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SECOND ORDER DISCRETIZATION OF BACKWARD SDES AND
SIMULATION WITH THE CUBATURE METHOD!

BY DAN CRISAN AND KONSTANTINOS N[ANOLARAKIS2
Imperial College London

We propose a second order discretization for backward stochastic dif-
ferential equations (BSDEs) with possibly nonsmooth boundary data. When
implemented, the discretization method requires essentially the same com-
putational effort with the Euler scheme for BSDEs of Bouchard and Touzi
[Stochastic Process. Appl. 111 (2004) 175-206] and Zhang [Ann. Appl.
Probab. 14 (2004) 459-488]. However, it enjoys a second order asymptotic
rate of convergence, provided that the coefficients of the equation are suffi-
ciently smooth. In the second part of the paper, we combine this discretization
with higher order cubature formulas on Wiener space to produce a fully im-
plementable second order scheme.

1. Introduction. The present paper is concerned with the problem of numeri-
cal approximation to forward backward stochastic differential equations (FBSDEs
henceforth). Let (€2, F, P) be a probability space on which we have defined a triple
of processes (X, Y, Z) which solve the decoupled forward-backward system

t d .t ,
X,=X()+/ V()(Xu)du—l—Z/ Vi(Xy)odB], tel0,T],
0 . 0
j=1
(D
T d .1
Y,=CI>(XT)+/ f(Xu,Yu,Zu)du—Z/ ZidBi,  te[0,T],
t i

where B is a d-dimensional Brownian motion and
Vi:RI > RI,  k=0,....d, f:RIxRxR!—>R

are some appropriate functions. The stochastic integrals appearing in the equation
for the process X are understood in the Stratonovich sense, whilst the stochastic
integrals appearing in the equation for the process Y are understood in Itd sense.
The system is called decoupled as the (backward) processes (Y, Z) do not appear
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in the dynamics of the forward component X. Systems of form (1) have received
a lot of attention over the past twenty years, primarily due to their applications in
the field of mathematical finance.

Of equal importance is the fact that the stochastic flow associated with (1), that
is, the triple of processes (X %), Y ©&¥) zE%)) (¢ x) € [0, T] x R satisfying

X“‘—x+/ Vo(X5¥) du+Z/ Vi(X5%)odB],  selt, T

T
@ wr=ows [ v 2 [ 2 an,,
selr,T],

provides a Feynman—Kac representation for the (viscosity) solution of a class of
semi-linear partial differential equations. In particular, let u(z, x) : [0, T'] x R —
R?, be the viscosity solution of

le—l: + V() Vu+ %Tr[V(x)V*(x)Dzu] + f(t,x,u, VuV(x)) =0

(3)
u(T,x)=>d(x),

where V(x) = W(x) — % 2?21 VV;(x)V;(x). In their seminal work, Pardoux and
Peng [25] showed that

“4) ut,x)=y" (t,x) € [0, T] x RY.

In addition, Ma and Zhang [24] proved that when this viscosity solution is contin-
uously differentiable in its spatial variables, we have the following representation
for the solution of the partial differential equation (3) and its gradient:

(5) ut,x)=Y", ZV =vVu@t,x)V(x)  as.

From the perspective of numerical analysis, the above means that any numerical
method for the resolution of (1) provides an algorithm for the resolution of semi-
linear PDEs. As a result, there is a high interest in robust numerical algorithms for
FBSDE:s.

To the best of our knowledge, the first attempt for the numerical resolution of
a BSDE is due to Chevance [6], where the approach is to approximate the driv-
ing noise by some discrete time process. Similarly, in Ma et al. [23] the authors
propose a discrete scheme for the resolution of a BSDE based on an Euler dis-
cretization and approximation of the driving Brownian noise by a random walk.
They show convergence of their scheme in a weak sense, and no convergence rates
are obtained. On the other hand, Daglas, Ma and Protter [12] suggest a four-step
scheme for the numerical resolution of FBSDEs which can be more strongly cou-
pled that the ones we consider in this paper. Their method is based on a finite
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difference approximation of the associated PDE. We should also mention the work
of Bally and Pages [1, 2] who propose an algorithm that relies on quantization for
the numerical resolution of reflected BSDEs when the driver is independent of Z.

However, it was the work of Bouchard and Touzi [5] and, in parallel, Zhang [26]
[essentially scheme (6) below] that first suggested a method for the discretization
of a fairly general class of BSDEs and paved the way for algorithms of probabilistic
flavor. Following this work, algorithms designed to solve the problem of numerical
approximation of the backward part of (1) consist of two parts: First, the backward
equation is discretized. This step involves the use of one or more conditional ex-
pectations. Second, a numerical method is grafted onto the chosen discretization to
compute the conditional expectations involved. To date, the method of choice for
the discretization of a BSDE is the Euler scheme proposed in its explicit format by
Zhang [26] and implicit by Bouchard and Touzi [5].3 In its implicit form it reads
as

an = CI)(Xl‘n)v 71'[’n :=O,
1 .
(6) 1i= 5 E[Y]; 1 ABi111Fy], i=0,...,n—1,
i+1

Y17T,l ::E[Yﬁl+l|ﬂl]+f(tl’th’Y17fl’ le,l)’ i:O,...,n_l,

where  is a given partition 7 :={0 =1t <t <--- <t, =T} of [0,T],8;41 is
the time step 6;41 :=#41 —t; and AB;1:=B;;,,, — B;;,i=0,...,n— 1is the
Brownian increment.

Assuming that all coefficients of (1) are at least Lipschitz continuous in their
spatial variables, we have, following [5] and [26], that

T
(7) sup E[\Yf—y,|2]+]EUO |Z;T—Zt|2dt]§C|7r|,

0<t<T
where {(Y[", Z]), t > 0} are the step processes

n—1
Ytn = Z Ylﬂ,i l[tiJH—l)(t) + Yln,nlt=tn’
i=0
®)
n—1
Z;T = Z Z711,l l[ti,ti+l)(t) + Zinlt:tn‘
i=0
In other words, the above discretization of the backward part achieves a con-
vergence of order n~12 when n points are used, that is, the same order as the
strong convergence order of the Euler scheme for a (classical) SDE. With addi-
tional smoothness assumptions imposed on the coefficients, Gobet and Labart [13]

3See Bender and Zhang [4] for an alternative approach based on Picard iterations.
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that the rate of convergence of the processes (8) is of order n~!. In fact an error ex-
pansion is obtained in [13] and the leading order coefficients in the error expansion
are identified.

