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AVERAGING OVER FAST VARIABLES IN THE FLUID LIMIT FOR
MARKOV CHAINS: APPLICATION TO THE SUPERMARKET

MODEL WITH MEMORY

BY M. J. LUCZAK1 AND J. R. NORRIS2

London School of Economics and University of Cambridge

We set out a general procedure which allows the approximation of cer-
tain Markov chains by the solutions of differential equations. The chains con-
sidered have some components which oscillate rapidly and randomly, while
others are close to deterministic. The limiting dynamics are obtained by av-
eraging the drift of the latter with respect to a local equilibrium distribution
of the former. Some general estimates are proved under a uniform mixing
condition on the fast variable which give explicit error probabilities for the
fluid approximation. Mitzenmacher, Prabhakar and Shah [In Proc. 43rd Ann.
Symp. Found. Comp. Sci. (2002) 799–808, IEEE] introduced a variant with
memory of the “join the shortest queue” or “supermarket” model, and ob-
tained a limit picture for the case of a stable system in which the number of
queues and the total arrival rate are large. In this limit, the empirical distribu-
tion of queue sizes satisfies a differential equation, while the memory of the
system oscillates rapidly and randomly. We illustrate our general fluid limit
estimate by giving a proof of this limit picture.

1. A general fluid limit estimate. We describe a general framework to al-
low the incorporation of averaging over fast variables into fluid limit estimates
for Markov chains, building on the approach used in [2]. The main results of this
section, Theorems 1.5 and 1.6, establish explicit error probabilities for the fluid
approximation under assumptions which can be verified from knowledge of the
transition rates of the Markov chain. Also see [1] for related results.

1.1. Outline of the method. Let X = (Xt)t≥0 be a continuous-time Markov
chain with countable state-space S and with generator matrix Q = (q(ξ, ξ ′) : ξ,

ξ ′ ∈ S). Assume that the total jump rate q(ξ) is finite for all states ξ , and that
X is nonexplosive. Then the law of X is determined uniquely by Q and the law
of X0. Make a choice of fluid coordinates xi :S → R, for i = 1, . . . , d , and write
x = (x1, . . . , xd) :S → R

d . Consider the R
d -valued process X = (Xt )t≥0 given by
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Xt = (X1
t , . . . ,X

d
t ) = x(Xt). Call X the slow or fluid variable. Define for each

ξ ∈ S the drift vector

β(ξ) = Qx(ξ) = ∑
ξ ′ �=ξ

(
x(ξ ′) − x(ξ)

)
q(ξ, ξ ′).

Also, make a choice of an auxiliary coordinate y :S → I , for some countable set I ,
and set Yt = y(Xt). Call the process Y = (Yt )t≥0 the fast variable. For ξ ∈ S and
y′ ∈ I with y′ �= y(ξ), write γ (ξ, y′) for the total rate at which Y jumps to y′ when
X is at ξ . Thus

γ (ξ, y′) = ∑
ξ ′ : y(ξ ′)=y′

q(ξ, ξ ′).

Choose a subset U of R
d and a function b :U × I → R

d . Choose also, for each
x ∈ U , a generator matrix Gx = (g(x, y, y′) :y, y′ ∈ I ) having a unique invariant
distribution πx = (π(x, y) :y ∈ I ). These choices are to be made so that β(ξ) is
close to b(x(ξ), y(ξ)) and γ (ξ, y′) is close to g(x(ξ), y(ξ), y′) whenever x(ξ) ∈ U

and y′ ∈ I . Define for x ∈ U

b̄(x) = ∑
y∈I

b(x, y)π(x, y).

Then, under regularity assumptions to be specified later, there exists a function
χ :U × I → R

d such that

Gχ(x, y) = ∑
y′∈I

g(x, y, y′)χ(x, y′) = b(x, y) − b̄(x).(1)

Make a choice of such a function χ . Call χ the corrector for b.
Fix x0 ∈ U . We will assume that b̄ is Lipschitz on U . Then the differential

equation ẋt = b̄(xt ) has a unique maximal solution (xt )t<ζ in U starting from x0.
Fix t0 ∈ [0, ζ ). Then for t ≤ t0,

xt = x0 +
∫ t

0
b̄(xs) ds.(2)

Define for ξ ∈ S with x(ξ) ∈ U

x̄(ξ) = x(ξ) − χ(x(ξ), y(ξ)).

Let T be a stopping time such that Xt ∈ U for all t ≤ T . Then, under regularity
assumptions to be specified later, for t ≤ T ,

x̄(Xt) = x̄(X0) + Mt +
∫ t

0
β̄(Xs) ds,(3)

where M = M x̄ is a martingale and where

β̄ = Qx̄ = β − Q(χ(x, y)).(4)
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On subtracting equations (2) and (3) we obtain for t ≤ T ∧ t0

Xt − xt = X0 − x0 + χ(Xt , Yt ) − χ(X0, Y0) + Mt +
∫ t

0
�(Xs) ds

(5)

+
∫ t

0

(
β(Xs) − b(Xs, Ys)

)
ds +

∫ t

0

(
b̄(Xs) − b̄(xs)

)
ds,

where � = Gχ(x, y) − Q(χ(x, y)).
The discussion in the present paragraph is intended for orientation only, and

will play no essential role in the derivation of our results. Fix U0 ⊆ U such that
for all ξ, ξ ′ ∈ S with x(ξ) ∈ U0 and q(ξ, ξ ′) > 0 we have x(ξ ′) ∈ U . Assume that
T is chosen so that Xt ∈ U0 for all t ≤ T . Define for ξ ∈ S with x(ξ) ∈ U0 the
diffusivity tensor α(ξ) ∈ R

d ⊗ R
d by

αij (ξ) = ∑
ξ ′ �=ξ

(
x̄i (ξ ′) − x̄i (ξ)

)(
x̄j (ξ ′) − x̄j (ξ)

)
q(ξ, ξ ′)(6)

and define for t ≤ T

Nt = Mt ⊗ Mt −
∫ t

0
α(Xs) ds.

Then, under regularity assumptions, N is a martingale in R
d ⊗R

d . Choose a func-
tion a :U0 × I → R

d ⊗ R
d and set

ā(x) = ∑
y∈I

a(x, y)π(x, y).

This choice is to be made so that α(ξ) is close to a(x(ξ), y(ξ)) whenever
x(ξ) ∈ U0. Suppose we can also find a corrector for a, that is, a function χ̃ :U0 ×
I → R

d ⊗ R
d such that

Gχ̃(x, y) = a(x, y) − ā(x).(7)

Then, for t ≤ T ,∫ t

0
α(Xs) ds = χ̃(Xt , Yt ) − χ̃ (X0, Y0) − M̃t +

∫ t

0
�̃(Xs) ds

(8)

+
∫ t

0

(
α(Xs) − a(Xs, Ys)

)
ds +

∫ t

0
ā(Xs) ds,

where �̃ = Gχ̃(x, y)−Q(χ̃(x, y)) and, under suitable regularity conditions, M̃ =
Mχ̃ is a martingale up to T .

The martingale terms M and M̃ in (5) and (8) can be shown to be small, un-
der suitable conditions, using the following standard type of exponential martin-
gale inequality. In the form given here it may be deduced, for example, from [2],
Proposition 8.8, by setting f = θφ, A = θ2eθJ ε/2 and B = θδ.
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PROPOSITION 1.1. Let φ be a function on S. Define

Mt = M
φ
t = φ(Xt) − φ(X0) −

∫ t

0
Qφ(Xs) ds.

Write J = J (φ) for the maximum possible jump in φ(X), thus

J = sup
ξ,ξ ′∈S,q(ξ,ξ ′)>0

|φ(ξ ′) − φ(ξ)|.

Define a function α = αφ on S by

α(ξ) = ∑
ξ ′ �=ξ

{φ(ξ ′) − φ(ξ)}2q(ξ, ξ ′).

Then, for all δ, ε ∈ (0,∞) and all stopping times T , we have

P

(
sup
t≤T

Mt ≥ δ and
∫ T

0
α(Xt) dt ≤ ε

)
≤ exp{−δ2/(2εeθJ )},

where θ ∈ (0,∞) is determined by θeθJ = δ/ε.

Now, if β,γ,α are well approximated by b,g, a and if we can show that the
corrector terms in (5) and (8) are insignificant, then we may hope to use these
equations to show that the path (xt : t ≤ t0) provides a good (first order) approxi-
mation to (Xt : t ≤ t0) and, moreover, that the fluctuation process (Xt − xt : t ≤ t0)

is approximated (to second order) by a Gaussian process (Ft : t ≤ t0) given by

Ft = F0 + Bt +
∫ t

0
∇b̄(xs)Fs ds,

where (Bt : t ≤ t0) is a zero-mean Gaussian process in R
d with covariance

E(Bs ⊗ Bt) =
∫ s∧t

0
ā(xr) dr.

Our aim in the rest of this section is to give an explicit form of the first order
approximation with optimal error scale, that is, of the same order as the scale of
deviation predicted by the second order approximation. The next subsection con-
tains some preparatory material on correctors. A reader who wishes to understand
only the statement of the fluid limit estimate can skip directly to Section 1.3.

