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POISSON–DIRICHLET BRANCHING RANDOM WALKS

BY LOUIGI ADDARIO-BERRY1 AND KEVIN FORD2

McGill University and University of Illinois at Urbana-Champaign

We determine, to within O(1), the expected minimal position at level n

in certain branching random walks. The walks under consideration have dis-
placement vector (v1, v2, . . .), where each vj is the sum of j independent
Exponential(1) random variables and the different vi need not be indepen-
dent. In particular, our analysis applies to the Poisson–Dirichlet branching
random walk and to the Poisson-weighted infinite tree. As a corollary, we
also determine the expected height of a random recursive tree to within O(1).

1. Introduction. A branching random walk starts from an initial particle, the
root, with position 0. The root produces some number of children, who are ran-
domly displaced from their parent according to some displacement law. Each child
in turn produces some number of children, who are displaced from the position of
their parent according to the same law; and so on. In general, the displacements
of siblings relative to their parent may be dependent, but for distinct particles v

and w, the displacements of the children of v and of the children of w must be
independent. When the displacements are nonnegative, this is often called an age-
dependent branching process, and the displacements are thought of as “times to
birth.”

There is a natural tree associated with a branching random walk, where the ver-
tices correspond to particles, and an edge from parent to child is weighted with
the child’s displacement from its parent. More precisely, let T be the Ulam–Harris
tree, which has vertex set V = ⋃∞

n=0 N
n (we think of elements of N

n as concate-
nations of n integers, and take N

0 = {∅}), is rooted at ∅, and has an edge from v

to vi for each v ∈ V and each i ∈ N. We call N
n the nth generation of T , and for

v = v1, . . . , vn ∈ N
n, we say that v has parent p(v) = v1, . . . , vn−1 and children

vi, i ∈ N. (We will usually write Tn in place of N
n for readability.)

Now suppose X = (Xi : i ∈ N) is a random vector, where each Xi ∈ R ∪ {+∞}.
We do not require that the entries of X are independent of one another—this will
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be important below. Then we form a branching random walk by marking each ver-
tex v ∈ V with an independent copy Xv = (Xv

i : i ∈ N) of X. Write T for the pair
(T , {Xv :v ∈ V }); then T is our branching random walk. We call X the displace-
ment vector of T . 3 For each v ∈ V and i ∈ N, we regard Xv

i as the displacement
from v to vi, and let S(v) = S(v, T ) be the sum of the displacements on the path
from the root to v [formally, if v = v1, . . . , vn, then S(v) = ∑n

i=1 X
p(v1,...,vi )
vi , and

this sum is taken to be +∞ if any of its elements are +∞]. We say T has finite
branching if almost surely all but finitely many coordinates of X are equal to +∞.

For n ∈ N, let Mn = inf(S(v) :v ∈ N
n). In all situations we consider in this

paper, this infimum is attained, so Mn is the minimal displacement of any indi-
vidual in the nth generation. The minimal displacement is one of the most well-
studied parameters associated with branching random walks. It has been known
since the 1970s [7, 17, 20] that under quite general conditions, Mn grows asymp-
totically linearly with lower-order corrections. Recently there have been substan-
tial developments in understanding the finer behavior of Mn on two fronts: first,
convergence results for the lower order corrections [1, 3, 19]; and second, the con-
centration of Mn about its mean (or median) [1, 10, 11]. We refer to these as
the global behavior and the local behavior of Mn, respectively. Under suitable
conditions, Mn generally seems to exhibit the following behavior: for some con-
stants α ∈ R and β > 0, median(Mn) = αn + β logn + O(1), and, furthermore,
Mn/n → α almost surely and (Mn −αn)/ logn → β in probability (but not almost
surely [19]). Also, under sufficiently strong moment conditions for the displace-
ments, E{exp(γ |Mn − EMn|)} < ∞ for some γ > 0 and all n. (In fact, in some
cases the upper tail of Mn − EMn is even known to decay doubly-exponentially
quickly [5, 15].)

To date, however, all the results of the kind described in the preceding paragraph
that we are aware of require that the branching random walk has finite branching.
In this paper we study the global behavior of Mn for a class of branching random
walks which do not have finite branching. The class we consider is rather restricted
but nonetheless contains at least two interesting special cases, one related to the
factorization of random integers, and one related to the analysis of algorithms.
Say that X has exponential steps if for all i, Xi is distributed as the sum of i

independent Exponential(1) random variables. The main result of this paper is the
following theorem. For short, we denote

M̃n = median(Mn) := sup
{
x : P{Mn < x} < 1/2

}
.

THEOREM 1.1. If X has exponential steps, then

M̃n = n

e
+ 3

2e
logn + O(1).

3For the formal details of a probabilistic construction of branching random walks, see, for exam-
ple, [18].



POISSON–DIRICHLET BRANCHING RANDOM WALKS 285

REMARK 1. The O(1) term is uniform over n and over all BRW for which X
has exponential steps.

REMARK 2. Independently of the current work, Élie Aïdékon [2] has recently
proved, for a quite general family of random walks (including those considered
in this paper), that Mn − M̃n converges in distribution to a random variable M∗,
and describes the distribution of M∗ in terms of a functional of the limit of the
derivative martingale associated to the branching random walk.

Using methods from [15], we can deduce from Theorem 1.1 uniform exponen-
tial tails for Mn. In the next theorem and at other points throughout the paper, we
will use the Vinogradov notation f � g which means f = O(g), with subscripts
indicating dependence on any parameter, for example, f �k g means the constant
implied by the � symbol may depend on k but not on any other variable.

THEOREM 1.2. If X has exponential steps, then for any c1 < e, we have

P{Mn ≤ M̃n − x} �c1 e−c1x (n ≥ 1, x ≥ 0)

and for any c2 < 1,

P{Mn ≥ M̃n + x} �c2 e−c2x (n ≥ 1, x ≥ 0).

Again, the above estimates are uniform over all BRW under consideration. Also,
Theorem 1.2 implies that M̃n = EMn + O(1), and so both Theorems 1.1 and 1.2
hold with M̃n replaced by EMn.

The simplest example of a displacement vector with exponential steps is ob-
tained by taking X = (E1,E1 + E2, . . .), where {Ei}i∈N are i.i.d. Exponential(1)

random variables. In this case T is called the Poisson-weighted infinite tree [4] and
has been used very effectively in probabilistic combinatorial optimization. It also
arises in the analysis of an important tree-based data structure in the following way.
Order the elements of T in increasing order of displacement as {wi}i∈N, so, in par-
ticular, we have w1 = ∅,w2 = 1 ∈ N

1, and either w3 = 2 ∈ N
1 or w3 = 11 ∈ N

2.
Now for each m let Zm be the subtree of T induced by w1, . . . ,wm. By the memo-
ryless property of the exponential, it follows that the parent of wm+1 is a uniformly
random element of Zm—in other words, Zm is a random recursive tree for all m.
This connection is well known [22].

Zm is also the subtree of T induced by the set of nodes of displacement at
most S(wm). [Also, it is straightforwardly shown by induction and the memory-
less property of the exponential that the families (Zm)m∈N and (S(wm))m∈N are
independent, but we will not need this.] Let Hm be the height of Zm—the largest
generation containing a node of Zm. In other words, Hm = max{n :Mn ≤ S(wm)},
which is the representation that will be useful below. Devroye [12] showed that
Hm/ logm → e almost surely and in expectation, and Pittel [22] provided a dif-
ferent proof of the almost sure convergence. As a straightforward consequence of
Theorems 1.1 and 1.2, we obtain the following more precise information.
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COROLLARY 1.3. The height Hm of a random recursive tree on m nodes sat-
isfies EHm = e logm− 3

2 log logm+O(1). Furthermore, for all c′ < 1
2e

, all m ≥ 1,
k ≥ 1,

P{|Hm − EHm| ≥ k} �c′ e−c′k.

