to combine integrals with the same integrands with re-
spect to the random measures μXφ

and −μ̃ and νXφ
and −ν̃ into the ones with

respect to μ̂ and ν̂.
Finally, we use the identity∫

R

y1{|y|≤1}ν̃(ds, dy)

= (
1 − D

φ
s−

) ∫
R

y1{|y|≤1}
(
π0,φ(

X
φ
s−, y

) − π1,φ(
X

φ
s−, y

))
dy

= (
1 − D

φ
s−

) ∫
(0,∞)

∫
R

y1{|y|≤1}
(
p0(

u,X
φ
s−,X

φ
s− + y

)
− p1(

u,X
φ
s−,X

φ
s− + y

))
dyν(du)

= (
1 − D

φ
s−

)(
b0,φ(

X
φ
s−

) − b1,φ(
X

φ
s−

))
ds
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to simplify the drift. The interchange of integrations in u and y is allowed due to
the estimate (3.14) and the integrability properties of the Lévy measure,

∫
(0,∞)(1∧

u)ν(du) < ∞. �

Itô’s formula simplifies when the process f (t,X
φ
t ,D

φ
t ) is a special semimartin-

gale.

COROLLARY 3.3 [Itô’s formula for (Xφ,Dφ)—Special semimartingale ver-
sion]. Suppose (Xφ,Dφ) starts from X

φ
0 = x > 0 and D

φ
0 = d ∈ {0,1}. For

any function f (t, x, d) = f1(t, x) + (1 − d)(f0(t, x) + f1(t, x)) with fi(t, x) ∈
C1,2(R+ × (0,∞)) if zero is an unattainable boundary for the diffusion process
X or fi(t, x) ∈ C1,2(R+ × [0,∞)) if zero is an attainable boundary for X, if
f (t,X

φ
t ,D

φ
t ) is a special semimartingale [it suffices that either Xφ is a special

semimartingale [i.e.,
∫
R
(|y|2 ∧ |y|)π0,φ(x, y) dy < ∞ for each x ∈ I by Propo-

sition 2.29 of Jacod and Shiryaev (2002), page 82] or the functions fi(t, x) are
bounded], Itô’s formula can be written in the following form:

f
(
t,X

φ
t ,D

φ
t

)
= f (0, x, d) −

∫ t

0

(
1 − D

φ
s−

)
(f0 − f1)

(
s,X

φ
s−

)
dMφ

s

+
∫ t

0

(
∂s +Aφ)

f
(
s,Xφ

s ,D
φ
t

)
ds +

∫ t

0
∂xf

(
s,Xφ

s ,D
φ
t

)
dXφ,c

s

+
∫ t

0

∫
R

(
f1

(
s,X

φ
s− + y

) − f1
(
s,X

φ
s−

))(
μXφ

(ds, dy) − νXφ

(ds, dy)
)

+
∫ t

0

∫
R

(
(f0 − f1)

(
s,X

φ
s− + y

) − (f0 − f1)
(
s,X

φ
s−

))(
1 − D

φ
s−

)
× (

μ̂(ds, dy) − ν̂(ds, dy)
)
,

where μXφ
is the random measure associated to jumps of Xφ , and μ̂ is the random

measure associated to those jumps of Xφ that do not coincide with jumps of Dφ ,
and νXφ

and ν̂ are their respective compensator measures (3.22) and (3.25). The
generator Aφ is given by equation (3.6).

PROOF. The results follows immediately from Theorems 3.4 and 3.5, expres-
sion for the generator (3.6), and the canonical decomposition for the special semi-
martingale; cf. Proposition 2.29 of Jacod and Shiryaev (2002), page 82. �

This useful version of Itô’s formula gives a canonical decomposition of the spe-
cial semimartingale f (t,X

φ
t ,D

φ
t ) into the predictable process of finite variation

(explicitly given in terms of the generator Aφ in the Markovian case considered
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here), a continuous local martingale part and a purely discontinuous local martin-
gale part. The general form of it can be found in Theorem 3.89 of Jacod (1979),
page 109.

Next we show the following useful sufficient condition for the “specialness” of
the subordinate diffusion Xφ .

THEOREM 3.6 (Condition for specialness of Xφ). If the diffusion X has a
stationary density

lim
t→∞p0(t, x, y) := π(y)

with the finite first moment
∫
I yπ(y) dy < ∞, then the subordinate diffusion X

φ
t is

a special semimartingale.

PROOF. By Proposition 2.29 of Jacod and Shiryaev (2002), page 82, and given
our previous results, it suffices to show that

∫
{|y|>1} |y|π0,φ(x, y) dy < ∞ for each

x ∈ I . From McKean (1956) [see also Borodin and Salminen (2002), page 13],
under our assumptions the transition density p0(t, x, y) can be written in the form
p0(t, x, y) = m(y)p0

m(t, x, y), where m is the speed density of the diffusion X

given by

m(x) = 2

σ 2(x)s(x)
, s(x) = exp

{
−

∫ x

x0

2b(y)

σ 2(y)
dy

}
,(3.26)

where x0 > 0 in the definition of the scale density s(x) is an arbitrary point [see
Borodin and Salminen (2002) for the definitions of the scale function and the speed
measure of a one-dimensional diffusion; under our assumptions the scale function
and the speed measure of X are absolutely continuous with respect to the Lebesgue
measure with the densities given by equation (3.26)], and p0

m(t, x, y) = p0
m(t, y, x)

is symmetric and jointly continuous in t, x, y. The diffusion X admits a stationary
density if and only if the speed density is integrable on I and, in this case, π(x) =
m(x)/

∫
I m(y) dy [cf. Borodin and Salminen (2002), page 20]. In this case we can

write the Lévy density of Xφ as

π0,φ(x, y) = π(x + y)

∫
(0,∞)

p0
m(s, x, x + y)ν(ds)(3.27)

for all y �= 0, where we chose x0 in the definition of speed density so that∫
I m(y) dy = 1 and π(x) = m(x). Since the function