Our first and most important goal in this paper is to introduce a discretization
method for FBSDESs, in the spirit of (6), that achieves second order accuracy; that
is, it enjoys an asymptotic rate of convergence of order n =2 when n points are used
in the discretization of the time interval. In designing the second order scheme,
we follow a similar template to (6). We will use the trapezoidal method to dis-
cretize the Riemann integral. That provides us with a second order discretization
of the finite variation part of Y. In order to recover a second order approximation
for Z;, we compute a Brownian weight, that when multiplied to Y7, and con-
ditioned with respect to F; cancels out all lower order terms. Let us note that
the heuristic as well as detailed arguments that lead to the second order scheme
rely on the Stratonovich—Taylor expansion of u(¢, X;); see Section 2. As a result
they depend on the smoothness of the solution u(t, x) of PDE (3). The latter will
generally be smooth, provided that the driver and coefficients of the forward SDE
are smooth enough, even when the boundary condition @ is not smooth. To treat
such anomalies, if any, at the boundary 7', our scheme takes the first backward
step using the Euler scheme as in (6) and after leaving the boundary, continues
with higher order discrete time steps. More precisely, assuming that all coeffi-
cients involved in system (1) are sufficiently smooth, we propose the following
discretization: (Y3';, Z7 Jo<i<n'

e Initialization.
If @ is Lipschitz continuous,

Y27-L:n =d(X,), ZZ,, =0 and Zgn,l = Z71T,n71» Yf,nq = Ylﬂ,nf].
If @ is smooth,
Y7, =o(X,),  Z%,=VOX)V(Xy.

e Backward induction.

W, —W, i+l (s —1;)d B!
le:4 tit1 ti _6./;1 ( 5 l) S’ lzl,. ,d,
8i-+1 81
25 =Ei[(Y3, 0 + 81 f (Xit1, Y301, Z5101)) 2i)

€) T
Zi=(21...,29)",

it1
Y =EiY] ]+ IT(f(Xi’ Y3 Z253) + Bl f (Xis1, Y300, 25 1440)))-
Under appropriate condition on the coefficients of system (1), we show in The-
orem 3.4 and Corollary 3.7 that
C

L 1 PN 1/2
E|Y:, — Y5, —|Zy — 25, < —.
S [| YTz z,” <3
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In particular, there is a detailed discussion of how one should choose the points in
the time partition, when the boundary condition is not smooth (see Corollary 3.7).

There are two advantages of scheme (9) over the usual Euler scheme that need to
be underlined. First, observe that given a partition & of the time interval [0, T'], the
second order scheme approximates Y;, Z, at exactly the same points in the partition
as the Euler scheme; namely, it does not require any intermediate points. This
means that the two schemes are of the same complexity up to a constant. Second,
the scheme is derivative free. This not only saves us the overhead of computing
the derivatives of the coefficients, which can be costly, particularly when these
coefficients come from calibration procedures (compare with the Milstein scheme
for forward SDEs), but also allows us to use the scheme even in cases where the
coefficients are not smooth. One can easily adapt the arguments of the proof of
Theorem 3.4 to show that when the coefficients of system (1) are assumed only
Lipschitz continuous, scheme (9) still converges but with the same order as the
Euler type scheme (6), that is,

sup E[|Y, — ¥YZ,[A]V* < —.
0<izn [Py =731 =< Vn
Hence (9) can be used in all circumstances with no significant overhead. If the
corresponding PDE enjoys a smooth solution (at least away from the boundary),
the approximation converges quadratically. Otherwise, it will still converge at least
as fast as the Euler scheme.

Having discretized the backward equation, one needs to employ a method for
the approximation of the involved conditional expectations.* Various such methods
have been introduced, based on Malliavin calculus [5], on projection on function
basis [14, 19] and on quantization [1]. In [10], the authors suggested the application
of the cubature method of [22], which is based on the ideas of Kusuoka [17]. The
overall rate of convergence of this second approximation step is still of order n=1/2
or of order n~! when coefficients are smooth.

In the second part of our paper, we bring together the second order discretiza-
tion (9) with the cubature and TBBA algorithm presented in [10]. The latter is
a combination of two algorithms put together to provide an efficient method for
the approximation of nested conditional expectations. In particular, as a first in-
gredient we have the cubature on Wiener space method of Lyons and Victoir [22],
that constructs explicit and discretely supported measures that approximate the law
of forward diffusions. In effect integrals against this law, such as conditional ex-
pectations, can be approximated by integrating against this discrete measure. The
resulting algorithm enjoys a second order of convergence. However, in practice
the measures constructed with cubature have an exponentially growing support,

4When the process X in (6) is replaced by its Euler approximation, then E[Y] i1 |.F[IF ] and

IE[YIH_’[._’_l AB;1|F] ] need to be computed.
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a growth that needs to be controlled. To the best of our knowledge, there are two
different algorithms that can achieve this. The recombination algorithm of Lit-
terer and Lyons [21] and the tree based branching algorithm (TBBA) of Crisan
and Lyons [9]. We will use the latter as a second ingredient for our algorithm.
The application of cubature and TBBA in BSDEs, in conjunction with the Eu-
ler scheme (6), has already been presented by the authors in [10]. As our second
order scheme follows a similar template with the Euler method, that is, the ap-
proximating processes are defined in a backward manner by means of conditional
expectations, the application of cubature and TBBA in the current framework fol-
low exactly the steps presented in [10].

This paper has benefited from the very careful reading of an anonymous ref-
eree. Among many constructive comments and suggestions, the referee brought
to our attention the work of Li, Zhang and Zhao [27] were the authors suggest a
second order discretization for backward SDEs that shares many features with the
algorithm we present in the first part of the paper. However, the work in Li, Zhang
and Zhao [27] requires that the underlying diffusion is a Brownian motion rather
than a general diffusion. This is a significant advantage as the stochastic Taylor
expansions of the involved functionals are greatly simplified. The reason is that
the lower order cross derivative terms cancel out as the corresponding differential
operators commute [one should consider the computations in (21), (22) when the
underlying noise is simply a Brownian motion to appreciate the differences].