Since the proof of this corollary is very short, we include it in the Introduction.
In the proof we write har(s) = ∑s

i=1 1/i.

PROOF OF COROLLARY 1.3. The random variable S(wm) is distributed as
the sum, F1 + · · · + Fm−1, of independent random variables with Fi having
Exponential(i) distribution for i = 1, . . . ,m − 1. Equivalently, S(wm) is dis-
tributed as the maximum of m − 1 i.i.d. Exponential(1) random variables. Thus,
ES(wm) = har(m − 1) and for all x > 0,

P{S(wm) ≥ har(m − 1) + x} ≤ (m − 1)e−(har(m−1)+x) ≤ e−x,(1.1)

P{S(wm) ≤ har(m − 1) − x} = (
1 − e−(har(m−1)−x))m−1 ≤ e−ex−1

.(1.2)

Now write

d(m) = max{n : M̃n ≤ har(m − 1)} = e logm − 3
2 log logm + O(1)

and note that M̃d(m) = har(m − 1) + O(1) by Theorem 1.1. It follows that for
k ≥ 1, if Hm ≥ d(m) + k, then either

Md(m)+k ≤ har(m − 1) + k

2e
≤ M̃d(m)+k − k

2e
+ O(1),

or

S(wm) ≥ har(m − 1) + k

2e
.

By Theorem 1.2 and (1.1), it follows that P{Hm ≥ d(m) + k} �c1 e−c1k/(2e) for
each c1 < e. A similar argument using Theorem 1.2 and (1.2) shows the bound
P{Hm ≤ d(m) − k} �c2 e−c2k/(2e) for each c2 < 1. �

Another important example of a displacement vector with exponential steps
arises from a discrete time random fragmentation process. Let U1,U2, . . . be
independent uniform [0,1] random variables. Set G1 = U1 and for i > 1 set
Gi = (1 − U1) · · · · · (1 − Ui−1)Ui . The distribution of the sequence

G = (G1,G2, . . .)

was first studied, in greater generality, in [16]. (One motivation for Halmos’ pa-
per was a problem about loss of energy of neutrons after many collisions; after
each collision the neutron loses a random fraction of its current energy.) G is
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also a special case of the Griffiths–Engen–McCloskey GEM distribution. Fur-
ther, (Gσ(1),Gσ(2), . . .) has the Poisson–Dirichlet (or PD) distribution, where
σ : N → N is the permutation that arranges the terms of (G1,G2, . . .) in decreas-
ing order. (We remark that both the GEM and the PD distributions as defined
above are in fact special cases from a more general two-parameter family of dis-
tributions [21]—in the standard notation, we are considering the GEM(0,1) and
PD(0,1) distributions.) The PD distribution arises in a number of natural decom-
position situations, such as factorization of large random integers [9, 13] and cycle
lengths of random permutations [21].

Letting Xk = − logGk for each k yields a vector (X1,X2, . . .) with exponen-
tial steps. We refer to the resulting branching random walk as a Poisson–Dirichlet
branching random walk. This example has more complicated dependence between
the Xi than the first example. Since

∑∞
i=1 Gi = 1 almost surely, there is another

way to think of the branching random walk. Imagine that an object of mass m is
placed at the root ∅. The root divides this mass into pieces according to the vec-
tor G∅ and sends the pieces to its children, sending a mass mG∅

k to its kth child.
This rule is repeated recursively, so each node v sends proportion Gv

k of the mass
it receives to its kth child vk. This structure is variously called a multiplicative
cascade or, more commonly at the moment, a fragmentation process [6]. The spe-
cial case of Theorem 1.1 when T is a Poisson–Dirichlet branching random walk is
used in [15] to analyze a tree model related to primality testing, proving heuristic
evidence for the behavior of the distribution of tree heights. In this special case of
a PD branching random walk, a much stronger estimate for the right tail of Mn

was proved in [15], namely, for any c3 < 1,

P{Mn ≥ M̃n + x} ≤ exp{−ec3x−c4} (n ≥ 1, x ≥ 0),

where c4 is a constant depending on c3. Such a right tail bound cannot hold in gen-
eral; for example, for the case of T being a Poisson-weighted infinite tree, we have
P{M1 ≥ x} = e−x . (It seems likely that among branching random walks with expo-
nential steps, the Poisson-weighted infinite tree and the Poisson–Dirichlet branch-
ing random walk are extremal examples, with the former having the heaviest tails
for Mn − M̃n and the latter the strongest tail bounds for Mn − M̃n. However, we
do not have a precise conjecture in this direction.)

The Pratt tree for a prime p has root p whose children are the prime factors of
p − 1; the subtrees of the children of the root are recursively constructed in the
same fashion (stopping when p = 2). We let H(p) be the height of the Pratt tree
for p. It is easily seen that the height is always at most (logp)/(log 2) + 1. Such
trees were used by Pratt [23] to show that if p is prime, then there exists a certifi-
cate (formal proof) of the primality of p, of length O(H(p) logp) = O((logp)2).
It is then of interest to understand the “typical” behavior of H(p). [15] uses The-
orems 1.1 and 1.2 to support the following conjecture.

CONJECTURE 1.4 ([15], Conjecture 3). There exist constants c, c′ > 0 and
real numbers {E(p) :p prime} such that
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• H(p) = e logp − 3
2 log logp + E(p),

• for all z ≥ 0, and x ≥ 0,

e−c′zπ(x) � |{primesp ≤ x :E(p) ≥ z}| � e−czπ(x)

and

|{primesp ≤ x :E(p) ≤ −z}| � exp(−ecx)π(x).

Here π(x) is the number of primes which are at most x.

The structure of the remainder of the paper is as follows. In Section 2 we intro-
duce a little additional notation. In Section 3 we use straightforward calculations to
prove weak bounds on the likely value of Mn, and to “reduce the search space” of
nodes in Tn which have a chance of attaining the minimal displacement Mn. Sec-
tion 4 studies the sample path properties of a uniformly random element of certain
“homogeneous” subsets of Tn, and forms a key step of the proof. In Section 5 we
prove the lower bound of Theorem 1.1, and in Section 6 we prove the upper bound.
Finally, the details of the proof of Theorem 1.2 are found in Section 7.

2. Notation. Given v = v1v2, . . . , vn ∈ V , we let h(v) = ∑n
i=1 vi , and remark

that S(v) has distribution Gamma(h(v)). If v ∈ Tn, we write k(v) = h(v) − n, and
write Tn,k for the set of nodes v ∈ Tn with k(v) = k. We denote by Tn(x) [resp.,
Tn,k(x)] the set of nodes of Tn (resp., Tn,k) with displacement at most x.

The Bachmann–Landau notation o(·) and O(·) have their usual meaning. As
mentioned earlier, we use the Vinogradov notation f � g which means f = O(g).
We also use the Hardy notation f � g which means f = O(g) and g = O(f ).
Constants implied by these symbols are absolute unless otherwise indicated, for
example, by a subscript.

3. Some basic expectations. In order to restrict the set of nodes, we need to
consider when searching for the precise location of Mn, we first assert the follow-
ing two straightforward facts, whose proofs are forthcoming.

