
The Annals of Applied Probability
2013, Vol. 23, No. 1, 230–250
DOI: 10.1214/11-AAP824
© Institute of Mathematical Statistics, 2013

POPULATION GENETICS OF NEUTRAL MUTATIONS IN
EXPONENTIALLY GROWING CANCER CELL POPULATIONS

BY RICK DURRETT1

Duke University

In order to analyze data from cancer genome sequencing projects, we
need to be able to distinguish causative, or “driver,” mutations from “pas-
senger” mutations that have no selective effect. Toward this end, we prove
results concerning the frequency of neutural mutations in exponentially grow-
ing multitype branching processes that have been widely used in cancer mod-
eling. Our results yield a simple new population genetics result for the site
frequency spectrum of a sample from an exponentially growing population.

1. Introduction. It is widely accepted that cancers result from an accumu-
lation of mutations that increase the fitness of tumor cells compared to the cells
that surround them. A number of studies [Sjöblom et al. (2006), Wood et al.
(2007), Parsons et al. (2008), The Cancer Genome Atlas (2008) and Jones et al.
(2008, 2010)] have sequenced the genomes of tumors in order to find the causative
or “driver” mutations. However, due to the large number of genes being sequenced,
one also finds a large number of “passenger” mutations that are genetically neutral
and hence have no role in the disease.

To explain the issues involved in distinguishing the two types of mutations, it is
useful to take a look at a data set. Wood et al. (2007) did a “discovery” screen in
which 18,191 genes were sequenced in 11 colorectal cancers, and then a “valida-
tion” screen in which the top candidates were sequenced in 96 additional tumors.
The 18 genes that were mutated five or more times mutated in the discovery screen
are given in Table 1. Here NS is short for nonsynonymous mutation, a nucleotide
substitution that changes the amino acid in the corresponding protein. The top four
genes in the list are well known to be associated with cancer.

• Adenomatous polyposis coli (APC) is a tumor suppressor gene. That is, when
both copies of the gene are knocked out in a cell, uncontrolled growth results. It
is widely accepted that the first stages of colon cancer are the loss of both copies
of the APC gene from some cell, see, e.g., Figure 4 in Luebeck and Moolgavkar
(2002).
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TABLE 1
Colorectal cancer data from Wood et al. (2007)

NS mutations Passenger probability

Gene Discovery Validation External SNP NS/S

APC 171 138 0.00 0.00 0.00
KRAS 79 62 0.00 0.00 0.00
TP53 79 61 0.00 0.00 0.00
PIK3CA 28 23 0.00 0.00 0.00
FBXW7 14 9 0.00 0.00 0.00
EPHA3 10 6 0.00 0.00 0.00
TCF7L2 10 7 0.00 0.00 0.01
ADAMTSL3 9 5 0.00 0.00 0.03
NAV3 8 3 0.00 0.01 0.64
GUCY1A2 7 4 0.00 0.00 0.01
MAP2K7 6 3 0.00 0.00 0.02

PRKD1 5 3 0.00 0.00 0.39
MMP2 5 2 0.00 0.02 0.61
SEC8L1 5 2 0.00 0.03 0.63
GNAS 5 2 0.00 0.04 0.67
ADAMTS18 5 2 0.00 0.07 0.82
RET 5 2 0.01 0.17 0.89
TNN 5 0 0.00 0.11 0.81

• Kras is an oncogene, i.e., one which causes trouble when a mutation increases
its expression level. Once Kras is turned on it recruits and activates proteins
necessary for the propagation of growth factors.

• TP53 which produces the protein p53 (named for its 53 kiloDalton size) is loved
by those who study “complex networks,” since it is known to be important and
appears with very high degree in protein interaction networks. p53 regulates the
cell cycle and has been called the “master watchman” referring to its role in
conserving stability by preventing genome mutation.

• The protein kinase PIK3CA is not as famous as the other three genes (e.g., it
does not yet have its own Wikipedia page) but it is known to be associated with
breast cancer. In a study of eight ovarian cancer tumors in Jones et al. (2010),
an A → G mutation was found at base 180,434,779 on chromosome 3 in six
tumors.

The next three genes on the list with the unromantic names FBXW7, EPHA3,
and TCF7L2 are all either known to be implicated in cancer or are likely suspects
because of the genetic pathways they are involved in. Use google if you want to
learn more about them.

The methodology that Wood et al. (2007) used for assessing passenger probabil-
ities is explained in detail in Parmigiani et al. (2007). In principle this is straightfor-
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ward: one calculates the probability that the observed number of mutations would
be seen if all mutations were neutral. The first problem is to estimate the neutral
mutation rate. In the column labeled “external” this estimate comes from experi-
mentally observed rates, while in the column labeled “SNP” they used the muta-
tions observed in the study, with the genes declared to be under selection excluded.
The estimation problem is made more complicated by the fact that DNA mutation
rates are context dependent. The two nucleotides in what geneticists call a CpG
(the p refers to the phosphodiester bond between the adjacent cytosine and the
guanine nucleotides) each mutate at roughly 10 times the rate of a thymine.

The third method for estimating passenger probabilities, inspired by population
genetics, is to look at the ratio of nonsynonymous to synonymous mutations after
these numbers have been scaled by dividing by the number of opportunities for
the two types of mutations. While the top dozen genes show strong signals of
not being neutral, as one moves down the list the situation becomes less clear,
and the probabilities reported in the last three columns sometimes give conflicting
messages. The passenger probabilities in the last column are in most cases higher
and in some cases such as NAV3 and tthe last three genes in the table are radically
different. My personal feeling is that in this context the NS/S test does not have
enough mutations to give it power to detect selection, but perhaps it is the other
two methods that are being fooled.