1.2. Correctors. In order to implement the method just outlined, it is neces-
sary either to come up with explicit correctors or to appeal to a general result which
guarantees the existence, subject to verifiable conditions, of correctors with good
properties. In this subsection we obtain such a general result. In fact, we shall find
conditions which guarantee the existence, for each bounded measurable function
f on U × I , of a good corrector for f , that is to say, a function χ = χf on U × I

such that

Gχ(x, y) = f (x, y) − f̄ (x),
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where

f̄ (x) = ∑
y∈I

f (x, y)π(x, y).

Moreover, we shall see that χf depends linearly on f and we shall obtain a uniform
bound and a continuity estimate for χf .

Assume that there is a constant ν ∈ (0,∞) such that, for all x ∈ U and all y ∈ I ,
the total rate of jumping from y under Gx does not exceed ν. Then we can choose
an auxiliary measurable space E, with a σ -field E , a family of probability measures
μ = (μx :x ∈ U) on (E, E ) and a measurable function F : I × E → I such that,
for all x ∈ U and all y, y′ ∈ I distinct,

g(x, y, y′) = νμx

({v ∈ E :F(y, v) = y′}).(9)

Let N = (N(t) : t ≥ 0) be a Poisson process of rate ν. Fix x ∈ U and let V =
(Vn :n ∈ N) be a sequence of independent random variables in E, all with law μx .
Thus

g(x, y, y′) = νP
(
F(y,Vn) = y′)

for all pairs of distinct states y, y′ and all n. Fix a reference state ȳ ∈ I . Given
y ∈ I , set Z0 = y and Z̄0 = ȳ and define recursively for n ≥ 0,

Zn+1 = F(Zn,Vn+1), Z̄n+1 = F(Z̄n,Vn+1).

Set Yt = ZN(t) and Ȳt = Z̄N(t). Then Y = (Yt )t≥0 and Ȳ = (Ȳt )t≥0 are both
Markov chains in I with generator matrix Gx , starting from y and ȳ, respectively,3

and are realized on the same probability space. We call the triple (ν,μ,F ) a cou-
pling mechanism. Define the coupling time

Tc = inf{t ≥ 0 :Yt = Ȳt }.
Assume that, for some positive constant τ , for all x ∈ U and all y, ȳ ∈ I ,

m(x,y, ȳ) = E(x,y,ȳ)(Tc) ≤ τ.(10)

Fix a bounded measurable function f on U × I and set

χ(x, y) = E(x,y)

∫ Tc

0

(
f (x,Yt ) − f (x, Ȳt )

)
dt.(11)

Then χ is well defined and, for all x ∈ U and all y ∈ I ,

|χ(x, y)| ≤ 2τ‖f ‖∞.(12)

PROPOSITION 1.2. The function χ is a corrector for f .

3The process Y introduced here is not the fast variable, also denoted Y in the rest of the paper: the
current Y is to be considered as a local approximation of the fast variable.
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PROOF. In the proof we suppress the variable x. Note first that, if instead of
taking Z̄0 = ȳ, we start Z̄ randomly with the invariant distribution π , then we
change the value of χ by a constant independent of y. Hence, it will suffice to
establish the corrector equation Gχ = f − f̄ in this case. Fix λ > 0 and define

φλ(y) = E

∫ Tλ

0
f (Yt ) dt, φ̄λ = E

∫ Tλ

0
f (Ȳt ) dt,

where Tλ = T1/λ, with T1 an independent exponential random variable of param-
eter 1. Then, since Y and Ȳ coincide after Tc,

φ̄λ − φλ(y) = E

∫ Tλ∧Tc

0

(
f (Ȳt ) − f (Yt )

)
dt → χ(y)

as λ → 0. By elementary conditioning arguments, (G − λ)φλ + f = 0 and
λφ̄λ = f̄ , so

(G − λ)(φ̄λ − φλ) = f − f̄ .

On passing to the limit λ → 0 in this equation, using bounded convergence we find
that Gχ = f − f̄ , as required. �

We remark that the corrector χ(x, ·) in fact depends only on f , Gx and the
choice of ȳ, as the preceding proof makes clear. The further choice of a coupling
mechanism is a way to obtain estimates on χ .

The following estimate will be used in dealing with the � term in (5). We write
‖μx − μx′‖ for the total variation distance between μx and μx′ .

PROPOSITION 1.3. For all x, x′ ∈ U and all y ∈ I ,

|χ(x, y) − χ(x′, y)| ≤ 2τ sup
z∈I

|f (x, z) − f (x′, z)|
(13)

+ 2ντ 2‖f ‖∞‖μx − μx′‖.
PROOF. By a standard construction (maximal coupling) there exists a se-

quence of independent random variables ((Vn,V
′
n) :n ∈ N) in E × E such that

Vn has distribution μx , V ′
n has distribution μx′ and P(Vn �= V ′

n) = 1
2‖μx − μx′‖ =

supA∈E |μx(A) − μx′(A)|, for all n. Write (Ft )t≥0 for the filtration of the marked
Poisson process obtained by marking N with the random variables (Vn,V

′
n). Con-

struct (Y, Ȳ ) from N and (Vn :n ∈ N) as above. Similarly construct (Y ′, Ȳ ′) from
N and (V ′

n :n ∈ N). Recall that Tc = inf{t ≥ 0 :Yt = Ȳt } and set T ′
c = inf{t ≥

0 :Y ′
t = Ȳ ′

t }. Set λ = 1
2ν‖μx − μx′‖ and set

D = inf{t ≥ 0 : (Yt , Ȳt ) �= (Y ′
t , Ȳ

′
t )}.

Then the process t �→ 1{D≤t} − λt is an (Ft )t≥0-supermartingale and Tc is an
(Ft )t≥0-stopping time. So, by optional stopping, we have P(D ≤ Tc) ≤ λE(Tc) ≤
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λτ . Moreover, by the strong Markov property, on {D ≤ Tc}, we have E(Tc −
D|FD) = m(x,YD, ȲD) ≤ τ so, for any function g : I → R

d , with |g| ≤ ‖f ‖∞,

E

∣∣∣∣
∫ Tc

D∧Tc

g(Yt ) dt

∣∣∣∣ ≤ τ‖f ‖∞P(D ≤ Tc) ≤ λτ 2‖f ‖∞.

On the other hand, ∫ D∧Tc

0
g(Yt ) dt =

∫ D∧T ′
c

0
g(Y ′

t ) dt

so ∣∣∣∣E
∫ Tc

0
g(Yt ) dt − E

∫ T ′
c

0
g(Y ′

t ) dt

∣∣∣∣ ≤ 2λτ 2‖f ‖∞ = ντ 2‖f ‖∞‖μx − μx′‖.
We apply this estimate with g = f (x, ·) to obtain

|χ(x, y) − χ(x′, y)|

=
∣∣∣∣E

∫ Tc

0

(
f (x, Ȳt ) − f (x,Yt )

)
dt − E

∫ T ′
c

0

(
f (x′, Ȳ ′

t ) − f (x′, Y ′
t )

)
dt

∣∣∣∣
≤ 2τ sup

z∈I

|f (x, z) − f (x′, z)| +
∣∣∣∣E

∫ Tc

0
f (x, Ȳt ) dt − E

∫ T ′
c

0
f (x, Ȳ ′

t ) dt

∣∣∣∣
+

∣∣∣∣E
∫ Tc

0
f (x,Yt ) dt − E

∫ T ′
c

0
f (x,Y ′

t ) dt

∣∣∣∣
≤ 2τ sup

z∈I

|f (x, z) − f (x′, z)| + 2ντ 2‖f ‖∞‖μx − μx′‖

as required. �

To summarize, we have shown the following proposition.

PROPOSITION 1.4. Assume conditions (9) and (10). Then, for any bounded
measurable function f on U × I , there exists a corrector χf for f satisfying the
estimates (12) and (13).

1.3. Statement of the estimates. Recall the context of Section 1.1. We con-
sider a continuous-time Markov chain X with countable state-space S and genera-
tor matrix Q. We choose fluid coordinates x :S → R

d and an auxiliary coordinate
y :S → I . We choose also a subset U ⊆ R

d , which provides a means of localiza-
tion, together with a map b :U × I → R

d , and a family G = (Gx :x ∈ U) of gen-
erator matrices on I , each having a unique invariant distribution πx . Also choose,
as in the preceding subsection, a coupling mechanism for G. This comprises a
constant ν > 0, an auxiliary space E, a function F : I × E → I and a family of
probability distributions μ = (μx :x ∈ U) on E such that

g(x, y, y′) = νμx

({v ∈ E :F(y, v) = y′}), x ∈ U,y, y′ ∈ I distinct.
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Define for x ∈ U

b̄(x) = ∑
y∈I

b(x, y)π(x, y).

Write Xt = x(Xt) and assume that (xt )0≤t≤t0 is a solution in U to ẋt = b̄(xt ). We
use a scaled supremum norm on R

d : fix positive constants σ1, . . . , σd and define
for x ∈ R

d

‖x‖ = max
1≤i≤d

|xi |/σi.

We now introduce some constants �,B, τ, J, J1(b), J (μ),K which character-
ize certain regularity properties of Q, b and G. Assume that, for all ξ ∈ S, all
x ∈ U and all y, y′ ∈ I ,

q(ξ) ≤ �, ‖b(x, y)‖ ≤ B, m(x, y, y′) ≤ τ.(14)

Here m(x,y, y′) is the mean coupling time for Gx starting from y and y′, defined
in the preceding subsection, which depends on the choice of coupling mechanism.
Write J for the set of pairs of points in U between which X can jump, thus

J = {(x, x′) ∈ U × U :x = x(ξ), x′ = x(ξ ′) for some ξ, ξ ′ ∈ S with q(ξ, ξ ′) > 0}.
Set

J = sup
(x,x′)∈J

‖x − x′‖,

J1(b) = sup
(x,x′)∈J ,y∈I

‖b(x, y) − b(x′, y)‖,

J (μ) = sup
(x,x′)∈J

‖μx − μx′‖.