The paper is organized as follows: In Section 2 we present our main assump-
tions and give details on Stratonovich—Taylor expansions, which will be our main
tool in the construction and analysis of our algorithm. We then proceed in Section 3
to present the new second order discretization. In Section 4 we give the details of
cubature and TBBA method and explain how one should couple this method with
the second order discretization. Note that here we also present cubature formulas
supported on Lie polynomials and not just paths as in [10]. Though the two ap-
proaches are equivalent, we discuss the advantages of Lie polynomials, and we
also discuss the details of the implementation. We then analyze the asymptotic
convergence of the algorithm, and finally, we present a one-dimensional example
where we compare the new discretization with the Euler scheme and validate its
second order convergence properties.

2. Preliminaries. Throughout the paper, given a positive integer m, we will
use the following assumptions:

(A) The coefficients of the forward SDE V; RIS RYi=0,1,...,d
have all entries belonging to C;° (R9), the space of bounded infinitely differen-
tiable functions with all partial derivatives bounded.

We make no assumptions at this point on the ellipticity (or lack of), for the
diffusion matrix. We will come back to this in the discussion on the PDE gradi-
ent estimates necessary in the derivation of the general convergence results; see
Corollary 3.7 and the discussion preceding it.
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(B(m)) The driver of the BSDE f:[0,1] x R x R x RY — R belongs to

C l[,m/ 2™ The exact value for the parameter /2 shall be made precise as we proceed.
(C1) The terminal condition ®:R? — R is Lipschitz continuous.
(C2(m)) The terminal condition & belongs to C}' (R?; R), where value of m

shall be determined further on.

We shall denote by K the constant that bounds all derivatives that appear in our
assumptions. When (C1) is in force we shall assume that ® is K-Lipschitz. Of
course under (A), (B(m)) with m > 1 and (C1) system (1) has a unique solution
such that

T
E[ sup (Y2 +1|X;|%) +f |ZS|2ds] < 00.
0<t<T 0

To abbreviate notation we shall denote by M; = M;,,i =0, ...,n, where M
can be any of the processes that appear in this paper. Moreover we write [E[-] for
E[-|Fs]. Note that in the current (Markovian) set up E[-|Fs] = E[-|Xs]. We shall
also consider as given a partition 7 :={0=#fy <t; <---<t, =T} of [0, T] and
consider the time step intervals §; : = —t;_1,l=1,...,d,i=1,...,n.

Finally, the driver of the BSDE shall be abbreviated as

f(s,x) = f(x,u(s, x), VuV(s, x)),

where u is the solution of the semilinear PDE (3).

Working toward a higher order discretization of the backward part of (1) we
shall rely heavily on the Stratonovich-Taylor expansions. Hence we need to fix
notation and present some elementary facts regarding these expansions:

We denote by A the set of multi-indices A := {2} U ,_;{0,1,...,d}" en-
dowed with the norms | - | and || - || given by

|B] = length of B, IBIl := 18| + Card{j: 8; =0,1 < j <|Bl}.

Clearly |@| = |@|| = 0. For a 8 = (j1,...,ji1) € A we also write §— =
(j1y .-y ji—1) and —8 = (j2, ..., ji). We define the subsets of A,

A(m)={B e A:||B| <m} and
Al(m) = {p e A\ {2, (0)}: 18] <m}.

Given two multi-indices @ = («q,...,ax) and 8 = (B1, ..., B1), we define their
concatenation as « x 8 = («q, ..., %, B1, ..., B1). For a suitably chosen function
f and a multi-index 8 = (B4, ..., B1), we define the iterated Stratonovich/Riemann
integrals as follows:
f(s). B1=0.
N
JP= du, [>1,j;=0,
e > 1,

S .
/ I [ fliwodBi@), 121, #0.
t
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We also use the abbreviation s"f, = J%[1]s,; where 1 is the constant function
1:r — 1forall r s, t].

For any vector field V € C;° (R?) we make the usual identification with the first
order differential operator

d
(10) V) =) Vi), f(x).
j=1

In particular we consider the differential operators V1, ..., Vz and Vj.

The iteration of this family of operators is understood as Vy f := Vg, - -+ Vq, f,
o= (ag,...,0y,), and we also use the convention Vg f = f.

Given a multi index & = («1, . .., ;) the following identity is proven in Propo-
sition 5.2.10 of [16]:

. n+1 )
(11) BI(1)Jg, = Jyorre e o1 .
k=0

A direct consequence of (11) (Corollary 5.2.11 of [16]) is that if « = (k, k, ..., k),
k=0,...,d, with |¢| = m, then
1
Nk
(12) o0 = Vo)

The (conditional) expectations of iterated integrals can also be computed. In
particular we have a characterization for those iterated integrals that have nonzero
expectation (see, e.g., [8]):

LEMMA 2.1. Let o = (i1,...,I,) be an arbitrary multi-index with ||o| = m
andt € [0, T]. If m is odd, then E[J(‘it] =0, and if m is even, then
/2
E[]Sf,]= Z’_T(mﬂ)!’ ifaoe A(m,r),
0, otherwise,

where A(m,r) C A(m) is the set of multi-indices with a = a1 % - - - ¥ 2 € A(m),
such that o; = (0) or o; = (j, j), j €{1,...,d}.

A nonempty subset G C A is called a hierarchical set if sup,¢ |a| < 0o and
—a € Gforany @ € G \ {&}. Given a hierarchical set G we define the remainder
set

BG)={pcA\G:—peg}.

Note that A(m) and A (m) are hierarchical sets. If g: R — R is a smooth func-
tion with all partial derivatives bounded, then by repeatedly applying the Ito—
Stratonovich formula, we obtain the Stratonovich-Taylor expansion

gt, X7) =" Vag O 0I5+ Y J[Vag( X, s<t
aell aeB(K)
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for any hierarchical set . The second term on the right-hand side of the previous
equation is called the remainder process. In particular, when the stochastic Taylor
expansion is applied with respect to the hierarchical set .A(m), m € N, we shall
denote the remainder by R,, (0, t, g), that is,

(13) gt X )= > Vug(0,x)J¢, + Ru(0,1,8).
aeA(m)

Obviously as m increases, and for small ¢, the remainder gets smaller and smaller.
In this paper we shall work only with stochastic expansions with respect to the
hierarchical sets A(m), m € N. For this set we have that

B(A@m)) ={(j)*Blj=0,....d, |B] =m}.

