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We consider a lattice gas on the discrete d-dimensional torus (Z/NZ)d

with a generic translation invariant, finite range interaction satisfying a uni-
form strong mixing condition. The lattice gas performs a Kawasaki dynamics
in the presence of a weak external field E/N . We show that, under diffu-
sive rescaling, the hydrodynamic behavior of the lattice gas is described by
a nonlinear driven diffusion equation. We then prove the associated dynami-
cal large deviation principle. Under suitable assumptions on the external field
(e.g., E constant), we finally analyze the variational problem defining the
quasi-potential and characterize the optimal exit trajectory. From these re-
sults we deduce the asymptotic behavior of the stationary measures of the
stochastic lattice gas, which are not explicitly known. In particular, when the
external field E is constant, we prove a stationary large deviation principle for
the empirical density and show that the rate function does not depend on E.

1. Introduction. A classical topic in nonequilibrium statistical mechanics is
the analysis of stationary measures (steady states) for interacting particle systems
with driving fields. Here we focus on driven diffusive systems, a typical exam-
ple being the ionic conduction. As microscopic model we consider high temper-
ature stochastic lattice gases with short range and translation invariant interaction
[14, 17, 19, 27, 29]. More precisely, let � be a box in Zd that we consider with pe-
riodic boundary conditions. Each site x ∈� can be either occupied or empty, the
particle configuration is therefore described by the occupation numbers ηx ∈ {0,1},
x ∈�. Consider a translation invariant Gibbs measure μ� with short range inter-
actions on the configuration space �� = {0,1}� and let H� be the corresponding
Hamiltonian so that μ�(η) ∝ exp{−H�(η)}. Note that we included the tempera-
ture in the definition of H�. The (symmetric) Kawasaki dynamics is then defined
as a Markov chain on �� in which the allowed transitions are the exchanges of
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the occupation numbers between nearest neighbor sites. The jump rate c0
x,y associ-

ated to the bond {x, y} satisfies the detailed balance condition with respect to the
Hamiltonian H�, that is,

c0
x,y(η

x,y)= c0
x,y(η) exp{∇x,yH�(η)},(1.1)

where ηx,y is the configuration obtained from η by exchanging the occupation
numbers in x and y and ∇x,yH�(η)=H�(ηx,y)−H�(η).

We regard the symmetric Kawasaki dynamics as the reference system and model
the effect of a driving field E by replacing the reference rates c0 with the (asym-
metric) rates cE satisfying the local detailed balance condition. In the case of a
constant driving field E this condition reads

cE
x,y(η

x,y)= cE
x,y(η) exp{Wx,y(η)},

(1.2)
Wx,y(η)=∇x,yH�(η)+ (ηy − ηx)E · (y − x),

where · is the inner product in Rd . Observe that Wx,y is the total work done in the
exchange of ηx and ηy . When the driving field E is not constant, the right-hand
side of the second equation in (1.2) has to be properly modified. We remark that,
in view of the periodic boundary conditions, a nonvanishing constant field is not
conservative and therefore (1.2) does not lead to a Gibbsian form of the invariant
measures. We assume that the rates cE are strictly positive.

The total number of particles N� =∑
x∈� ηx is conserved by the Kawasaki

dynamics. In view of the strict positivity of the transition rates, for each integer
K = 0, . . . , |�| the chain is irreducible on the subset ��,K of the configuration
space with K particles. Therefore, on ��,K there exists a unique invariant mea-
sure that we denote by νE

�,K . If E = 0, by the detailed balance condition (1.1),

ν0
�,K is the canonical measure corresponding to the Hamiltonian H�, that is, it

is the measure μ� conditioned to {N� = K}. For nonvanishing driving fields E,
a main issue is to understand the behavior of the measure νE

�,K in the thermo-

dynamic limit �↗ Zd , K →∞ with K/|�| → ρ̄ ∈ [0,1]. About this problem
there are only few rigorous results and not much is known. In the case of constant
driving field, there are, however, some quite interesting conjectures that we next
briefly recall.

Let τx :��→ �� be the translation by x, the symmetric rates c0 satisfy the
gradient condition if for each bond {x, y}

c0
x,y(η)(ηx − ηy)= h(τxη)− h(τyη)(1.3)

for some local function h :��→ R. As shown in [19], if the symmetric rates c0

satisfy the gradient condition, then νE
�,K does not depend on the driving field and

therefore coincides with the canonical Gibbs measure associated to the Hamilto-
nian H�. In the case of the exclusion process, for which H� = 0, the previous
statement corresponds to the fact that the uniform measure on ��,K is reversible
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in the symmetric case and invariant in the asymmetric one. On the other hand,
the gradient condition is quite restrictive ([29], Section II.2.4), and the generic
picture is believed to be qualitatively different. In particular, as conjectured in [17]
and [29], Section II.1.4, for nongradient models the following behavior is expected
(recall we are only concerned with the high temperature regime):

(i) for each density ρ̄ ∈ [0,1] there exists a unique translation invariant ther-
modynamic limit of the sequence {νE

�,K} that we denote by νE
ρ̄ ;

(ii) in dimension d = 1 the measure νE
ρ̄ has exponentially decaying correla-

tions;
(iii) in dimension d ≥ 2 the pair correlation of νE

ρ̄ decays as a power law.

As far as we know, there are no clear expectations whether the measure νE
ρ̄ is

Gibbsian or not (see, however, the result in [1]).
We here analyze the asymptotic behavior of the sequence {νE

�,K} in a scaling

limit setting. Given the d-dimensional torus Td =Rd/Zd (which we regard as the
macroscopic domain) and a scaling parameter N , we take as microscopic domain
the box in Zd with side length N and periodic boundary conditions that we denote
by Td

N . In view of the natural embedding x 	→ x/N , the set Td
N can be regarded

as a discrete approximation of Td . We then fix a macroscopic field E on Td and
let EN = E/N be its microscopic counterpart. In this setting, the corresponding
Kawasaki dynamics is called weakly asymmetric. To each configuration η ∈�Td

N

we associate the piecewise constant function πN(η) on Td which is equal to ηx on
the cube x/N +[0,1/N)d , x ∈ Td

N . The map πN from �Td
N

to the set of functions

on Td is called empirical density. Given ρ̄ ∈ [0,1] and a sequence {KN } such that
KN/Nd → ρ̄, we let P E

N be the law of the empirical density when the configu-

ration η is sampled according to ν
EN

Td
N ,KN

, namely, P E
N = ν

EN

Td
N ,KN

◦ (πN)−1. The

original question is then formulated in terms of the asymptotic behavior of the se-
quence {P E

N } as N →∞. In this paper, we describe this behavior by proving the
corresponding large deviation principle. In the case of constant driving field, the
rate functional can be directly expressed in terms of the thermodynamic free en-
ergy of the reference system. In particular, it does not depend on the driving field
and coincides with the one associated to the sequence of canonical Gibbs mea-
sures {ν0

Td
N ,KN

}. This result shows that, as far as stationary large deviations of the

empirical density are concerned, weakly asymmetric nongradient stochastic lattice
gases behave as gradient models. We obtain an explicit formula for the rate func-
tion also for nonconstant driving field provided a suitable orthogonality condition
holds. We emphasize that the choice of the periodic boundary conditions is crucial
for the above result. Indeed, as shown in [2, 7, 8, 13], for one-dimensional (gradi-
ent) weakly asymmetric boundary driven stochastic lattice gases the presence of a
driving field, even in the weakly asymmetric regime, does effect the stationary rate
function.
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The basic strategy of the proof follows the dynamical/variational approach in-
troduced in [5]. This amounts to first analyzing the dynamical behavior of the
weakly asymmetric Kawasaki process in a fixed macroscopic time interval. The
dynamical law of large numbers for the empirical density is called the hydrody-
namic scaling limit and it is described as follows. If at time t = 0 the empirical
density converges to some function γ : Td →[0,1], then at later time it converges
to the solution u≡ ut (r), (t, r) ∈R+ ×Td of the nonlinear driven diffusion equa-
tion

∂tu+∇ · [σ(u)E] = ∇ · [D(u)∇u](1.4)

with initial datum u0 = γ . In the above equation, the diffusion coefficient D and the
mobility σ are d × d matrices which are characterized in terms of the symmetric
dynamics. The proof of the hydrodynamic limit extends the one given in [33] for
E = 0. Given ρ̄ ∈ [0,1] we denote by γ E

ρ̄ : Td → [0,1] the stationary solution to
(1.4) with total mass equal to ρ̄ and observe that for constant E we simply have
γ E
ρ̄ = ρ̄. Of course, as N→∞ the sequence {P E

N } weakly converges to the Dirac

measure concentrated in γ E
ρ̄ .

The next step is to prove the dynamical large deviation principle associated to
the hydrodynamic limit, that is, to compute the asymptotic probability that the em-
pirical density follows some trajectory different from the solution to (1.4). For
gradient stochastic lattice gases, this has been proven for several models (see,
e.g., [20, 21]). For nongradient models, the proof of the dynamical large devia-
tion principle is technically much more involved and it has been achieved in [25]
for one-dimensional Ginzburg–Landau models (see also [26]). The basic approach
to prove such a large deviation principle is the one set forth in [31] which requires
us to construct a suitable perturbation of the original measure. For gradient lattice
gases this perturbation is obtained by modifying the driving field in such a way
that the fluctuation becomes the typical behavior. In the nongradient case this is not
enough and an additional nonlocal correction is needed [25]. Since our model is
not restricted to one dimension and its invariant measures are not product, we have
new technical issues with respect to the case studied in [25]. The conclusion is that
the law of the empirical density in the macroscopic time interval [T1, T2] satisfies a
large deviation principle with some rate function IE[T1,T2](·|γ ) (here γ : Td →[0,1]
is the macroscopic density at time T1).

The final step is the analysis of the quasi-potential [16] associated to the dy-
namical rate function IE[T1,T2](·|γ ). Given ρ̄ ∈ [0,1], this is the functional on the

set of functions ρ : Td →[0,1] defined by

V E
ρ̄ (ρ)= inf

T >0
inf

{
IE[−T ,0](π |γρ̄),π : [−T ,0] ×Td →[0,1]

such that π−T = γρ̄,π0 = ρ
}
.