Write K for the Lipschitz constant of b̄ on U ; thus, for all x, x ′ ∈ U ,

‖b̄(x) − b̄(x′)‖ ≤ K‖x − x′‖.(15)

Recall from Section 1.1 the definitions of the drift vector β for x and the jump rate
γ for y. Define

T = inf{t ≥ 0 : Xt /∈ U}.
Fix constants δ(β, b), δ(γ, g) ∈ (0,∞) and consider the events

�(β,b) =
{∫ T ∧t0

0
‖β(Xt) − b(x(Xt), y(Xt))‖dt ≤ δ(β, b)

}
(16)

and

�(γ,g) =
{∫ T ∧t0

0

∑
y′ �=y(Xt )

|γ (Xt , y
′) − g(x(Xt), y(Xt), y

′)|dt ≤ δ(γ, g)

}
.(17)
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THEOREM 1.5. Let ε > 0 be given and set δ = εe−Kt0/7. Assume that J ≤ ε

and

max
{‖X0 − x0‖, δ(β, b),2τBδ(γ, g),2τB,2�t0

(
τJ1(b) + ντ 2BJ(μ)

)} ≤ δ.

Set J̄ = J + 4τB and assume that δ ≤ �J̄ t0/4. Further assume that the following
tube condition holds:

for ξ ∈ S and t ≤ t0 ‖x(ξ) − xt‖ ≤ 2ε �⇒ x(ξ) ∈ U.

Then

P

(
sup
t≤t0

‖Xt − xt‖ > ε
)

≤ 2de−δ2/(4�J̄ 2t0) + P
(
�(β,b)c ∪ �(γ,g)c

)
.

The proof of this result follows the initial stages of the proof of the more elabo-
rate Theorem 1.6 below. We will not write it out separately but give further indica-
tions immediately before the statement of Theorem 1.6. The reader will understand
clearly the role of the inequalities which appear as hypotheses by following the
proof. Here is an informal guide to their meanings. The tube condition, together
with J ≤ ε, allows us to localize the other hypotheses to U by trapping the process
inside a tube around the limit path; these conditions can be satisfied by choosing
U sufficiently large. The conditions ‖X0 − x0‖ ≤ δ and δ(β, b) ≤ δ enforce that
the initial conditions and drift fields match closely. This requires, in particular, that
the fluid and auxiliary coordinates provide sufficient information to nearly deter-
mine β . The condition on δ(γ, g) forces a close match between the local behavior
of the fast variable and the idealized fast process used to compute the corrector.
The condition 2τB ≤ δ allows us to control the size of the corrector, balancing the
mean recurrence time of the fast variable τ against the range of the drift field b.
The condition on 2�t0(τJ1(b) + ντ 2BJ(μ)) is needed for local regularity of the
corrector, allowing us to pass back from the idealized fast process at one point x

to the actual fast variable when the fluid variable is near x. Finally, the condition
δ ≤ �J̄ t0/4 ensures we are in the “Gaussian regime” of the exponential martingale
inequality, where bad events cannot occur by a small number of large jumps. For a
nontrivial limiting dynamics, �J should be of order 1, while for a useful estimate
�J 2 should be small; thus, as expected, we can attempt to use the result when the
Markov chain takes small jumps at a high rate.

It is sometimes possible to improve on the constant �J̄ 2 appearing in the pre-
ceding estimate, thereby obtaining useful probability bounds for smaller choices
of ε. However, to do this we have to make hypotheses expressed in terms of a
corrector. Fix ȳ ∈ I and denote by χ the corrector for b given by (11). Define for
ξ ∈ S with x(ξ) ∈ U

x̄(ξ) = x(ξ) − χ(x(ξ), y(ξ)).
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Define, for ξ ∈ S such that x(ξ) ∈ U and x(ξ ′) ∈ U whenever q(ξ, ξ ′) > 0,

αi(ξ) = ∑
ξ ′ �=ξ

{x̄i (ξ ′) − x̄i (ξ)}2q(ξ, ξ ′), i = 1, . . . , d.

Note that, since we shall be interested only in upper bounds, we deal here only
with the diagonal terms of the diffusivity tensor defined at (6). Choose functions
ai : I → [0,∞) such that, for all ξ ∈ U where αi(ξ) is defined,

αi(ξ) ≤ ai(y(ξ)), i = 1, . . . , d.(18)

For simplicity, we do not allow a to depend on the fluid variable x(ξ). Since we
can localize our hypotheses near the (compact) limit path, we do not expect to
lose much precision by this simplification. On the other hand, by permitting a
dependence on the fast variable we can sometimes do significantly better than
Theorem 1.5, as we shall see in Section 2. Set

ā(x) = ∑
y∈I

a(y)π(x, y), x ∈ U.

We introduce two further constants A and Ā, with Ā ≤ A ≤ �J̄ 2. Assume that, for
all x ∈ U and all y ∈ I ,

ai(y) ≤ Aσ 2
i , āi(x) ≤ Āσ 2

i , i = 1, . . . , d.(19)

Note that the corrector bound (12) gives ‖χ(x(ξ), y(ξ))‖ ≤ 2τB , so αi(ξ) ≤
�J̄ 2σ 2

i and so (19) holds with A = Ā = �J̄ 2 and ai(y) = Aσ 2
i and āi (x) = Aσ 2

i .
Thus Theorem 1.5 follows directly from (20) below. The new inequalities required
on the left-hand side of (21) can be understood roughly as imposing that the ratio
of the averaged diffusivity to a uniform bound on the diffusivity is not too small
compared to the mean recurrence time of the fast variable; so an effective averag-
ing takes place.

THEOREM 1.6. Assume that the hypotheses of Theorem 1.5 hold and that
δJ̄ ≤ At0/4. Then

P

(
sup
t≤t0

‖Xt − xt‖ > ε
)

≤ 2de−δ2/(4At0) + P
(
�(β,b)c ∪ �(γ,g)c

)
.(20)

Moreover, under the further conditions δJ̄ ≤ Āt0/4 and

1

t0
max{τ, τδ(γ, g),�t0ντ 2J (μ)} ≤ Ā/(20A) ≤ �τ,(21)

we have

P

(
sup
t≤t0

‖Xt − xt‖ > ε
)

≤ 2de−δ2/(4Āt0) + 2de−(Ā/A)2t0/(6400�τ 2)

(22)
+ P

(
�(β,b)c ∪ �(γ,g)c

)
.
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PROOF. Consider the stopping time

T0 = inf{t ≥ 0 :‖Xt − xt‖ > ε}.
By the tube condition, we have T0 ≤ T . Moreover, for any t < T0 and any ξ ′ ∈ S

such that q(Xt , ξ
′) > 0, we have

‖x(ξ ′) − xt‖ ≤ J + ‖Xt − xt‖ ≤ 2ε

so by the tube condition x(ξ ′) ∈ U .
Recall that χ is the corrector for b given by (11). For the proof of (22), we shall

use (11) to also construct a corrector χ̃ for a. Set δ̃ = Āt0/10. Note from (12) the
bounds

‖χ(x, y)‖ ≤ 2τB ≤ δ, |χ̃ i(x, y)| ≤ 2τAσ 2
i ≤ δ̃σ 2

i .

The inequality involving δ̃ and further such inequalities below, which depend on
the first inequality in assumption (21), will not be used in the proof of (20). Write
� = Gχ(x, y)−Q(χ(x, y)) = �1 +�2 and �̃ = Gχ̃(x, y)−Q(χ̃(x, y)) = �̃1 +
�̃2, where

�1(ξ) = ∑
y′ �=y(ξ)

{g(x(ξ), y(ξ), y′) − γ (ξ, y′)}χ(x(ξ), y′)(23)

and

�2(ξ) = ∑
ξ ′ �=ξ

q(ξ, ξ ′){χ(x(ξ), y(ξ ′)) − χ(x(ξ ′), y(ξ ′))}(24)

and where �̃1 and �̃2 are defined analogously. Then, on �(γ,g), for t ≤ T ∧ t0,∥∥∥∥
∫ t

0
�1(Xs) ds

∥∥∥∥ ≤ 2τBδ(γ, g) ≤ δ

and, using Proposition 1.3,∥∥∥∥
∫ t

0
�2(Xs) ds

∥∥∥∥ ≤ 2�t0
(
τJ1(b) + ντ 2BJ(μ)

) ≤ δ.

Similarly, for t ≤ T ∧ t0,∣∣∣∣
∫ t

0
�̃i

1(Xs) ds

∣∣∣∣ ≤ 2τAδ(γ, g)σ 2
i ≤ δ̃σ 2

i

and ∣∣∣∣
∫ t

0
�̃i

2(Xs) ds

∣∣∣∣ ≤ 2�t0ντ 2AJ(μ)σ 2
i ≤ δ̃σ 2

i .