LEMMA 3.1. (a) The expected number of nodes v ∈ Tn with |h(v) − (1 +
1/e)n| ≤ √

n and with S(v) ≤ n/e + logn/(2e) is 
 1.
(b) The expected number of nodes v ∈ Tn with S(v) ≤ n/e + (2/e) logn and

with |h(v) − (1 + 1/e)n| > √
6n logn is O(n−1/2).

Together, (a) and (b) suggest that in order to find Mn, it should suffice to look at
nodes in Tn satisfying h(v) = (1 + 1/e)n + O(

√
n), as will indeed be the case. In

proving (a) and (b), we will in fact prove more general bounds that will be useful
throughout the paper.
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We first remark that for v ∈ V with h(v) = h, S(v) has density function

γh(x) = xh−1e−x

(h − 1)! (x ≥ 0).

For all n ≥ 1, k ≥ 0, we have

|Tn,k| =
(

n + k − 1
k

)
,(3.1)

so the sum of the density functions for nodes v ∈ Tn,k is

fn,k(x) =
(

n + k − 1
k

)
γn+k(x) = xn+k−1e−x

k!(n − 1)! = xk

k! · xn−1e−x

(n − 1)! .

This function will play a significant role, and we now derive bounds on its value
for a variety of ranges of k and x. We remark that assertions (a) and (b), above,
state, in particular, that to find Mn we should take both k and x near n/e. Thus,
writing k = (n + r)/e and x = (n + y)/e, by Stirling’s formula, we have

fn,k(x) = (1 + O(1/n + 1/k))

n + y

√
n

n + r
e(r−y)/e

(
1 − r − y

n + r

)(n+r)/e

(3.2)

×
(

1 + y

n

)n e3/2

2π
.

When r = O(
√

n), y = O(
√

n), we have (1 + y/n)n � ey and(
1 − (r − y)/(n + r)

)(n+r)/e � e−(r−y)/e

and so obtain the simpler approximation

fn,k(x) � ey

n
.

Consequently,

E

∣∣∣∣{v ∈ Tn,k :S(v) ≤
(
n + 1

2
logn

)/
e

}∣∣∣∣ �
∫ (logn)/2

0

ey

n
� n−1/2(3.3)

for any fixed k = n/e + O(
√

n)—where the constants implicit in O(
√

n) and
in (3.3) may depend on each other—and so we obtain

E

∣∣∣∣{v ∈ Tn,k :S(v) ≤
(
n + 1

2
logn

)/
e, |k − n/e| ≤ √

n

}∣∣∣∣ 
 1.

This justifies claim (a) of Lemma 3.1, and we now turn to Lemma 3.1(b). The next
lemma is [15, Lemma 5.1], and we give a different proof below.

LEMMA 3.2. For all n and x ≥ 0,

E|Tn(x)| = xn

n! .
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PROOF. We have

E|Tn(x)| = ∑
k≥0

∑
v∈Tn,k

P{S(v) ≤ x} = ∑
k≥0

∫ x

0
fn,k(t) dt = xn

n! . �

It follows immediately from Lemma 3.2 and Stirling’s formula that the median
of Mn is ≥ n

e
+ 1

2e
logn + O(1).

We next obtain bounds on the probability that k is very different from x when
x ≥ n/(2e). First we quote easy bounds for the tails of the Poisson distribution.

PROPOSITION 3.3. If z > 0 and 0 < α ≤ 1 ≤ β , then

∑
k≤αz

zk

k! <

(
e

α

)αz

,
∑

k≥βz

zk

k! <

(
e

β

)βz

.

PROOF. We have∑
k≤αz

zk

k! = ∑
k≤αz

(αz)k

k!
(

1

α

)k

≤
(

1

α

)αz ∑
k≤αz

(αz)k

k! <

(
e

α

)αz

.

The second inequality follows in the same way. �

An easy corollary is the following.

LEMMA 3.4. For 0 ≤ t ≤ x1/6,

∑
{k : |k−x|≥t

√
x}

fn,k(x) � e−t2/2 xn−1

(n − 1)! .

Taking t = �√5 logn� and integrating the above bound over n/e ≤ x ≤ n/e +
(2/e) logn, we obtain the bound

E

∣∣∣∣{v ∈ Tn :
n

e
≤ S(v) ≤ n + 2 logn

e
, |h(v) − S(v)| ≥

√
5n logn

}∣∣∣∣ = O

(
1

n1/2

)
.

Since
√

5n logn + (2/e) logn <
√

6n logn for n large, combining the preceding
expectation bound with Lemma 3.2 (applied with x = n/e) and Stirling’s formula,
it follows that

E

{∣∣∣∣ ⋃
{k : |k−n/e|≥√

6n logn}
Tn,k

(
(n + 2 logn)/e

)∣∣∣∣} = O

(
1

n1/2

)
,

which establishes Lemma 3.1(b).
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4. Randomly sampled random walk. For integers n ≥ 1, k ≥ 0 and a ver-
tex v = v1, . . . , vn ∈ Tn,k , let hi(v) = h(v1, . . . , vi) and Wi(v) = S(v1, . . . , vi)

for 1 ≤ i ≤ n, and write W(v) = (W1(v), . . . ,Wn(v)). We write W, Wi and hi

in place of W(v), Wi(v) and hi(v) when v is clear from context. We will al-
ways write vn,k for a uniformly random element of Tn,k , independent of vn′,k′ for
(n, k) �= (n′, k′), and write Wn,k for the distribution of the sequence W(vn,k) =
(W1(vn,k), . . . ,Wn(vn,k)). Although the sequence 0,W1, . . . ,Wn is not a random
walk, it is useful to think of it as such for the purposes of estimating various prob-
abilities.

Denote by Hn,k the set of vectors (h1, . . . , hn) of positive integers with
0 < h1 < · · · < hn = n + k and note that |Hn,k| = (n+k−1

k

)
. The sequence

(h1(vn,k), . . . , hn(vn,k)) is distributed as a uniformly random element of Hn,k .
For v ∈ Tn, let La = La(v) denote the event {Wi ≥ (i/n)Wn −a(i ≤ n)}. A ver-

tex v is called leading if L0(v) holds, and—informally—near-leading if La(v)

holds for some small a. [We also will need to consider the event Ra(v) = {Wi ≤
(i/n)Wn + a(i ≤ n)}, and when this event occurs we say v is “near trailing.”]

If Mn is not much larger than normal, v is the vertex at level n with minimal
S(v) and Wi ≤ (i/n)Wn − c for a large c, then Mi will be smaller than normal and
this is rare. Hence, with high probability v will be a near-leading vertex. On the
other hand, near-leading vertices are rare—a given vertex in Tn is near leading with
probability O(f (a)/n) for some function f . It will turn out, as in prior work [1],
that EMn is within O(1) of the smallest x such that the expected number of leading
nodes with displacement at most x is at least 1.

In this section we develop estimates for the probability that vertices of Tn,k are
near leading. As in [1], we also show that for a near-leading vertex v, it is rare for
Wi(v)− (i/n)Wn(v) to be small if i is far away from 0 and far from n. This useful
fact will play an important role in the proof of Theorem 1.1.

The next proposition, stated without proof, follows from the well-known fact
that a Poisson sample becomes a uniform sample once conditioned on the position
of the nth point.