To investigate the number and frequency of neutral mutations observed in cancer
sequencing studies, we will use a well-studied framework in which an exponen-
tially growing cancer cell population is modeled as a multi-type branching process.
Cells of type i ≥ 0 give birth at rate ai and die at rate bi , where the growth rate
λi = ai − bi > 0. Thinking of cancer we will restrict our attention to the case in
which i → λi is increasing. To take care of mutations, we suppose that individuals
of type i also give birth at rate ui+1 to individuals of type i + 1 that have one more
mutation. This is slightly different from the approach of having mutations with
probability ui+1 at birth, which translates into a mutation rate of aiui+1, and this
must be kept in mind when comparing with other results.

Let τk be the time of the first type k mutation and let σk be the time of the
first type k mutation that gives rise to a family that lives forever. Following up on
initial studies by Iwasa, Nowak and Michor (2006), and Haeno, Iwasa and Michor
(2007), Durrett and Moseley (2010) have obtained results for τk and limit theorems
for the growth of Zk(t), the number of type k’s at time t . These authors did not
consider σk , but the extension is trivial: each type k mutation gives rise to a family
that lives forever with probability λk/ak , so all we have to do is to replace uk in
the limit theorem for τk by ukλk/ak .

1.1. Wave 0 results. To begin to understand the behavior of neutral mutations
in our cancer model, we first consider those that occur to type 0’s, which are a
branching process Z0(t) in which individuals give birth at rate a0 and die at rate
b0 < a0. It is well-known, see O’Connell (1993), that if we condition Z0(t) to not
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die out, and let Y0(t) be the number of individuals at time t whose families do not
die out, then Y0(t) is a Yule process in which births occur at rate γ = λ0/a0. Our
first problem is to investigate the population site frequency spectrum,

F(x) = lim
t→∞Ft(x),(1)

where Ft(x) is the expected number of neutral “passenger” mutations present in
more than a fraction x of the individuals at time t . To begin to compute F(x), we
note that

Y0(t)/Z0(t) → γ in probability,(2)

since each of the Z0(t) individuals at time t has a probability γ of starting a family
that does not die out, and the events are independent for different individuals.

It follows from (2) that it is enough to investigate the frequencies of neutral
mutations within Y0. If we take the viewpoint of the infinite alleles model, where
each mutation is to a type not seen before, then results can be obtained from Durrett
and Schweinsberg’s (2005) study of a gene duplication model. In their system there
is initially a single individual of type 1. No individual dies and each individual
independently gives birth to a new individual at rate 1. When a new individual is
born it has the same type as its parent with probability 1 − r and with probability r

is a new type which is different from all previously observed types.
Let TN be the first time there are N individuals and let FS,N be the number

of families of size > S at time TN . Omitting the precise error bounds given in
Theorem 1.3 of Durrett and Schweinsberg (2005), that result says

FS,N ≈ r�

(
2 − r

1 − r

)
NS−1/(1−r) for 1 � S � N1−r .(3)

The upper cutoff on S is needed for the result to hold. When S � N1−r , EFS,N

decays exponentially fast.
As mentioned above, the last conclusion gives a result for a branching process

with mutations according to the infinite alleles model, a subject first investigated
by Griffiths and Pakes (1988). To study DNA sequence data, we are more inter-
ested in the frequencies of individual mutations. Using ideas from Durrett and
Schweinsberg (2004) it is easy to show:

THEOREM 1. If passenger mutations occur at rate ν then F(x) = ν/γ x.

This theorem describes the population site frequency spectrum. As in Sec-
tion 1.5 of Durrett (2008), this can be used to derive the site frequency spectrum for
a sample of size n. Let ηn,m be the number of sites in a sample of size n where m

individuals in the sample have the mutant nucleotide. If one considers the Moran
model in a population of constant size N then

Eηn,m = 2Nν

m
for 1 ≤ m < n.(4)
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Using Theorem 1 now, we get a new result concerning the population genetics of
exponentially growing populations. Here we are considering a Moran model in an
exponentially growing population, see, e.g., Section 4.2 of Durrett (2008), rather
than a branching process.

THEOREM 2. Suppose that the mutation rate is ν and the population size t

units before the present is N(t) = Ne−γ t then as N → ∞

Eηn,m

⎧⎪⎪⎨
⎪⎪⎩

→ nν

γ
· 1

m(m − 1)
, 2 ≤ m < n,

∼ nν

γ
· log(Nγ ), m = 1,

(5)

where aN ∼ bN means aN/bN → 1.

To explain the result for m = 1, we note that, as Slatkin and Hudson (1991)
observed, genealogies in exponentially growing population tend to be star-shaped.
The time required for Y0(t) to reach size Nγ (and hence roughly the time for Z0(t)

to reach size N ) is ∼ (1/γ ) log(Nγ ), so the number of mutations on our n lineages
is roughly nν times this. Note that, (i) for a fixed sample size, Eηn,m, 2 ≤ m < n

are bounded independent of the final population size, and (ii) in contrast to (4), the
sample size replaces the population size in formula (5).