Take M = M x̄ as in equations (3) and (5) and consider the event

�(M) =
{

sup
t≤T0∧t0

‖Mt‖ ≤ δ
}
.
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Then, on �(β,b) ∩ �(γ,g) ∩ �(M), we can estimate the terms in (5) to obtain
for t ≤ T0 ∧ t0,

‖Xt − xt‖ ≤ 7δ + K

∫ t

0
‖Xs − xs‖ds,

so that ‖Xt − xt‖ ≤ ε by Gronwall’s lemma. Note that this forces T0 ≥ t0 and
hence, supt≤t0

‖Xt − xt‖ ≤ ε. Set ρ = 3Ā/2 and consider the event

�(a) =
{∫ T0∧t0

0
ai(Ys) ds ≤ ρt0σ

2
i for i = 1, . . . , d

}
.

By condition (18), on �(a) we have∫ T0∧t0

0
αi(Xs) ds ≤ ρt0σ

2
i .

Set

Ji = J (x̄i ) = sup
ξ,ξ ′∈S,x(ξ),x(ξ ′)∈U,q(ξ,ξ ′)>0

|x̄i (ξ) − x̄i (ξ ′)|, i = 1, . . . , d,

and use (12) to see that Ji ≤ J̄ σi . Determine θi ∈ (0,∞) by θie
θiJi = δ/(ρt0σi);

then θi ≤ δ/(ρt0σi), so θiJi ≤ 2δJ̄ /(3Āt0) ≤ 1/4, since we assumed that δJ̄ ≤
Āt0/4. Since e1/4 ≤ 4/3, we have ρeθiJi ≤ 2Ā. We now apply the exponential
martingale inequality, Proposition 1.1, substituting ±x̄i for φ for i = 1, . . . , d and
substituting δσi for δ and ρt0σ

2
i for ε. We thus obtain

P
(
�(M)c ∩ �(a)

) ≤ 2de−δ2/(4Āt0).

If we take Ā = A, then, using (18) and (19), we have �(a) = �, so the proof of
(20) is now complete.

Set η = 16�τ 2A2. We shall complete the proof of (22) by showing that

P
(
�(a)c ∩ �(γ,g)

) ≤ 2de−δ̃2/(4ηt0).

Take M̃ as in (8), with a as in (18). Then, for t ≤ T ,∫ t

0
a(Ys) ds = χ̃ (Xt , Yt ) − χ̃ (X0, Y0) − M̃t

(25)

+
∫ t

0
�̃(Xs) ds +

∫ t

0
ā(Xs) ds,

where �̃ = Gχ̃(x, y) − Q(χ̃(x, y)). Consider the event

�(M̃) =
{

sup
t≤T0∧t0

|M̃i
t | ≤ δ̃σ 2

i for i = 1, . . . , d
}
.

Then, on �(γ,g) ∩ �(M̃), we can estimate the terms in (25) to obtain∫ T0∧t0

0
ai(Ys) ds ≤ (5δ̃ + Āt0)σ

2
i ≤ ρt0σ

2
i .
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Hence, it will suffice to show that

P(�(M̃)c) ≤ 2de−δ̃2/(4ηt0).

For this, we again use the exponential martingale inequality. Take φ(ξ) =
±χ̃ i(x(ξ), y(ξ)) in Proposition 1.1 and note that αφ(ξ) ≤ 16�τ 2A2σ 4

i , so∫ T0∧t0

0
αφ(Xs) ds ≤ 16�τ 2A2σ 4

i t0 = ηt0σ
4
i .

Set

J̃i = J (φ) = sup
ξ,ξ ′∈S,x(ξ),x(ξ ′)∈U,q(ξ,ξ ′)>0

|φ(ξ) − φ(ξ ′)|, i = 1, . . . , d,

then J̃i ≤ 4τAσ 2
i . Determine θ̃i ∈ (0,∞) by θ̃ie

θ̃i J̃i = δ̃/(ηt0σ
2
i ). Then θ̃i ≤ δ̃/

(ηt0σ
2
i ) so θ̃i J̃i ≤ Ā/(40�τA) ≤ 1/2 and so eθ̃i J̃i ≤ 2. Hence,

P(�(M̃)c) ≤ 2d exp{−δ̃2/(2ηt0e
θ̃i J̃i )} ≤ 2de−δ̃2/(4ηt0)

as required. �

2. The supermarket model with memory. The supermarket model with
memory is a variant, introduced in [8], of the “join the shortest queue” model,
which has been widely studied [3–7, 9]. We shall rigorously verify the asymptotic
picture for large numbers of queues derived in [8]. This will serve as an example
to illustrate the general theory of the preceding sections. The explicit form of the
error probabilities in Theorem 1.6 is used to advantage in dealing with the infinite-
dimensional character of the limit model.

Fix λ ∈ (0,1) and an integer n ≥ 1. We shall consider the limiting behavior as
N → ∞ of the following queueing system. Customers arrive as a Poisson process
of rate Nλ at a system of N single-server queues. At any given time, the length
of one of the queues is kept under observation. This queue is called the memory
queue. On each arrival, an independent random sample of size n is chosen from the
set of all N queues. For simplicity, we sample with replacement, allowing repeats
and allowing the choice of the memory queue. The customer joins whichever of
the memory queue or the sampled queues is shortest, choosing randomly in the
event of a tie. Immediately after the customer has joined a queue, we switch the
memory queue, if necessary, so that it is the currently shortest queue among the
queues just sampled and the previous memory queue. The service requirements of
all customers are assumed independent and exponentially distributed of mean 1.

Write Zk
t = Z

N,k
t for the proportion of queues having at least k customers at

time t , and write Yt for length of the memory queue at time t . Set Zt = (Zk
t :k ∈ N)

and Xt = (Zt , Yt ). Then X = (Xt)t≥0 is a Markov chain, taking values in S =
S0 ×Z

+, where S0 is the set of nonincreasing sequences in N−1{0,1, . . . ,N} with
finitely many nonzero terms. We shall treat Y as a fast variable and prove a fluid
limit for Z as N → ∞.
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2.1. Statement of results. Let D be the set of nonincreasing sequences4 z =
(zk :k ∈ N) in the interval [0,1] such that

m(z) := ∑
k

zk < ∞.

Define for z ∈ D and k ∈ N

μ(z, k) =
k∏

j=1

zn
j

1 − pj−1(z)
,(26)

where

pk−1(z) = n(zk−1 − zk)z
n−1
k

and where we take z0 = 1. Set μ(z,0) = 1 for all z. An elementary calculation
(maximizing over zk while keeping zk−1 fixed) shows that in the case n ≥ 2,

pk−1(z) ≤ zn
k−1(1 − 1/n)n−1 ≤ (1 − 1/n)n/2 ≤ e−1/2 < 1.(27)

In the case n = 1 we have pk−1(z) = zk−1 − zk ≤ 1 and it is possible that 0/0
appears in the product (26). For definiteness we agree to set 0/0 = 1 in this case.
Note that μ(z, k) ≥ μ(z, k + 1) for all k ≥ 0. Define for z ∈ D

vk(z) = λzn
k−1μ(z, k − 1) − λzn

kμ(z, k) − (zk − zk+1)

and consider the differential equation

ż(t) = v(z(t)), t ≥ 0.(28)

By a solution to (28) in D we mean a family of differentiable functions
zk : [0,∞) → [0,1] such that for all t ≥ 0 and k ∈ N we have (zk(t) :k ∈ N) ∈ D

and

żk(t) = vk(z(t)).

THEOREM 2.1. For all z(0) ∈ D, the differential equation ż(t) = v(z(t)) has
a unique solution in D starting from z(0). Moreover, if (w(t) : t ∈ D) is another
solution in D with zk(0) ≤ wk(0) for all k, then zk(t) ≤ wk(t) for all k and all
t ≥ 0.

There is a fixed point of these dynamics a ∈ D given by setting a0 = 1 and
defining

ak+1 = λan
k μ(a, k), k ≥ 0.(29)

4To lighten the notation, we shall sometimes move the coordinate index from a superscript to a
subscript, allowing the nth power of the kth coordinate to be written zn

k . We shall also write the time
variable sometimes as a subscript, sometimes as an argument.
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The components of a decay super-geometrically. Set

α = n + 1
2 +

√
n2 + 1

4 .(30)

Then α ∈ (2n,2n + 1).

THEOREM 2.2. We have

lim
k→∞

1

k
log log

(
1

ak

)
= α.

Assume for simplicity that we start the queueing system from the state where
all queues, except the memory queue, are empty and where the memory queue
has exactly one customer. Write (z(t) : t ≥ 0) for the solution to (28) starting
from 0. Then zk(t) ≤ ak for all k and t . Our main result shows that (z(t) : t ≥ 0)

is a good approximation to the process of empirical distributions of queue lengths
(ZN(t) : t ≥ 0) for large N . The sense of this approximation is reasonably sharp.
In particular, as a straightforward corollary, we obtain that, on a given time interval
[0, t0], for any r > α−1, with high probability as N → ∞, no queue length exceeds
r log logN .