In particular, V E
ρ̄ (ρ) is the minimal cost to produce the fluctuation ρ starting from

the stationary solution γρ̄ . In view of the conservation of the total number of parti-
cles, V E

ρ̄ (ρ) is finite only if the total mass of ρ is ρ̄. As proven in [16] for diffusion
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processes on Rn and in [10, 15] in the present case of stochastic lattice gases, the
quasi-potential V E

ρ̄ is the large deviations rate function of the sequence {P E
N }.

We here show that the quasi-potential can be expressed in terms of the thermo-
dynamic free energy associated to the Hamiltonian H� and characterize explicitly
the optimal path realizing a given fluctuation. The key observation is the following.
Let χ(ρ) be the compressibility of the system (this is a thermodynamic quantity
which coincides with the reciprocal of the second derivative of the free energy).
Then the transport coefficients in the hydrodynamic equation (1.4) satisfy the Ein-
stein relationship σ(ρ) = D(ρ)χ(ρ) ([29], Section II.2.5); observe that while D

and σ are matrices, χ is a scalar. The Einstein relationship implies that the vec-
tor field describing the flow given by the hydrodynamic equation (1.4) admits an
orthogonal decomposition with respect to the metric associated to the dynamical
large deviation rate function. The characterization of the quasi-potential is then
achieved by using an argument analogous to the one for diffusion processes in Rn

(see [16], Theorem 4.3.1).

2. The model. In this section we fix the notation (recall some basic concepts
about Gibbs measures) and define the weakly asymmetric Kawasaki dynamics.

2.1. The lattice and the configuration space. On Rd and on the d-dimensional
cubic lattice Zd we consider the norm |x| := |x|∞ =maxi=1,...,d |xi |; we denote by
d(·, ·) the associated distance. The diameter of a set V ⊂ Zd with respect to d(·, ·)
is denoted by diam(V ). Given 
≥ 0 and x ∈ Zd , we set �x,
 = {y ∈ Zd : |y− x| ≤

} and write simply �
 if x = 0. The canonical basis, both in Zd and in Rd , is
denoted by e1, . . . , ed . If � is a finite subset of Zd , we write �⊂⊂ Zd and denote
by |�| the cardinality of �. The collection of all finite subsets of Zd is denoted
by F. Given an integer N , we let TN := Z/NZ = {0, . . . ,N − 1} so that Td

N is
the discrete d-dimensional torus of side length N . Given � ∈ F and φ :�→R we
let Avx∈� φ(x) := |�|−1 ∑

x∈� φ(x) be the average of φ. The average over Td
N

is simply denoted by Avx . The bonds in Zd are the (unordered) pairs {x, y} with
x, y ∈ Zd such that y = x±ei for some i = 1, . . . , d . The collection of all bonds in
Zd is denoted by B. Given �⊂ Zd , we let B� := {b ∈ B :b⊂�} be the collection
of bonds in � and denote by BN the collection of bonds in Td

N .
Given �⊂ Zd , the configuration space in � is the set �� := {0,1}�; we also let

� := �Zd and �N := �Td
N

. For V ⊂� ⊂ Zd and η ∈ ��, the natural projection
of �� to �V is denoted by ηV ; we also write ηx for η{x}, x ∈�. A configuration
η ∈�� describes the microscopic state of the lattice gas; a site x ∈� is occupied
by a particle if and only if ηx = 1. We consider the single spin space {0,1} endowed
with the discrete topology and �� with the product topology. Given �⊂ Zd , we
let F� be the σ -algebra on � generated by the one-dimensional projections ηx ,
x ∈ �. We also set F := FZd and note it coincides with the Borel σ -algebra as-
sociated to the product topology. If V1,V2 ⊂ Zd are disjoint, we denote by ηV1ηV2
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the configuration in �V1∪V2 equal to ηVi
in Vi , i = 1,2. For V ⊂ �, V ∈ F, the

number of particles NV :��→ Z+ is the function NV (η) :=∑
x∈V ηx , while the

density η̄V :�� → [0,1] is η̄V := Avx∈V ηx . If V = �x,
 for some x ∈ Zd and

 ∈N, the density in �x,
 is simply denoted by η̄x,
 omitting the subscript x when
x = 0. The same notation holds when referred to the discrete torus Td

N .
Given x ∈ Zd , respectively, x ∈ Td

N , we define the shift τx :� → �, re-
spectively, τx :�N → �N by (τxη)y := ηy+x . The map τx is naturally lifted
to functions by setting (τxf )(η) := f (τxη). Given i, j = 1, . . . , d , i �= j , we
denote by Ri,j the rotation by π/2 in the plane spanned by ei, ej , that is,
Ri,j (. . . , xi, . . . , xj , . . .)= (. . . ,−xj , . . . , xi, . . .). We denote by R the collection
of all such rotations. Given R ∈ R, the map x 	→ Rx is naturally lifted to con-
figurations and functions by setting (Rη)x := ηRx and Rf (η) := f (Rη). Given a
function f :�→ R, its so-called support �f is the smallest subset V ⊂ Zd such
that f depends on η only through the projection ηV . If �f ∈ F, the function f is
called local. Given a local function f , we let

¯
f be the formal series

¯
f := ∑

x∈Zd

τxf.(2.1)

2.2. Gibbs measures. In this paper, by an interaction, we mean a finite range,
translation invariant interaction as defined below.

DEFINITION 2.1. An interaction � is a collection of real-valued local func-
tion {�V :�→R,V ∈ F, |V | ≥ 2} such that:

(i) for each V ∈ F with |V | ≥ 2 the support of �V is V ;
(ii) there exists r0 ∈N called range such that �V = 0 if diam(V ) > r0;

(iii) for each V ∈ F with |V | ≥ 2 and x ∈ Zd we have τx�V =�V+x .

In some statements we also assume that the interaction is isotropic, that is, it satis-
fies:

(iv) for each V ∈ F with |V | ≥ 2 and each R ∈R we have R�V =�RV .

Given an interaction �, a parameter λ ∈R (called chemical potential), and a set
� ∈ F, we define the Hamiltonian Hλ

� :�→R by

Hλ
�(η) := ∑

V : V∩��=∅

�V (η)+ λ
∑
x∈�

ηx,(2.2)

dropping the superscript in the case λ= 0. Given σ ∈�, called boundary condi-
tion, we also set H

λ,σ
� (η) :=Hλ

�(η�σ
��). To the Hamiltonian Hλ

� and the bound-
ary condition σ we associate the finite volume (grand-canonical) Gibbs measure
in �, defined as the probability measure on (�, F ) given by

μ
λ,σ
� (η) :=

{
(Z

λ,σ
� )−1 exp{−H

λ,σ
� (η)}, if η

�� = σ
�� ,

0, otherwise,
(2.3)
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where the constant Z
λ,σ
� , called partition function, is the proper normalization. In

addition, the canonical Gibbs measure associated to the interaction �, boundary
condition σ and particle number K ∈ {0,1, . . . , |�|}, is the probability measure on
(�, F ) given by

νσ
�,K(·) := μ

λ,σ
� (·|N� =K),(2.4)

noticing that this measure does not depend on the chemical potential λ. In the case
of periodic boundary conditions, �= Td

N , we denote the Hamiltonian, which has,
of course, no boundary condition, as Hλ

N and by Zλ
N the corresponding partition

function. The associated grand-canonical and canonical Gibbs measures are de-
noted by μλ

N and νN,K , respectively. Finally, we write μN , HN instead of μ0
N , H 0

N ,
respectively.

Given a probability measure μ and bounded measurable functions f,g, we
denote by μ(f ) the expectation of f with respect to μ and by μ(f ;g) :=
μ(fg)−μ(f )μ(g) the covariance, or pair correlation, between f and g. Given a
bounded measurable function f :�→ R and a set � ∈ F, we denote by μ

λ,·
� (f )

the real function � � σ 	→ μ
λ,σ
� (f ). As simple to check, the finite volume Gibbs

measures defined in (2.3) satisfy the compatibility conditions

μ
λ,σ
� (μ

λ,·
�′ (f ))= μ

λ,σ
� (f ) ∀ local f,∀�′ ⊂� ∈ F.

The definition of infinite volume Gibbs measure is then given in terms of the
so-called DLR equations as follows.

DEFINITION 2.2. Given λ ∈ R, a probability measure μ on (�, F ) is called
an infinite volume Gibbs measure with chemical potential λ iff

μ(μ
λ,·
� (f ))= μ(f ) ∀ local f,∀� ∈ F.(2.5)

The compactness of � readily implies that the set of (infinite volume) Gibbs
measure is not empty. The nonuniqueness of solutions to the DLR equations (2.5)
corresponds to phase transitions. As stated in the Introduction, our analysis is re-
stricted to the high temperature regime. This is specified by a uniform strong mix-
ing condition on the interaction �. Referring to [12] for the precise formulation,
this condition basically requires that the pair correlation μ

λ,σ
� (f ;g) between two

local functions f and g decays exponentially fast in the distance between their
supports �f and �g . This decay is required to be uniform with respect the vol-
ume �, the boundary condition σ and the chemical potential λ. To be precise, one
also needs to allow chemical potentials which are not constant. As it is easy to
show, the uniform strong mixing condition implies that for each λ ∈R there exists
a unique infinite volume Gibbs measure μλ. Moreover, μλ has exponential decay
of pair correlations. In the one-dimensional case d = 1, standard transfer matrix
arguments show that the uniform strong mixing condition is always satisfied (re-
call that the interaction has finite range). For the standard Ising model in d = 2,
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the results in [4, 28] imply that the uniform strong mixing condition is satisfied for
any supercritical temperature. Finally, the uniform strong mixing condition holds
if the single site Dobrushin criterion ([23], Section 3.2) is satisfied uniformly in the
chemical potential λ. In particular, it holds if the interaction � is small enough, that
is, in the high temperature regime. Throughout this paper we assume that the inter-
action � satisfies the uniform strong mixing condition as stated in [12], Property
USMT there, without further mention.