∫
(0,∞) p

0
m(s, x, x + y)ν(ds)

is bounded on the set {|y| > 1}, ∫
{|y|>1} |y|π0,φ(x, y) dy < ∞ follows immediately

from the assumption
∫
I yπ(y) dy < ∞. �

We note that many diffusions X used in default intensity models, such as the
CIR, the 3/2, and the quadratic models given in the examples in Section 2, have
stationary densities, so that the resulting time changed processes Xφ turn out to be
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special semimartingales. The canonical decomposition of the special semimartin-
gale Xφ can then be written in the following form:

X
φ
t = x + AXφ

t + X
φ,c
t +

∫ t

0

∫
R

y
(
μXφ

(ds, dy) − π0,φ(
X

φ
t−, y

)
dy ds

)
with the predictable finite variation part

AXφ

t =
∫ t

0

(
γ b

(
X

φ
t

) +
∫
(0,∞)

(∫
R

yp0(
u,X

φ
t ,X

φ
t + y

)
dy

)
ν(du)

)
ds

with respect to the truncation function hXφ
(x) = x [note that it differs from (3.20)

with respect to the truncation function hXφ
(x) = x1{|x|≤1}], the continuous lo-

cal martingale part that can be represented as X
φ,c
t = ∫ t

0
√

γ σ(X
φ
s ) dB̃s and

the purely discontinuous local martingale with jumps with the compensator
π0,φ(X

φ
t−, y) dy ds. From Example 2.2, we observe that the CIR diffusion satisfies

the conditions of Theorem 3.6 for all κ, θ, σ > 0 without any further conditions on
the coefficients.

4. Pricing credit-sensitive securities. We now discuss applications to the
pricing of credit-sensitive securities. We make the usual assumptions of friction-
less arbitrage-free markets, assume that the probability measure we are working
with is an equivalent martingale measure chosen by the market, and that, under
this probability measure, the default time τ of the obligor is modeled by the jump
time of the process Dφ , that is, τ = inf{t ≥ 0 :Dφ

t = 1} (the case of D
φ
0 = 1 and,

hence, τ = 0, corresponds to the case when the obligor is already in default at
time zero). Thus, the bivariate process (Xφ,Dφ) under the EMM describes all the
financial information in our model relevant for the risk-neutral pricing of credit-
sensitive securities. We remark that our model falls into the general framework of
default times of Janson, M’Baye and Protter (2011), with the underlying informa-
tion flow affecting default generated by a Markovian Itô semimartingale and with
the compensator of the default indicator Dφ absolutely continuous with respect to
Lebesgue measure with intensity (1−D

φ
s )kφ(X

φ
t ), which, in our case, is explicitly

computed via the application of the Phillips Theorem 3.1.
Consider a security with a promised payment f0(X

φ
T ) at maturity T > 0 if de-

fault does not occur by time T and a “recovery” payment f1(X
φ
T ) at maturity if

default occurs. We generally allow the promised payment to depend on the state
variable at maturity. This is the case when pricing options on credit spreads, where
the credit spread at option’s maturity is the function of the credit state variable at
that time. This is also the case when pricing equity options in unified credit-equity
models, where the state variable also drives the stock price observable up to the
time of default. Depending on the context of the model, the recovery payment at
maturity can be either taken constant, f1(x) = R, if we do not assume that the
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state variable X
φ
T is observable to the investor after default, or taken to be a func-

tion of the state variable at maturity if the context of the model allows the investor
to observe the state variable after default. In some applications, where the state
variable drives the credit spread prior to default or in the credit-equity modeling
framework, where the state variable drives the stock price prior to default, the re-
covery at maturity is taken to be constant. On the other hand, if one considers the
framework where the firm defaults at time τ on its liabilities but continues to oper-
ate through the reorganization process (such as Chapter 11), and the final recovery
settlement of the claims is made based on the outcome of restructuring, then in
such applications it may make sense to model recovery as a function of the state
variable at the time of payment. Our mathematical framework can accommodate
both types of applications.

Thus, securities we consider are defined by payoff functions f (x, d) with de-
composition (2.4), where f0(x) is interpreted as the promised payment if no de-
fault occurs by maturity and f1(x) as the recovery paid at maturity if default oc-
curs. The defaultable zero-coupon bond with unit face value is the simplest such
security with f0 = 1 and constant recovery f1 = R ∈ [0,1]. The security pricing
in this model follows from the general results of the previous section. The payoff
we consider is

f
(
X

φ
T ,D

φ
T

) = f1
(
X

φ
T

) − (
1 − D

φ
T

)(
f1

(
X

φ
T

) − f0
(
X

φ
T

))
,(4.1)

at time T . The price process of the security with this payoff is

f
(
t,X

φ
t ,D

φ
t

)
= e−r(T −t)

E
[
f

(
X

φ
T ,D

φ
T

)|Hφ
t

]
(4.2)

= e−r(T −t)P0,φ
T −t f1

(
X

φ
t

) + (
1 − D

φ
t

)
e−r(T −t)P1,φ

T −t (f0 − f1)
(
X

φ
t

)
,

where r ≥ 0 is the risk-free interest rate assumed constant (but see Remark 4.1
at the end of this section). In particular, the price process of the defaultable zero-
coupon bond with unit face value f0 = 1 and zero recovery f1 = 0 in the event of
default is

Z
(
t,X

φ
t ,D

φ
t ;T ) = e−r(T −t)Q

(
t,X

φ
t ,D

φ
t ;T )

,

where Q(t,X
φ
t ,D

φ
t ;T ) is the survival probability to survive up to time T , given

the state at time t ,

Q
(
t,X

φ
t ,D

φ
t ;T ) = E

[(
1 − D

φ
T

)|Hφ
t

] = (
1 − D

φ
t

)
P

1,φ
T −t

(
X

φ
t , I

)
,(4.3)

where P
1,φ
t (x, I ) = P1,φ

t 1(x). The term structure of credit spreads for defaultable
bonds of all maturities as observed at time t , given the state X

φ
t and D

φ
t = 0, is

S
(
t,X

φ
t ;T ) = − 1

(T − t)
lnP1,φ

T −t1
(
X

φ
t

)
.(4.4)
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In those applications where the recovery at maturity is assumed constant, f1 =
R, the pricing formula simplifies to

f
(
t,X

φ
t ,D

φ
t

) = e−r(T −t)(1 − D
φ
t

)
P1,φ

T −t f0
(
X

φ
t

)
(4.5)