THEOREM 2.3. Set κ = (2α)−1 and define

d = d(N) = sup{k ∈ N :Nak > Nκ}.
Fix a function φ on N such that φ(N)/Nκ → 0 and logφ(N)/ log logN → ∞ as
N → ∞. Set ρ = 4/(1 − λ) when n = 1 and set ρ = 2n/(1 − e−1/2) when n ≥ 2.
Set ãd+1 = N−1an

d + ρdad+1. Then

lim
N→∞d(N)/ log logN = 1/α.(31)

Moreover, for all t0 ≥ 0, we have

lim
N→∞ P

(
sup
t≤t0

sup
k≤d

|ZN,k
t − zk

t |√
ak

≥
√

φ(N)

N

)
= 0(32)

and

lim
R→∞ lim sup

N→∞
P(Z

N,d+1
t ≥ Rãd+1 for some t ≤ t0) = 0(33)

and

lim
N→∞ P(Z

N,d+2
t = 0 for all t ≤ t0) = 1.(34)
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The argument used to prove this result would apply without modification start-
ing from any initial condition z(0) for the limit dynamics (28) such that zk(0) ≤ ak

for all k, with suitable conditions on the convergence of ZN(0) to z(0). It may be
harder to move beyond initial conditions which do not lie below the fixed point.
We do note here, however, a family of long-time upper bounds for the limit dy-
namics which might prove useful for such an extension. Fix j ∈ N and define
a

(j)
k = a(k−j)+ for each k ∈ Z

+; then a(j) is a fixed point of the modified equation

ẇk(t) = vk(w(t)) + (
wj(t) − wj+1(t)

)
1{k=j }.

Since the added term is always nonnegative, a similar argument to that used to
prove Theorem 2.1 in the next subsection also shows that, if z(0) ≤ a(j) and
(z(t) : t ≥ 0) is a solution of the original equation, then z(t) ≤ a(j) for all t .

2.2. Existence and monotonicity of the limit dynamics. The differential equa-
tion (28) characterizes the limit dynamics for the fluid variables in our queueing
model. Our analysis of its space of solutions will rest on the exploitation of certain
nonnegativity properties which have a natural probabilistic interpretation. We shall
use the following standard property of differential equations: if b = (b1, . . . , bd) is
a Lipschitz vector field on R

d such that b1(x) ≥ 0 whenever x = (x1, . . . , xd) with
x1 = 0, and if (x(t) : t ≤ t0) is a solution to ẋ(t) = b(x(t)) with x1(0) ≥ 0, then
x1(t) ≥ 0 for all t ≤ t0.

We consider first a truncated, finite-dimensional system. Fix d ∈ N and define a
vector field u = u(d) on D by setting uk(z) = vk(z) for k ≤ d − 1 and

ud(z) = λzn
d−1μ(z, d − 1) − λzn

dμ(z, d) − zd(35)

and uk(z) = 0 for k ≥ d + 1. Set D(d) = {(x1, . . . , xd,0,0, . . .) : 0 ≤ xd ≤ · · · ≤
x1 ≤ 1}.

PROPOSITION 2.4. For all x(0) ∈ D(d), the differential equation ẋ(t) =
u(x(t)) has a unique solution (x(t) : t ≥ 0) in D(d) starting from x(0).

PROOF. In the proof, we consider D(d) as a subset of R
d . The function u

is continuous on D(d) and is differentiable in the interior of D(d) with bounded
partial derivatives. [In the case n = 1, the singularity in (∂/∂xj )μ(x, k) for j ≤ k

as xj−1 − xj → 1 is canceled by the factor xk by which it is multiplied, since
xk ≤ xj on D(d).] For x ∈ D(d) we have u1(x) ≤ 0 when x1 = 1, and ud(x) ≥ 0
when xd = 0. Moreover, for k = 1, . . . , d − 1, if xk = xk+1 then pk(x) = 0 so

uk+1(x) = xn
k

(
μ(x, k) − μ(x, k + 1)

) ≤ μ(x, k) − μ(x, k + 1)

≤ xn
k−1μ(x, k − 1) − xn

k μ(x, k) ≤ uk(x).

The conclusion now follows by standard arguments. �
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PROOF OF THEOREM 2.1. Suppose that (w(t) : t ≥ 0) is a solution to ẇ(t) =
v(w(t)) in D starting from w(0), with z(0) ≤ w(0), that is to say zk(0) ≤ wk(0) for
all k. Fix d and write x(t) = z(d)(t) for the solution to ẋ(t) = u(d)(x(t)) in D(d)

starting from (z1(0), . . . , zd(0),0,0, . . .). Set y(t) = (w1(t), . . . ,wd(t),0,0, . . .)

and note that x(0) ≤ y(0) and y(t) ∈ D(d) for all t . We shall show that x(t) ≤ y(t)

for all t . Now consider D(d) as a subset of R
d . We have

ẏ(t) = u(y(t)) + wd+1(t)ed,

where ed = (0, . . . ,0,1). Note that wd+1(t) ≥ 0 for all t . Now u is Lipschitz on
D(d) and for k = 1, . . . , d we can show that5

x, y ∈ D(d), x ≤ y, xk = yk �⇒ uk(x) ≤ uk(y).

Hence, by a standard argument z(d)(t) = x(t) ≤ y(t) ≤ w(t) for all t . The same ar-
gument shows that z(d)(t) ≤ z(d+1)(t) for all t , so the limit zk(t) = limd→∞ z

(d)
k (t)

exists for all k and t , and z(t) ≤ w(t) for all t .
Fix k and take d ≥ k + 1. Then the following equation holds for all t :

z
(d)
k (t) +

∫ t

0
λz

(d)
k (s)nμ

(
z(d)(s), k

)
ds +

∫ t

0
z
(d)
k (s) ds

= zk(0) +
∫ t

0
λz

(d)
k−1(s)

nμ
(
z(d)(s), k − 1

)
ds +

∫ t

0
z
(d)
k+1(s) ds.

On letting d → ∞, we see by monotone convergence that

zk(t) +
∫ t

0
λzk(s)

nμ(z(s), k) ds +
∫ t

0
zk(s) ds

= zk(0) +
∫ t

0
λzk−1(s)

nμ
(
z(s), k − 1

)
ds +

∫ t

0
zk+1(s) ds.

Since z(t) ∈ D for all t , all integrands in this equation are bounded by 1. It is now
straightforward to see that (z(t) : t ≥ 0) is a solution.

Now

wk(t) +
∫ t

0
λwk(s)

nμ(w(s), k) ds +
∫ t

0
wk(s) ds

= wk(0) +
∫ t

0
λwk−1(s)

nμ
(
w(s), k − 1

)
ds +

∫ t

0
wk+1(s) ds.

5An elementary calculation shows that μ(x, j) ≤ μ(y, j) for all j whenever x ≤ y. This will also
be shown by a soft probabilistic argument in Section 2.6. The further condition xk = yk gives the
inequality

yn
k−1 − xn

k−1 ≥ n(yk−1 − xk−1)xn−1
k = pk−1(y) − pk−1(x) ≥ y2n

k

1 − pk−1(y)
− x2n

k

1 − pk−1(x)
.
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By summing these equations over k ∈ {1, . . . , d} we see that the map t �→∑d
k=1 wk(t)−λt is nonincreasing for all d . Hence, m(w(t)) ≤ m(w(0))+λt < ∞.

The equations can then be summed over all k and rearranged to obtain

m(w(t)) = m(w(0)) + λt −
∫ t

0
w1(s) ds.

On the other hand,

m
(
z(d)(t)

) = m
(
z(d)(0)

) + λt −
∫ t

0
z
(d)
1 (s) ds − λ

∫ t

0
z
(d)
d (s)nμ

(
z(d)(s), d

)
ds

so

m(w(t)) − m
(
z(d)(t)

) ≤ m(w(0)) − m
(
z(d)(0)

)
(36)

+ λ

∫ t

0
zd(s)nμ(z(s), d) ds.

If w(0) = z(0) then the right-hand side tends to 0 as d → ∞ so we must have
z(t) = w(t) for all t . �

2.3. Properties of the fixed point. Recall the definition (29) of the fixed
point a. Since μ(a, k) ≤ 1 for all k, we have

ak ≤ λ1+n+···+nk−1

so ak → 0 as k → ∞. Theorem 2.2 is then a straightforward corollary of the fol-
lowing estimate.

PROPOSITION 2.5. There is a constant C(λ,n) < ∞ such that, for all k ≥ 0,

C−1aα
k ≤ ak+1 ≤ Caα

k ,(37)

where α is given by (30).

PROOF. Note that, since a1 = λ, we have pk−1(a) = ak−1 −ak ≤ λ∨(1−λ) <

1 for all k when n = 1. On the other hand, equation (27) gives pk−1(z) ≤ e−1/2

for all k when n ≥ 2. Then from
∑∞

k=1 pk−1(a) ≤ 1, we obtain a constant c < ∞,
which may depend on λ when n = 1, such that

∞∏
k=1

1

1 − pk−1(a)
≤ c.

Then for k ≥ 0

λa2n
k

k−1∏
j=1

an
j ≤ ak+1 ≤ cλa2n

k

k−1∏
j=1

an
j ,
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so for k ≥ 1,

c−1a2n+1
k a−n

k−1 ≤ ak+1 ≤ ca2n+1
k a−n

k−1.(38)

Note that λaα
0 = λ = a1 ≤ λ−1aα

0 . Fix A ≥ 1/λ and suppose inductively that

A−1aα
k−1 ≤ ak ≤ Aaα

k−1.

On using these inequalities to estimate ak−1 in (38), we obtain

(cAn/α)−1aα
k ≤ ak+1 ≤ cAn/αaα

k ,

where we have used the fact that 1 −n/α = α − 2n. Hence, the induction proceeds
provided we take A ≥ cα/(α−n). �

2.4. Choice of fluid coordinates and fast variable. In the remaining subsec-
tions we apply Theorem 1.6 to deduce Theorem 2.3. Define d as in Theorem 2.3
and take as auxiliary space I = N when n = 1 and I = Z

+ when n ≥ 2. Make
the following choice of fluid and auxiliary coordinates: for ξ = (z, y) ∈ S with
z = (zk :k ∈ N), set

xk(ξ) = zk, k = 1, . . . , d, y(ξ) = y.