PROPOSITION 4.1. For any positive real numbers b1, . . . , bn and B , and any
v ∈ Tn,

P
(
Wi ≥ bi(i < n)|Wn = B

) = P

(
Wi

Wn

≥ bi

B
(i < n)

)
,(4.1)

P
(
Wi ≤ bi(i < n)|Wn = B

) = P

(
Wi

Wn

≤ bi

B
(i < n)

)
.(4.2)

Proposition 4.1 allows us to rescale the values Wi to choose a convenient value
for Wn: for given B ′, letting b′

i = bi · B ′/B , the proposition implies that

P{Wi ≥ bi(i < n)|Wn = B} = P{Wi ≥ b′
i (i < n)|Wn = B ′}.
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We will use this fact rather casually in what follows. We will also use the following
variant of a well-known fact about cyclically exchangeable sequences.

PROPOSITION 4.2. For any S > 0,

P{L0(vn,k)|Wn = S} = P{R0(vn,k)|Wn = S} = 1

n
.

PROOF. For 0 ≤ l < n, let Wn+l = Wn + Wl . Then, for each 0 ≤ l < n and all
0 < j ≤ n, let W

(l)
j = Wj+l − Wl . Then for all l, W

(l)
n = Wn. Furthermore, each

sequence W(l) = (W
(l)
1 , . . . ,W

(l)
n ) has distribution Wn,k and a.s. exactly one of

them is leading by the Cycle lemma [14]. Similarly, exactly one of the sequences
W(l) is “trailing.” �

The following straightforward fact essentially says that conditioning on any sub-
set of the differences h1 −h0, . . . , hn −hn−1 breaks the sequence into independent
subsequences with distributions from the same family. The proof is omitted.

FACT 4.3. Fix integers n ≥ 1, k ≥ 0, and let (W1, . . . ,Wn) have law Wn,k .
Then for any integers 1 ≤ i ≤ m ≤ n, and 1 = n0 < n1 < · · · < nm = n, conditional
upon hi − hi−1, the sequence

(Wni−1+1 − Wni−1, . . . ,Wni
− Wni−1)

has law Wni−ni−1,(hi−hi−1)−(ni−ni−1), and is mutually independent of (h1, . . . , hn),
of (W1, . . . ,Wni−1), and of (Wni+1 − Wni

, . . . ,Wn − Wn−1).

The next two lemmas are analogs of Lemmas 11 and 12 in [1], and are
proved using some of the same ideas. Whereas lemmas in [1] use heavily the
fact that a random walk 0, S1, . . . , Sn can be broken into independent sub-walks
0, S1, . . . , Sj and 0, Sj+1 − Sj , . . . , Sn − Sj , in our situation the analogous subse-
quences 0,W1, . . . ,Wj and 0,Wj+1 − Wj, . . . ,Wn − Wj are not independent. We
circumvent the lack of independence by instead using Fact 4.3.

LEMMA 4.4. Uniformly for S > 0, 0 ≤ k ≤ n and a ≥ 0,

P{La(vn,k)|Wn(vn,k) = S} � (an/S)6 + 1

n
,

P{Ra(vn,k)|Wn(vn,k) = S} � (an/S)6 + 1

n
.

REMARK. Most likely, the exponent “6” can be replaced with “2,” in analogy
with results from [1] about ballot theorems for random walks.
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Given that La(vn,k) holds, it is likely that Wi − (i/n)Wn remains large when i

is far from 1 and far from n. It is also likely that hj is not too large when j is small,
and, similarly, hn − hj is not large when j is near n. The next two lemmas make
this very precise.

For v ∈ Tn, define the events

Ba(v) = {∃m ∈ [a40, n − a40] :Wm(v) ≤ (m/n)Wn(v) + min(m,n − m)1/40}
and

Da(v) = {∃j :hj (v) > 3aj or hn(v) − hj (v) > 3a(n − j)}.

LEMMA 4.5. Uniformly for 0 ≤ k ≤ n/2, n/10 ≤ S ≤ n and a ≥ 1,

P{La(vn,k),Ba(vn,k)|Wn(vn,k) = S} � 1

na7 .

LEMMA 4.6. Uniformly for 0 ≤ k ≤ n/2, n/10 ≤ S ≤ n and a ≥ 0,

P{La(vn,k),Da(vn,k)|Wn(vn,k) = S} � e−a

n
.

PROOF OF LEMMA 4.4. It suffices to prove the lemma when a ≥ 10. We
also assume a ≤ n1/6, or else the conclusion is trivial. Finally, in light of Propo-
sition 4.1, we may assume without loss of generality that S = n + k, so that
n ≤ S ≤ 2n.

Let

m = a2, l = �km/n�, n′ = n + 2m, k′ = k + 2l,

λ = n′ + k′

n′ , a′ = anλ

S
.

We remark that m, l ≤ n1/3, aλ/2 ≤ a′ ≤ aλ, and for n large enough 1 ≤ λ ≤ 3.
By Proposition 4.2,

A := P{L0(vn′,k′)|Wn′(vn′,k′) = λn′} = 1

n′ .(4.3)

Now let W′ = (W ′
1, . . . ,W

′
n′) be a sequence with law Wn′,k′ . We bound A from

below by counting only sequences with h′
m = m+ l and h′

n−m = (n′+k′)−(m+ l).
In this way, we can break W′ into three subsequences, namely,

W̃, where W̃j = W ′
j , h̃j = h′

j (1 ≤ j ≤ m),

W, where Wj = W ′
j+m − W ′

m,hj = h′
j+m − h′

j (1 ≤ j ≤ n),

Ŵ, where Ŵj = W ′
n′ − W ′

n′−j , ĥj = n′ + k′ − h′
n′−j (1 ≤ j ≤ m).
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That is, W̃ captures the first m steps, W the next n steps, and Ŵ the last m steps
taken in reverse order.

We’ll work with four events:

E1 = {h′
m = m + l, h′

n′−m = (n′ + k′) − (m + l)},
E2 = {W̃j ≥ λj (j ≤ m), W̃m − λm ∈ [a′,2a′]},
E3 = {Ŵj ≤ λj (j ≤ m), Ŵm − λm ∈ [−3a′,−2a′]},

E4(x) = {Wj ≥ λj − x(j < n)}.
Given E1, W̃ and Ŵ have law Wm,l , and W has law Wn,k , and all three are inde-
pendent. Also given E1, the events E2, E3 and E4(x) are independent. Thus,

A ≥ P{E1|W ′
n′ = λn′}P{E2|E1,W

′
n′ = λn′}P{E3|E1,W

′
n′ = λn′}

(4.4)
× inf

a′≤x≤2a′
−3a′≤y≤−2a′

P{E4(x)|E1,W
′
n′ = λn′,Wn = λn − x − y}.

Since m + l = O(n1/3), if k > 0, then a slightly tedious but routine computation
with Stirling’s formula and (3.1) gives

P{E1|W ′
n′ = λn′} =

(m+l−1
l

)2(n+k−1
k

)(n+2m+2l+k−1
k+2l

) �
(

m + l − 1
l

)2 k2ln2m

(n + k)2m+2l

(4.5)

� 1

l
.

When k = 0, trivially P{E1|W ′
n′ = λn′} = 1. For the remainder of the proof we

write P
c{·} to mean P{·|E1,W

′
n′ = λn′}. Next,

P
c{E2} = P

c{W̃j ≥ λj (j < m)|W̃m − λm ∈ [a′,2a′]}
(4.6)

× P
c{W̃m − λm ∈ [a′,2a′]}.