+ e−r(T −t)R
(
1 −Q

(
t,X

φ
t ,D

φ
t ;T ))

,

and the investor who observes the price processes of traded securities in this mar-
ket can determine whether or not default has occurred, as well as can filter out
the state variable Xφ prior to default τ from the prices of traded securities. In this
case, when the recovery payment is not allowed to depend on X

φ
T (assumed unob-

servable in such applications), the investor’s filtration is smaller than the filtration
generated by (X

φ
t ,D

φ
t ) since X

φ
t is only observed by the investor prior to default

time τ . In fact, in such applications the investor’s filtration can be identified with
the filtration generated by (Y

φ
t ,D

φ
t ), where the process Y

φ
t := (1 − D

φ
t )X

φ
t jumps

to zero at default and stays there. Applying Itô’s formula in the form of Theo-
rem 3.5, this semimartingale has the canonical representation [Yφ

0 = (1 − D
φ
0 )X

φ
0 ]

Y
φ
t = Y

φ
0 +

∫ t

0

(
1 − D

φ
s−

)(
b1,φ(

Y
φ
s−

) − kφ(
Y

φ
s−

)
Y

φ
s−

)
ds

+
∫ t

0

∫
R

y1{|y|>1}
(
1 − D

φ
s−

)
μ̂(ds dy)

(4.6)

+
∫ t

0

∫
R

y1{|y|≤1}
(
1 − D

φ
s−

)(
μ̂(ds dy) − π1,φ(

Y
φ
s−, y

)
dy ds

)

+
∫ t

0

(
1 − D

φ
s−

)
dXφ,c

s −
∫ t

0
Y

φ
s− dMφ

s .

This canonical representation decomposes Yφ into the “drift,” “large jumps” prior
to default, a purely discontinuous local martingale of “small jumps” prior to de-
fault with the compensator measure (1 − D

φ
s−)π1,φ(X

φ
s−, y) dy ds [observe from

equation (3.25) that (1 − D
φ
s−)ν̂(ds, dy) = (1 − D

φ
s−)π1,φ(X

φ
s−, y) dy ds], a con-

tinuous local martingale component that can be further represented as
∫ t

0 (1 −
D

φ
s−)

√
γ σ(Y

φ
s−) dB̃s in terms of a Brownian motion, and a final jump to zero (the

default term − ∫ t
0 Y

φ
s dM

φ
s ). In the credit-equity context, one identifies the process

Y
φ
t with the defaultable stock price process; see, for example, Mendoza-Arriaga,

Carr and Linetsky (2010) and Mendoza-Arriaga and Linetsky (2013) for the multi-
firm case. We further remark that Lorig, Lozano-Carbassé and Mendoza-Arriaga
(2013) apply the canonical representation (4.6) of the stock price process Y

φ
t to

the valuation of variance swaps on individual stocks with the risk of bankruptcy.
So far we have considered recovery payments at maturity. Recovery at the time

of default can also be treated in our framework. Suppose that if default occurs prior
to maturity T , the recovery is received by the investor at the time of default τ and
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is equal to some function of the state variable X
φ
τ at the time of default, R(X

φ
τ ). By

the standard calculation in credit risk modeling [cf. Lemma 7.3.4.3(i) in Jeanblanc,
Yor and Chesney (2009), page 421], the value of such recovery at time t prior to
maturity T is then given by

E
[
e−r(τ−t)R

(
Xφ

τ

)|Hφ
t

] = (
1 − D

φ
t

) ∫ T

t
e−r(u−t)P1,φ

u−t

(
R · kφ)(

X
φ
t

)
du

+ er(t−τ)R
(
Xφ

τ

)
D

φ
t ,

where (R · kφ)(x) = R(x)kφ(x).

REMARK 4.1 (Risk-free interest rates). We remark that stochastic risk-free in-
terest rates can be handled in our subordinate diffusion framework as follows. The
subordinate semigroup (P1,φ

t )t≥0 is taken to be the pricing semigroup. Namely,
the state variable Zφ driving the term structure of interest rates is assumed to be a
Markovian Itô semimartingale with the following dynamics under the equivalent
martingale measure:

Z
φ
t = Z

φ
0 +

∫ t

0
b1,φ(

Z
φ
s−

)
ds +

∫ t

0

∫
R

y1{|y|>1}μZφ

(ds, dy) + Z
φ,c
t

+
∫ t

0

∫
R

y1{|y|≤1}
(
μZφ

(ds, dy) − π1,φ(
Z

φ
s−, y

)
dy ds

)
,

where Z
φ,c
t = ∫ t

0
√

γ σ(Z
φ
s ) dB̃s with a standard Brownian motion B̃ . The ran-

dom measure μZφ
on R+ × (R\{0}) associated to jumps of Zφ has a compensator

νZφ
(ds, dy) = π1,φ(Z

φ
s−, y) dy ds with π1,φ(x, y) given by equation (3.8) with

β = 1. The function b1,φ(x) in the drift is given by equation (3.9) with β = 1.
Similarly to Theorem 3.6, it is easy to show the following.

PROPOSITION 4.1 (Condition for specialness of Zφ). If

lim
t→∞p0(t, x, y) := π(y)

with the finite first moment
∫
I yπ(y) dy < ∞, then Zφ is a special semimartingale.