To estimate the remainder that corresponds to B(A(m)), we need to estimate iter-
ated Stratonovich integrals of the form J%[g(-, X.)]s,; for appropriate function g
such that the previous integral makes sense. For 0 <s <r witht — s < 1, we have

sup Eg[J*[g(-. X')]s,r]

S<r=<t

(14) < C( = )12 sup (B[] Ve, 8, X,)| lay 0]
S<r<t

+ ESHg(r’ Xr)|105n:0] })

Proving estimate (14) amounts to a tedious induction, based on Itd’s formula, simi-
lar to the proof of Lemma 5.7.2 of Chapter 5 of Kloeden and Platen [16]. Applying
estimate (14) to every index in the set B(A(m)) provides us with the following es-
timate for the remainder of the Taylor formula for any s < :

E[|Ru(s. 1. f)]7]"7
<C@t—s5)"D?2  max sup E[|V, f(r, X,)|" ]l/p

m<|yll<sm+2s<r<t

(15)

If the function g depends on time as well, g = g(¢, x), then one of course may
still apply the Stratonovich-Taylor expansion to obtain a similar result to (13).
Differentiation with respect to time can be absorbed by the Vj operator, namely
Vo =0, + Z - V0 \;» since in applying the It6 formula, derivatives with respect
to t or Vp, scale similarly; namely, they produce terms of order ¢. In effect esti-
mate (15) remains valid. In the next section, we use Taylor—Stratonovich expan-
sions extensively in order to design a second order discretization for (1).

3. One-step discretization. To understand the terms that a second order
scheme should incorporate, we present first the intuitive arguments that lead to
the discretization scheme (9).
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REMARK 3.1. We will start by assuming perfect knowledge of the forward
diffusion along a given partition, that is, of (X;,..., X; ).

In the second part of the paper, we approximate the law of this multi dimen-
sional random vector by means of cubature formulas without having to discretize
its dynamics, and hence the second step will be consistent with the first.

For the benefit of methods that would combine the present discretization with
a Monte Carlo simulation, that would most likely require some sort of discretiza-
tion for the forward process X, we note that all results regarding the second order
scheme (particularly Theorem 3.4 and Corollary 3.7) remain valid, once one re-
places X with a second order approximation. A wealth of such approximations are
presented in Chapters 12—15 of [16].5

We consider the backward part of (1) between two successive times of the par-
tition 7

tit1 iyl
Vo=Yoo+ [ f Y Zods— [ 2, -aB,
ti t;

and discretize the Riemann integral using the left-hand side point, as in [5], thus
leading to an implicit equation for ¥;, and the stochastic part in the usual way, to
obtain

(16) Yl‘,' = Yl‘,‘+1 + 8i+1f(Xl‘,', Yl‘,'v Zl‘,') - Zl‘,' : ABi-I—I-

By conditioning (16) with respect to F, in (16) we obtain a first order approxima-
tion for Y;,

(17) Yt,‘ 2]E[Yt,'M|>F.l‘,']"—51'-1—1](()(1,"Yl‘," Zl‘,')y
but for the presence of Z;,. To treat the Z;,, we can multiply both sides of (16) by
AB} Iy [ =1,...,d and condition with respect to J;,, to obtain
AB!
(18) Zf_:IE[th ’“‘]—}i], I=1,....d.
: Si+1

Observe that scheme (6) is just the backward iteration of equations (17) and (18).
Another way of interpreting the approximation for Z (18), is via the Stratonovich—
Taylor expansion. Recall that forevery / =1, ..., d, Zf is the directional derivative
of the value function to the direction of V;, that is, Zf = Zflzl Vli (x) 0y, u(t, X;).
So if we apply expansion (13) using the hierarchical set .A(2) and multiply by the
Brownian increment and condition, we obtain

/
ABH—

AB!
! ‘Fti =E M(ti+], Xti—l-]) il ‘El
dit+1

= Viu(ti, Xy,) + O(Bi+1).

E|:Yti+l Sit1
l

3Such approximations can be chosen to be completely derivative free.
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Later on, we shall use this point of view to understand the type of terms that a
second order approximation for Z should incorporate.

As far as the driver is concerned, the next elementary result tells us that the
trapezoidal method indeed achieves a third order local error, thus leading to a sec-
ond order global error:

LEMMA 3.2. Let assumptions (A) and (B(3)) hold true, and assume that
(O CLip(Rd). Let us also assume that there exists a classical solution to
PDE (3) on [0, T) x R? which we denote by u(t, x) and also denote by f(t, x)=
fOe,u(t,x), Vu(t,x)V(x)). Then there exists a constant C independent of the
partition and of u, such that
dit1

2 (];(ti» Xt,') + ]F(ti—l-l, Xti+|)):H

tit+1 _
Ei[ Fs, Xy)ds —
ti

<C8}y, max [VouGin, )]

PROOF. Since we have assumed existence of a classical solution of the asso-
ciated PDE, the nonlinear Feynman—Kac formula tells us that Y; = u(z, X;) and
Zi =Viu(t, X;),l=1,...,d. We then proceed by expanding the integrand of the
Riemann integral using expansion (13), with the hierarchical set A(3),

tiv1 _ _
E,-[ f(s,Xs)dS]=3i+1f(n,Xi)
1

(19) +E; [ | 't"“( S Vo X2,

aeAg(3)
+ > Ja[vaf(.,x.)]ti»du]
acA(5)\Ao(3)

and to f(tir1, Xit1),

dit+1
l; (F(Xi,Yi, Zi) + Ei[ f (Xit1, Yit1, Ziv1)])
_ i1 _
Q) =smfe X0+ (X Ve X0Jg,,
acAp(3)
+ Z Ja[VO{f_‘('sX-)]ti’ti_*_l)'
aceAp(5)\Ao(3)
If @ € Ap(3), then one of the following holds:
i), i=0,....d,
o= (O’l)v(lao)’ i:1,...,d,

(0,6 g k) i k=1,....d.
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Elementary facts about stochastic integrals and Lemma 2.1 tell us that Es[J{, ] =
0, u > s for all @’s as above except when o« = (0) or (j, j), j =1, ..., d. For these
two cases, we have

u—-s
2

. 1 . .
E[J0]=u—s and EJ[JY]= SEL(Bi — Bl)*]=

Substituting the above into (19), (20) and taking their difference, we have

fir1 - Sit1, = ,
E,-[ t{ " s Xg)ds — = (f(zi,X,,.)+f(z,-+1,X,i+l))”

k[ X rerex,,)da

a€Ag(5)\Ao(3)