Fix a configuration σ ∈ � and a sequence {�n} of sets in F invading Zd

such that limn→∞ |∂+r0
�n|/|�n| = 0, where r0 is the range of the interaction and

∂+r0
� := {x ∈ �� :d(x,�) ≤ r0}. A classical result in statistical mechanics (see,

e.g., [23], Section 2.3), states that the pressure, p : R→R,

p(λ) := lim
n

1

|�n| logZ
λ,σ
�n
= lim

N→∞
1

Nd
logZλ

N

is well defined, that is, the limits exist (the first is also independent of σ and the
sequence {�n}), and are convex. In view of the uniform strong mixing condition
(see [28] and reference therein), the pressure p is uniformly convex and real an-
alytic. The free energy f : [0,1] → R is defined as the Legendre transform of p,
namely,

f (ρ) := sup{λρ − p(λ), λ ∈R},(2.6)

which is a continuous uniformly convex function in [0,1] and real analytic in
(0,1). Moreover, as ρ ↑ 1 and ρ ↓ 0, we have f ′(ρ) ↑ +∞ and f ′(ρ) ↓ −∞,
respectively. Given ρ ∈ [0,1], let μρ := μf ′(ρ) be the (unique) infinite volume
Gibbs measure with chemical potential f ′(ρ). We understand that μ0 and μ1 are,
respectively, the Dirac measures in the configurations identically equal to zero
and one. From the definition of the free energy and the regularity of p, we then
have μρ(ηx) = ρ, so that ρ is the density. We also define the compressibility
χ : [0,1]→ [0,∞) as

χ(ρ) := ∑
x∈Zd

μρ(η0;ηx)= 1

f ′′(ρ)
,(2.7)

understanding that χ(0) = χ(1) = 0. By using the uniform strong mixing condi-
tion, it is not difficult to show the compressibility χ satisfies the following bound.
There exists a real C ∈ (0,∞) such that for any ρ ∈ (0,1),

1

C
≤ χ(ρ)

ρ(1− ρ)
≤ C.(2.8)

The free energy f gives the asymptotic probability of deviations of the density
in the following sense. Fix ρ̄ ∈ (0,1), recall η̄V is the average number of particles
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in V and let {�n} be a sequence invading Zd as before. The sequence of proba-
bility measures on [0,1] given by {μρ̄ ◦ (η̄�n)

−1} satisfies a large deviation prin-
ciple (see, e.g., [23], Theorem 2.4.3.1) with speed |�n| and convex rate function
fρ̄ : [0,1]→ [0,+∞) given by

fρ̄(ρ) := f (ρ)− f (ρ̄)− f ′(ρ̄)(ρ − ρ̄).(2.9)

The same result holds if one replaces the infinite volume Gibbs measure μρ̄ with
a finite volume Gibbs measure, either with a fixed boundary condition σ or with
periodic boundary, on �n with chemical potential f ′(ρ̄).

2.3. Kawasaki dynamics. Having introduced the formalism of the lattice gases
at equilibrium, here we define the dynamics we are interested in.

Given a bond {x, y} ∈ B and η ∈ �, we let ηx,y be the configuration obtained
from η by exchanging the occupation numbers in x and y, that is,

(ηx,y)z :=
⎧⎨
⎩

ηy, if z= x,
ηx, if z= y,
ηz, otherwise,

and let ∇x,y be the operator defined by (∇x,yf )(η) := f (ηx,y) − f (η), where

f :�→ R. Recall that �N := {0,1}Td
N is the configuration space in the discrete

d-dimensional torus Td
N of side length N . The symmetric Kawasaki dynamics is

then defined by the Markov generator L0,N acting on functions f :�N →R as

L0,Nf (η) :=N2
∑

{x,y}∈BN

c0
x,y(η)∇x,yf (η),(2.10)

where we recall that BN is the collection of (unordered) bonds in Td
N . Note that the

generator has been speeded up by the factor N2 which corresponds to the diffusive
scaling. We need some conditions, that are detailed below, on the jump rates c0

x,y

(recall r0 is the range of the interaction �).

DEFINITION 2.3. The symmetric jump rates c0
x,y :�→ R+, {x, y} ∈ BN sat-

isfy the following conditions.

(i) Detailed balance. For any {x, y} ∈ BN and η ∈�N we have

c0
x,y(η

x,y)= c0
x,y(η) exp{∇x,yHN(η)}.

(ii) Finite range. The support of c0
x,y is a subset of {z ∈ Td

N :d(z, {x, y})≤ r0}.
(iii) Translation invariance. For each {x, y} ∈ BN and z ∈ Td

N we have τzc
0
x,y =

c0
x+z,y+z.

(iv) Positivity and boundedness. There exists C ∈ (0,∞) such that for any
{x, y} ∈ BN we have C−1 ≤ c0

x,y ≤ C.

In some statements we also assume that the jump rates are isotropic, namely:
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(v) Rotation invariance. For each {x, y} ∈ BN and each R ∈ R we have
Rc0

x,y = c0
Rx,Ry .

Note that we consider the jump rates c0
x,y as functions on � and not �N . In view

of the finite range assumption, the generator L0,N is well defined on �N as soon
as N > r0. The detailed balance condition implies that the generator L0,N is self-
adjoint in L2(�N,dμλ

N) for any λ ∈ R. Since the Kawasaki dynamics conserves
the total number of particles, the ergodic measures for L0,N are the canonical
Gibbs measures νN,K on Td

N . In [12, 22, 34] it is shown that if the interaction
satisfies the uniform strong mixing condition then the spectral gap of the generator
L0,N considered on L2(�N, νN,K) is of order one uniformly in N and K (recall
that L0,N has been speeded up by N2).

We next extend the previous symmetric dynamics by allowing the presence of
an external field E of order 1/N . Let Td :=Rd/Zd be the d-dimensional torus of
side length one [the coordinate on Td is denoted by r = (r1, . . . , rd)]. The gradient
and the divergence on Td are, respectively, denoted by ∇ and ∇·. We denote by
〈·, ·〉 the inner product in L2(Td, dr). Let B̃N be the collection of ordered bonds
in Td

N . Given a C1 vector field E : Td → Rd , we introduce a discrete vector field

EN : B̃N → R as follows. Given (x, y) ∈ B̃N , let γ N
x,y be the oriented segment on

Td given by γ N
x,y(t) := (x/N)(1− t)+ (y/N)t , t ∈ [0,1]. We then set

EN(x, y) :=
∫ 1

0
dt E(γ N

x,y(t)) ·
d

dt
γ N
x,y(t),(2.11)

where · is the inner product in Rd . Note that EN(x, y) is the work done by the
vector field E along the path γ N

x,y . Moreover, EN(y, x) = −EN(x, y) and, if E

is constant, we simply have EN(x, y)= (1/N)E · (y − x). The weakly asymmet-
ric Kawasaki dynamics is then defined by the Markov generator LE,N acting on
functions f :�N →R as

LE,Nf (η) :=N2
∑

{x,y}∈BN

cE
x,y(η)∇x,yf (η),(2.12)

where the weakly asymmetric jump rates cE
x,y(η) satisfy the so-called local de-

tailed balance condition (see, e.g., [29], Section II.1.4)

cE
x,y(η

x,y)= cE
x,y(η) exp{∇x,yHN(η)+EN(x, y)(ηy − ηx)}.

Note indeed that EN(x, y)(ηy−ηx) does not depend on the orientation of the bond
(x, y) ∈ B̃N . In this paper, for simplicity, we shall consider the explicit choice

cE
x,y(η) := c0

x,y(η) exp{EN(x, y)(ηx − ηy)/2}(2.13)

in which c0
x,y are the jump rates of the symmetric Kawasaki dynamics.

Given T > 0, we denote by D([0, T ];�N) the Skorohod space given by the
set of càdlàg paths from [0, T ] to �N . We consider D([0, T ];�N) endowed
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with the Skorohod topology and the corresponding Borel σ -algebra. Elements in
D([0, T ];�N) are denoted by η(t), t ∈ [0, T ]. The distribution of the Markov
chain on �N with generator LE,N and initial distribution ν on �N is a probability
measure on D([0, T ];�N) which we denote by PE,N

ν . In particular, P0,N
ν is the

distribution of the symmetric Kawasaki dynamics defined by the generator L0,N

in (2.10), with initial distribution ν. If ν = δη with η ∈�N , we write simply PE,N
η .

The expectation with respect to PE,N
η is denoted by EE,N

η .
If the vector field E is conservative, that is, E = −∇U for some C2 function

U : Td →R, then EN(x, y)= U(x/N)−U(y/N) and the jump rates cE
x,y satisfy

the detailed balance condition with respect to the Hamiltonian

HU
N (η) :=HN(η)+ ∑

x∈Td
N

U(x/N)ηx.(2.14)

In particular, if E is conservative, the weakly asymmetric Kawasaki dynamics is
reversible with respect to the canonical or grand-canonical Gibbs measures on Td

N

associated to the Hamiltonian HU
N . On the other hand, when the vector field E

is not conservative, then the weakly asymmetric Kawasaki dynamics is not re-
versible. If the unperturbed jump rates c0

x,y satisfy the gradient condition (1.3) and
the vector field E is constant then (see [19] and [29], Section II.1.4) the canonical
Gibbs measures νN,K , which are the reversible measures for the symmetric dy-
namics, are also the invariant measures of the weakly asymmetric dynamics. This
statement also holds if the field E has vanishing divergence (see [6], Section 2.5)
for the precise formulation. In the general case in which the gradient condition
does not hold and the vector field E is not conservative, the invariant measures for
the asymmetric dynamics cannot be computed explicitly.

3. Main results.

3.1. Hydrodynamic scaling limit. The hydrodynamic scaling limit of the sym-
metric Kawasaki dynamics has been proven in [33]. As discussed here, the proof
extends to the weakly asymmetric case.