PROOF. Recall that for the density of the Feynman–Kac semigroup P1 we
have [cf. Revuz and Yor (1999), page 358]

p1(t, x, y) = Ex

[
e− ∫ t

0 k(Xu)du|Xt = y
]
p0(t, x, y) ≤ p0(t, x, y)

for each x, y ∈ I and t > 0. Under our assumptions, this implies that
∫
R
(|y|2 ∧

|y|)π1,φ(x, y) dy ≤ ∫
R
(|y|2 ∧|y|)π0,φ(x, y) dy < ∞, where the second inequality

follows from the proof of Theorem 3.6. Thus Zφ is special by Proposition 2.29 of
Jacod and Shiryaev (2002), page 82. �
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In the case of special Zφ , the canonical decomposition of Zφ reads

Z
φ
t = x + AZφ

t + Z
φ,c
t +

∫ t

0

∫
R

y
(
μZφ

(ds, dy) − π1,φ(
Z

φ
t−, y

)
dy ds

)
with the predictable finite variation part

AZφ

t =
∫ t

0

(
γ b

(
Z

φ
t

) +
∫
(0,∞)

(∫
R

yp1(
u,Z

φ
t ,Z

φ
t + y

)
dy

)
ν(du)

)
ds

with respect to the truncation function hXφ
(x) = x, the continuous local martingale

part that can be represented as Z
φ,c
t = ∫ t

0
√

γ σ(Z
φ
s ) dB̃s and the purely discontin-

uous local martingale with jumps with the compensator π1,φ(Z
φ
t−, y) dy ds. Most

popular short-rate diffusions, such as CIR, 3/2, etc., have stationary densities due
to mean-reversion. By Proposition 4.1, the corresponding subordinate short-rate
models are driven by jump-diffusion or pure jump processes Zφ that are special
semimartingales. The short rate process is taken to be

rt = kφ(
Z

φ
t

)
,

where kφ(x) is given by equation (3.10), and the money market account is At =
e

∫ t
0 rs ds = e

∫ t
0 kφ(Z

φ
s ) ds . The pricing semigroup is then the semigroup (P1,φ

t )t≥0
with generator A1,φ , the subordinate semigroup of the Feynman–Kac semigroup
(P1

t )t≥0 with generator A1 and, in particular, for the risk-free zero-coupon bond
we have

P
(
Z

φ
t , t;T ) = P1,φ

T −t1
(
Z

φ
t

) = P
1,φ
T −t

(
Z

φ
t , I

)
.

Now an extension to the combined model that includes both the subordinate
diffusion risk-free interest rate model and the subordinate default intensity model
is immediate, as long as the interest rate model and the default model are assumed
independent. At the expense of increased complexity, dependence can be further
introduced either by starting with independent factors, each following a subordi-
nate diffusion, and then combining them in a multi-dimensional model by taking
linear combinations of independent factors, or by means of multivariate subordi-
nation as in Mendoza-Arriaga and Linetsky (2013).

5. Eigenfunction expansions of subordinate semigroups. We now show
how to explicitly compute the semigroups (Pβ,φ

t )t≥0 by the eigenfunction expan-
sion method. We start by observing that for any f ∈ C2

c (I ) the infinitesimal gen-
erator Aβ of (Pβ

t )t≥0 can be re-written in the formally self-adjoint form using the
scale and speed densities (3.26)

Aβf (x) = 1

m(x)

(
f ′(x)

s(x)

)′
− βk(x)f (x).
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Indeed, Aβ can be extended to a self-adjoint operator in the Hilbert space L2(I,m)

of functions on I square-integrable with the speed measure m(dx) = m(x)dx and
endowed with the inner product

(f, g) =
∫
I
f (x)g(x)m(x)dx.

Furthermore, the restriction of (Pβ
t )t≥0 to C([0,∞]) ∩ L2(I,m) can then be

extended to a strongly-continuous semigroup of symmetric contractions in the
Hilbert space L2(I,m). Thus, the spectral theorem for self-adjoint operators in
Hilbert space can be applied to write down the spectral decomposition of Aβ and
(Pβ

t )t≥0. The spectral representation for one-dimensional diffusions goes back
to the classical work of McKean (1956) [see also Itô and McKean (1974), Sec-
tion 4.11]. More generally, one-dimensional diffusions are examples of symmetric
Markov processes whose transition semigroups admit symmetric extensions to the
Hilbert space L2(E,m), where E is the state space of the Markov process, and m is
a positive Radon measure on E with full support. Fukushima, Oshima and Takeda
(2011) and Chen and Fukushima (2011) are the standard references on the subject.
In the case of one-dimensional diffusions, E = I is the interval on the real line, and
m is the speed measure. An excellent exposition of the spectral theorem and ap-
plications to subordination can be found in Schilling, Song and Vondraček (2010),
Chapters 10 and 11. Surveys of applications of the spectral expansion method to
diffusion models in finance can be found in Li and Linetsky (2004, 2008), where an
extensive bibliography is given. Recent applications of subordinate diffusion mod-
els in finance can be found in Boyarchenko and Levendorskiı̆ (2007), Mendoza-
Arriaga, Carr and Linetsky (2010), Li and Linetsky (2013a, 2013b), Mendoza-
Arriaga and Linetsky (2013), Lim, Li and Linetsky (2012). Here we give a brief
account limited to needs of the present paper.

For computational simplicity here we limit ourselves to the special case when
the diffusion X and the function k are such that (Pβ

t )t≥0 in L2(I,m) are trace-
class semigroups for β ≥ 0, that is, the operators Pβ

t are trace-class for all t > 0
and β ≥ 0. Recall that for a positive semi-definite operator A on a separable Hilbert
space H, the trace of A is defined by trA = ∑∞

n=1(ϕn,Aϕn) ∈ [0,∞], where ϕn is
some orthonormal basis in H. The trace is independent of the orthonormal basis
chosen; cf. Reed and Simon (1980), page 206. A positive semi-definite operator
is called trace-class if and only if its trace is finite. The semigroup operators Pβ

t

are positive semi-definite. Under the assumption that Pβ
t are trace-class for all

t > 0, the spectra of each Pβ
t , as well as of the generators Aβ of the semigroups

(Pβ
t )t≥0 in L2(I,m), are purely discrete with eigenvalues (e−λ

β
n t )n≥1 (for t > 0)

and (−λ
β
n)n≥1 respectively, and

trPβ
t =

∞∑
n=1

e−λ
β
n t < ∞(5.1)
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for all t > 0; cf. Lemma 7.2.1 of Davies (2007). Here 0 ≤ λ
β
1 ≤ λ

β
2 ≤ · · · are ar-

ranged in increasing order and repeated according to multiplicity. Then the func-
tion Pβ

t f (x) has an eigenfunction expansion of the form

Pβ
t f (x) =

∞∑
n=1

f β
n e−λ

β
n tϕβ

n (x), f β
n = (

f,ϕβ
n

)
(5.2)

for any f ∈ L2(I,m) and all t ≥ 0,

where ϕ
β
n is the nth-eigenfunction

Pβ
t ϕβ

n = e−λ
β
n tϕβ

n and Aβϕn = −λβ
nϕβ

n .(5.3)

The eigenfunctions (ϕ
β
n )n≥1 form a complete orthonormal basis in L2(I,m), and

f
β
n is the nth expansion coefficient in this basis.