~ 8,-;1 oo T VafC X')]ffm']l'

acAg(5)\Ao(3)
The estimates on the remainder process complete the proof. [
The above result dictates how one should treat the Riemann integral when work-

ing toward a second order scheme. Working toward a second order approximation
for Z, we apply a Taylor expansion on the stochastic integral to obtain

liv1 _
V=Yoo + [ FGX)ds
t
d

d lit1
— Zivlum, X)ABL L+ > Ve, Xy,) / J®1, . dB!
=1 k=1 li

d tit1 .
+ Y Vogout X [ %01, dB!

k,j=1
@D lit1
+Vouutt X,) [ = 1) dB!
1
Lit1 o !
£ Vs Xp) [ 0011 4B,
lloel|=3 f
Lit1 /
+ Rs(ti,s, Viu)dBy ;.
I
As in (18), we need to innovate a way to recover Zf,l: 1,...,d,i=0,...,n—1

from (21), but this time up to a second order error.
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If we multiply both sides of (21) by Af—il“ and condition with respect to JF;, we

shall obtain Zfi, but some surviving terms of order §;41 will render the approxi-
mation first order. For example, consider

1 lit1 1 l 8i+1
5 1E Vio.nu(ti, Xy;) sdBgAB; (| Fy, :TV(O,l)u(ti,Xzi)~
i+

1

Hence, we need to find an appropriate weight which, when multiplying (21) and
after conditioning with respect to F;,, provides a second order approximation for
Z;, by canceling out all first order terms. We make the following judicious choice:

AB!, JODI1]

22) zZl:=x + 2 L 1=1,...,d,i=0,...,n— 1.
3i+1 871
With a few straightforward computations, we obtain for any g =1, ...,d,

rd
E| > Viuti, X,)AB! 2!
L/=1

A2
le} _ (M + 7)v,,u(n, X,),

[ 4 Lit1
E ZV(O,l)u(ti,Xti)/ sdB.z]
Li=1 1

Abit1  A26i11
E,}Z( 2l+ + 3l+ )V(o,q)u(ti,Xti),

-

rd d

Lit1 .
B Y Y Vojoutn X [ 14010, B2
Li=1k,j=1 i

M8ip1 A2did1) &
:( e )ZV(k,k,q)M(ti,Xz,-),
4 6 byt

d d fit1 ®) / Lit1 o ! g
E|S th J®n, dBl + Y /, [y dBL) 2|y | =0.
I=1 \k=1"" fal|=3""

By choosing A1 =4, A, = —6, we have the following:

LEMMA 3.3. Let assumptions (A), (B(m)) hold true, and let u(t, x) denote
the classical solution of PDE (3). Set
ABl, IO,

Sit1 5i2+1

zZli=4 i1 I=1,...,d,i=0,....n—2.

Then

|Z£i - Ei[(Yl‘i-H + 8i+1f(Xti+1v Yti+lv Zti+1))zil]’ = 61'2—!—1 oﬂllizl(SH Vau(ti+1’ )Hoo
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PROOF. We first apply a simple triangle inequality to
|Z£l. —Ei[ (Y + i1 f Kiiyys Vi Zti+l))Zl!]’

t

+1
2, 7B (Yt [ X1 20 as )2

t

- Ei[Yli+1 + 5i+1f(Xli+1’ YZH—I’ Zli+1)Zil]

Using the results of Lemma 2.1 and following the intuitive computations preceding
Lemma 3.3, it is clear that
"
‘Zé —E; |:(Yti+l +

i+1
f(XS’ YS’ Zy) ds)ZfiH

ti

=

’

/ lit1 !
E; I:Zi / R3(t, s, V[M)st:|
1

where as applying a Stratonovich Taylor expansion to f(Xy, Y5, Zy) and f (X,
Yii.1s Zy;,,) with the hierarchical set A(2) leads to

tigl
Eil: f(XSv YS: ZY)dSle] - El [8i+1f(Xl‘i+1 ) YIH_] ) ZZ‘H_])Zl'l]
1

! li+1 _
<[ei] 2! [ R, fras]

The result then follows from estimate (15) on the remainder process and the
Cauchy—-Schwarz inequality. [

Given the estimates of Lemmas 3.2 and 3.3, the rationale behind scheme (9)
should now be clear. In the following Theorem, we provide the main estimate for
the error of our scheme.

THEOREM 3.4. Let assumptions (A), (B(5)) and either (C1) or (C2) hold true.
Then there exists a constant C > 0 such that
84
_ 77:. 2 i+1 . T ) 2
Ofrl.nfarf—z[’Yti Yz,l | + 4d |Zti ZZ,z | }

2 0 2
SC(’anl - Yy, 7+ é’ztm - 75,4 )

n—1
5 PNTY
+; ! ”51”121(75” wu(t;, )”Oo

The above result shows that the approximation scheme is in general of order 2
modulus the error that we are making on the first backward step. The latter can be
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easily shown to be also of order 2 when the boundary function is smooth. In the
more interesting case where @ is merely Lipschitz continuous, our first backward
step is done via the Euler scheme. In Corollary 3.7 we will see how a nonequidis-
tant partition can compensate for this and provide a scheme with order of conver-
gence 2.

PROOF OF THEOREM 3.4. In the following proof, C will denote a constant
whose value might change from line to line. It will, however, be independent of
the partition and of the bounds of the derivatives of the solution of (3). For ease of
notation, we set

AfY::Yti—Yz’fi, AfZ::Z,i—ZZi,
A;Tf = f(Xtia Yll" Ztl‘) - f(X[," Yzyfis Zgi)7

- Sit1
lIJj+1 = Yfi+l + Tf(Xti+l, Yti+1’ ZT,‘+1),

Sit1
Wl =Y+ Tf(Xtm» Y i1 23 i41)s

AWip) = Wi — W7 .

Let us fix a value for i =0, ..., n — 2. We consider the difference of the solution
of the BSDE at time #; and of scheme (9),

Sit+1
l; Ei[f(Xi, Y3, Z5 ) + f (Xi1, Y500, 25 100)]

ATY =Ei[AT Y]+
(23)

51‘ _ _ lit1 _
F glEi[f(fi,Xi)‘i‘f(ti+l,Xi+l)]_/; Ei[ f (s, X5)]ds.