We set M := L∞(Td; [0,1]) which we consider equipped with the weak* topol-
ogy, namely, a sequence {γ n} ⊂M converges to γ iff 〈γ n,φ〉 → 〈γ,φ〉 for any
function φ ∈ L1(Td, dr), equivalently for any smooth function φ ∈ C∞(Td) [re-
call 〈·, ·〉 is the inner product in L2(Td, dr)]. The set M is a compact Polish space
that we consider endowed with the corresponding Borel σ -algebra. Given N ≥ 1
and x ∈ Td

N , let Q1/N(x/N) ⊂ Td be the set Q1/N(x/N) := x/N + [0,1/N)d .
The empirical density is the map πN :�N →M defined by

πN(η)(r) := ∑
x∈Td

N

ηxIQ1/N (x/N)(r),(3.1)

where IA stands for the indicator function of the set A.
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We say that a sequence {ηN ∈ �N } is associated to the profile γ ∈ M iff
the sequence {πN(ηN)} ⊂ M converges to γ . Given T1 < T2, we denote by
M[T1,T2] := D([T1, T2];M) the Skorohod space of paths from [T1, T2] to M

equipped with its Borel σ -algebra. Elements of D([T1, T2];M) will be denoted
by π ≡ πt(r). Note that the evaluation map M[T1,T2] � π 	→ πt ∈M is not contin-
uous for t ∈ (T1, T2) but it is continuous for t = T1, T2. We also denote by πN the
map from D([T1, T2];�N) to M[T1,T2] defined by [πN(η)]t := πN(η(t)).

Recall that μρ is the unique infinite volume Gibbs measure with density ρ and
the formal series defined in (2.1). Given ρ ∈ [0,1], the mobility σ(ρ) is defined as
the symmetric d × d matrix given by the following variational formula [32, 33],

v · σ(ρ)v := inf
f

1

2
μρ

[
d∑

i=1

c0
0,ei

(vi[ηei
− η0] + ∇0,ei ¯

f )2

]
,(3.2)

where v ∈ Rd and the infimum is carried out over all local functions f :�→ R.
Since f is local, ∇0,ei ¯

f is well defined as only finitely many terms in the sum
do not vanish. As shown in [33], Lemma 8.3, if the interaction and the symmetric
jump rates are isotropic then the mobility is a multiple of the identity. Namely,
there exists a scalar function, still denoted by σ , such that σi,j (ρ) = σ(ρ)δi,j ,
i, j = 1, . . . , d .

Let κ(i) : [0,1]→R+, i = 1, . . . , d , be the function κ(i)(ρ) := μρ([η0−ηei
]2).

As it is simple to check, the functions κ(i) satisfy the following bound. There exists
C ∈ (0,∞) such that for any i = 1, . . . , d and ρ ∈ (0,1),

1

C
≤ κ(i)(ρ)

ρ(1− ρ)
≤ C.(3.3)

The mobility σ satisfies the following bounds. There exists a real C > 0 such that
for any ρ ∈ [0,1] and any v ∈Rd ,

C−1
d∑

i=1

κ(i)(ρ)v2
i ≤ v · σ(ρ)v ≤ C

d∑
i=1

κ(i)(ρ)v2
i .(3.4)

Indeed, the upper bound follows directly from the variational expression (3.2) by
taking f = 0, while the lower bound is proven in [30].

Given ρ ∈ [0,1], the diffusion matrix D(ρ) is defined as the symmetric d × d

matrix given by

D(ρ) := σ(ρ)
1

χ(ρ)
= σ(ρ)f ′′(ρ),(3.5)

where the free energy f has been defined in (2.6) and the compressibility χ (which
is a scalar) has been defined in (2.7). Note that, by (2.8), (3.3) and (3.4), the diffu-
sion matrix D is bounded and strictly positive uniformly for ρ ∈ [0,1]. As follows
from [33] and the arguments in [20], Chapter 7, the maps [0,1] � ρ→ σ(ρ) and
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(0,1) � ρ→D(ρ) are continuous. In our analysis, however, we need the smooth-
ness of these maps on the interval [0,1]. In the case in which the Gibbs measure
is product, that is, the interaction vanishes, this result is proven in [3]. The general
case remains, however, a long standing open problem in hydrodynamic limits.

ASSUMPTION 3.1. The maps [0,1] � ρ 	→ σ(ρ) and [0,1] � ρ 	→D(ρ) are
continuously differentiable.

The hydrodynamic scaling limit for the weakly asymmetric Kawasaki dynamics
is stated as follows. Given a sequence {ηN ∈�N }, we set P E,N

ηN := P
E,N

ηN ◦ (πN)−1,

that is, P E,N

ηN is the law of the empirical density when η(t), t ∈ [0, T ], is sampled

according to P
E,N

ηN . Then P E,N

ηN is a probability measure on the path space M[0,T ].

THEOREM 3.2. Fix T > 0, a vector field E ∈ C1(Td;Rd), a profile γ ∈M

and a sequence {ηN ∈�N } associated to γ . The sequence of probability measures
{P E,N

ηN } on M[0,T ] converges weakly to δu where u≡ ut(r) is the unique element
of M[0,T ] satisfying the two following conditions.

(i) Energy estimate. The weak gradient of u is in L2([0, T ] ×Td, dt dr;Rd),∫ T

0
dt 〈∇ut ,∇ut 〉<+∞.(3.6)

(ii) Hydrodynamic equation. The function u is a weak solution to{
∂tu+∇ · [σ(u)E] = ∇ · [D(u)∇u], (t, r) ∈ (0, T )×Td ,
u0(r)= γ (r), r ∈ Td .

(3.7)

Of course, a function u in M[0,T ] satisfying the energy estimate (3.6) is said to
be a weak solution to (3.7) iff the identity

〈uT ,HT 〉 − 〈γ,H0〉 =
∫ T

0
dt [〈ut , ∂tHt 〉 + 〈σ(ut )E −D(ut)∇ut ,∇Ht 〉](3.8)

holds for any H ≡Ht(r) ∈ C1([0, T ] × Td). We emphasize that the above condi-
tion is meaningful in view of the energy estimate. Since we assumed E to be a C1

vector field, the uniqueness of a function u ∈M[0,T ] satisfying the two conditions
stated in the theorem can be proven by repeating the argument in [33]. We empha-
size uniqueness holds either if σ is Lipschitz (recall Assumption 3.1) or if σ is a
multiple of the identity and continuous.

3.2. Dynamical large deviation principle. In order to state the large deviation
principle associated to the law of large numbers in Theorem 3.2, we first introduce
the rate functional. Fix a function γ ∈M corresponding to the initial density pro-
file. Given π ∈ M[0,T ] satisfying the energy estimate [i.e., such that (3.6) holds
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with u replaced by π ], let 
γ,π be the linear functional on C1([0, T ]×Td) defined
by


γ,π (H) := 〈πT ,HT 〉 − 〈γ,H0〉
(3.9)

−
∫ T

0
dt [〈πt , ∂tHt 〉 + 〈σ(πt )E −D(πt)∇πt ,∇Ht 〉].

Note that 
γ,π vanishes iff π is a weak solution to the hydrodynamic equation
(3.7). The rate functional IE[0,T ](·|γ ) : M[0,T ] → [0,+∞] is then defined by

IE[0,T ](π |γ ) := sup
H∈C1([0,T ]×Td )

{

γ,π (H)−

∫ T

0
dt 〈∇Ht,σ (πt )∇Ht 〉

}
,(3.10)

if
∫ T

0 dt 〈∇πt ,∇πt 〉 < +∞ and IE[0,T ](π |γ ) := +∞ otherwise. It is not difficult

to check, by choosing suitable test functions H above, that IE[0,T ](π |γ ) < +∞
implies π ∈ C([0, T ];M) and π0 = γ .

An application of Riesz’s representation lemma allows us to write the rate func-
tion IE[0,T ](·|γ ) in a more explicit form ([20], Lemma 10.5.3). For this purpose,

we introduce some Hilbert spaces. Given a path π ∈ M[0,T ], let H1(σ (π)) be
the Hilbert space obtained by quotienting and completing C1([0, T ] × Td) with
respect to the pre-inner product defined by

〈〈G,H 〉〉1,σ (π) :=
∫ T

0
dt 〈∇Gt,σ (πt )∇Ht 〉.

Denote the norm in H1(σ (π)) by ‖ · ‖1,σ (π) and let H−1(σ (π)) be the dual space.
The latter is a Hilbert space equipped with the norm ‖ · ‖−1,σ (π) defined by

‖℘‖2−1,σ (π) := sup
H∈H1(σ (π)):
‖H‖1,σ (π)=1

℘(H)2 = sup
H∈H1(σ (π))

{
2℘(H)− ‖H‖2

1,σ (π)

}
.

By density, in the above formula one can restrict to H ∈C1([0, T ] ×Td).
Fix a path π ∈ M[0,T ] such that IE[0,T ](π |γ ) < +∞, in particular, π satis-

fies the energy estimate. Since the right-hand side of (3.10) is finite, the linear
functional 
γ,π , as defined in (3.9), extends univocally to a continuous linear
functional on H1(σ (u)), that we still denote by 
γ,π . From (3.10) we deduce
‖
γ,π‖2−1,σ (π) = 4IE[0,T ](π |γ ). Therefore, by Riesz’s representation lemma, there

exists a unique �γ,π ∈H1(σ (π)) such that


γ,π (H)= 2〈〈�γ,π ,H 〉〉1,σ (π) for any H ∈H1(σ (u)),(3.11)

thus leading to the identity ‖
γ,π‖−1,σ (π) = 2‖�γ,π‖1,σ (π). In conclusion, it holds

IE[0,T ](π |γ )= ‖�γ,π‖2
1,σ (π) = 1

4‖
γ,π‖2−1,σ (π).(3.12)
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In view of (3.11), π is a weak solution to

∂tπ +∇ · [σ(π)(E + 2∇�γ,π)] = ∇ · [D(π)∇π ],
(t, r) ∈ (0, T )×Td,(3.13)

π0(r)= γ (r), r ∈ Td,

so that 2∇�γ,π can be interpreted as the extra driving field to produce the fluctua-
tion π .