For a trace-class semigroup, each Pβ
t with t > 0 admits a symmetric kernel

p
β
m(t, x, y) ∈ L2(I × I,m × m) with respect to the measure m [i.e., p

β
m(t, x, y) =

p
β
m(t, y, x), Pβ

t f (x) = ∫
I p

β
m(t, x, y)f (y)m(dy) for f ∈ L2(I,m), and∫

I×I (p
β
m(t, x, y))2m(dx)m(dy) < ∞], which has the following bi-linear expan-

sion:

pβ
m(t, x, y) =

∞∑
n=1

e−λ
β
n tϕβ

n (x)ϕβ
n (y).(5.4)

The expansions in (5.2) and (5.4) in general converge under the L2(I,m) and
L2(I × I,m × m) norms, respectively. Moreover, since for one-dimensional dif-
fusions for each t > 0 the kernel p

β
m(t, x, y) with respect to the speed measure is

jointly continuous in x and y (and t) by the results of McKean (1956), then each
eigenfunction ϕ

β
n is continuous, and satisfies the estimate

∣∣ϕβ
n (x)

∣∣ ≤ eλ
β
n t/2

√
p

β
m(t, x, x)

for all n, x and t > 0. Moreover, for any f ∈ L2(I,m), expansion (5.2) converges
uniformly in x on compacts for each t > 0 to the function Pβ

t f (x) continuous
in x, and the bi-linear expansion (5.4) converges uniformly on compacts; cf. The-
orem 7.2.5 of Davies (2007).

The spectral representation for the density of a 1D diffusion with respect to the
speed measure was obtained by McKean (1956); see also Itô and McKean (1974),
Section 4.11. In general, the spectrum contains some continuous spectrum, and
the spectral representation is in terms of the integral with respect to the spectral
measure. Nevertheless, many diffusions arising in finance applications have purely
discrete spectra with explicitly known eigenfunctions and eigenvalues satisfying
the trace class condition (5.1) for all t > 0, including OU, CIR, CEV and JDCEV
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diffusions; see surveys Linetsky (2004, 2008) and references therein for finance
applications.

We now summarize key results about the eigenfunction expansion of the subor-
dinate semigroups (Pβ,φ

t )t≥0 defined in Section 3.

THEOREM 5.1. Suppose the semigroup (Pβ
t )t≥0 defined in Section 2 is trace-

class with eigenvalues and eigenfunctions e−λ
β
n t and ϕ

β
n (x), respectively. Further

suppose that the eigenfunctions have bounds∣∣ϕβ
n (x)

∣∣ ≤ C
β
K(5.5)

on each compact set K ⊂ I with C
β
K independent of n but possibly dependent

on K . Let T be a subordinator with the Laplace exponent satisfying the following
condition for all t > 0:

∞∑
n=1

e−φ(λ
β
n )t < ∞.(5.6)

Then the subordinate semigroup (Pβ,φ
t )t≥0 is a strongly continuous semigroup of

symmetric contractions on L2(I,m), trace-class for all t > 0 with the eigenvalues

e−φ(λ
β
n )t and normalized eigenfunctions ϕ

β
n (x), and possesses a continuous in x, y

density with respect to the speed measure m(dx) that is given by the bi-linear
expansion

pβ,φ
m (t, x, y) =

∞∑
n=0

e−φ(λ
β
n )tϕβ

n (x)ϕβ
n (y)(5.7)

uniformly convergent in x, y on compacts in I × I for all t > 0. For each f ∈
L2(I,m) and t > 0 the function Pβ,φ

t f (x) has the eigenfunction expansion

Pβ,φ
t f (x) =

∞∑
n=1

e−φ(λ
β
n )tf β

n ϕβ
n (x), f β

n = (
f,ϕβ

n

)
(5.8)

uniformly convergent in x on compacts in I .

Without bound (5.5) on the eigenfunctions ϕ
β
n (x) and the trace-class condi-

tion (5.6) on the Laplace exponent of the subordinator, the eigenfunction expan-
sions (5.7)–(5.8) generally converge in L2(I × I,m × m) and L2(I,m), respec-
tively, but not necessarily uniformly. The bound on eigenfunctions and the trace-
class condition on the subordinator are sufficient to ensure uniform convergence.
The bound on eigenfunctions is satisfied for many diffusions important in finance
applications, such as OU, CIR, CEV, JDCEV and models related to these diffu-
sions. Condition (5.6) also turns out to be mild and is satisfied in many applications
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in finance. For example, it is satisfied for tempered stable subordinators of Exam-
ple 3.1 with α ∈ (0,1) when eigenvalues grow linearly in the eigenvalue number,
as is the case for OU, CIR, CEV and JDCEV diffusions. The key observation of
practical importance is that, in the context of the eigenfunction expansion method,
subordination simply replaces the eigenvalues λn with the new eigenvalues φ(λn),
while the original and the subordinated semigroup share the same eigenfunctions
[compare with (5.3)],

Pβ,φ
t ϕβ

n = e−φ(λ
β
n )tϕβ

n and Aβ,φϕβ
n = −φ

(
λβ

n

)
ϕβ

n .(5.9)

Therefore, if the eigenfunction expansion is known for the original semigroup,
then it is immediately known for the subordinate semigroup as well. This fact was
already pointed out in the original work of Bochner (1949); see equation (11). This
allows us to extend analytical tractability of classical diffusion models in finance,
such OU, CIR, CEV, etc., to their time-changed (subordinate) counterparts with
jumps. This observation has been applied to subordinate OU processes in Li and
Linetsky (2013b), to subordinate JDCEV processes in Mendoza-Arriaga, Carr and
Linetsky (2010), Mendoza-Arriaga and Linetsky (2013) and to subordinate CIR
default intensities in Section 6 of the present paper.