The result in Theorem 2 is considerably simpler than previous formulas. Let
L(t) be the number of lineages t units of time before the present. For 2 ≤ k ≤ n let
Tk = sup{t :L(t) ≥ k} be the first time at which the number of lineages is reduced
to k − 1, and let Sk = Tk − Tk+1 where Tn+1 = 0. Griffiths and Tavaré (1998)
have shown that under some mild assumptions (coalescent times have continuous
distributions, only two lineages coalesce at once, all coalescence events have equal
probability, Poisson process of mutations) the probability that a segregating site
has b mutant bases is

qn,b = (n − b − 1)!(b − 1)!∑n
k=2 k(k − 1)

(n−k
b−1

)
ESk

(n − 1)!∑n
k=2 kESk

.(6)

To apply this result to the coalescent with population size N(t) = Ne−γ t , one
needs formulas for ESk . See for example (52) in Polanski, Bobrowski, and Kim-
mel (2003). However, these formulas are complicated and difficult to evaluate nu-
merically, since they involve large terms of alternating size. To connect (6) with
the result in Theorem 2, we write

qn,1 = 1 −
∑n−1

k=2 k(n − k)ESk

(n − 1)
∑n

k=2 kESk

.

Equation (31) below will show that ESn ∼ logN while for 2 ≤ k < n, ESk = O(1)

so we have 1 − qn,1 = O(1/ logN) in agreement with (5).
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FIG. 1. Simulated site frequency spectrum when ν = γ , sample size n = 10, and population size
N = 100,000.

To check (5) Yifei Chen, a participant in a summer REU associated with Duke’s
math biology Research Training Grant, performed simulations. Figure 1 gives re-
sults for the average of 100 simulations with the indicated parameters. The agree-
ment is almost perfect for m ≥ 2 but the formula considerably over estimates
the number of singletons with (5), predicting 69.07 versus an observed value of
about 40. Given the approximations used in the proof of Theorem 2 in Section 2
for the case m = 1, this is not surprising. The next result derives a much better
result for Eηn,1 which gives a value of 36.66. See (27) for details of the numerical
calculation.

THEOREM 3.

Eηn,1 ≈ ν

γ

Nγ∑
k=1

n

n + k
· k

n + k − 1
.

Here ≈ means simply that this is an approximation which is better for finite N .
As N → ∞ the right-hand side ∼ (nν/γ ) log(Nγ ) the answer in Theorem 2.

The results for Eηn,m are useful for population genetics, but are not really rele-
vant to cancer modeling. To investigate genetic diversity in the exponentially grow-
ing population of humans, you would sequence the DNA of a sample of individuals
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from the population. However, in the study of cancer each patient has their own
exponentially growing cell population, so it is more interesting to have the infor-
mation provided by Theorem 1 about the fraction of cells in the population with a
given mutation.

NUMERICAL EXAMPLE. To illustrate the use of Theorem 1 suppose γ =
λ0/a0 = 0.01 and ν = 10−5. In support of the numbers we note that Bozic et al.
(2010) estimate that the selective advantage provided by a typical cancer driver
mutation is 0.004 ± 0.0004. As for the second, if the per nucleotide mutation rate
is 10−8 and there are 1000 nucleotides in a gene then a mutation rate of 10−5 per
gene results. In this case Theorem 1 predicts if we focus only on one gene then the
expected number of mutations with frequency > 0.1 is

F(0.1) = 10−5+2+1 = 0.01(7)

so, to a good first approximation, no particular neutral mutation occurs with an
appreciable frequency. Of course, if we are sequencing 20,000 genes then there
will be a few hundred passenger mutations seen in a given individual. On the other
hand there will be very few specific neutral mutations that will appear multiple
times in the sample.

1.2. Wave 1 results. We refer to the collection of type k individuals as wave k.
In order to analyze the cancer data, we also need results for neutral mutations in
waves k > 0 of the multitype branching process. We begin by recalling results from
Durrett and Moseley (2010) for type 1 individuals in the process with Z0(0) = 1
when we condition the event 	0∞ that the type 0’s do not die out. Let σ1 be the
time of the first “successful” type 1 mutation that gives rise to family that does not
die out. Then σ1 has median

s1
1/2 = 1

λ0
log

(
λ2

0a1

a0u1λ1

)
(8)

and as u1 → 0

P(σ1 > s1
1/2 + x/λ0) → (1 + ex)−1.(9)

For (8) see (7) in Durrett and Moseley (2010) and drop the 1 inside the logarithm.
The second result follows from the reasoning for (6) there.

In investigating the growth of type 1’s, it is convenient mathematically to as-
sume that Z∗

0(t) = V0e
λ0t for t ∈ (−∞,∞) and to let Z∗

k (t) be the number of
type k’s at time t in this system. Here the star is to remind us that we have ex-
tended Z0 to negative times. The probability of a mutation to type 1 at times t ≤ 0
is ≤ V0u1/λ0. In the concrete example u1/λ0 = 10−3, so this is likely to have
no effect. The last calculation omits two details that almost cancel out. When we
condition on survival of the type 0’s, EV0 = a0/λ0, but the probability a type 1
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mutation survives for all time is λ1/a1. Since a0 ≈ a1 we are too low by a factor
of λ1/λ0 = 2.