Given that W ′
n′ = λn′ and h′

m = m + l, W̃m has distribution

λn′ · Beta(m + l, n + k − m − l)

and, in particular, has mean

λn′(m + l)/(n + k) = λm + O

(
m2

n

)
= λm + O(1)

and variance

(λn′)2 (m + l)(n + k − m − l)

(n + k)2(n + k + 1)
= O(m).
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Since a′ ≥ a
2 ≥ 1

2

√
m, it follows from the definition of a Beta random variable that

the second probability on the right-hand side of (4.6) is 
 1. Applying Proposi-
tion 4.1 followed by Proposition 4.2, the first factor on the right-hand side of (4.6)
is

≥ inf
a′≤x≤2a′ P

c{W̃j ≥ λj (j < m)|W̃m = λm + x}

≥ inf
a′≤x≤2a′ P{L0(vm,l)|Wm(vm,l) = λm + x} = 1

m
.

Therefore,

P
c{E2} 
 1

m
= 1

a2 .(4.7)

Similarly,

P
c{E3} 
 inf−3a′≤y≤−2a′ P{L0(vm,l)|Wm(vm,l) = λm + y} = 1

m
= 1

a2 .(4.8)

Last, for a′ ≤ x ≤ 2a′ and −3a′ ≤ y ≤ −2a′, Proposition 4.1 yields

P
c{E4(x)|Wn = λn − x − y} = P

{
Wj

Wn

≥ λj − x

λn − x − y
(j ≤ n)

}

≥ P

{
Wj

Wn

≥ j

n
− a

S
(j ≤ n)

}
(4.9)

= P{La(vn,k)|Wn(vn,k) = S}.
Together, (4.3)–(4.9) imply

1

n

 1

a6 P{La(vn,k)|Wn(vn,k) = S},
which proves the first assertion of the lemma. The proof of the second part is
identical. �

PROOF OF LEMMA 4.5. Fix k, S and a as in the statement of the lemma.
We write Wm = Wm(vn,k), hm = hm(vn,k) and so on. If a40 > n/2, then there is
nothing to prove so we assume a40 ≤ n/2. For a40 ≤ m ≤ n − a40 and l ≥ 0, let

Am,l = P

{
La(vn,k),Wm ≤ m

n
S + min(m,n − m)1/40|Wn = S,hm = m + l

}
.

Break (W1, . . . ,Wn) into two sequences: W̃j = Wj for j ≤ m, and Ŵj = Wn −
Wn−j for j ≤ n−m (the latter being the final n−m steps taken in reverse). Given
hm = hm −h0, these sequences are independent by Fact 4.3. We write P

c{·} for the
conditional probability measure P{·|hm = m + l}, and E

c{·} for the corresponding
expectation operator. Also, let λ = n+k

n
.
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Suppose first that a40 ≤ m ≤ n/2. Put b = m1/40 n+k
S

and a′ = a n+k
S

. Note that
E

c{W̃m|Wn = S} = S · (m+ l)/(n+ k). Rescaling by (n+ k)/S (this is allowed by
the comment just after Proposition 4.1), by the definitions of b and a′ we have

Am,l ≤ P
c{W̃m − λm ∈ [−a′, b]|Wn = λn}

× sup
−a′≤x≤b

P
c{W̃j ≥ λj − a′(j < m)|W̃m = λm + x}(4.10)

× sup
−b≤x≤a′

P
c{Ŵj ≤ λj + a′(j < n − m)|Ŵn−m = λ(n − m) + x}.

Given that Wn = λn and hm = m+ l, W̃m has distribution λn · Beta(m+ l, k +n−
m − l) and so the first factor on the RHS of (4.10) is O(b/

√
m) uniformly in l and

in n. Applying Proposition 4.1 and the first inequality of Lemma 4.4, the second
factor on the RHS of (4.10) is

≤ P
c
{

W̃j

W̃m

≥ j

m
− a′ + bj/m

mλ + b
(j < m)

}

≤ P
c
{

W̃j

W̃m

≥ j

m
− a′ + b

mλ + b
(j < m)

}

= P{La′+b(vm,l)|Wm(vm,l) = mλ + b} � (a′ + b)6 + 1

m
� b6

m
,

so the product of the first two factors on the right-hand side of (4.10) is
O(b7m−3/2). Similarly, by Proposition 4.1 and the second inequality of Lem-
ma 4.4, the third factor on the RHS of (4.10) is

≤ P

{
Ŵj

Ŵn−m

≤ j

n − m
+ a′ + b

λ(n − m) − b
(j < n − m)

}
� b6

n − m
� b6

n
.

Combining these bounds, we obtain that when a40 ≤ m ≤ n/2, Am,l � b13/

(nm3/2). The estimation of Am,l with m > n/2 is identical, by reversing the roles
of W̃ and Ŵ. Therefore,

P
(
La(vn,k),Ba(vn,k)|Wn = S

) � ∑
a40≤m≤n/2

∑
l≥0

P{hm = m + l}Am,l

� 1

n

∑
a40≤m≤n/2

m13/40

m3/2 � 1

na7 .
�

PROOF OF LEMMA 4.6. As before, we write Wn = Wn(vn,k), hj = hj (vn,k)

and so on. We may assume a ≥ 10, or else the conclusion follows from Lemma 4.4.
We also assume k ≥ 1, or else hj = j for every j and Da(vn,k) is impossible.
For fixed j , given hj , the sequence (W1, . . . ,Wn) breaks into two independent
sequences W̃, consisting of the first j steps, and Ŵ, consisting of the last n − j
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steps taken in reverse. If Wn = S and La(vn,k) holds, then there is an integer b ≥
−a −1 so that W̃j − j

n
S ∈ [b, b+1]. Consequently, Ŵn−j − n−j

n
S ∈ [−b−1,−b].

Fix h such that h > 3aj and suppose that hj = j—note that in this case j <
n+k
3a

≤ n
20 . Given that hn = h and Wn = S, W̃j has distribution S · Beta(h,n +

k − h). Since k ≤ n/2 and S ≤ n, it is then straightforward to check that P{W̃j ≥
b|hn = h,Wn = S} ≤ e−b/4 for b ≥ 4h. We also have

P

{
Ŵi ≥ i

n
S − (a + b)(i ≤ n − j)

∣∣∣Ŵn−j − n − j

n
S ∈ [−b − 1,−b],

hj = h,Wn = S

}
≤ P

{
L2a+b(vn−j,k−h+j )

∣∣∣Wn−j (vn−j,k−h+j ) − n − j

n
S ∈ [−b − 1,−b]

}

� (2a + b)6

n

by Lemma 4.4 if b ≤ n1/6, and trivially otherwise. Summing on b, we find that

P{La(vn,k)|hj = h,Wn = S} � ∑
−a−1≤b≤4h

(2a + b)6

n
+ ∑

b>4h

(2a + b)6

neb/4 � h7

n
.