THEOREM 3.3. Fix T > 0, a vector field E ∈ C1(Td;Rd), a profile γ ∈M

and a sequence {ηN ∈ �N } associated to γ . The sequence of probability mea-
sures {P E,N

ηN } on M[0,T ] satisfies a large deviation principle with speed Nd and

good rate function IE[0,T ](·|γ ). Namely, IE[0,T ](·|γ ) : M[0,T ] → [0,+∞] has com-
pact level sets and for each closed set C ⊂M[0,T ] and each open set O ⊂M[0,T ]

lim sup
N→∞

1

Nd
log P E,N

ηN (C)≤− inf
π∈C

IE[0,T ](π |γ ),(3.14)

lim inf
N→∞

1

Nd
log P E,N

ηN (O)≥− inf
π∈O

IE[0,T ](π |γ ).(3.15)

3.3. The quasi-potential. From now on we assume that the driving field E

admits the following orthogonal decomposition.

DEFINITION 3.4. The vector field E ∈ C1(Td;Rd) is orthogonally decom-
posable iff it admits the following decomposition. There exists a function U ∈
C2(Td) and a vector field Ẽ ∈ C1(Td;Rd) such that

E =−∇U + Ẽ, ∇ · Ẽ = 0, ∇U(r) · Ẽ(r)= 0 ∀r ∈ Td .(3.16)

Given a C1 vector field E, the first two requirements in the above definition
are met by letting U be a solution to the Poisson equation −�U = ∇ · E and
then setting Ẽ = E + ∇U . Then (3.16) requires that for each r ∈ Td we have
∇U(r) · Ẽ(r) = 0. Observe that a conservative or divergenceless vector field is
orthogonally decomposable; indeed in first case (3.16) holds with Ẽ = 0, while in
the second case (3.16) holds with a constant U and Ẽ =E. In the one-dimensional
case d = 1, a vector field is orthogonally decomposable either if it is constant or if
it is conservative. On the other hand, when d ≥ 2 there exist orthogonally decom-
posable vector fields for which the decomposition (3.16) is not trivial. Although U

is univocally determined by (3.16) apart an additive constant, all the U -dependent
definitions given below are not affected by the choice of the additive constant. In
the sequel, we shall restrict to either one of the three following cases: (i) E is a
conservative vector field, (ii) E is a constant vector field, (iii) the mobility σ is a
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multiple of the identity and E is orthogonally decomposable. As stated above, if
the interaction � and the symmetric jump rates c0 are isotropic, then σ is indeed
a multiple of the identity.

Recall the definition of the free energy f given in (2.6). Given an orthogonally
decomposable field E and ρ̄ ∈ (0,1), let γρ̄ : Td → (0,1) be the function satisfying

f ′(γρ̄(r))+U(r)= α(ρ̄),(3.17)

where α(ρ̄) ∈ R is chosen so that
∫

dr γρ̄(r) = ρ̄. Equivalently, γρ̄ is de-
fined as γρ̄(r) = (f ′)−1(−U(r) + c), where the constant c is chosen such that∫

dr γρ̄(r)= ρ̄. By the properties of the free energy mentioned just after (2.6), the
function γρ̄ is well defined. When ρ̄ equals 0 or 1 then we define γρ̄ as the func-
tion, respectively, identically equal to 0 or 1. A simple computation shows that,
under either condition (i), (ii) or (iii) above, for each ρ̄ ∈ [0,1] the function γρ̄ is a
stationary solution of the hydrodynamic equation (3.7). Moreover, as we show in
Section 7, under the flow defined by the hydrodynamic equation (3.7) any point in
the closed subset M(ρ̄)⊂M defined by

M(ρ̄) :=
{
ρ ∈M :

∫
dr ρ(r)= ρ̄

}
(3.18)

converges as t→+∞ to the stationary solution γρ̄ . Furthermore, this convergence
is uniform with respect to the initial condition.

We next define the quasi-potential as in the classical Freidlin–Wentzell the-
ory for finite-dimensional diffusion processes [16]. We denote by IE[T1,T2](·|γ ) the
functional (3.10) when the time window is [T1, T2]. Given ρ̄ ∈ [0,1] we then let
the quasi-potential V E

ρ̄ :M→[0,+∞] be the functional defined by

V E
ρ̄ (ρ) := inf

T >0
inf

{
IE[−T ,0](π |γρ̄),π ∈M[−T ,0] :π0 = ρ

}
.(3.19)

Since I[−T ,0](π |γ ) <+∞ implies π−T = γ , the quasi-potential V E
ρ̄ (ρ) measures

the minimal cost to reach the profile ρ ∈M starting from the stationary solution γρ̄ .
We can also define the quasi-potential by considering directly paths defined on

a semi-infinite time interval. To this end, let IE[T1,T2] : M[T1,T2] → [0,+∞] be the
functional defined by

IE[T1,T2](π) := IE[T1,T2](π |π(T1)).

This functional can also be expressed by the variational formula (3.10) in which
the linear functional 
γ,π is replaced by


π(H) := 〈πT2,HT2〉 − 〈πT1,HT1〉
(3.20)

−
∫ T2

T1

dt [〈πt , ∂tHt 〉 + 〈σ(πt )E −D(πt)∇πt ,∇Ht 〉].
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Given ρ̄ ∈ [0,1], we define M(−∞,0](ρ̄)⊂M(−∞,0] by

M(−∞,0](ρ̄) :=
{
π ∈M(−∞,0] : lim

t→−∞πt = γρ̄

}
.(3.21)

We then let IE
(−∞,0] : M(−∞,0](ρ̄)→ [0,+∞] be the lower semicontinuous func-

tional given by

IE
(−∞,0](π) := lim

T→+∞ IE[−T ,0](π)(3.22)

observing that the limit on the right-hand side (possibly taking the value +∞)
exists by monotonicity. We finally let V̂ E

ρ̄ :M→[0,+∞] be the functional defined
by

V̂ E
ρ̄ (ρ) := inf

{
IE
(−∞,0](π),π ∈M(−∞,0](ρ̄) :π0 = ρ

}
.(3.23)

In the context of diffusion processes in Rn, in view of the continuity of the quasi-
potential, it is simple to check that the functionals defined in (3.19) and (3.23) are
identical. We show this is also the case in the present setting in which the quasi-
potential is only lower semicontinuous.

The next result states that the quasi-potential has a simple representation in
terms of the function γρ̄ , which does not depend on the divergenceless part Ẽ

in the decomposition (3.16). Moreover, the variational problem on the right-hand
side of (3.23) has a unique minimizer that can be explicitly characterized. We
first introduce such optimal path. Recall (3.18). Fix ρ̄ ∈ [0,1], ρ ∈M(ρ̄), and let
v : [0,+∞)×Td →[0,1] be the weak solution to

∂tv +∇ · [σ(v)(−∇U − Ẽ)] = ∇ · [D(v)∇v],
(t, r) ∈ (0,+∞)×Td,(3.24)

v0(r)= ρ(r), r ∈ Td .

Note the change of sign in the field Ẽ with respect to (3.7). Then, as we show is
Section 7, vt → γρ̄ as t→+∞. Therefore, denoting by θ the time reversal, that
is, (θv)t := v−t , it holds θv ∈M(−∞,0](ρ̄) so that θv is a legal test path for the
variational problem (3.23).

THEOREM 3.5. Assume either one of the three following conditions:

(i) E is a conservative vector field;
(ii) E is a constant vector field;

(iii) the mobility σ is a multiple of the identity and E is orthogonally decom-
posable.

For each ρ̄ ∈ [0,1] we have V E
ρ̄ = V̂ E

ρ̄ = F U
ρ̄ , where the functional F U

ρ̄ :M →
[0,+∞) is given by

F U
ρ̄ (ρ)=

⎧⎨
⎩

∫
dr f U

ρ̄ (r, ρ(r)), if ρ ∈M(ρ̄),

+∞ otherwise,
(3.25)
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in which, recalling (2.9), f U
ρ̄ : Td × [0,1]→R+ is the function

f U
ρ̄ (r, ρ) :=

∫ ρ

γρ̄(r)
du

∫ u

γρ̄(r)
dv f ′′(v)= fγρ̄(r)(ρ).(3.26)

Moreover, the unique minimizer for the variational problem on the right-hand side
of (3.23) is the path θv, where v is the weak solution to (3.24).

Note that F U
ρ̄ is a lower semicontinuous strictly convex functional which at-

tains its minimum for ρ = γρ̄ . Moreover, if E has vanishing divergence then U

is constant and γρ̄(r)≡ ρ̄; in particular f U
ρ̄ (r;ρ) does not depend on r and coin-

cides with fρ̄(ρ) [see (2.9)]. In this case, we drop the dependence on U from the
notation. Note, however, that the optimal path θv depends also on the divergence-
less part Ẽ in the decomposition (3.16). As stated before, the previous result is an
infinite-dimensional analogue of [16], Theorem 4.3.1. The condition that σ(ρ) is
a multiple of the identity can be slightly relaxed.

REMARK 3.6. Assume σ(ρ)= σ0(ρ)� for some scalar function σ0 : [0,1]→
[0,+∞) and some constant symmetric strictly positive d × d matrix �. Replace
the condition (3.16) on the driving field E with the following assumption. There
exists a C2 function U : Td → R and a C1 vector field Ẽ : Td → Rd such that
E =−∇U + Ẽ with ∇U(r) ·�Ẽ(r)= 0 for any r ∈ Td and ∇ · (�Ẽ)= 0. Then
Theorem 3.5 still holds.

3.4. Stationary large deviation principle. As a corollary of the large devia-
tions analysis of the weakly asymmetric dynamics and the characterization of the
quasi-potential in Theorem 3.5, we deduce the asymptotic behavior of the corre-
sponding invariant measures.