Durrett and Moseley (2010) have shown:

THEOREM 4. If we regard V0 as a fixed constant then as t → ∞, e−λ1t ×
Z∗

1(t) → V1 where V1 is the sum of the points in a Poisson process with mean
measure μ(x,∞) = cμ,1u1V0x

−α with α = λ0/λ1 and

cμ,1 = 1

a1

(
a1

λ1

)α

�(α).(10)

The Laplace transform E(e−θV1 |V0) = exp(−ch,1u1V0θ
α) where ch,1 = cμ,1�(1−

α). If V0 is exponential(λ0/a0) then

E exp(−θV1) = (
1 + ch,1u1(a0/λ0)θ

α)−1
.(11)

Here, and in what follows, constants like cμ,1, ch,1, and cθ,1 will depend on the
branching process parameters ai and bi , but not on the mutation rates ui . The con-
stant here is equal to, but written differently from, the one in Durrett and Moseley

ch,1 = 1

λ0

(
a1

λ1

)α−1

�(1 + α)�(1 − α) = 1

a1

λ1

λ0

(
a1

λ1

)α

α�(α)�(1 − α).

To prepare for later results note that the formula for the Laplace transform shows
that conditional on V0, V1 has a one sided stable distribution with index α.

The point process in Theorem 4 describes the contributions of the successful
type 1 mutations to Z1(t). The first such mutation occurs at time σ1, which has
median s1

1/2. The derivation of Theorem 4 is based on the observation that a muta-

tion at time s will grow to size ≈ eλ1(t−s)W1 by time t , where W1 has distribution

W1 =d

b1

a1
δ0 + λ1

a1
exponential(λ1/a1)

and hence make a contribution of e
−λ1(s−s1

1/2) to the limit V̄1. Thus we expect that
most of the mutations that make a significant contribution will come within a time
O(1/λ1) of s1

1/2.
The complicated constants in Theorem 4 can be simplified if we instead look at

the limit

e
−λ1(t−s1

1/2)Z∗
1(t) → V̄1 =d V1 exp(λ1s

1
1/2).

Using the definition of s1
1/2 in (8) and recalling α = λ0/λ1 we see that

exp(λ1s
1
1/2) =

(
λ0a1

a0u1
· α

)1/α
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and hence using (11)

E exp(−θV̄1) =
(

1 + α�(α)�(1 − α)

(
a1θ

λ1

)α)−1

.(12)

The combination of Gamma functions is easy to evaluate, since Euler’s reflection
function implies that

α�(α)�(1 − α) = πα

sin(πα)
> 1.(13)

A second look at (12) shows that a1V̄1/λ1 has a distribution that only depends
on α. For comparison, note that if V0 is exponential(λ0/a0) then a0V0/λ0 is
exponential(1).

Using results for one-sided stable laws, Durrett et al. (2011) were able to prove
results about the genetic diversity of wave 1. Define Simpson’s index to be the
limiting probability two randomly chosen individuals in wave 1 are descended
from the same type 1 mutation. In symbols, it is the p = 2 case of the following
definition

Rp =
∞∑
i=1

X
p
i

V
p
1

,

where X1 > X2 > · · · are points in the Poisson process and V1 is the sum. The
result for the mean, which comes from a result of Fuchs, Joffe and Teugels (2001),
is much simpler than one could reasonably expect.

THEOREM 5. ER2 = 1 − α.

After this paper was written Jason Schweinsberg explained to me that the points
Yi = Xi/V1 have the Poisson–Dirichlet distribution PD(α,0), so Theorem 5 fol-
lows from (3.6) in Pitman (2006). For our purposes it is easier to refer to (6) in
Pitman and Yor (1997) where it is shown that

E

∞∑
i=1

f (Yi) = 1

�(α)�(1 − α)

∫ 1

0
f (u)u−α−1(1 − u)α−1.

Taking f (x) = xp we find that Rp = ∑
i X

p
i /V

p
k has

ERp = E
∑
i

Y
p
i = �(p − α)

�(1 − α)�(p)
.

Using formulas in Logan et al. (1973) one can derive results for the distribution
of R

−1/2
2 . Work of Darling (1952) leads to information about the distribution of

the fraction in the largest clone X1/V1. In particular,

THEOREM 6. V1/X1 has mean 1/(1 − α).
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Since 1/x is convex, E(X1/V1) > 1/E(V1/X1) = 1 − α.
Theorems 5 and 6 suggest that if we are interested in understanding neutral mu-

tations in say 90% of the population when wave 1 is dominant, then we can restrict
our attention to the families generated by a small number of the most prolific type 1
mutants. (The number we need to consider will be large if α is close to 1.) The re-
sult in (7) suggests that we can ignore neutral mutations within the descendants of
these type 1 mutations. Mutations that occur on the genealogies of the ith largest
mutations will appear in all of their descendants and hence have frequency Xi/V1.
As remarked above (and explained in more detail in Section 3), the genealogies of
the most prolific type 1 mutants will be approximately star-like so they will mostly
have different mutations. Note that here, in contrast to the reasoning that led to (21)
there are several individuals founding different subpopulations whose genealogies
have collected neutral mutations.

1.3. Wave k results. Once Theorem 4 was established it was straightforward
to extend the result by induction. Let αk = λk−1/λk ,

cμ,k = 1

ak

(
ak

λk

)αk

�(αk) and ch,k = cμ,k�(1 − αk).(14)

Let cθ,0 = a0/λ0, μ0 = 1 and inductively define for k ≥ 1

cθ,k = cθ,k−1c
λ0/λk−1
h,k ,(15)

μk = μk−1u
λ0/λk−1
k =

k∏
j=1

u
λ0/λj−1
j .(16)

Durrett and Moseley (2010) have shown:

THEOREM 7. Suppose Z∗
0(t) = V0e

λ0t for t ∈ (−∞,∞) where V0 is
exponential(λ0/a0).

e−λktZ∗
k (t) → Vk a.s.