According to the estimates of Lemma 3.2 we have that

B[ f (Xi, Y33, Z55) + f (Xi1, Y300, 25 141)]

5 _ _
; Ei[ f (i, Xi) + f(tiv1, XizD]|

(24) -

3
< C8i+1 ||oﬂ|li§,5H Vou(tit1, )Hoo

Moreover, by the mean value theorem, there exists a real number and vector
n1eR, v e R4 bounded by K, such that

dit1
2

i+l
2

(25) AT f = (L ATY + v - AT Z).
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Combining (23)—(25) with Young’s inequality with y; > 0, we have
ATY]? < (1 + 18 [Bi[AT, W]

(26) +<1+ ) 82 (|ATY P + (AT Z )

Y18it1

2

+<1+ )ca.ﬁ max | Vou(tiy1, )
)/I(Si—i-] i+1 ||ot||:4,5|| o i+ Hoo

Next, observe that for any random variable F* which is measurable with respect to

Fti1» We have
1

IE,[F 217 = |E[(F —EjFN) 2] < 5
i+1

(E:[F?] = E;/[F1?).

Combining this with definition of Z7,,i =0,...,n — 2 and the conclusion of
Lemma 3.3, we have
o7 811 E[|AT Z|*] < 24 (E[| AW 11 *] — E[[E[AW;11]]%])

+C61+1 5 max ||V u(tisy, - )”

Putting together (26) and (27) we get

B[ |7y + 22 a7 2P|
< (14 yidipDE[E AT, W]

C 1
+C5i+1E[|A?Y|2]+ ( +@+C31+1> i+1E[|A?Z|2]
(28)

+C87, max | Veu(tivr, |2
lleel|=4,5
<+ y8i+DE[|AT, ¥ |2]

x CsipE[|ATY ]+ C83,, max [ Ve, 9zes
where we have chosen y; = C4d.

We can argue once more with the mean value theorem and Young’s inequality
to deduce that

(1— C(S,-+1)IE[|A?Y{2 4 G larz] ]

§(1+Cl5i+1)< [|Az+1Y| + l+l|Az+1 |2D

5 . .
+O0%y max Vot )|
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for some different constant C’. By appealing to the discrete version of Gronwall’s
lemma we complete the proof. [

Theorem 3.4 tells us that (9) produces a second order approximation of the
BSDE, provided that the value function u(¢,x) =Y ;’x is smooth with bounded
derivatives. In other words, for a “well behaved” PDE, one achieves an error of
order 1/n* when a uniform partition with n points is used. This is certainly the case
when (A), (B(5)) hold true, the diffusion matrix satisfies the Hormander condition
and & is smooth.

A more interesting case occurs when @ is only Lipschitz continuous (or perhaps
belongs only in IL.?) and/or the diffusion matrix is degenerate. A priori, it is not
clear whether the value function is differentiable, and if yes, how these derivatives
behave. However, in a recent paper Crisan and Delarue [7] show that the value
function is smooth, at least in the direction of interest, even when the diffusion
matrix is degenerate, that is, it only satisfies the so called (UFG) condition which
we now introduce.

Recalling the operators V;, j =1,...,d (10), we define the vector field con-
catenation V4], @ € A inductively, as follows:

V[g] = O,
Vin:=V, i=1,...,d,
Viaxi1 := Va1, Vil, i=0,1,...,d,
where for two first order differential operators L, W, [L, W] denote the usual Lie
bracket.
The UFG condition. We say that a system of smooth vector fields {V;:i =

0,...,d} satisfy the UFG condition if, for any a € A, there exists m € N, and
there exist ¢y, g € C;° (RN), with B € A(m) such that

Vi1 (x) = Z Yo, (X) Vg1 (x) vx e RV,
BeA(m)

The following example is taken from Kusuoka [18]:

EXAMPLE 3.5. Assumed =1 and N = 2. Let Vp, V; € C°(R%; R?) be given
by
_ d . P
Vo(x1, x2) =sinx; —, Vi(xy, x2) =sinx; —.
ax] d0x2

One should note that the Hormander condition is not satisfied. But the UFG con-
dition is; for m = 4, see definition.

THEOREM 3.6 (Crisan and Delarue [7]). Let (A) and (B(m)) hold true, and
assume further that the vector fields {V;:i =0, ...,d} satisfy the UFG condi-
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tion. Then, if ® € C}} (RY)Y there exists a unique u € C(mm (0, T) x R?) that

solves (3). Moreover, for any multi-index o € .Am, there exist increasing function
Ca, Co 1[0, 00) — [0, 00) such that for any ® € C}) (R), we have

(29) [Vaut, )] o SCa< ) ||va<1>||oo),
aeA,

00 — (T )Uel=1/2°

Observe that the directional derivatives of the value function explode as ¢ 1 7.
To compensate for this behavior we choose to work with a nonequidistant partition,
one that becomes more dense as we approach the boundary. In this manner, we
manage to achieve an order of convergence of 1/n? with n points on the grid.

COROLLARY 3.7. Let assumptions (A), (B(5)) hold true, and assume that ®
is Lipschitz continuous. Consider the discretization (9) along the partition m:

i\P
n

Then there exists a constant C independent of the partition and of the value func-
tion u, such that

) 1 ) 1/2
max B[, -5+ 12, - 23] <

0O<i<n—1

PROOF. Theorem 3.4 tells us that the error is controlled by

1)
C(1¥orr = ¥+ 5120~ 28,00 + T max [Vouts )
i=1 -

We examine every term separately.
According to Theorem 3.6, we have

Z max HV u(t;, )H

= el =4

551V Pl

—Z (T—t)4

=”§T5(/‘—<"—”/” ﬂsﬂ_lds)S CIVPll
= 1—Gi/n) T4(1 — (i/n))*F

TR (-G -y,
g a—Gmyw ="

€29
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since 8 > 5.
To complete our proof we estimate the error on the first backward step. Using

the standard estimate on the Euler discretization error of Lebesgue integrals, we

have

t

f_‘(sv Xs)ds] + f(th,p Ytn,1 ) Ztn,1)6n

In—1

ot = ¥l =i

2
= Koy Yt ZT 1)

= C(S,%(l + |an—1 - Yl7fn—1|2 + |an—1 - Zjl-[,n—1|2)’

where once again, we have used the mean value theorem. Rearranging the terms,
we may argue on the existence of a constant C such that