We first discuss the case of the symmetric dynamics. As stated before, in this
case the ergodic invariant measures are the canonical Gibbs measures νN,K . Fix
a sequence {KN } ⊂ N such that N−dKN → ρ̄ ∈ [0,1] and set P 0

N := νN,KN
◦

(πN)−1, that is, P 0
N is the law of the empirical density when the configuration

η is sampled according to νN,KN
. Then the sequence of probability measures on

M given by {P 0
N } satisfies a large deviations principle with speed Nd and con-

vex rate function Fρ̄ (recall that Fρ̄ = F U
ρ̄ when U is constant). This result can

be derived from the large deviation principle for the sequence of grand-canonical
Gibbs measures {μN }. On the other hand, it is also a corollary of Theorem 3.5 and
Theorem 3.7 below.

We now consider the weakly asymmetric dynamics with a smooth orthogo-
nally decomposable external field E. Since the total number of particles is con-
served, we have a well defined dynamics on the hyperplanes �N,K := {η ∈
�N :

∑
x∈Td

N
ηx =K}, K = 0, . . . ,Nd . It easy to check that the generator LE,N is

irreducible when restricted to �N,K so that there exists a unique invariant measure
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denoted by νE
N,K . Fix a sequence {KN } ⊂ N such that N−dKN → ρ̄ ∈ [0,1] and

set P E
N := νE

N,KN
◦ (πN)−1. As discussed in Section 2.3, if E =−∇U the weakly

asymmetric Kawasaki dynamics is reversible with respect to the Gibbs measures
on Td

N corresponding to the Hamiltonian HU
N defined in (2.14). Accordingly, the

sequence of probability measures {P E
N } on M satisfies a large deviation principle

with convex rate function F U
ρ̄ as defined in (3.25). Also this statement can be ob-

tained as a corollary of Theorem 3.5 and Theorem 3.7 below. It remains to discuss
the more interesting case in which either the vector E is constant or σ is a mul-
tiple of the identity and E is orthogonally decomposable with some nontrivial Ẽ.
We emphasize that in this case the invariant measures νE

N,K cannot be computed
explicitly. The following result, which states that the quasi-potential V E

ρ̄ gives the
rate function of the empirical density when particles are distributed according to
νE
N,KN

, is proven in [10] for the one-dimensional boundary driven symmetric sim-
ple exclusion process. See also [15] (where this statement is proven in greater gen-
erality) for more details. The basic argument is analogous to the one for diffusions
on Rn (see [16], Theorem 4.4.3). In view of the dynamical large deviation principle
stated in Theorem 3.3 and the uniform convergence of the hydrodynamic equation
(3.7) proven in Theorem 7.7 below, the arguments presented in [10, 15] extend to
the current setting of nongradient weakly asymmetric stochastic lattice gases with
periodic boundary conditions. We therefore only state precisely the result.

THEOREM 3.7. Fix a vector field E ∈ C1(Td;Rd) satisfying either one of the
conditions in Theorem 3.5 and a sequence {KN } ⊂ N such that N−dKN → ρ̄ ∈
[0,1]. Then, the sequence of probability measures {P E

N } on the compact space M

satisfies a large deviation principle with speed Nd and rate function V E
ρ̄ :M →

[0,+∞] as defined in (3.19). Namely, for each closed set C ⊂M and each open
set O ⊂M ,

lim sup
N→∞

1

Nd
logP E

N (C)≤− inf
γ∈C V E

ρ̄ (γ ),

lim inf
N→∞

1

Nd
logP E

N (O)≥− inf
γ∈O V E

ρ̄ (γ ).

The above result, together with Theorem 3.5, describes explicitly the large devi-
ations behavior of the sequence {P E

N } in the scaling limit N→∞. In particular, as
discussed before, it implies that, as far as stationary large deviations of the empiri-
cal density are concerned, weakly asymmetric nongradient stochastic lattice gases
behave as gradient models.

4. Nongradient tools. In this section we collect some technical results which
will be used in the proof both of the hydrodynamic limit and of the dynamical large
deviation principle. We heavily rely on the results in Vardahan and Yau [33].
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4.1. Additional notation. For the reader’s convenience, we fix here some ad-
ditional notation needed in the sequel. We first define some (not scaled) generators.
Given a bond b ∈ B we set L0,b := c0

b∇b, LE,b := cE
b ∇b. Moreover, given �⊂ Zd ,

we define L0,� :=∑
b∈B�

L0,b and LE,� :=∑
b∈B�

LE,b. Recalling (2.10), for
f :�N →R we set

L0f (η) :=N−2L0,Nf (η)= ∑
{x,y}∈BN

c0
x,y(η)∇x,yf (η).

With some abuse, we also denote by L0 the operator

L0f (η) := ∑
x∈Zd

d∑
i=1

c0
x,x+ei

(η)∇x,x+ef (η)

acting on local functions f :�→ R. The meaning of L0 will be clear from the
context. The same definitions hold for LE by replacing c0

x,y with cE
x,y .

As in [33], given an integer 
 we set 
1 = 
 − √
 and, given parameters
a1, a2, . . . , an, such that ai → αi , i = 1, . . . , n, lim supa1→α1,a2→α2,...,an→αn

is a
shorthand for lim supa1→α1

lim supa2→α2
· · · lim supan→αn

. We recall that we write
Avx and

∑
x instead of Avx∈Td

N
and

∑
x∈Td

N
, respectively.

Given κ ∈ (0,1), fix a C∞ function ψ(κ) : Rd → [0,∞) such that ψ(κ)(r)= 0
if |r| > 1, ψ(κ)(r) = 2−d is |r| < 1− κ and

∫
dr ψ(κ)(r) = 1. We write ψ

(κ)
ε for

the mollifier ψ
(κ)
ε (r) := ε−dψ(κ)(r/ε). Given π ∈M , we then define the smooth

mollified function π̃κ,ε as the convolution

π̃κ,ε(r) := π ∗ψ(κ)
ε (r).(4.1)

Finally, we isolate some classes of special functions. Recall the definition (2.4)
of the canonical Gibbs measure. As in [33] we define the function space G by

G := {
f :�→R :f is local and νσ

�f ,K(f )= 0
(4.2)

∀K ∈ {0, . . . , |�f |}, σ ∈�
}
.

If f ∈ G then νσ
�,K(f )= 0 for any � ∈ F such that �⊃�f . It is simple to check

that the current j0
0,e(η)= c0

0,e(η)(η0 − ηe), where e is an element of the canonical
basis, belongs to G . Moreover, if g is a local function on � then L0g ∈ G .

The following class of functions will also play an important role in the sequel.

DEFINITION 4.1. A function g ≡ gρ(η)≡ g(η,ρ) :�× [0,1] → R is called
good iff:

(i) g is Lipschitz in ρ uniformly with respect to η, that is, there exists C > 0
such that for any ρ,ρ′ ∈ [0,1] and η ∈�

|gρ(η)− gρ′(η)| ≤C|ρ − ρ′|;
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(ii) g is local in η uniformly with respect to ρ, that is, there exists a set �0 ∈ F

such that for any ρ ∈ [0,1] we have �gρ ⊂�0.

Note that good functions are bounded. Working with good functions it is conve-
nient to introduce the following convention. Given a good function g ≡ g(η,ρ) we
will add the superscript 1 both to generators and to gradients applied to expressions
as g(τyη, η̄x,
) when these operators act only on the first entry. For example,

∇1
z,z+eg(τyη, η̄x,
)= g(τy(η

z,z+e), η̄x,
)− g(τyη, η̄x,
).(4.3)

Given a good function g and a function m :�→[0,1] we set

¯
g(η,m(η)) := ∑

x∈Zd

g(τxη,m(η)).(4.4)

In words,
¯
g(η,m(η)) is obtained by first considering the formal series

¯
gρ as defined

in (2.1) and then setting ρ =m(η).

4.2. Spectral estimates. Recall that μN denotes the grand-canonical Gibbs
measure on �N with zero chemical potential and that P0,N

μN
denotes the law of the

reversible symmetric Kawasaki dynamics with initial distribution μN . We discuss
a standard method to get super-exponential estimates of the type

lim sup
k↑∞,N↑∞

1

Nd
log P0,N

μN
(BN

k )=−∞(4.5)

for events of the form BN
k = {|

∫ T
0 ds hN

k (s, η(s))| > δ} for some function hN
k on

[0, T ] × �N . Since e|x| ≤ ex + e−x and log(a + b) ≤ log[2(a ∨ b)], by the ex-
ponential Chebyshev inequality and the Feynman–Kac formula (see, e.g., [20],
Appendix 1, Lemma 7.2) for each γ > 0 we have

1

Nd
log P0,N

μN
(BN

k )

≤−γ δ+ 1

Nd
log E0,N

μN

(
exp

{∣∣∣∣
∫ T

0
ds γNdhN

k (s, η(s))

∣∣∣∣
})

≤−γ δ+ log 2

Nd
+ 1

Nd
sup

σ=±1
log E0,N

μN

(
exp

{∫ T

0
ds σγNdhN

k (s, η(s))

})

≤−γ δ+ log 2

Nd
+ γ sup

σ=±1

∫ T

0
ds sup spec

L2(μN)

{σhN
k (s, ·)+ γ−1N2−dL0},

where specL2(μN) denotes the spectrum in L2(μN). Hence, in order to get (4.5) it
is enough to show that for each γ > 0

lim sup
k↑∞,N↑∞

∫ T

0
ds sup spec

L2(μN)

{±hN
k (s, ·)+ γ−1N2−dL0} ≤ 0.(4.6)
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A useful tool to derive the estimate (4.6) is given by the following perturbative
result concerning sup specL2(ν){αV +L}, where L is an ergodic reversible Markov
generator on a countable set E with invariant measure ν, α ∈R, and V is a function
defined on E. We refer to [20], Appendix 3, Theorem 1.1, for the proof.

LEMMA 4.2. Let gap(L, ν) be the spectral gap of L in L2(ν) and (·, ·)ν be
the inner product in L2(ν). If ν(V )= 0 and 2α gap(L, ν)−1‖V ‖∞ < 1, then

0≤ sup spec
L2(ν)

{αV +L}

≤ α2

1− 2α gap(L, ν)−1‖V ‖∞ (V ,−L−1V )ν.