Let F k−1∞ be the σ -field generated by Z∗
j (t), j ≤ k−1, t ≥ 0. (Vk|F k−1∞ ) is the sum

of the points in a Poisson process with mean measure μ(x,∞) = cμ,kukVk−1x
−αk .

E(e−θVk |F k−1∞ ) = exp(−ch,kukVk−1θ
λk−1/λk )

and hence

Ee−θVk = (1 + cθ,kμkθ
λ0/λk )−1.(17)

Using Theorem 7 it is easy to analyze τk+1, the waiting time for the first type
k+1. Details of the derivations of (18) and (19) are given in Section 4. The median
of τk+1 is

tk+1
1/2 = 1

λ0
log

(
λ

λ0/λk

k

cθ,kμk+1

)
= 1

λk

log(λk) − 1

λ0
log(cθ,kμk+1)(18)
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and as in the case of τ1

P(τk+1 > tk+1
1/2 + x/λ0) ≈ (1 + ex)−1.

Again the result for the median sk+1
1/2 of the time σk+1 of the first mutation to

type k + 1 with a family that does not die out can be found by replacing uk+1 by
uk+1λk+1/ak+1.

Formula (18), due to Durrett and Moseley (2010), is not very transparent due to
the complicated constants. We will obtain a more intuitive result by looking at the
difference sk+1

1/2 − sk
1/2. After some algebra, hidden away in Section 4, we have

sk+1
1/2 − sk

1/2 = 1

λk

log
(

λ2
kak+1

akuk+1λk+1

)
− 1

λk−1
log

(
αk�(αk)�(1 − αk)

)
.(19)

Neutral mutations. Returning to our main topic, it follows from the first conclu-
sion in Theorem 7 that the results of Theorems 5 and 6 hold for wave k when α

is replaced by αk = λk−1/λk . Suppose for simplicity that k = 2. In the concrete
example α2 = 2/3, so ER2 = 1/3 and again there will be a small number of type 2
mutations that occur at times close to s2

1/2 that are responsible for 90% of the pop-
ulation. If we let x1 > x2 > · · · be the fractions of the type 1 population that result
from the most prolific type 1 mutants, then the j th most prolific type 2 mutation
will trace its lineage back to the ith most prolific type 1 mutation with probabil-
ity xi . All of the type 2 mutants who trace their ancestry back to the same type 1
mutant will have lineages that coalesce at times near s1

1/2. Working backwards
from that time the genealogy of the most prolific type 1 mutations will be star like.
At this point a picture is worth a hundred words, see Figure 2.

�
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�
�
�

�
�

�
�

�
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�

�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
� s2

1/2

s1
1/2

time 0

0.6 0.25 0.1

FIG. 2. Genealogy of wave 2 individuals. Here 0.6, 0.25, and 0.1 are the fractions of the type 1
population derived from the three most prolific type 1 mutations. If these numbers look odd recall
that in the example ER = 1/2 for wave 1, while (0.6)2 + (0.25)2 + (0.1)2 = 0.4325.
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1.4. Relationship to Bozic et al. (2010). The inspiration for this investigation
came from a paper by Bozic et al. (2010). Their model takes place in discrete time
to facilitate simulation and their types are numbered starting from 1 rather than
from 0. At each time step, a cell of type j ≥ 1 either divides into two cells, which
occurs with probability bj , or dies with probability dj where dj = (1 − s)j /2 and
bj = 1 − dj . It is unfortunate that their birth probability bj is our death rate for
type j cells. We will not resolve this conflict because but we want to preserve their
notation make it easy to compare with the results in the paper.

In addition, at every division, the new daughter cell can acquire an additional
driver mutation with probability u, or a passenger mutation with probability ν.
They find the following result for the expectation of Mk , the number of passenger
mutations in a tumor that has accumulated k driver mutations:

EMk = ν

2s
log

4ks2

u2 log k.(20)

The derivation of this formula suffers from two errors due to a fundamental mis-
conception, and loses accuracy because of some dubious arithmetic. The first error
is to claim that (see Section 5 of their supplementary materials)

EMk = ν

T
Eσk,(21)

where T is the average time between cell divisions. In essence (21) asserts that the
passenger mutations in the population are exactly those that have appeared along
the genealogy of the cell with the first type k mutation that gives rise to a family
that lives forever. However as Theorems 4 and 7 show, this is wrong because after
the initial wave more than one mutation makes a significant contribution to the size
of the type k population.

The second erroneous ingredient is (S5) in their supplementary materials. In
quoting that result below we have dropped the 1+ inside the log in their formula,
since it disappears in their later calculations and this makes their result easier to
relate to ours.

E(σj+1 − σj ) = T log[(1 − qj )/(ubj (1 − qj+1))(1 − 1/(bj (2 − u)))]
log[bj (2 − u)] ,(22)

where qj is probability that a type j mutation dies out. By considering what hap-
pens on the first step:

qj ≈ dj + bjq
2
j and hence qj ≈ dj

bj

≈ 1 − js

1 + js
≈ 1 − 2js,(23)

where the last approximation assumes that s is small.
Before we start to compare results, recall that Bozic et al. (2010) number their

waves starting with 1 while our numbers start at 0. When the differences in notation
are taken into account (8) agrees with the j = 1 case of (22). The death and birth
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probabilities in the model of Bozic et al. (2010) are d1 = (1 − s)/2 and b1 = 1 −
d1 = (1 + s)/2, so log(2b1) ≈ log(1 + s) ≈ s. qj ≈ (1 − js)/(1 + js) ≈ 1 − 2js.
Taking into account the fact that mutations occur only in the new daughter cell at
birth, we have u1 = b1u, so when j = 1 (22) becomes

E(σ2 − σ1) ≈ 1

s
log

(
s2

u1 · 2s

)
.