Thus our fluid variable is Xt = x(Xt) = (Z1
t , . . . ,Z

d
t ) and our fast variable is Yt =

y(Xt). Note that when n = 1, if Y0 ≥ 1 then Yt ≥ 1 for all t , so Y takes values in
I = N.

Let us compute the drift vector β(ξ) for X when X is in state ξ = (z, y) ∈ S.
Note that Xk makes a jump of size 1/N when a customer arrives at a queue of
length k − 1, and makes a jump of size −1/N when a customer departs from a
queue of length k, otherwise Xk is constant. The length of the queue which an
arriving customer joins depends on the length of the memory queue y and on
the lengths of the sampled queues. Denote the vector of sampled queue lengths
by V = V (z) = (V1, . . . , Vn) and write V (1) ≤ V (2) ≤ · · · ≤ V (n) for the ordered
queue lengths. Define min(v) = v1 ∧· · ·∧vn and set M = min(V ). Then M = V (1)

and

P(M ≥ k) = zn
k .

A new customer will go to a queue of length at least k if and only if M ≥ k and
y ≥ k. So the rate for an arrival to a queue of length exactly k − 1 is

NλP(M ≥ k − 1)1{y≥k−1} − NλP(M ≥ k)1{y≥k}.
The rate for a departure from a queue of length k is N(zk − zk+1). Hence, setting
z0 = 1, we have

βk(ξ) = λzn
k−11{y≥k−1} − λzn

k1{y≥k} − (zk − zk+1).

We now compute (an approximation to) the jump rates γ (ξ, y′) for Y when X is
in state ξ = (z, y) ∈ S. The rate of departures from the memory queue is at most 1.
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Arrivals to the system occur at rate Nλ. Occasionally, the memory queue falls
in the sample, an event of probability no greater than n/N and hence, of rate no
greater than λn. Assuming that the the memory queue does not fall in the sample,
the length of the memory queue after an arrival is given by

F(y,V ) = (y + 1)1{y≤M−1} + y1{M≤y≤P } + P 1{y≥P+1},(39)

where P = p(V ) is given by P = M + 1 when n = 1 and P = (M + 1) ∧ V (2)

otherwise. Hence, we have∑
y′ �=y(ξ)

∣∣γ (ξ, y′) − NλP
(
F(y,V (z)) = y′)∣∣ ≤ 1 + λn.(40)

2.5. Choice of limit characteristics and coupling mechanism. Define

U = {x ∈ R
d : 0 ≤ xd ≤ · · · ≤ x1 ≤ 1 and x1 ≤ (λ + 1)/2 and xk ≤ 2ak for all k}.

The condition x1 ≤ (λ + 1)/2 ensures that 1 − x1 is uniformly positive on U .
Define b :U × Z

+ → R
d by

bk(x, y) = λxn
k−11{y≥k−1} − λxn

k 1{y≥k} − (xk − xk+1),(41)

where we set x0 = 1 and xd+1 = 0. Then, for ξ ∈ S with x(ξ) ∈ U , we have

β(ξ) = b(x(ξ), y(ξ)) + (0, . . . ,0, zd+1).(42)

It is convenient to specify our choice of the generator matrices (Gx :x ∈ U) and our
choice of coupling mechanism at the same time. Set ν = Nλ and take as auxiliary
space E = (Z+)n. Define a family of probability distributions μ = (μx :x ∈ U)

on E, taking μx to be the law of a random sample V = V (x) = (V1, . . . , Vn) with

P(V1 ≥ k) = · · · = P(Vn ≥ k) = xk

for k = 0,1, . . . , d + 1. Note that

‖μx − μx′‖ ≤ 2n

d∑
k=1

|xk − x′
k|.(43)

Then define for distinct y, y′ ∈ Z
+,

g(x, y, y′) = NλP
(
F(y,V (x)) = y′),

where F is given by (39). We take as coupling mechanism the triple (ν,μ,F ).
Note that F(y, v) = F(ȳ, v) for all y, ȳ ∈ I whenever p(v) = min I . For x ∈ U

we have

P
(
p(V (x)) = 1

) ≥ 1 − x1 >
1 − λ

2
,

when n = 1, whereas for n ≥ 2 we have

P
(
p(V (x)) = 0

) ≥ (1 − x1)
2 >

(
1 − λ

2

)2

.
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Hence, we obtain, in all cases, m(x,y, ȳ) ≤ τ , where we set

τ = 4

Nλ(1 − λ)2 .

For ξ ∈ S with x = x(ξ) ∈ U we can realize a sample V (z) (from the distri-
bution of queue lengths) and the sample V (x) on the same probability space by
setting Vi(x) = Vi(z) ∧ d . Write M(x) = min(V (x)) and P(x) = p(V (x)). Then
M(x) = M(z) ∧ d and P(x) = P(z) ∧ (d + 1) when n = 1 and P(x) = P(z) ∧ d

when n ≥ 2. The difference between the two cases is that there is no second short-
est queue in the sample when n = 1. We have, for n = 1,

P
(
P(z) �= P(x)

) ≤ P
(
M(z) ≥ d + 1

) = zd+1

and, for n ≥ 2,

P
(
P(z) �= P(x)

) ≤ P
(
P(z) ≥ d + 1

) ≤ nzdzn−1
d+1.

Now P(x) = P(z) implies M(x) = M(z) and hence, F(y,V (x)) = F(y,V (z))

for all y. Hence,

P
(
F(y,V (z)) �= F(y,V (x))

) ≤ P
(
P(x) �= P(z)

)
.

On combining this with (40) we obtain∑
y′ �=y(ξ)

|γ (ξ, y′) − g(x(ξ), y(ξ), y′)| ≤ 1 + λn + Nλnzd+1.(44)

2.6. Local equilibrium distribution. The Markov chain determined by the
generator Gx has a unique closed communicating class, which is contained in
{0,1, . . . , d}. Hence, Gx has a unique equilibrium distribution πx which is sup-
ported on {0,1, . . . , d}. Consider a continuous-time Markov chain6 Y = (Yt )t≥0
with generator Gx , and initial distribution πx . Set μ(x, k) = P(Y0 ≥ k). Then Y

jumps into {0,1, . . . , k} from j at rate α = Nλ(1−xn
k+1 −pk(x)), for all j ≥ k+1.

On the other hand, Y jumps out of {0,1, . . . , k} only from k, and that at rate
β = Nλxn

k+1. Since the long run rates of such jumps must agree, we deduce that
αμ(x, k + 1) = βπx(k). Hence, we obtain

μ(x, k + 1)
(
1 − pk(x)

) = xn
k+1μ(x, k)

and so

μ(x, k) =
k∏

j=1

xn
j

1 − pj−1(x)
, k = 1, . . . , d.(45)

6See footnote 3.
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Hence, our present notation is consistent with the definition (26). Note also that,
for z ∈ D, μ(z, k) depends only on z1, . . . , zk ; in particular, if x = (z1, . . . , zd)

then μ(z, k) = μ(x, k) for all k ≤ d . Note that b̄ is given by

b̄k(x) = λxn
k−1μ(x, k−1)−λxn

k μ(x, k)−(xk −xk+1), k = 1, . . . , d,(46)

where x0 = 1 and xd+1 = 0. Hence, b̄ = u(d) as defined in Section 2.2.
A comparison of (35) and (41) now shows that b̄ = u(d).
Recall that ρ = 4/(1 −λ) when n = 1 and that ρ = 2n/(1 − e−1/2) when n ≥ 2.

Then for x ∈ U and k ≥ 1 we have

μ(x, k) = xn
k μ(x, k − 1)/

(
1 − pk−1(x)

) ≤ ρan
k μ(x, k − 1)

≤ ρan
k μ(x, k − 1)/

(
1 − pk−1(a)

)
so, for all x ∈ U and inductively for all k ≥ 1, we obtain

μ(x, k) ≤ ρkμ(a, k).(47)

The following argument shows that μ(z, k) ≤ μ(z′, k) for all k whenever z ≤ z′.
Fix d ≥ k and set x′ = (z′

1, . . . , z
′
d). Assume that x ≤ x′. By a standard construction

we can realize samples V = V (x) and V ′ = V (x′) on a common probability space
such that Vi ≤ V ′

i for all i. Then we can construct Markov chains Y and Y ′, having
generators Gx and Gx′ , respectively, on the canonical space of a marked Poisson
process of rate Nλ, where the marks are independent copies of (V ,V ′), as follows.
Set Y0 = Y ′

0 = 1 and define recursively at each jump time T of the Poisson process
YT = F(YT −,VT ) and Y ′

T = F(Y ′
T −,V ′

T ), where (VT ,V ′
T ) is the mark at time T .

Then, since F is nondecreasing in both arguments, we see by induction that Yt ≤
Y ′

t for all t . Hence, by convergence to equilibrium,

μ(z, k) = μ(x, k) = lim
t→∞P(Yt ≥ k) ≤ lim

t→∞P(Y ′
t ≥ k) = μ(x′, k) = μ(z′, k).