2 ) 2
(1 _Cén)<|Ytnl _Y{fn—l| +ﬁ|zfn—l - 711,n—1| )
(32) ) )
< C(Sn + C6n|Zt,,_1 - Zjl-[,n—1| :

From standard estimates on BSDEs we know that under (A), (B(m)) and (C1)

sup E[|Z|*] < +o0.
0<t<T

Finally, under (C1) we have that

1
E[[Es1[®(X;,) AB,]|"]

2

(33) |
= SE[E[(@(X,,) - @(X,,_)AB,][] < C.

n
Substituting (33) into (32) and then taking square roots, completes the proof. [

4. An implementable second order scheme. As is the case with all other
FBSDE discretization methods (see, e.g., the first order method of Bouchard and
Touzi [5], Zhang [26] or the forward backward algorithm of Bender and Denk [3]),
the algorithm suggested in the previous section does not constitute on its own, an
implementable numerical scheme, as one needs to employ a method that approx-
imates the involved conditional expectations. To the best of our knowledge, to
date, four different methods have been suggested for computing these conditional
expectations: The Malliavin calculus algorithm of [5] (with a further refinement
presented in [11]), the regression on function basis approach of Gobet, Lemor and
Warin [14, 19], the quantization method of Bally and Pages [1] and finally, the
algorithm presented by the authors in [10], based on the cubature on Wiener space
method of Lyons and Victoir [22]. In this section, we combine the latter with the



SECOND ORDER DISCRETIZATION OF BSDES 671

discretization of the previous section, to construct an implementable scheme for
FBSDEs of second order.

In [10], the authors include a detailed presentation of the cubature algorithm
and how it may be applied to BSDESs in conjunction with the first order discretiza-
tion (6). We also suggest the use of the tree-based branching algorithm to control
the computational effort required by the cubature method. TBBA is a minimal
variance reduction method that keeps the computational effort per partition step
constant.® As a result, the proposed algorithm not only enjoys nice asymptotic
convergence properties (see Corollary 4.2 and Theorem 5.5 of [10]), but it is also
competitive with other existing methods for BSDEs, even in high dimensions; see
Section 6 of [10].

All details regarding the asymptotic analysis of the error as well as the imple-
mentation, found in [10], lend themselves perfectly when we combine cubature
and TBBA with the second order scheme (9). This is of course of no surprise as
the two discretization methods, (6) and (9), have a very similar functional formu-
lation. We will not present here the details of this analysis. We restrict ourselves to
the basic definition and main results. The interested reader can fill in the details by
following the material in [10].

DEFINITION 4.1. Consider a fixed ¢ > 0 and m € N. We say that the discrete
measure Q" supported on paths of finite variation wy, ..., wen € Cpy([0,TT; R4 )

. . " . o Cq . .
with corresponding p0s1tlye weights A1, ..., A, Q= ijl Xjéw;, 1s a cuba-
ture measure of degree m if

Eqn[J8,] Zx [ daT(s1) - -d (si),
=1 O<syp<--<sp <t %
= E[J5,] Va = (ay, ..., o) € A@m),

where w; /(s) := (s, a)}’t(s), ey a)?’,(s)).

The scaling properties of Brownian motion imply that if Q" is a cubature mea-
sure at time ¢ = 1 supported on the paths w1, ..., ®,, then we obtain the cubature
measure Q7 by considering the paths

o170 =NTo1(t/T)..... 0010 =VTog@/T)

and the same weights as in Q. The existence of cubature measures is proved
in [22]. However, their explicit construction is by no means trivial. This task is
carried out in [22] for cubature formulas of order 3 and 5 and in Gyurké and

6 A different but very efficient approach for controlling the growth in the number of particles in the
cubature method can be found in [21], the so-called recombination method.
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Lyons [15], Litterer [20] for cubature of order 7 in dimensions 1, 2, 3 and in [15]
for cubature of order 9 and dimension 1.

Given a smooth function g : R? — R and a cubature measure Q" the stochastic
Taylor expansion (13) tells us that

sup|E[g(X;;1})] — Egy[e (X5

m+2

i/2
<Cc Y &0 sup [Vagl
jome1  @€AGDVAG-D

(34)

Hence, for a small time step Eq» [g(X,l +1))] is an efficient approximation of

IE[g(X *))]. We can easily show that we also have

tit1

Sl;p’E[ l,+1)Z] EQM[ ( t,+1))Z:”
(35)
2 1)/2
<C Z SV sup I Vaglloo + 8011 IV lloo
it a€A(H\AG—1)

Using the cubature method, we can produce an evolving cloud of points at every
point on our time partition 7 that approximate the integrals against the law of the
forward process. We denote by E; . (w) the solution of the ODE

d ¢ )
(36) ye=x+Y) /0 V(ys.0) deod (s),
j=0

where we make the identification w(t) = (t,w(t)) € R & R? for any w €
Cpy ([0, TT; Rd). We denote by Sk, k =0, ...,n the set of weights and points in
the cloud at depth k (equivalently time #;),
So :={(1,x0)},
37 Sk = {()\j)“za Eak,z(a)j,gk)); j=1,..., CZ:”, (Az,2) € Sk—l},
k=1,...,n.
Given a point x € S we can approximate the expectations
E[g(xi)Z]  Ele(Xi))]

by averaging out the involved functions on all the offsprings of x in the set Si41.

However, the cardinality of this sets of points grows exponentially, and this is
issue needs to be addressed if one wants to use the method efficiently on any par-
tition. The authors suggested in [10] the use of the tree-based branching algorithm

to control this growth. Formally, given a cubature measure at depth 7, Qf’, TBBA
constructs a random measure
PR

(A,2)€Sk
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where the k s are random variables, some of which may well be zero. Let
(2, .7-" P) denote a probability space that supports these random variables, and let
also E denote integration with respect to P. The defining property of the measure

I 1S
E[Qr]=Q < El]=2x,
Vz € S, and #{z € S :)A»Z >0} <N.
We denote by S; the set of points selected by the TBBA,
Sk := {x € Sk, Ay > 0.

The offspring of every point x € S that survive the selection process are denoted
by

(38)

3;{‘ :=<§kﬂ{offspringofx}, xegk_l,kzl,...,n

There is an extensive discussion in Section 5 of [10] on the theoretical and prac-
tical details of TBBA, along with the corresponding pseudo code to facilitate its
implementation.