Setting λj = (j + 1)s, and ai = bi+1 in our continuous time branching process,
we have a1/a0 ≈ 1 and this agrees with (8).

NUMERICAL EXAMPLE. To match a choice of parameters studied in Bozic et
al. (2010), we will take u = 10−5 and s = 0.01, so ui = biu ≈ 5 × 10−6, and

s1
1/2 ≈ 1

0.01
log

(
10−4

5 × 10−6 · 0.02

)
= 100 log(1000) = 690.77.

Note that by (9) the fluctuations in σ1 are of order 1/λ0 = 100.
To connect with reality, we note that for colon cancer the average time between

cell divisions is T = 4 days, so 690.77 translates into 7.57 years. In contrast, Bozic
et al. (2010) compute a waiting time of 8.3 years on page 18,546. This difference
is due to the fact that the formula they use [(1) on the cited page] employs the
approximation 1/2 ≈ 1.

Turning to the later waves, we note that:

(i) the first “main” term in (19) corresponds to the answer in (22).
(ii) by (13), αk�(αk)�(1 − αk) = παk/ sin(παk) > 1, so the “correction” term

not present in (22) is < 0, which is consistent with the fact that the heuristic leading
to (22) considers only the first successful mutation.

To obtain some insight into the relative sizes of the “main” and the “correction”
terms in (19), we will consider our concrete example in which λi = (i + 1)s and
ai = bi+1 ≈ 1/2, so for i ≥ 1

si+1
1/2 − si

1/2 = 1

(i + 1)s
log

(
(i + 1)2s

ui+1(i + 2)

)
− 1

is
log

(
παi

sin(παi)

)
.

Taking s = 0.01, u = 10−5 and ui = 5 × 10−6 leads to the results given in Table 2.
The values in the last column differ from the sum of the values in the first

column because Bozic et al. (2010) indulge in some dubious arithmetic to go from
their formula

E(σj+1 − σj ) = 1

js
log

(
2j2s

(j + 1)u

)

to their final result

Eσk ≈ 1

2s
log

(
4ks2

u2

)
logk.
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TABLE 2
Comparison of expected waiting times from (19) and (22). The numbers in parentheses are the
answers converted into years using T = 4 as the average number of days between cell divisions

Main Corr. From (19) From (22)

s1
1/2 690.77 0 s1

1/2 690.77 (7.57) 550.87 (6.04)

s2
1/2 − s1

1/2 394.41 45.15 s2
1/2 1040.03 (11.39) 895.39 (9.81)

s3
1/2 − s2

1/2 280.36 44.15 s3
1/2 1276.24 (13.98) 1149.79 (12.60)

First they use the approximation j/(j + 1) ≈ 1 and then
∑k−1

j=1 ≈ ∫ k
0 . In the first

row of the table this means that their formula underestimates the right answer by
20%. Bozic et al. (2010) tout the excellent agreement between their formula and
simulations given in their Figure S2. However, a closer look at the graph reveals
that while their formula underestimates simulation results, our answers agree with
them almost exactly.

2. Proofs for wave 0.

PROOF OF THEOREM 1. Dropping the subscript 0 for convenience, recall that
Y(t) is defined to be the number of individuals in the branching process Z(t) with
an infinite line of descent and that Y(t) is a Yule process with birth rate γ = λ0/a0.
For j ≥ 1 let Tj = min{t :Yt = j} and notice that T1 = 0. Since the j individuals at
time Tj start independent copies Y 1, . . . , Y j of Y , well known results for the Yule
process imply

lim
s→∞ e−γ sY i(s) = ξi,

where the ξi are independent exponential mean 1 (here time s in Y i corresponds
to time Tj + s in the original process). From the limit theorem for the Y i we see
that for j ≥ 2 the limiting fraction of the population descended from individual i

at time Tj is

ri = ξi/(ξ1 + · · · + ξj ), 1 ≤ i ≤ j

which as some of you know has a beta(1, j − 1) distribution with density (j −
1)(1 − x)j−2.

To prepare for the simulation algorithm it is useful to give an explicit proof of
this fact. Note that (

(ξ1, . . . , ξj )|ξ1 + · · · + ξj = t
)

is uniform over all nonnegative vectors that sum to t , so (r1, . . . , rj ) is uniformly
distributed over the nonnegative vectors that sum to 1. Now the joint distribution
of the ri can be generated by letting U1, . . . ,Uj−1 be uniform on [0,1], U(1) <
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U(2) < · · · < U(j−1) be the order statistics, and ri = U(i) −U(i−1) where U(0) = 0
and U(j) = 1. From this and symmetry, we see that

P(ri > x) = P(rj > x) = P(Ui < x for 1 ≤ i ≤ j − 1) = (1 − x)j−1

and differentiating gives the density.
If the neutral mutation rate is ν then on [Tj , Tj+1) mutations occur to individ-

uals in Y at rate νj , while births occur at rate γj , so the number of mutations Nj

in this time interval has a shifted geometric distribution with success probability
γ /(γ + ν), i.e.,

P(Nj = k) =
(

ν

ν + γ

)k γ

ν + γ
for k = 0,1,2, . . . .(24)

The Nj are i.i.d. with mean

ν + γ

γ
− 1 = ν

γ
.

Thus the expected number of neutral mutations that are present at frequency larger
than x is

ν

γ

∞∑
j=1

(1 − x)j−1 = ν

γ x
.