Applying the eigenfunction expansions of semigroups (Pβ,φ
t )t≥0 with β = 0,1,

to the pricing of credit-sensitive securities, assuming the payoffs fi(x) ∈ L2(I,m)

in equation (4.1), we immediately obtain the eigenfunction expansion of the value
function (4.2),

f
(
t,X

φ
t ,D

φ
t ;T ) = e−r(T −t)

∞∑
n=1

e−φ(λ0
n)(T −t)f 1

n ϕ0
n

(
X

φ
t

)
(5.10)

+ e−r(T −t)
∞∑

n=1

e−φ(λ1
n)(T −t)f 0−1

n

(
1 − D

φ
t

)
ϕ1

n

(
X

φ
t

)

with the expansion coefficients

f 0−1
n = (

f0 − f1, ϕ
1
n

)
and f 1

n = (
f1, ϕ

0
n

)
.(5.11)

We note that the eigenfunction expansion has the following probabilistic interpre-
tation. Due to the eigenfunction property (5.9) each process {eφ(λ0

n)tϕ0
n(X

φ
t ), t ≥ 0}

and {eφ(λ1
n)t (1 − D

φ
t )ϕ1

n(X
φ
t ), t ≥ 0} is an H

φ-martingale. Thus, the eigenfunction
expansion can be viewed as a martingale expansion.

In particular, if f0(x) = 1 ∈ L2(I,m) and f1(x) = 0, we obtain an eigenfunction
expansion of the survival probability

Q
(
t,X

φ
t ,D

φ
t ;T ) = (

1 − D
φ
t

) ∞∑
n=1

e−φ(λ1
n)(T −t)fnϕ

1
n

(
X

φ
t

)
,

(5.12)
fn = (

1, ϕ1
n

)
.
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We note that, due to the existence of the stationary density, 1 ∈ L2(I,m) in the
SubCIR model, as well as many other default intensity models, and the survival
probability has an eigenfunction expansion. We also remark that in those cases
where the speed measure is an infinite measure on I , constants are not in L2(I,m).
However, it sometimes happens that, while 1 /∈ L2(I,m), P1,φ

t 1 ∈ L2(I,m) for
t > 0 if the semigroup has the property P1,φ

t Cb(I ) ⊂ L2(I,m) for t > 0.
We conclude this section with an observation that the long-maturity asymptotics

of the credit spread of a defaultable zero-coupon bond with zero recovery is simply
equal to the principal eigenvalue of the negative of the generator A1,φ ,

S∞ := lim
T →∞S

(
t,X

φ
t ;T ) = φ

(
λ1

0
)
.

This immediately follows from the definition of the credit spread (4.4) and the
structure of the eigenfunction expansion of the survival probability (5.13).

6. The SubCIR intensity model with two-sided mean-reverting jumps.
We now come back to the CIR model of Examples 2.1 and 2.2. We start with the
bi-variate process (X,D), where X is a CIR diffusion, and D is a one-point point
process with the compensator At = ∫ t

0 (1−Ds)Xs ds and time change it with a sub-
ordinator. We call the resulting process (Xφ,Dφ) the subordinate CIR (SubCIR)
default intensity model. The default time τ in this model is the first time default
indicator Dφ equals one, and its default intensity process is λ

φ
t = (1−D

φ
t )kφ(X

φ
t ).

We recall that the CIR process on I = (0,∞), if the Feller condition is sat-
isfied so zero is inaccessible, or on I = [0,∞), if the Feller condition is not
satisfied so zero is instantaneously reflecting, has a stationary density (2.6). We
choose x0 in the definition of the speed density (3.26) so that m(x) = π(x) [i.e.,∫
I m(x) dx = 1]. Then for all β ≥ 0 the semigroup (Pβ

t )t≥0 defined by (2.3) with

the CIR diffusion X and k(x) = βx has a symmetric density p
β
m(t, x, y) with re-

spect to the stationary distribution π(y)dy given by

pβ
m(t, x, y) = ρ�(b)

√
xy

σ 2 sinh(tρ/2)

(
eρt/2

a
√

xy

)b

Ib−1

(
2ρ

√
xy

σ 2 sinh(tρ/2)

)
(6.1)

× exp
{
(x + y)

(
κ tanh(tρ/2) − ρ

σ 2 tanh(tρ/2)

)
− λ

β
0 t

}
,

where Iν(x) is the modified Bessel function of the first kind and

λ
β
1 := b

2
(ρ − κ) and ρ := ρ(β) =

√
κ2 + 2βσ 2,

and a and b are defined in equation (2.6). This explicit solution in terms of the
Bessel function is due to the fact that the CIR process can be obtained by a deter-
ministic time change from the squared Bessel process in a similar way as the OU
process can be obtained from Brownian motion by a deterministic time change [cf.
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Proposition 6.3.1.1 and 6.3.2.1 of Jeanblanc, Yor and Chesney (2009), pages 357–
358] combined with the absolute continuity relationships for Bessel processes; see
Section 6.3 in Jeanblanc, Yor and Chesney (2009), page 340, for more details. For
β = 1 this density has appeared in the seminal work of Cox, Ingersoll and Ross
(1985) on their interest rate model.

The bi-linear eigenfunction expansion (5.4) for the density p
β
m(t, x, y) can be

obtained from the expression (6.1) by applying the Hille–Hardy formula to expand
the Bessel function in the bi-linear expansion of generalized Laguerre polynomials
Lν

n(x) [cf. Erdelyi (1953), page 189; valid for all |t | < 1, ν > −1, a, b > 0]

(abt)−ν/2

1 − t
exp

{
−(a + b)t

1 − t

}
Iν

(
2
√

abt

1 − t

)
(6.2)

=
∞∑

k=0

tkk!
�(k + ν + 1)

Lν
k(a)Lν

k(b).

The application of the Hille–Hardy formula thus yields the eigenfunctions and
eigenvalues of the semigroup (Pβ

t )t≥0 and its generator Aβ in the Hilbert space
L2(I,m) with m(dx) = π(x)dx (the CIR stationary distribution). Due to the ap-
pearance of Laguerre polynomials, semigroups of this type are sometimes called
Laguerre semigroups in analysis; cf. Nowak and Stempak (2010). The following
theorem summarizes the explicit results for eigenvalues and eigenfunctions.