Using (9) as a template, we substitute integration with respect to the Wiener
measure with integration against the cubature and TBBA measures {@Zf}lsksn
where we consider a fixed value for m ( the cubature degree) and fixed N (the num-
ber of particles that are sampled at every depth). We denote by E the conditional
expectation with respect to the family {Qt }1.<k<n- Given a function g: ‘R4 - R
we have

A

~ A ~
(39) Ei[g(Xi )X, =x] = Z i—zg(zx xes;.

X
()“ Z)G i+1

Also given a point x € Size Sx 1 We denote by w; the cubature path (i.e., one
of the paths wy, ..., wen) that was used to arrive at the point z starting from x. We
then have the following approximations for YZ’T i ZZ Hi=0,...,n:

e [nitialization.

Y, =0x),  xes,

5 (x) 1= { 0, if (C1) is in force, s
X = X

Z.n Vo)V (x), if (C2) is in force, "

If (C1) is in force:

1 T
Zzn 1 () =+ Qm[yz,nAa’n|th_1 =x],

x€Sumt1, Awy = ws, (tn) — w5, (ta—1),
Y51 (0) =B [¥], 1 X0, = x] 4 80 f (%, Y5, (), 23, (),

X ESn_l.
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e Backward induction.
ForxeS;,i=n-2,...,0,

A

4 6 lit1
Z2i(2) = (078, (tit1) — w6, (1) — —— / (s —tj)dw; s, (s),
85+1 314—1

€S-
25,(x) = E@;"[(f’fwl 81 f (Koo V1. 23 1)) 2| X, =x],
40)  Z:=(2l,... 2T,
Vi) = Eon [Y3i411X5 = x]

. i+l

(f (x, Y7, (x0), 23 (%))

+Eqp [f (Xe1 Y30 25 5400) 1 X = x])-

The computation of the involved (conditional) expectations follows a straight-
forward logic. For example,

E@;n[(?gm i1 f (Xiprs Vs 23100)) Zil X = x]

:ZA

(A z)eS"

(41)
(Y21—|—1(Z)+31+1f(Z Y21+1(Z) ZZH—I(Z)))Z (Z)

>»>

The analysis of the overall error of the algorithm |Yy — 1?2” ol presents no sig-
nificant differences with similar analysis appearing elsewhere in the numerics for
BSDE:s literature. In the usual fashion, one breaks the error in two components.
The discretization error | Yy — Y2 ol and the simulation error |Y2” 0 Y2 ol- The dis-
cretization error has already been addressed in Theorem 3.7. Regarding the simu-
lation error, a derivation of its asymptotic behavior can just follow the steps in the
proof of Theorem 5.5 of [10]. In fact, the only thing that appears to be different is
the quantification of the error

li, fz
E[g(Xzz+1)Z ] EQ’”[ ( tz+1)Zi]'
However, this can be treated similar to equation (3.5) of [10]. Putting everything
together, we have the following error estimate:

THEOREM 4.2. Let the coefficients of system (1) satisfy assumptions (A),
(B(m)), (C1), (UFG) and (VO0) and consider a partition w with n points of [0, T]

defined as
i\P
t,~:T(l—(1——> >, i=0,...,n,8>5.
n
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Along the partition w we consider the random variables f’”’i, 2’27 ; defined as
in (40) using a cubature measure of order m > 7 and at most N points in the
support of the intermediate measures. Then there exist a constant C > 0 such that
A 1 n

4.1. A numerical example. A detailed analysis through numerous numerical
examples of the performance of the cubature and TBBA algorithm for BSDEs in
conjunction with a first order discretization is presented in [10]. We do not intend
to engage here in a similar discussion. We merely want to present a simple case
where we compare the performance of the second order algorithm with the first
order method so as to convince the reader of the comparative advantage of the
second order discretization.

To that end we focus on a smooth example also considered in [10], namely the
FBSDE

t t
X?’x°=xo+f0,quds+/0\/1+X,2dBt, 0<t<T,

T XO,XOZO,xO
0 — arctan(X(;’xo) — / rY 4+ T (- 1)—=225 g
'

1+ (X702

“2) Y,

T
(" oan,

t
It is easy to check, by means of Itd’s lemma, that the solution to the above system
is given by

e—r(T—t)

V14 (X702

YIO,XO _ e—r(T—t) arctan(X?’xO), Z?,xo _

We test our example with parameters

T uw r Xxo
1 0102 1°
We repeat the scheme 10 times and collect values. Let y” = Afo for m =
1,...,10. We plot in Figure 1 the average relative error, that is,
1 Oy —y,
Error = — Z S .
10 =1 Yo

It should be clear from these graphs that the cubature and TBBA algorithm
achieves errors an order of magnitude better when combined with the second order
discretization than when combined with first order one.
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0.05

0.045

0.04

0.035

0.03

—— 1st order, N=250k
0.025 -= 2nd order, N=250k

1st order, N=500k
—« 2nd order, N=500k
0.02 \
0.015 \
0.01

s\
N S

0 5 10 15 20 25

FI1G. 1. Numerical results on system (42).

APPENDIX

PROOF OF THEOREM 4.2. We will only give some comments on the proof as
it follows very closely the proofs of Corollary 4.2 and Theorem 5.5 of [10]. As
mentioned in the beginning of this subsection, the discretization error is already
analyzed in Corollary (3.7). The simulation error |Y§ 0~ ?jfol is broken in its own
turn in two parts:

Y3 — ?£0| <|YJo—Yo|+|¥] - I}2ﬂ,0

’

where Yé’ , Z;j’ ,i =0,...,n are random variables defined exactly as in (40) but

with the pure cubature measures Q" in place of @:" We can then, using esti-
mates (34), (35), follow the steps in the proof of Theorem 3.4 and Corollary 4.2
of [10] to show that

Y7, = YT | <C/n’.

Finally, the influence of the sampling process to the error may be assessed exactly
as in Theorem 5.5 of [10]. Indeed, the only thing that differs between (40) and the
first order algorithm presented in [10] is the weight in the conditional expectations

N . AB! .
approximating Z, that is, Zl? versus ﬁ l=1,...,d. However, note that Z; is a

i

l
random variable of the same order as A;ﬂl which, and this is the crucial part, has
conditional expectation 0 when conditioned against ;. Hence the Lipschitz like
property as it appears in equations (5.7), (5.9) of the proof of Theorem 5.5 of [10]

is enjoyed by scheme (40). All else follows in an identical manner. [
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