Since the operator L is not injective, we need to specify the meaning of
(V ,−L−1V )ν . By ergodicity, the kernel of L is given by constant functions. In
particular, f − g is a constant function for all f,g ∈ L−1(V ). Since ν(V )= 0, we
conclude that (V ,f )ν does not depend on the special function f ∈ L−1(V ) and
this constant value is the precise meaning of (V ,−L−1V )ν .

4.3. Central limit theorem variance. Given a function f ∈ G , an integer 
 so
large that �f ⊂ �
1 (recall 
1 = 
−√
) and a canonical measure ν on �
, we
define V
(f ;ν) as

V
(f ;ν) := (2
1 + 1)d
(

Av
y∈�
1

τyf,−L−1
0,�


Av
y∈�
1

τyf
)
ν
.(4.7)

The above H−1-seminorm appears from the application of Lemma 4.2 to get super-
exponential estimates of the form (4.5) for hN

k =Avx τxf (there is no dependence
on k).

Given � ∈ F let K� be the σ -algebra generated by the random variables N�

and ηx , x ∈ Zd \�. In [33], Section 8, it is proven that for any ρ ∈ [0,1], the limit

Vρ(f ) := lim

→∞
ρ′→ρ

μρ′ [V
(f ;μρ′(·|K�

))](4.8)

exists and is finite. The above limit is called central limit theorem variance and
in what follows will be briefly denoted as CLTV. We recall below some results of
[33] concerning the CLTV.

On the space G the functional Vρ(·)1/2 defines a semi-norm and, by polarization,
a pre-inner product 〈·, ·〉ρ , that is, Vρ(f )= 〈f,f 〉ρ . The corresponding completion
Hρ of G/Nρ , where Nρ := {f ∈ G :Vρ(f )= 0}, is therefore an Hilbert space. In
what follows, given a local function f ∈ G , we will denote again by f the image
of f under the projection plus the inclusion map G → G/Nρ ↪→Hρ . In general,
given an element e of the canonical basis, ∇eη= ηe− η0 does not belong to G , but
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it is possible to show ([33], page 656) that

he,s =∇eη−μρ(∇eη|K�s )(4.9)

is a Cauchy sequence in Hρ as s ↑∞. As in [33], with some abuse of notation we
denote by ∇eη the limiting point of he,s in Hρ .

We recall a table of computations in the Hilbert space Hρ . Below e, e′ belong to
the canonical basis, j0

0,e(η)= c0
0,e(η)(η0 − ηe) is the current in the direction e and

g,h are generic local functions. Recall the notation introduced in (2.1) and (2.7).

〈j0
0,e, j

0
0,e′ 〉ρ = 1

2δe,e′μρ[c0
0,e(η)(ηe − η0)

2],(4.10)

〈j0
0,e,L0g〉ρ = 1

2μρ[c0
0,e(η)(η0 − ηe)∇0,e ¯

g],(4.11)

〈j0
0,e,∇e′η〉ρ =−δe,e′χ(ρ),(4.12)

〈∇eη,L0g〉ρ = 0,(4.13)

〈L0g,L0h〉ρ = 1

2

d∑
i=1

μρ[c0
0,ei

(η)∇0,ei ¯
g∇0,ei ¯h].(4.14)

See, respectively, equations (8.7), (8.8), (8.13), (8.14) and the computations after
(8.6) in [33]. We stress that the signs in (4.11) and (4.12) differ from the ones
in [33]. A simple check of the correctness of the above statement, in the case
(4.12), is the following. When the Hamiltonian is zero, the jump rates are constant
and j0

0,e = c(η0 − ηe), c > 0. In particular, ∇eη coincides in Hρ with the standard

gradient and it holds 〈j0
0,e,∇eη〉ρ =−c〈η0−ηe, η0−ηe〉ρ , which must be negative

as in (4.12).
Define the following linear subspaces of Hρ

G(0) =
{

d∑
i=1

ai∇ei
η, a ∈Rd

}
, L0G = {L0g,g ∈ G}.

As follows from [33] and the arguments in [20], Chapter 7, the closure of
{L0g,g local function} in Hρ coincides with the closure of L0G . Moreover, Hρ

admits the orthogonal decomposition

Hρ = G(0)⊕L0G.(4.15)

Observe that orthogonality follows easily from (4.13).
Recall the definitions (3.2) and (3.5) of the mobility σ(ρ) and the diffusion

coefficient D(ρ). We can give a simple geometric interpretation of σ(ρ) and D(ρ)

referred to the Hilbert space Hρ . Indeed, due to the table of computations (4.10)–
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(4.14), for each v ∈Rd ,

1

2
μρ

[
d∑

i=1

c0
0,ei

(vi[ηei
− η0] + ∇0,ei ¯

f )2

]

= Vρ

(
d∑

i=1

vij
0
0,ei

)
+ 2

〈
d∑

i=1

vij
0
0,ei

,L0f

〉
ρ

+ Vρ(L0f )(4.16)

= Vρ

(
d∑

i=1

vij
0
0,ei
+L0f

)
.

Let P : Hρ→ G(0) be the orthogonal projection of Hρ onto G(0). Then, in view of
(4.16), the variational formula (3.2) simply reads

v · σ(ρ)v = Vρ

(
P

d∑
i=1

vij
0
0,ei

)
.(4.17)

Equivalently,

σi,k(ρ)= 〈Pj0
0,ei

, Pj0
0,ek
〉ρ = 〈Pj0

0,ei
, j0

0,ek
〉ρ, i, k = 1, . . . , d.(4.18)

By writing Pj0
0,ei
= −∑d

k=1 ai,k(ρ)∇ek
η, from (4.12) and (4.18) we deduce

ai,k(ρ)χ(ρ)= σi,k(ρ). This implies the key identity

j0
0,ei
=−

d∑
k=1

Di,k(ρ)∇ek
η+ (I− P)j0

0,ei
in Hρ.(4.19)

In the next lemma we give some additional characterization of the entries of σ(ρ),
which will be used below. We omit the proof, which easily follows from (4.10) and
(4.18).

LEMMA 4.3. For each ρ ∈ [0,1] and i, k = 1, . . . , d it holds

σi,i(ρ)= 〈j0
0,ei

, j0
0,ei
〉ρ − 〈j0

0,ei
, (I− P)j0

0,ei
〉ρ,(4.20)

σi,k(ρ)=−〈j0
0,ei

, (I− P)j0
0,ek
〉ρ

(4.21)
=−〈(I− P)j0

0,ei
, j0

0,ek
〉ρ, i �= k.

By definition of P , for each ρ ∈ [0,1] and i = 1, . . . , d there exist local func-
tions g

(i)
ρ such that −L0g

(i)
ρ approximates (I−P)j0

0,ei
in Hρ . Moreover, it is pos-
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sible to choose the family of approximating functions in such a way that some
regularity is achieved. More precisely, recalling Definition 4.1, (4.19) and [33],
Corrolary 3.5, imply the following statement.

LEMMA 4.4. For each i = 1, . . . , d and δ > 0 there exists a good function
g

(i)
ρ (η) : [0,1] ×�→R such that, setting

φ(i)
ρ := j0

0,ei
+

d∑
k=1

Di,k(ρ)∇ek
η+L0g

(i)
ρ = (I− P)j0

0,ei
+L0g

(i)
ρ ,

we have

sup
ρ∈[0,1]

Vρ

(
φ(i)

ρ

)≤ δ.(4.22)

4.4. Super-exponential estimates. We introduce some perturbations of the
weakly asymmetric dynamics. Given 
≥ 1, H ∈C1,2([0, T ]×Td) and a family of
good functions g = {g(i)(η, ρ), i = 1, . . . , d} we define the functions F ≡ FN

H,
,g

and F̄ ≡ F̄
N

H,
,g on [0, T ] ×�N by

F(t, η) := 1

2

∑
x

Ht

(
x

N

)
ηx + F̄ (t, η),(4.23)

F̄ (t, η) := 1

2N

∑
x

d∑
i=1

∇N
i Ht

(
x

N

)
g(i)(τxη, η̄x,
),(4.24)

where the discrete gradient ∇N
i is defined by ∇N

i f (r) :=N [f (r + ei/N)−f (r)],
r ∈ Td . We then consider the time-inhomogeneous Markov chain on �N with
jump rates N2c

E,H,g
x,y , where c

E,H,g
x,y is defined at time t by

cE,H,g
x,y (η) := cE

x,y(η) exp{F(t, ηx,y)− F(t, η)}
(4.25)

= cE+∇Ht
x,y (η) exp{F̄ (t, ηx,y)− F̄ (t, η)}

in which the rate c
E+∇Ht
x,y is defined as in (2.13) with the field E replaced by

E+∇Ht . We let L
E,H,g
t,N be the corresponding time-inhomogeneous generator and

denote by P
E,H,g,N

ηN the law of the perturbed chain with initial condition ηN . We

convey to write simply P
E,H,N

ηN and L
E,H
t,N if g= 0. Note that in this case, in view

of the last identity in (4.25), the above dynamics coincides with the weakly asym-
metric Kawasaki dynamics with time-inhomogeneous external field E +∇Ht .
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We observe that there exists a constant C > 0 depending only on H and the
functions g(i) such that for any {x, y} ∈ BN it holds

sup
0≤t≤T

sup
η∈�N

|∇x,yF (t, η)| ≤ C

N
,

(4.26)

sup
0≤t≤T

sup
η∈�N

|∇x,yF̄ (t, η)| ≤ C

N
.

LEMMA 4.5. Fix E ∈ C1(Td;Rd), H ∈ C1,2([0, T ] ×Td), 
≥ 1, a family of
good functions g and let P

E,H,g,N

ηN as defined above. For each p ∈ [1,∞) there

exists a constant C0 such that for any N ≥ 1, T > 0, and any sequence {ηN ∈�N }

lim sup
N→∞

1

Nd
log E0,N

μN

([dP
E,H,g,N

ηN

dP
0,N
μN

]p)
≤ C0(T + 1).

PROOF. By the assumptions on the interaction (see Definition 2.1), there ex-
ists a constant C depending only on � such that for any ηN ∈ �N we have
logμN(ηN) ≥ −CNd . It is therefore enough to prove the lemma with P0,N

μN
re-

placed by P
0,N

ηN .