THEOREM 6.1 (CIR eigenfunction expansion). The semigroup (Pβ
t )t≥0 is a

symmetric trace-class semigroup in L2(I,m) with the eigenvalues and continuous
eigenfunctions of the negative of its self-adjoint infinitesimal generator Aβ given
by

λβ
n = (n − 1)ρ + b

2
(ρ − κ),(6.3)

ϕβ
n (x) = N β

n e((κ−ρ)x)/σ 2
Lb−1

n−1

(
2xρ

σ 2

)
,

(6.4)

N β
n =

√
(n − 1)!
(b)n−1

(
ρ

κ

)b/2

, n = 1,2, . . . ,

where (a)n = �(a+n)/�(a) = a(a+1) · · · (a+n−1) is the Pochhammer symbol.
Moreover, on each compact interval K ⊂ I there exists a constant CK independent
of n such that ∣∣ϕβ

n (x)
∣∣ ≤ CKn−1/4

or all n ≥ 1.

PROOF. The bi-linear expansion for the density of the form (5.4) with ϕ
β
n (x)

and λ
β
n given by equations (6.3) and (6.4) is directly obtained by applying the
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Hille–Hardy formula (6.2) to the right-hand side of equation (6.1). It is then easy
to directly verify from the properties of Laguerre polynomials that ϕ

β
n (x) are eigen-

functions of the operator

Aβf = 1
2σ 2xf ′′(x) + κ(θ − x)f ′(x) − βxf (x)

with eigenvalues λ
β
n satisfying the boundary condition at zero limx↓0(ϕ

β(x))′/
s(x) = 0, where s(x) is the scale density defined in equation (3.26). The eigen-
functions are normalized with respect to the inner product with m(dx) = π(x)dx,
(ϕ

β
n ,ϕ

β
m) = δn,m. The trace class condition (5.1) is verified due to the linear growth

of eigenvalues. The bound for the eigenfunctions is obtained from the estimate in
equation (27a) of Nikiforov and Uvarov (1988), page 54. �

This CIR eigenfunction expansion has been applied in finance in Davydov and
Linetsky (2003) and Gorovoi and Linetsky (2004) [we note that our normalization
factor Nn in the expression for eigenfunctions differs from Davydov and Linetsky
(2003), Proposition 9, due to different normalization of the speed measure; here
we normalize the speed measure so it integrates to one and thus coincides with the
stationary distribution].

For any f ∈ L2(I,m) the computation of Pβ
t f (x) reduces to computing the ex-

pansion coefficients. In particular, consider the discounted CIR characteristic func-
tion known in closed form due to the fact that the CIR diffusion is a CBI/affine pro-
cess; cf. Cox, Ingersoll and Ross (1985), Duffie and Garleanu (2001), Appendix A.
For any complex z with �z ≥ 0,

�t(x,β, z) := Ex

[
e−β

∫ t
0 Xu due−zXt

]
(6.5)

= A(t,β, z) exp
{−B(t, β, z)x

}
,

where

A(t,β, z) :=
(

2ρe(κ+ρ)t/2

2ρ + (ρ + κ + zσ 2)(eρt − 1)

)b

,

B(t, β, z) := 2β(eρt − 1) + z(ρ − κ)eρt + z(ρ + κ)

2ρ + (ρ + κ + zσ 2)(eρt − 1)
.

We have the following eigenfunction expansion of the characteristic function.

PROPOSITION 6.1. The characteristic function has the eigenfunction expan-
sion (5.8) with the coefficients given by

f
β
1 (z) = 1, f β

n (z) = 1

N β
n

(
κ − ρ + σ 2z

κ + ρ + σ 2z

)n−1(
2ρ

κ + ρ + σ 2z

)b

,

(6.6)
n = 2, . . . .
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PROOF. Obtained immediately from the identity for the generating function of
the generalized Laguerre polynomials (valid for all complex |y| < 1 and a > −1),

∞∑
k=0

ykLa
k(x) = (1 − y)−1−a exp

(
(yx)/(y − 1)

)
.

Alternatively, the integrals in f
β
n (z) = (e−z·, ϕβ

n ) can be explicitly calculated due
to the integral identity for Laguerre polynomials in equation (2.19.3.3), Prudnikov,
Brychkov and Marichev (1986), page 462. �

We note that if one is only interested in the CIR characteristic function, the
affine closed-form expression (6.5) is certainly simpler than the eigenfunction ex-
pansion. However, while the affine expression (6.5) does not generalize to the Sub-
CIR model, the eigenfunction expansion generalizes immediately, yielding

�
φ
t (x,β, z) := (

Pβ,φ
t e−z·)(x) =

∞∑
n=1

e−φ(λ
β
n )tf β

n (z)ϕβ
n (x)

with the same eigenfunctions and expansion coefficients (6.6) but with new eigen-
values φ(λ

β
n), where φ is the Laplace exponent of the subordinator.

In particular, the eigenfunction expansion for the survival probability (4.3) in
the SubCIR default intensity model is then immediately obtained

Q
(
t,X

φ
t ,D

φ
t ;T ) = (

1 − D
φ
t

)
P

1,φ
T −t

(
X

φ
t , I

)
= (

1 − D
φ
t

)
�

φ
T −t

(
X

φ
t ,1,0

)
= (

1 − D
φ
t

) ∞∑
n=1

e−φ(λ1
n)(T −t)f 1

n (0)ϕ1
n

(
X

φ
t

)
by setting z = 0 in the expansion for the characteristic function. The pricing of
zero-coupon bonds with constant recovery (4.5) is then immediate. The pricing of
other credit-sensitive securities in the SubCIR default intensity model then reduces
to computing the corresponding expansion coefficients in equations (5.10)–(5.11).
In particular, the pricing and calibration of credit default swaptions is considered
in Mendoza-Arriaga (2012).