Note that (h1, . . . , hn) is independent of Wn and so P{hj = h|Wn = S} = P{hj =
h}. Since h − j ≤ k ≤ n/2, by Stirling’s formula,

P{hj = h} =
(

h − 1
h − j

) (n+k−h−1
k−h+j

)
(n+k−1

k

)
≤ hj

j ! · (n − 1) · · · (n − j) · k · · · (k − h + j + 1)

(n + k − 1) · · · (n + k − h)
(4.11)

≤
(

eh

j

)j(
k

n

)h−j

≤ (6ae)h/(3a)2−h < e−h/2,

the last inequality holding at least for a ≥ 5 (which we have assumed). Summing
over h > 3aj , then over j , we find that

P{La(vn,k),∃j :hj > 3aj |Wn = S} � 1

n

∑
j≥1

∑
h>3aj

h7e−h/2 � e−a

n
.(4.12)

Next, suppose h = hn − hj > 3a(n − j), in which case n − j < n
20 . Let b′ =

Wj − j
n
S. Since Wi+1 ≥ Wi for all i, Wj ≤ S and so b′ ≤ n−j

n
S ≤ n − j . Also, in

order for Ln,k(a) to occur, we must have b′ ≥ −a. Thus, writing I = [−a,n − j ],
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and ignoring the last n − j steps of W for an upper bound, we have

P{La(vn,k)|hn − hj = h,Wn = S}

≤ sup
b′∈I

P

{
W̃i ≥ i

n
S − a(i ≤ j)

∣∣∣W̃j = j

n
S + b′, hn − hj = h

}

≤ sup
b′∈I

P

{
La+b′(vj,n+k−h)

∣∣∣Wj(vj,n+k−h) = j

n
S + b′

}
.

Note that a ≤ n/2 [or else 3a > 3n/2 > n + k and Da(vn,k) is impossible]. Since
j ≥ 19

20n and b′ ≥ −a ≥ −n/2, by Lemma 4.4 and straightforward manipulations,
the last probability is O( 1

n
(a + b′)6) = O( 1

n
(a + n − j)6). Also, P{hn − hj =

h} = P{hn−j = h} < e−h/2 by the same calculation as in (4.11). Summing over
h > 3a(n − j) and j ≤ n − 1 gives

P{La(vn,k),∃j :hn − hj > 3a(n − j)|Wn = S} � e−a

n
.

Together with (4.12), this completes the proof. �

5. The lower bound in Theorem 1.1. We continue to adopt the notational
conventions from the previous section. Let c be a sufficiently large positive con-
stant, and b = ec/3. Let

Yn = ⋃
|k−n/e|≤√

6n logn

Tn,k

and put mn = n
e

+ 3 logn
2e

. If Mn ≤ mn − c, then one of the following must occur:

(i) For some v ∈ Tn, S(v) ≤ mn − logn;
(ii) For some k satisfying |k − n/e| >

√
6n logn and some v ∈ Tn,k , S(v) ≤

mn;
(iii) For some v ∈ Yn, mn − logn ≤ S(v) ≤ mn and Wi ≤ (i/n)Wn − logn for

some i;
(iv) For some v ∈ Yn, mn − logn ≤ S(v) ≤ mn − c and Wi ≥ (i/n)Wn − b for

all i;
(v) For some v ∈ Yn and some integer a ∈ [b, logn + 1], mn − logn ≤ S(v) ≤

mn, Wi ≥ (i/n)Wn − a for all i and Wj < (j/n)Wn − (a − 1) for some j (write
Fa,j for the event that this occurs for a given a and j with j minimal, and note
that these events are disjoint).

By Lemma 3.2 and Stirling’s forumula, the probability of (i) is at most
E{Tn(mn − logn)} = O(n1−e). The probability of (ii) is O(n−1/2) by Lem-
ma 3.1(b). If (iii) occurs, then Mi ≤ (i/n)mn − logn, and this happens with prob-
ability at most E{Ti((i/n)mn − logn)}, which is O(n3/2−ei−1/2) by Lemma 3.2.
Summing on i, we find that (iii) occurs with probability O(n2−e).
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To bound the probability of the event in (iv), we write Ek for the event that there
is v ∈ Tn,k for which mn − logn ≤ S(v) ≤ mn − c and Wi ≥ (i/n)Wn − b for all i,
so that by a union bound and Lemma 4.4, the probability of (iv) is at most∑

|k−n/e|≤√
6n logn

P{Ek}

≤ ∑
|k−n/e|≤√

6n logn

|Tn,k|P{mn − logn ≤ S(vn,k) ≤ mn − c,Lb(vn,k)}

� ∑
|k−n/e|≤√

6n logn

|Tn,k|P{mn − logn ≤ S(vn,k) ≤ mn − c} · b6

n
(5.1)

≤ b6

n
· E{Tn(mn − c)}

� e(2−e)c.

[This line of argument will arise again in bounding (v), and we will omit the de-
tails.]

Finally, we bound (v). To do so, we are forced to separately treat j in three
different ranges. First suppose j ≤ a40. If Fa,j occurs, then Mj ≤ (j/n)mn − a,
the probability of which is O(j−1/2e−ea) by Lemma 3.2. Summing on a and on
j ≤ a40 gives a total probability of O(e−2b) for this range of parameters.

Next suppose that a40 < j < n − a40, so that (min(j, n − j))1/40 ≥ a. If Fa,j

occurs, then for some v ∈ Yn, La(v) and Ba(v) both occur. Note that for n large
enough n/10 ≤ mn − logn ≤ mn ≤ n, and for all k for which Tn,k ⊆ Yn we have
0 ≤ k ≤ n/2. Thus, for such n, k and a, we may apply Lemma 4.5 to see that

P{La(vn,k),Ba(vn,k)|mn − logn ≤ Wn(vn,k) ≤ mn} � 1

na7 .

Further, the expected number of v ∈ Yn with S(v) ≤ mn is O(n) by Lemma 3.2.
By these two bounds and a reprise of the argument leading to (5.1), we see that
for a given a, the probability of

⋃
j∈[a40,n−a40] Fa,j is O(1/a7) and summing over

integers a ∈ [b, logn + 1] gives a total probability of O(1/b6) = O(e−2c).
Now suppose Fa,j holds with j ∈ [n − a40, n] and a ∈ [b, logn + 1]. By the

definition of Fa,j , letting w be the unique ancestor of v in Tj , the event La−1(w)

also occurs. Since j ≥ n− (logn+1)40, for n sufficiently large |mj − (j/n)mn| ≤
1 and, hence, S(w) ≤ mj + 1 − (a − 1). On the other hand, for any integer k′ ≥ 1,
by Lemma 4.4 we have

P{Wj(vj,k′) ≤ mj + 2 − a,La−1(vj,k′)} � a6

j
P{Wj(vj,k′) ≤ mj + 2 − a}.

By Lemma 3.2, it follows that

P{Fa,j } � a6

j
E|Tj (mj + 2 − a)| � a6e−ea.
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Summing first over j ∈ [n − a40, n], then over a ∈ [b, logn + 1], we see that the
probability Fa,j occurs for any a and j in this range is

� b46e−eb = exp{(46/3)c − e1+c/3} < e−2c

as long as c is large enough. Combining the three ranges, we obtain that (v) occurs
with probability � e−2c. Altogether, the probability that one of (i)–(v) holds is
� e(2−e)c, which is less than 1/2 if c is chosen large enough. Hence, M̃n ≥ mn −c.

6. The upper bound in Theorem 1.1. For the upper bound for median(Mn),
we use a second-moment method. By the Cauchy–Schwarz inequality, for any
nonnegative random variable X,

P{X > 0} ≥ [EX]2

EX2 .(6.1)

When X is the size of some random subset X of a ground set V0, we may
rewrite (6.1) using the fact that

EX2 = ∑
v,w∈V0

P{v ∈ X ,w ∈ X } = ∑
v∈V0

E[X|v ∈ X ]P{v ∈ X },

so that

P{X > 0} ≥ [EX]2∑
v∈V0

E[X|v ∈ X ]P{v ∈ X } ≥ EX

supv∈V0
E[X|v ∈ X ] .(6.2)

Let a be a large positive constant. Let V0 = Yn, where Yn is defined as in the
previous section, and let X be the set of nodes in v ∈ Yn satisfying

(i) mn − 1 ≤ S(v) ≤ mn,
(ii) La(v),

(iii) neither Ba(v) nor Da(v).