The j = 1 term corresponds to mutations in [T1, T2) which will be present in the
entire population. �

Simulation algorithm. The proof of the last result leads to a useful simulation
algorithm. Suppose we have worked our way up to time Tj with j ≥ 1 and the
limiting fractions of the descendants of the j individuals at this time correspond to
the sizes of the intervals

0 = Uj,0 < Uj,1 < · · · < Uj,j−1 < Uj,j = 1,

where the Uj,i , 1 ≤ i < j , are the order statistics of a sample of j − 1 independent
uniforms.

To take care of mutations in [Tj , Tj+1), we generate a number of mutations Nj

with a shifted geometric distribution given in (24) and associate each mutations
with an interval (Uj,i−1,Uj,i) with i chosen at random from 1, . . . , j .

To produce the subdivision at time Tj+1, let V be an independent uniform,
define 1 ≤ nj ≤ j so that Uj,nj−1 < V < Uj,nj

, and then let

Uj+1,i =
⎧⎪⎨
⎪⎩

Uj,i, 0 ≤ i < nj ,

V , i = nj ,

Uj,i−1, nj < i ≤ j + 1.

Note that the interval to be split is not chosen at random but according to its length.
The simplest explanation of why this is true is that it is needed to have the new
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point added be uniform on (0,1). For a detailed explanation, see Theorem 1.8 of
Durrett (2008).

When we have worked our way down to Tj with j = Nγ we stop. To find the
properites of a sample of size n, we choose points X1, . . . ,Xn independently and
uniform on (0,1). For each k a mutation associated with (Uk,i−1,Uk,i) appears in
all of the individual Xm ∈ (Uk,i−1,Uk,i).

PROOF OF THEOREM 2. We begin with a calculus fact, that is, easy for readers
who can remember the definition of the beta distribution. The rest of us can simply
integrate by parts.

LEMMA 2.1. If a and b are nonnegative integers

∫ 1

0
xa(1 − x)b dx = a!b!

(a + b + 1)! .(25)

Differentiating the distribution function from Theorem 1 gives the density
ν/γ x2. We have removed the atom at 1 since those mutations will be present in
every individual and we are supposing the sample size n > m the number of times
the mutation occurs in the sample. Conditioning on the frequency in the entire
population, it follows that for m ≤ 2 < n that

Eηn,m =
∫ 1

0

ν

γ x2

(
n

m

)
xm(1 − x)n−m dx = nν

γm(m − 1)
,

where we have used n � N and the second step requires m ≥ 2.
When m = 1 the formula above gives Eηn,1 = ∞. To get a finite answer we

note that Zt = n roughly when Yt = nγ so the expected number that are present at
frequency larger than x is

ν

γ

Nγ∑
j=1

(1 − x)j−1 = ν

γ x

(
1 − (1 − x)Nγ )

.

Differentiating (and multiplying by −1) changes the density from ν/γ x2 to

ν

γ

(
1

x2

(
1 − (1 − x)Nγ ) − 1

x
Nγ (1 − x)Nγ−1

)
.(26)

Ignoring the constant ν/γ for the moment and noticing
(n
m

)
xm(1−x)n−m = nx(1−

x)n−1 when m = 1 the contribution from the second term is

n

∫ 1

0
Nγ (1 − x)Nγ+n−2 dx = n · Nγ

Nγ + n − 1
< n



246 R. DURRETT

and this term can be ignored. Changing variables x = y/Nγ the first integral is∫ 1

0

1

x

(
1 − (1 − x)Nγ )

(1 − x)n−1 dx

=
∫ Nγ

0

1

y

(
1 − (1 − y/Nγ )Nγ )

(1 − y/Nγ )n−1 dy.

To show that the above is ∼ log(Nγ ) we let KN → ∞ slowly and divide the inte-
gral into three regions [0,KN ], [KN,Nγ/ logN ], and [Nγ/ logN,Nγ ]. Oustide
the first interval, (1 − y/Nγ )Nγ → 0 and outside the third, (1 − y/Nγ )n−1 → 1
so we conclude that the above is

O(KN) +
∫ Nγ/ logN

KN

1

y
dy + O(log logN).

As the simulation results cited in the introduction suggest, this approximation is
somewhat rough. �

PROOF OF THEOREM 3. When a mutation that occurs on level j = k + 1 is
associated with (Uj,i−1,Uj,i) it affects all members of the sample that land in
that interval. By symmetry of the joint distribution of the interval lengths, we can
suppose without loss of generality that i = 1. Think of the k break points Uj,i with
1 < i < j − 1 as red points and the n uniforms X1, . . . ,Xn as blue. The mutation
will affect exactly one individual in the sample if as we look from left to right, the
first point is blue and the second is red. By symmetry this has probability

n

n + k
· k

n − 1 + k
.

Taking into account that the mean number of mutations per level is ν/γ and sum-
ming gives desired formula. �

Evaluating the constant. Writing M for Nγ ,
M∑

k=1

n

n + k
· k

n − 1 + k
= n

M∑
k=1

1

n + k
·
(

1 − n − 1

n − 1 + k

)

= n

n+M∑
j=n+1

1

j
− n(n − 1)

M∑
k=1

(
1

n + k − 1
− 1

n + k

)
.

The second sum telescopes and has value

−n(n − 1)

(
1

n
− 1

n + M

)
≈ −(n − 1).