We also remark that the same eigenfunction expansion yields the pricing of
default-free zero-coupon bonds in the SubCIR interest rate model of Remark 4.1,

P
(
Z

φ
t , t;T ) = P

1,φ
T −t

(
Z

φ
t , I

) = �
φ
T −t

(
X

φ
t ,1,0

)
=

∞∑
n=1

e−φ(λ1
n)(T −t)f 1

n (0)ϕ1
n

(
Z

φ
t

)
.

We now present a numerical illustration of the qualitative properties of the Sub-
CIR default intensity model. We start with a CIR process X with κ = 1, θ = 0.1
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(a) Sample paths (b) Lévy densities

FIG. 1. (a) Sample paths of a CIR process (Xt )t≥0 and the SubCIR process (X
φ
t )t≥0. The hori-

zontal line (dashed) corresponds to the long run mean level θ = 0.1. Figure (b) contains three jump
densities π0,φ(x, y −x) corresponding to the initial states x = 0.01, x = θ = 0.1 and x = 0.2, which
are indicated by the vertical lines (dashed).

and σ = 0.25. The SubCIR process Xφ is constructed by subordinating X with
an inverse Gaussian subordinator (Tt )t≥0 with the Lévy measure (3.1) with pa-
rameters α = 0.5, η = 1 and C = 0.5, and zero drift γ = 0. Since the subordi-
nator is driftless, Xφ is a pure jump process in our example. Figure 1(a) shows
simulation of a typical sample path of the CIR process X and the SubCIR pro-
cess Xφ with these parameters. While the CIR process diffuses around its long-
run level θ with volatility σ , while being pulled back toward it by the mean-
reverting drift at the rate κ , the SubCIR process is a pure jump process with state-
dependent mean-reverting Lévy measure. The mean-reverting nature of jumps is
evident in the sample path plot (a), as well as in the plot (b) of the Lévy density
π0,φ(x, y − x) = m(y)

∫
(0,∞) p

0
m(s, x, y)ν(ds) plotted as a function of y for three

fixed values x. This plot shows three Lévy densities of jumps from the three ini-
tial states x = 0.01, x = θ = 0.1 and x = 0.2. Here x is the pre-jump state, and y

is the post-jump state, so that the jump size is y − x. When x = θ = 0.1, that is,
jumping from the long-run mean, the Lévy density looks nearly symmetrical. In
contrast, the Lévy density of jumps starting from the state x = 0.01 < 0.1 signifi-
cantly below the long-run mean is highly skewed to the right, as the process tends
to jump back up toward its long run mean at 0.1 from this low value of 0.01. On
the other hand, the Lévy density of jumps starting from the state x = 0.2 > 0.1
significantly above the long-run mean is highly skewed to the left, as the process
tends to jump back down toward its long run mean at 0.1 from this high value of
0.2. Either way, the process stays nonnegative. This is in sharp contrast with the
behavior of affine jump-diffusion/CBI-processes that can only jump up and can-
not jump down to ensure that the process stays nonnegative. In the framework of
subordinate diffusions, the nonnegativity of SubCIR process is immediate, as the
subordinate process and the original process share the same state space.
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FIG. 2. Default intensity λ
φ
t = (1 − D

φ
t )kφ(X

φ
t ). This figure illustrates the sample path of the

default intensity process (λ
φ
t )t≥0 induced by the SubCIR process (X

φ
t )t≥0, which is also depicted.

The horizontal line (dashed) corresponds to the long run mean level θ = 0.1.

From the expression for kφ(x) arising from Theorem 3.2,

kφ(x) = γβx +
∫
(0,∞)

(
1 − A(s,β,0) exp

{−B(s,β,0)x
})

ν(ds),

where we substituted the closed-form expression for the survival probability of
the CIR process, it is clear that the default intensity is no longer affine as in the
SubCIR model. Figure 2 illustrates a sample path of the default intensity process
λ

φ
t = (1 − D

φ
t )kφ(X

φ
t ), along with a sample path of the pure jump process Xφ .

Finally, Figure 3 shows sample paths of the survival probabilities (4.3) and de-
faultable credit spreads on zero-coupon bonds (4.4) over a five-year period sim-
ulated under this SubCIR default intensity specification. Figure 3(a) and 3(b)
show sample paths of the survival probabilities for one, three and five years, that
is, Q(t, t + �t;Xφ

t ,D
φ
t ) with �t = 1,3,5 years, and one- three- and five-year

credit spreads, S(t,X
φ
t ,D

φ
t , t + �t), respectively. The dashed horizontal line in

(b) corresponds to the asymptotic credit spread S∞ = 0.084 equal to the princi-
pal eigenvalue φ(λ1

1) of the semigroup P1,φ . Figure 3(c) and 3(d) show sample
paths over five years of the evolution of the term structure of survival probabilities
Q(t,X

φ
t ,D

φ
t ; t +�t) and credit spreads S(t,X

φ
t ,D

φ
t ; t +�t), respectively. Since

the SubCIR state variable Xφ is a jump process, prices of credit-sensitive securi-
ties, such as bond prices, as well as credit spreads, are also jump processes in this
model.

7. Conclusion. The present paper introduces a jump-diffusion extension of
the classical diffusion default intensity model by means of subordination in the
sense of Bochner. We start with the bi-variate process of the diffusion state variable
and default indicator (X,D) in the diffusion intensity framework and time change
it with a Lévy subordinator T . We characterize the resulting time changed process
(X

φ
t ,D

φ
t ) = (X(Tt ),D(Tt )) as a Markovian Itô semimartingale and, in particular,
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(a) Survival probability (b) Credit spreads

(c) Survival probability (d) Credit spreads

FIG. 3. Survival Probabilities and Credit Spreads sample paths.

show from the Doob–Meyer decomposition of Dφ that the default time in the time-
changed model has a jump-diffusion or pure jump intensity. When X is a CIR
diffusion with mean-reverting drift, the default intensity of the subordinate model
(SubCIR) is a nonnegative jump-diffusion or pure jump process with two-sided
mean-reverting jumps that stays nonnegative. The SubCIR default intensity model
is fully analytically tractable by means of the explicitly computed eigenfunction
expansion of the relevant semigroups. This yields explicit closed-form pricing of
credit-sensitive securities.
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