Taking X = |X |, by Lemma 3.1(b), plus Lemmas 4.2, 4.5 and 4.6, we have

EX ≥ E[Tn(mn) − Tn(mn − 1)]
(

1

n
− O

(
1

a7n

)
− O

(
e−a

n

))
− O

(
1

n1/2

)
(6.3)


 1

if a is chosen large enough.
Recall that for all v ∈ Yn, |k(v) − n/e| ≤ √

6n logn. For fixed v ∈ Yn, we need
to estimate E{X|v ∈ X }.

The definitions of the coming two paragraphs are for the most part depicted in
Figure 1. Write j = j (v, v′) for the integer 0 ≤ j < n such that v and v′ are descen-
dants of two distinct children of some node w = w(v, v′) ∈ Tj [and let j (v, v′) = n

if v = v′]. In other words, j (v, v′) is the generation of the most recent common
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FIG. 1. An illustration of some key definitions from the proof of the upper bound of Theorem 1.1.

ancestor of v and v′. Supposing 0 ≤ j (v, v′) ≤ n − 1, let x be the unique child
of w on the path from w to v′.

Also, write W = W(v) and W′ = (W ′
1, . . . ,W

′
n) = W(v′). Let g = n −

(j (v, v′) + 1), let W̃i = W̃i(v, v′) = W ′
j+i+1 − W ′

j+1 for 1 ≤ i ≤ g, and let

W̃ = (W̃1, . . . , W̃g), so, in particular, W ′
n = W ′

j+1 + W̃g .
Finally, let k′ = k(v′), let k1 = k1(v, v′) = k(x) − k(w) and let k2 = k′ − k(x),

so k1 + k2 = k′ − k(w). Note that once g and k2 are fixed, W̃ is independent of W
and has law Wg,k2 .

For integers j , 0 ≤ j ≤ n, let Fj = Fj (v) = {v′ ∈ X , j (v, v′) = j} and let Fj =
Fj (v) = E{|Fj ||v ∈ X }. Clearly, Fn = 1, as j = n implies v = v′.

Now fix v′. If v′ ∈ X , then by (i), (ii) and (iii), we have

k(x) ≤ 3a(j + 1), k′ − k(w) ≤ 3a(g + 1) = 3a(n − j)

and so

k1 + k2 ≤ 3a(n − j), k1 ≤ min
(
3a(j + 1),3a(g + 1)

)
(6.4)

and if v ∈ X , then, with j = j (v, v′), we have

Wj ≥ j

n
(mn − 1) +

{
(−a), whatever the value of j,

min(j, n − j)1/40, if a40 ≤ j ≤ n − a40.
(6.5)
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Consider separately four ranges of j . First, if n − a40 ≤ j ≤ n − 1, then for suf-
ficiently large n, (6.4) implies that k1 + k2 ≤ 3a(n − j), so Fj is deterministically
at most ∑

l≤3a(n−j)

|Tn−j,l| =
∑

l≤3a(n−j)

(
n − j + l − 1

l

)
≤ 3a41(a40 + 3a41)a

40
.

Hence, recalling that a is now a fixed, large constant,∑
n−a40≤j≤n

Fj � 1.(6.6)

Next, let r = (2 logn)40. If n − r < j ≤ n − a40, then for n sufficiently large,
j ≥ n − j = g + 1, and (6.5) implies that in order to have W ′

n ≤ mn we must have

W̃g ≤ g + 1

n
mn − g1/40 + 1 ≤ g/e − g1/40 + 2,

the second inequality holding for sufficiently large n. For fixed k1, by Lemma 3.2
we thus have

E
{|{v′ ∈ X , j (v, v′) = j, k1(v, v′) = k1}||v ∈ X

} ≤ ETg(g/e − g1/40 + 2)

� exp[−eg1/40].
Using (6.4) to bound k1 and summing over j yields∑

n−r<j≤n−a40

Fj � ∑
a40≤g≤r

a(g + 1) exp[−eg1/40] � 1.(6.7)

Next, suppose r ≤ j ≤ n − r . By (6.5), in order to have W ′
n ≤ mn, it must be

that

W̃g ≤ g + 1

n
mn − min(j, n − j)1/40 + 1 ≤ g

e
− logn.

Since we also require k1(v, v′) ≤ 3an by (6.4), we have Fj ≤ 3anETg(g/e −
logn) � 1/n2 for this range of j , and, hence,∑

r≤j≤n−r

Fj � 1

n
.(6.8)

Finally, suppose 0 ≤ j ≤ r . Here g ≥ n − r − 1 = n + O((logn)40), and since
La(v) holds by assumption, if v ∈ X , then

Wj ≥ j

n
Wn − a >

j

n
mn − (a + 1).

For each integer b ∈ [−(a + 1),2 logn), let Eb be the event that Wj − (j/n)mn ∈
[b, b + 1). Also, let E∗ be the event that Wj − (j/n)mn ≥ �2 logn�. The events
{Eb :−(a + 1) ≤ b < 2 logn} and E∗ together partition the event {v′ ∈ Fj (v)}, so
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by conditioning

Fj ≤ max
(
E{|Fj ||v ∈ X ,E∗}, max−(a+1)≤b<2 logn

E{|Fj ||v ∈ X ,Eb}
)
.(6.9)

If Wj ≥ (j/n)mn +2 logn, then to have v′ ∈ Fj , we must have W̃g(v
′) ≤ g/e−

logn so, as in the case r ≤ j ≤ n − r , we have

E{|Fj ||v ∈ X ,E∗} � 1

n2 .

Now suppose Wj −(j/n)mn ∈ [b, b+1], where b is an integer satisfying −a−1 ≤
b ≤ 2 logn. Note that if b < (j1/40 − 2) and a40 ≤ j ≤ r , then Fj (v) is necessarily
empty due to Ba(v), so for such j and b, E{|Fj ||v ∈ X ,Eb} = 0. For the rest, we
further subdivide Fj , writing Fj,l = {v′ ∈ X , j (v, v′) = j, k1(v, v′) = l}. By (6.4)
we have

E{|Fj ||v ∈ X ,Eb} = ∑
l≤3a(j+1)

E{|Fj,l||v ∈ X ,Eb}.

Suppose additionally that W ′
j+1(v

′) − W ′
j (v

′) ∈ [�,� + 1], where � is a nonneg-

ative integer. Since Wj(v
′) = Wj(v), in order to have v′ ∈ Fj , by (i) we require4

W̃g − g

n
mn ∈ [mn/n − (b + � + 3),mn/n − (b + �)].

Since 0 ≤ mn/n < 1 and, for n sufficiently large, mg − 1 ≤ (g/n)mn ≤ mg , this
implies that, writing I = [−(b + � + 4),−(b + � − 1)], we must have

W̃g − mg ∈ I.

By (i) and (ii), we also require

W̃i ≥ i

n
Wn − b − � − a − 2 ≥ i

g
mg − b − � − a − 3 (i ≤ g).

This implies that for all i ≤ g,

W̃i ≥ i

g
W̃g − max(b + � + a − 3, a − 2).