2.7. Corrector upper bound. We take as our reference state ȳ = min I and
note that, under the coupling mechanism, we have Ȳt ≤ Yt for all t . Then the kth
component of the corrector for b is given by

χk(x, y) = λEy

∫ Tc

0

(
xn
k−11{Ȳs<k−1≤Ys} − xn

k 1{Ȳs<k≤Ys}
)
ds,

so for x ∈ U and all y ∈ I we have

|χk(x, y)| ≤ τxn
k−1 ≤ Can

k−1/N.

Now fix y ≤ k −2 and consider the stopping time T = inf{t ≥ 0 :Yt = k −1}. Note
that Y can enter state k − 1 only from k − 2 and does so at rate Nλxn

k−1, whereas
Tc occurs in state k − 2 at rate at least Nλ(1−λ)2/4. Hence, Py(T ≤ Tc) ≤ Can

k−1
and so, by the Markov property,

Ey

∫ Tc

0
1{Ȳs<k−1≤Ys} ds ≤ Ey

(
1{T ≤Tc}m(x, k − 1, ȲT )

) ≤ Can
k−1τ ≤ Can

k−1/N.
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Hence, we obtain, for x ∈ U and all y ∈ I ,

|χk(x, y)| ≤ C
(
an
k−11{y≥k−1} + a2n

k−1
)
/N.(48)

2.8. Quadratic variation upper bound. The growth rate at ξ of the quadratic
variation of the corrected kth coordinate is given by

αk(ξ) = ∑
ξ ′ �=ξ

{x̄k(ξ
′) − x̄k(ξ)}2q(ξ, ξ ′).

Recall that x̄k = xk − χk(x, y). We estimate separately, writing x = x(ξ) and y =
y(ξ), ∑

ξ ′ �=ξ

{xk(ξ
′) − xk}2q(ξ, ξ ′) ≤ N−2(

Nxk + Nλxn
k−11{y≥k−1}

)

and ∑
ξ ′ �=ξ

{χk(x(ξ ′), y(ξ ′)) − χk(x, y)}2q(ξ, ξ ′) ≤ CN−1x2n
k−1.

When y ≤ k − 2, we can improve the last estimate by splitting the sum in two and
using ∑

ξ ′ �=ξ,y(ξ ′)≤k−2

{χk(x(ξ ′), y(ξ ′)) − χk(x, y)}2q(ξ, ξ ′) ≤ CN−1x4n
k−1

and ∑
ξ ′ �=ξ,y(ξ ′)≥k−1

{χk(x(ξ ′), y(ξ ′)) − χk(x, y)}2q(ξ, ξ ′) ≤ CN−1x3n
k−1.

We used (48) for the first inequality and for the second used∑
ξ ′ �=ξ,y(ξ ′)≥k−1

q(ξ, ξ ′) ≤ CNxn
k−1.

On combining these estimates we obtain

αk(ξ) ≤ C
(
xk + xn

k−11{y≥k−1} + x3n
k−1

) ≤ ak(y(ξ))/N,

where

ak(y(ξ)) = C
(
ak + an

k−11{y≥k−1}
)
/N.

Then, using the estimate (47) and the limit (31), we have

āk(x) = C
(
ak + an

k−1μ(x, k − 1)
) ≤ Cρd−1ak/N ≤ C(logN)Cak/N,

so we have for all x ∈ U and y ∈ I

ak(y) ≤ Aak, āk(x) ≤ Āak

with A = C/(Na
1−n/α
d ) and Ā = C(logN)C/N . It is straightforward to check that,

for N sufficiently large, we have Ā ≤ A ≤ �J̄ 2.
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2.9. Truncation estimates. A specific feature of the problem we consider is
that the limit dynamics is infinite dimensional, while the general fluid limit esti-
mate applies in a finite-dimensional context. In this subsection we establish some
truncation estimates which will allow us to reduce to finitely many dimensions.

Let (z(t) : t ≥ 0) be the solution in D to ż(t) = v(z(t)) starting from 0, as in
Theorem 2.3. Let (x(t) : t ≥ 0) be the solution to ẋ(t) = b̄(x(t)) starting from 0.

LEMMA 2.6. We have
d∑

k=1

|zk(t) − xk(t)| ≤ tad+1.

PROOF. Since b̄ = u(d), we have x(t) = z(d)(t) for all t , and so, from (36), we
obtain

d∑
k=1

|zk(t) − xk(t)| ≤
d∑

k=1

(
zk(t) − z

(d)
k (t)

) ≤ λ

∫ t

0
zd(s)nμ(z(t), d) ds

≤ tλan
dμ(a, d) = tad+1. �

Denote by Ak(t) the number of arrivals to queues of length at least k by time t .
Note that NZk+1

t ≤ Ak(t) for all k ≥ 1 and all t . Recall that

ãd+1 = N−1an
d + ρdad+1.

LEMMA 2.7. There is a constant C(λ,n) < ∞ such that, for all t ≥ 0 and
all N , we have

E
(
Ad(T ∧ t)

) ≤ CeCtNãd+1.

PROOF. Consider the function f on U × I given by f (x, y) = 1{y≥d} and
note that f̄ (x) = μ(x, d). Let χ be the corrector for f given by (11). Then, for all
x ∈ U and all y ∈ I ,

|χ(x, y)| ≤ 2τ‖f ‖∞ = 2τ = CN−1

and, whenever x = x(ξ) and x′ = x(ξ ′) with q(ξ, ξ ′) > 0, by the estimates (13)
and (43),

|χ(x, y) − χ(x′, y)| ≤ 2ντ 2‖f ‖∞‖μx − μx′‖ ≤ CN−2.(49)

By optional stopping,∣∣∣∣
∫ T ∧t

0
Q(χ(x, y))(Xs) ds

∣∣∣∣ = ∣∣E(
χ(XT ∧t , YT ∧t ) − χ(X0, Y0)

)∣∣ ≤ CN−1.

Now

Q(χ(x, y))(ξ) = 1{y≥d} − μ(x(ξ), d) − �1(ξ) − �2(ξ),
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where �1,�2 are given by (23), (24). We use (44) to obtain the estimate

|�1(ξ)| ≤ 2τ(1 + λn + Nλnzd+1) = C(zd+1 + N−1)

and from (49) deduce that

|�2(ξ)| ≤ N(1 + λ)CN−2 = CN−1.

So

E

∫ T ∧t

0
1{Ys≥d} ds ≤ CN−1 + E

∫ T ∧t

0

(
μ(Xs, d) + CZd+1

s + CN−1)
ds.

Set g(t) = E(Ad(T ∧ t)), then

g(t) = NλE

∫ T ∧t

0
(Xd

s )n1{Ys≥d} ds ≤ Nλ2nan
dE

∫ T ∧t

0
1{Ys≥d} ds

≤ Can
d

(
1 +

∫ t

0

(
Nρdμ(a, d) + 1 + g(s)

)
ds

)

≤ CNãd+1(1 + t) + C

∫ t

0
g(s) ds.

Here we have used the estimate μ(x, d) ≤ ρdμ(a, d) for x ∈ U . The claimed esti-
mate now follows by Gronwall’s lemma. �

Fix R ∈ (0,∞) and define

T̃ = inf{t ≥ 0 :Ad(t) ≥ RNãd+1} ∧ T .

LEMMA 2.8. There is a constant C(λ,n) < ∞ such that, for all t ≥ 0 and
all N , we have

E
(
Ad+1(T̃ ∧ t)

) ≤ C(1 + t)Rnãn
d+1 + CtRn+1Nãn+1

d+1.

PROOF. We argue as in the preceding proof, except now taking f (x, y) =
1{y≥d+1}, for which f̄ (x) = 0. We obtain

E

∫ T̃ ∧t

0
1{Ys≥d+1} ds ≤ CN−1 + CE

∫ T̃ ∧t

0
(Zd+1

s + CN−1) ds

and hence,

E
(
Ad+1(T̃ ∧ t)

) = NλE

∫ T̃ ∧t

0
(Zd+1

s )n1{Ys≥d+1} ds

≤ Nλ(Rãd+1)
n
E

∫ T̃ ∧t

0
1{Ys≥d+1} ds

≤ C(1 + t)Rnãn
d+1 + CtRn+1Nãn+1

d+1. �
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2.10. Proof of Theorem 2.3. Recall that α is defined by (30) and that α ∈
(2n,2n + 1). Note that α2 − (2n + 1)α + n = 0. Recall that κ = (2α)−1 and

d = d(N) = sup{k ∈ N :Nak > Nκ}.
The asymptotic growth rate (31) follows from Theorem 2.2. We shall use without
further comment below the inequalities

C−1a
1/α
k ≤ ak+1 ≤ Caα

k , k ≥ 0,

proved in Proposition 2.5 and the inequalities

ad+1 ≤ N−(1−κ) ≤ ad, d ≤ log logN,

the last being valid for all sufficiently large N .
By the truncation estimate, Lemma 2.6, we have

sup
t≤t0

sup
k≤d

|zk(t) − xk(t)|√
ak

≤ t0
ad+1√

ad

≤ Ct0a
1−1/(2α)
d+1 ≤ Ct0N

−1/2.

Since φ(N) → ∞ as N → ∞ it will therefore suffice to show (32) with (z(t) : t ≥
0) replaced by (x(t) : t ≥ 0).

We apply the general procedure of Section 1.3. Take as norm scales σk = √
ak

so that

‖x‖ = max
k

|xk|/√ak, x ∈ R
d .