If ρ is Euler’s constant then the first sum is

≈ log(n + M) + ρ −
n∑

j=1

1

j
.
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If n = 10 and M = 1000 then we end up with

10 · [6.9177 + 0.5772 − 2.929] − 9 = 36.66.(27)

3. Genealogies. A simple description and a useful mental picture of genealo-
gies in an exponentially growing population is provided by the following result of
Kingman (1982).

THEOREM 8. If we run time at rate 1/N(s) then on the new time scale ge-
nealogies follow the standard coalescent in which there is coalescence at rate

(k
2

)
when there are k lineages.

When N(t) = Ne−γ t the time interval [0, (1/γ ) logN) over which the model
makes sense gets mapped by the time change to an interval of length

1

N

∫ (1/γ ) logN

0
eγ t dt = 1

γ
· N − 1

N
<

1

γ
.

While Theorem 8 is useful conceptually, it is difficult to use for computations
because after the time change mutations occur at a time-dependent rate. Back on
the original time scale, Griffiths and Tavaré (1998) have shown that the joint den-
sity of the coalescent times (Tk, . . . , Tn) for any k ≥ 2 is given by

pk,n(tk, . . . , tn) =
n∏

j=k

(j
2

)
N(tj )

exp
(
−

∫ tj

tj+1

(j
2

)
N(s)

ds

)
,(28)

where 0 = tn+1 < tn < · · · < tk . In particular when k = n and N(t) = Ne−γ t

pn(tn) = n(n − 1)

2N
eγ tn exp

(
−n(n − 1)

2Nγ
(eγ tn − 1)

)
.(29)

One can, in principle at least, find the marginal distribution pk of tk by inte-
grating out the variables tk+1, . . . , tn in (28). According to (5)–(8) in Polanski,
Bobrowski, and Kimmel (2003)

pk(tk) =
n∑

j=k

Ak
jqj (tk) where

(30)

qj (tk) =
(j
2

)
N(tk)

exp
(
−

∫ tk

0

(j
2

)
N(s)

ds

)

and the coefficients Ak
j are given by An

n = 1

Ak
j =

∏n
�=k,� �=j

(�
2

)
∏n

�=k,� �=j [
(�
2

) − (j
2

)] for k < n and k ≤ j ≤ n.
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We have said in principle earlier because the coefficients grow rapidly and have
alternating signs, which to quote the authors: “makes the use of this result for
samples of size n > 50 difficult.”

Fortunately, for our purposes (29) is enough. From its derivation and the in-
equality e−x ≥ 1 − x we have

P(Tn > t) = exp
(
−n(n − 1)

2Nγ
(eγ t − 1)

)

≥ 1 − n(n − 1)

2Nγ
eγ t .

The right-hand side is 0 at time un = (1/γ ) log(2Nγ/n(n − 1)) so

ETn ≥ 1

γ
log

(
2Nγ

n(n − 1)

)
− n(n − 1)

2Nγ

∫ un

0
eγ s ds

(31)

≥ 1

γ

[
log

(
2Nγ

n(n − 1)

)
− 1

]
.

This is within O(1) of the time (1/γ ) logN at which the model stops making
sense, so it follows that the expected values of Sk = Tk − Tk+1 are O(1) for 2 ≤
k < n.

4. Proofs of the wave k formulas (18) and (19). Our next topic is the waiting
time for the first type k + 1:

P(τk+1 > t |F k
t ) = exp

(
−

∫ t

0
Z∗

k (s) ds

)
≈ exp(−uk+1Vke

λkt /λk).

Taking expected value and using Theorem 7

P(τk+1 > t |	0∞) = (
1 + cθ,kμk(uk+1e

λkt /λk)
λ0/λk

)−1
.

Using the definition of μk+1 the median tk+1
1/2 is defined by

cθ,kμk+1 exp(λ0t
k+1
1/2 )λ

−λ0/λk

k = 1

and solving gives

tk+1
1/2 = 1

λ0
log

(
λ

λ0/λk

k

cθ,kμk+1

)
= 1

λk

log(λk) − 1

λ0
log(cθ,kμk+1)

which is (18). As in the case of τ1

P(τk+1 > tk+1
1/2 + x/λ0) ≈ (1 + ex)−1.

Again the result for the median sk+1
1/2 of the time σk+1 of the first mutation to

type k + 1 with a family that does not die out can be found by replacing uk+1 by
uk+1λk+1/ak+1. Using μk+1 = μku

λ0/λk

k+1 from (16) when we do this gives

sk+1
1/2 = 1

λk

log
(

λkak+1

uk+1λk+1

)
− 1

λ0
log(cθ,kμk).(32)
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To simplify and to relate our result to (22), we will look at the difference

sk+1
1/2 − sk

1/2 = 1

λk

log
(

λkak+1

uk+1λk+1

)
− 1

λk−1
log

(
λk−1ak

ukλk

)

− 1

λ0
log(c

λ0/λk−1
h,k u

λ0/λk−1
k ),

where in the second term we have used (15) and (16) to evaluate cθ,k/cθ,k−1 and
μk/μk−1. Recalling the formula

ch,k = 1

ak

(
ak

λk

)αk

�(αk)�(1 − αk) with αk = λk−1/λk

given in (14) we have

sk+1
1/2 − sk

1/2 = 1

λk

log
(

λ2
kak+1

akuk+1λk+1

)
− 1

λk−1
log

(
αk�(αk)�(1 − αk)

)

which is (19). To see this note that the uk from the last term and the 1/ak from the
ch,k cancel with parts of the second term, and the (ak/λk)

αk from the third ends up
in the first.
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