None of this depends on l, so for any 0 ≤ l ≤ 3a(j + 1), writing m = max(b +
� + a − 3, a − 2),

E{|Fj,l||v ∈ X ,Eb}
≤ ∑

1≤k2≤3a(j+1)

�≥0

E|{v ∈ Tg,k2 :S(v) − mg ∈ I,Lm(v)}|

4The mn/n terms come from the “skipped step” from W ′
j to W ′

j+1, and the (b + � + 3) comes
from b + 1, � + 1, and the requirement that S(v) ≥ mn − 1.
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≤ ∑
1≤k2≤3a(j+1)

�≥0

(
E

{
Tg,k2

(
mg − (b + � − 1)

)}

× sup
x∈I

P{Lm(vg,k2)|Wg(vg,k2) = mg + x}
)

� ∑
�≥0

E
{
Tg

(
mg − (b + � − 1)

)} · j · max(b + � + a − 3, a − 2)6

n

� ∑
�≥0

ne−e(b+�) · j · max(b + � + a − 3, a − 2)6

n

� je−eb(a + |b|)6,

the third-to-last line by Lemma 4.4 and the second-to-last by Lemma 3.2. Sum-
ming over 0 ≤ l ≤ 3a(j + 1), it follows that

E{|Fj ||v ∈ X ,Eb} � j2e−eb(a + |b|)6.

For j ≤ a40 this is O(1) uniformly in b. When j > a40 we also have b ≥ j1/40 − 2
and for such j , the above bound is O(j3e−ej1/40

). By (6.9) it follows that for such
0 ≤ j ≤ r ,

Fj �
{

1, if j ≤ a40,

max(n−2, j3 exp(−ej1/40)), if j > a40.

Summing on j , we find that ∑
0≤j≤r

Fj � 1.(6.10)

Together, (6.6)–(6.8) and (6.10) imply that for every v ∈ T ,

E[X :v ∈ X ] = O(1).

Combining this estimate with (6.2) and (6.3) shows that P{X > 0} 
 1, and if
X > 0, then Mn ≤ mn, so there exists an absolute constant ε > 0 such that for
all n,

P{Mn ≤ mn} ≥ ε.

From here it is straightforward to show that Mn ≤ M̃n + O(1), and we now do
so. The next two lemmas, taken from [15], are standard bounds for BRW. As the
proofs are short, we include them here.

LEMMA 6.1. For any BRW, positive integers m,n and positive real num-
bers M , N ,

P{Mm+n ≥ M + N} ≤ E
[
(P{Mn ≥ N})Tm(M)].
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PROOF. Suppose Mm+n ≥ M + N and Tm(M) = k. For each of these k indi-
viduals, all of their descendants in generation m + n are offset from their genera-
tion m ancestor by at least N . �

LEMMA 6.2. Let m,n be positive integers and let M > 0, ε > 0 be real. If
E{(1 − ε)Tm(M)} < 1

2 , then P{Mn < M̃n+m −M} ≤ ε. In particular, the conclusion
holds if P{Tm(M) < 1/ε} ≤ 1

5 .

PROOF. Let q = sup{x : P{Mn < x} < ε}; then P{Mn < q} ≤ ε. By Lem-
ma 6.1,

P{Mm+n ≥ M + q} ≤ E
[
(P{Mn ≥ q})Tm(M)] < 1

2 .

Therefore, M + q ≥ M̃m+n, and, thus, P{Mn < M̃m+n −M} ≤ P{Mn < q} ≤ ε. To
prove the second part, assume that P{Tm(M) < 1/ε} ≤ 1

5 . Then

E
{
(1 − ε)Tm(M)} ≤ P

{
Tm(m) <

1

ε

}
+

(
1 − P

{
Tm(M) <

1

ε

})
(1 − ε)1/ε

≤ 1

5
+ 4

5e
<

1

2
. �

Now take A such that P{T1(A) < 1/ε} ≤ 1
5 . By Lemma 6.2,

P{Mn ≤ M̃n − A} ≤ P{Mn ≤ M̃n+1 − A} ≤ ε

and, hence, M̃n ≤ Mn + A, which completes the proof of the upper bound in The-
orem 1.1.

7. Proof of Theorem 1.2. Let a > 1/e and 0 < η < ae/2. By Biggins’ ana-
log of Chernoff’s inequality for the BRW [8, Theorem 2], for large r we have
P{Tr(ar) ≤ (ae − η)r} ≤ 1

5 . Let r0 be large enough that, in addition, M̃n+r ≥
M̃n + (1/e − η)r for all r ≥ r0 and all n (such an r0 exists by Theorem 1.1).
Now fix r ≥ r0 and let M = ar , let m = r , and let ε = (ae − η)−r . We then have
P{Tm(M) < 1/ε} ≤ 1/5, so for all n, by the preceding bound for M̃n+r and by
Lemma 6.2, we obtain that

P{Mn ≤ M̃n − (a − 1/e + η)r} ≤ P{Mn ≤ M̃n+r − ar} ≤ (ae − η)−r .

The first estimate follows with c1 = log(ae−η)
(a−1/e+η)

. Fix a, let η → 0, then let a → 1/e,
so that c1 → e. This proves the first part of Theorem 1.2.

For the second part, fix 0 < ε < 1/50 and let δ = ε2, so that δ(1 + log((1 −
ε/5)/δ)) < ε/5. Then choose r0 sufficiently large that for all r ≥ r0, we have (1 −
ε/5)r + 2�log(2r)� < r , and for all s ≥ log(2r0), we have P{Ts(2s) ≤ 4s} ≤ e−1/δ

(as in the first part, such an r0 exists by [8, Theorem 2]).



306 L. ADDARIO-BERRY AND K. FORD

Recall that if h ∈ N
1 = T1 is a child of the root in T , then S(h) is Gamma(h)

distributed. Thus, for any positive integer r , by a union bound

P
{
T1

(
(1 − ε/5)r

) ≤ δr − 1
} ≤ ∑

h≤δr

P{S(h) ≥ (1 − ε/5)r}

= ∑
h≤δr

e−(1−ε/5)r ((1 − ε/5)r)h

h!
≤ e−(1−ε/5)re(1+log((1−ε/5)/δ))δr

≤ e−(1−2ε/5)r ,

the second-to-last inequality by Proposition 3.3.
Write s = �log(2r)�, and let E be the event that there are at least 4s nodes in

Ts+1 with displacement at most (1 − ε/5)r + 2s < r . If T1((1 − ε/5)r) > δr , then
either E occurs, or else for each h ≤ �δr − 1�, the number of v ∈ Ts+1 descending
from h ∈ T1 with S(v) − S(h) ≤ 2s is less than 4s . The latter event has probability
less than (e−(1/δ))δr−1 = e(1/δ)−r . It follows that

P{Ec} ≤ e−(1−2ε/5)r + e(1/δ)−r ≤ e−(1−ε/2)r ,

the last inequality holding for large r . Finally, if Mn > M̃n−(s+1) + r , then for each
node v ∈ Ts+1 with S(v) ≤ (1 − ε/5)r + 2s, for all w ∈ Tn descending from v we
must have S(w) − S(v) ≥ M̃n−(s+1). If E occurs, then there are at least 4s ≥ 2r

such nodes v, and so

P
{
Mn > M̃n−(s+1) + r

} ≤ e−(1−ε/2)r + 2−2r < e−(1−ε)r ,

the last inequality holding for large r . Since M̃n−(s+1) ≤ M̃n, the second part of
Theorem 1.2 is proved by letting ε → 0.
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