We now identify suitable regularity constants �,B, τ, J, J1(b), J (μ),K . We write
C for a finite positive constant which may depend on λ and n and whose value may
vary from line to line. We shall see that, as N → ∞, the inequalities between these
regularity constants required in Theorem 1.6 become valid. The maximum jump
rate is bounded above by

� = N(1 + λ) = CN.

We refer to the form of b(x, y) given at (41) and note that, for x ∈ U and y ∈ I ,

‖b(x, y)‖ ≤ B = 2na
−1/2+n/α
d = Ca

−1/2+n/α
d .

We showed in Section 2.5 the following upper bound on the mean coupling time
of our coupling mechanism:

m(x,y, ȳ) ≤ τ = 4

Nλ(1 − λ)2 = CN−1.

We refer to Section 1.3 for the definitions of the jump bounds J,J1(b), J (μ) and
leave the reader to check the validity of the following inequalities:

J ≤ N−1a
−1/2
d , J1(b) ≤ CN−1a

−1/2+(n−1)/α
d , J (μ) ≤ 2nN−1.
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Recall from (46) the form of b̄. In estimating the Lipschitz constant K for b̄ on U ,
first note that, for x ∈ U and for j = 1, . . . , k − 1,∣∣∣∣ ∂

∂xj

xn
k−1μ(x, k − 1)

∣∣∣∣ ≤ Cxn
k−1μ(x, k − 1)(x−1

j + 1).

Here we have used the explicit form (26) of μ(x, k − 1) and the fact that (1 −
pj−1(x))−1 ≤ C on U . Also note the inequalities

x2n−1
k−1

√
ak−1

ak

≤ 22n−1a
2n−1/2−α/2
k−1 ≤ C,

∞∑
j=1

√
aj ≤ C.

We find, after some further straightforward estimation, that we can take K = C.
Recall the choice of function φ in the statement of Theorem 2.3. Set

ε =
√

φ(N)

N
, δ = εe−Kt0/7, δ(β, b) = δ, δ(γ, g) = δ/(2τB).

Recall that X0 = (1/N,0, . . . ,0) and x0 = 0 and that the driving rate ν for the
coupling mechanism is equal to Nλ. It is now straightforward to check that all the
inequalities required in the statement of Theorem 1.5 are valid, for all sufficiently
large N .

Now we check the tube condition of Theorem 1.5. The inequalities 0 ≤ xd(ξ) ≤
· · · ≤ x1(ξ) ≤ 1 hold for all ξ ∈ S. By a monotonicity property established in the
proof of Theorem 2.1, we have xk(t) ≤ ak for all t ≥ 0 and for k = 1, . . . , d . Hence,
for N sufficiently large, if ‖x(ξ) − x(t)‖ ≤ 2ε for some t ≥ 0, then xk(ξ) ≤ ak +
2ε

√
ak ≤ 2ak and x1(ξ) ≤ a1 + 2ε

√
a1 ≤ λ + (1 − λ)/2 ≤ (1 + λ)/2, so x(ξ) ∈ U

and the tube condition is satisfied.
Now we turn to the extra conditions needed to apply Theorem 1.6. We noted in

Section 2.8 the quadratic variation bounds

ak(y) ≤ Aσ 2
k , āk(x) ≤ Āσ 2

k ,

valid for all x ∈ U and y ∈ I , where

A = C/(Na
1−n/α
d ), Ā = C(logN)C/N

and where Ā ≤ A ≤ �J̄ 2 for sufficiently large N . It is now straightforward to
check, also for N sufficiently large, that the remaining inequalities required in the
statement of Theorem 1.6 hold. Theorem 1.6 therefore applies to give

P

(
sup
t≤t0

‖Xt − xt‖ > ε
)

≤ 2de−δ2/(4Āt0) + 2de−(Ā/A)2t0/(6400�τ 2)

(50)
+ P

(
�(β,b)c ∪ �(γ,g)c

)
.

Now, for N sufficiently large, we have d ≤ log logN and, by our choice of φ and κ ,

δ2/(4Āt0) ≥ φ(N)/((logN)Ct0) ≥ logN
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and

(Ā/A)2t0/(6400�τ 2) ≥ logN.

Hence, the first and second terms on the right-hand side of (50) tend to 0 as
N → ∞.

Recall from (16) and (17) the form of the events �(β,b) and �(γ,g). In the
present example, the complementary exceptional events arise either as a result of
truncation or because of finite N effects in the fast variable dynamics, as shown by
(42) and estimate (44). Recall that δ(β, b) = δ and δ(γ, g) = δ/(2τB). Then

�(β,b)c ⊆
{∫ T ∧t0

0

Zd+1
t√
ad

dt ≥ δ(β, b)

}
⊆

{
Ad(T ∧ t0) ≥ Nδ

√
ad

t0

}
.(51)

It is straightforward to check that, for all sufficiently large N , δ(γ, g) ≥ 2t0(1 +
λn), which implies that

�(γ,g)c ⊆
{∫ T ∧t0

0
(1 + λn + NλnZd+1

t ) dt ≥ δ(γ, g)

}
(52)

⊆
{
Ad(T ∧ t0) ≥ δ

4λnt0τB

}
.

To see that P(�(β, b)c ∪ �(γ,g)c) → 0 as N → ∞, we use the bound on
E(Ad(T ∧ t0)) proved in Lemma 2.7 and Markov’s inequality. It then suffices to
show that in the limit N → ∞,

C(an
d + ρdNad+1)e

Ct0 �
√

φ(N)Nad

4nt0
.

For the term involving an
d this is easy. For the other term, involving Nad+1, we can

check that, in fact,

Nad+1 � √
Nad, ρd ≤ (logN)C �

√
φ(N).

This completes the proof of (32). Limit (33) follows immediately from Lemma 2.7
using Markov’s inequality. Finally, note that, as N → ∞,

ãd+1 ≤ CN−1an
d + (logN)Cad+1 ≤ C

(
N−1 + (logN)CN−1+κ) → 0

and

Nãn+1
d+1 ≤ C

(
N−(1−κ)(n+1)/α + (logN)CN1−(1−κ)(n+1)) → 0.

Then the limit (34) follows from (33) and Lemma 2.8 using Markov’s inequality.
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2.11. Monotonicity of the queueing model. Here we prove a natural mono-
tonicity property of the supermarket model with memory which is a microscopic
counterpart of the monotonicity of solutions to the differential equation (28) shown
in Theorem 2.1. We do not rely on this result in the rest of the paper.

First we construct, on a single probability space, for all ξ = (z, y) ∈ S, a ver-
sion X = X(ξ) of the supermarket model with memory starting from ξ . Set
y1 = y1(ξ) = y and determine yi = yi(ξ) ∈ Z

+ for i = 2, . . . ,N by the conditions

y2 ≤ · · · ≤ yN, zk = ∣∣{i ∈ {1, . . . ,N} :yi ≥ k
}∣∣/N, k ∈ N.

We work on the canonical space of a marked Poisson process of rate N(1 + λ),
where the marks are either, with probability 1/(1 + λ), independent copies of a
uniform random variable J in {1, . . . ,N} or, with probability λ/(1 + λ), inde-
pendent copies of a uniform random sample (J1, . . . , Jn) from {1, . . . ,N}. Fix
ξ = (z, y) ∈ S and define a process X = X(ξ) = (Xt : t ≥ 0) in S as follows. Set
Xt = ξ for all t < T , where T is the first jump time of the Poisson process. If
the first mark is a random variable, J say, take the sequence y1, . . . , yN and re-
place yJ by (yJ − 1)+ to obtain a sequence u1, . . . , uN say; set ỹ1 = u1 and write
u2, . . . , uN in nondecreasing order to obtain ỹ2 ≤ · · · ≤ ỹN . If the first mark is a
random sample, (J1, . . . , Jn) say, select components (yi : i ∈ {1, J1, . . . , Jn}) and
write these in nondecreasing order, w1 ≤ · · · ≤ wm say; replace w1 by w1 + 1
and write the resulting sequence, again in nondecreasing order, v1 ≤ · · · ≤ vm

say; set ỹ1 = v1 and write v2, . . . , vm combined with the unselected compo-
nents (yi : i /∈ {1, J1, . . . , Jn}) in nondecreasing order to obtain ỹ2 ≤ · · · ≤ ỹN . Set
XT = ((Zk

T :k ∈ N), YT ), where

Zk
T = ∣∣{i ∈ {1, . . . ,N} : ỹi ≥ k

}∣∣/N, k ∈ N, YT = ỹ1,

and repeat the construction from XT in the usual way.
For ξ, ξ ′ ∈ S write ξ ≤ ξ ′ if yi(ξ) ≤ yi(ξ

′) for i = 1, . . . ,N .

THEOREM 2.9. Let ξ, ξ ′ ∈ S with ξ ≤ ξ ′. Then Xt(ξ) ≤ Xt(ξ
′) for all t ≥ 0.

PROOF. It will suffice to check that the desired inequality holds at the first
jump time T , that is to say, with obvious notation, that ỹi ≤ ỹ′

i for all i. Note that
if ai ≤ bi for all i for two sequences (a1, . . . , an) and (b1, . . . , bn), then the same
is true for their nondecreasing rearrangements. In the case where the first mark is a
random variable J , since yi ≤ y′

i for all i, we have ui ≤ u′
i for all i and so ỹi ≤ ỹ′

i

for all i. On the other hand, when the first mark is a random sample (J1, . . . , Jn),
we have wj ≤ w′

j for all j , so vj ≤ v′
j for all j , and so ỹi ≤ ỹ′

i for all i. �
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