Given an ordered bond (x, y) ∈ B̃N , t ∈ [0, T ] and η ∈D([0, T ];�N), denote
by N η

x,y(t) the total number of particles that in the time interval [0, t] jumped from
x to y. Set also J

η
x,y(t) := N η

x,y(t)−N η
y,x(t). By standard tools in the theory of

jump Markov processes (see, e.g., [11], Section VI.2) we can compute the Radon–
Nikodym derivative as

dP
E,H,g,N

ηN

dP
0,N

ηN

(η)

= exp
{ ∑
{x,y}∈BN

[
EN(x, y)J η

x,y(T )+ F(T ,ηT )− F(0, η0)

−N2
∫ T

0
dt c0

x,y(η(t))

× (
eEN(x,y)[ηx(t)−ηy(t)]+∇x,yF (t,η(t)) − 1

)]}
.

Note indeed that EN(x, y)J
η
x,y(T ) and EN(x, y)[ηx(t)− ηy(t)] do not depend on

the orientation of the bond (x, y); therefore they can be thought of, as in the above
expression, as functions of the unoriented bond {x, y}. The previous expression
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yields

[dP
E,H,g,N

ηN

dP
0,N

ηN

(η)

]p

=
dP

pE,pH,g,N

ηN

dP
0,N

ηN

(η)

× exp
{
N2

∫ T

0
dt

∑
{x,y}∈BN

c0
x,y(η(t))

× [
epEN(x,y)[ηx(t)−ηy(t)]+p∇x,yF (t,η(t)) − 1

− p
(
eEN(x,y)[ηx(t)−ηy(t)]+∇x,yF (t,η(t)) − 1

)]}
.

By using (4.26) and the bound |EN(x, y)| ≤ CN−1 for some C > 0 [see (2.11)]
we get that there exists a constant C′ = C′(E,H,g,p) > 0 such that

[
epEN(x,y)[ηx−ηy ]+p∇x,yF (t,η) − 1− p

(
eEN(x,y)[ηx−ηy ]+∇x,yF (t,η) − 1

)]≤ C′

N2 ·

The lemma follows readily. �

The following simple consequence of the previous lemma will be repeatedly
used to deduce super-exponential estimates from those obtained in [33].

REMARK 4.6. Consider a sequence of events {BN
k } in D([0, T ];�N) which

have super-exponentially small probability with respect to the stationary process
P0,N

μN
, that is, such that

lim sup
k↑∞,N↑∞

1

Nd
log P0,N

μN
(BN

k )=−∞.

In view of Lemma 4.5, an application of the Hölder inequality shows that the
previous estimate holds also for the probability P

E,H,g,N

ηN .

As is well known, key points in the proof of the hydrodynamic limit are the
so-called one and two block estimates. By standard methods (see, e.g., [20], Chap-
ter 10) one can prove the one block estimate at a super-exponential level. The
basic statement is given in the following lemma; in the sequel we also use, without
further mention, slight variations of this result.
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LEMMA 4.7 (One block estimate). For each ϕ ∈ C([0, T ] × Td), each local
function h on � and each ζ > 0 it holds

lim sup

↑∞,N↑∞

1

Nd
log P0,N

μN

(∣∣∣∣
∫ T

0
dt Av

x
ϕt

(
x

N

)
[h(τxη)−μη̄x,


(h)]
∣∣∣∣ > ζ

)
=−∞.

As explained in [33], as a byproduct of the spectral estimates in Section 4.2
and [33], Theorem 6.2, the two blocks estimate holds in super-exponential sense
with respect to P0,N

μN
.

LEMMA 4.8 (Two blocks estimate). For each local function h on � and each
ζ > 0, it holds

lim sup

↑∞,a↓0,N↑∞

1

Nd
log P0,N

μN

(∫ T

0
dt Av

x
Av

y : |y−x|≤aN
|h(η̄x,
(t))− h(η̄y,
)(t)|> ζ

)

=−∞,

lim sup

↑∞,a↓0,N↑∞

1

Nd
log P0,N

μN

(∫ T

0
dt Av

x
|h(η̄x,aN(t))− h(η̄x,
)(t)|> ζ

)
=−∞.

As in [33], Theorem 3.9, given c > 0, i = 1, . . . , d and a site x, we define the
density gradient in the direction ei as

�
(i)
x,N,c(η) := ηx+cNei

− ηx−cNei

2cN
.(4.27)

In Proposition 4.9 below we collect super-exponential bounds for suitable
events. Such events appear naturally in the proof of the hydrodynamic limit
and the dynamical large deviation principle. To introduce these events, we first
fix some notation: in the following definitions ϕ ≡ ϕt(r) and H ≡ Ht(r) are
functions in C1,2([0, T ] × Td), while g and ĝ are families of good functions
g = {g(i)(η, ρ), i = 1, . . . , d}, ĝ = {ĝ(i)(η, ρ), i = 1, . . . , d} [the function F̄ N

H,
,g
has been defined in (4.24)] and recalling the notation (4.1) for the smooth convo-

lution we shorthand π̃N (η)κ,ε with π̃N(η)κ,ε . In addition, we set

T1(t, η) :=N Av
x

d∑
i=1

∇N
i ϕt

(
x

N

)
j0
x,x+ei

,

T2(t, η) :=N Av
x

d∑
i=1

∇N
i ϕt

(
x

N

)
Av

y : |y−x|≤
1
j0
y,y+ei

,

T3(t, η) := 1

2
Av
x

d∑
i=1

∇N
i ϕt

(
x

N

)
c0
x,x+ei

(η)(ηx − ηx+ei
)2Ei(x/N),
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T4(t, η) := 1

2
Av
x

d∑
i=1

∇N
i ϕt

(
x

N

)
c0
x,x+ei

(η)(ηx − ηx+ei
)2∂iHt (x/N),

T5,g(t, η) :=N Av
x

d∑
i=1

∇N
i ϕt

(
x

N

)
c0
x,x+ei

(η)(ηx − ηx+ei
)∇x,x+ei

F̄ N
H,
,g(t, η)

= 1

2
Av
x

∑
z

d∑
i=1

d∑
j=1

∇N
i ϕt

(
x

N

)
∇N

j Ht

(
z

N

)
c0
x,x+ei

(η)(ηx − ηx+ei
)

×∇x,x+ei
g(j)(τzη, η̄z,
),

T6,g(t, η) := 1

2
Av
x

∑
z

d∑
i=1

d∑
j=1

∇N
i ϕt

(
x

N

)
∇N

j Ht

(
z

N

)

× c0
x,x+ei

(η)(ηx − ηx+ei
)∇1

x,x+ei
g(j)(τzη, η̄z,
),

T7,g,ĝ(t, η) :=N Av
x

d∑
i=1

∇N
i ϕt

(
x

N

)
Av

y : |y−x|≤
1
L

E,H,g,1
t,N ĝ(i)(τyη, η̄x,
),

T8,g,ĝ(t, η) :=N Av
x

d∑
i=1

∇N
i ϕt

(
x

N

)
Av

y : |y−x|≤
1
L

E,H,g
t,N ĝ(i)(τyη, η̄x,
),

T9,g(t, η) :=N Av
x

d∑
i=1

∇N
i ϕt

(
x

N

)
Av

y : |y−x|≤
1
L0g

(i)(τyη, η̄y,
),

T10,g(t, η) :=N Av
x

d∑
i=1

∇N
i ϕt

(
x

N

)
Av

y : |y−x|≤
1
L0g

(i)(τyη, η̄x,
),

T11,g(t, η) :=N Av
x

d∑
i=1

∇N
i ϕt

(
x

N

)
Av

y : |y−x|≤
1
L1

0g
(i)(τyη, η̄x,
),

T12(t, η) :=N Av
x

d∑
i=1

d∑
j=1

∇N
i ϕt

(
x

N

)
Di,j (η̄x,aN) Av

y : |y−x|≤
1
�

(j)
y,N,c(η)

= Av
x

d∑
i=1

d∑
j=1

∇N
i ϕt

(
x

N

)
Di,j (η̄x,aN)

η̄x+cNej ,
1 − η̄x−cNej ,
1

2c
,

T13,g(t, η) := 1

2
Av
x

∑
z

d∑
i=1

d∑
j=1

∇N
i ϕt

(
x

N

)
c0
z,z+ej

(η)(ηz − ηz+ej
)[Ej + ∂jHt ]

×
(

z

N

)
Av

y : |y−x|≤
1
∇1

z,z+ej
g(i)(τyη, η̄x,
),
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T14,g,ĝ(t, η) := 1

2
Av
x

∑
z

∑
v

d∑
i=1

d∑
j=1

d∑
k=1

∇N
i ϕt

(
x

N

)
∇N

k Ht

(
v

N

)
c0
z,z+ej

(η)

×∇z,z+ej
g(k)(τvη, η̄v,
)

× Av
y : |y−x|≤
1

∇1
z,z+ej

ĝ(i)(τyη, η̄x,
),

T15,g,ĝ(t, η) := 1

2
Av
x

∑
z

∑
v

d∑
i=1

d∑
j=1

d∑
k=1

∇N
i ϕt

(
x

N

)
∇N

k Ht

(
v

N

)
c0
z,z+ej

(η)

×∇1
z,z+ej

g(k)(τvη, η̄v,
)

× Av
y : |y−x|≤
1

∇1
z,z+ej

ĝ(i)(τyη, η̄x,
),

T16(t, η) :=
d∑

i=1

d∑
j=1

∫
Td

dr ∂iϕt (r)Di,j (π̃
N(η)κ,a(r)) ∂j π̃

N(η)κ
′,ε(r).

Moreover, recalling (4.4) and introducing ζ as variable of integration on �, we
also define

K1(t, η) := 1

2
Av
x

d∑
i=1

∂iϕt

(
x

N

)
[Ei + ∂iHt ]

(
x

N

)
μη̄x,


[c0
0,ei

(ζ )(ζ0 − ζei
)2],

K2,g(t, η) := 1

2
Av
x

d∑
i=1

d∑
j=1

∂iϕt

(
x

N

)
[Ej + ∂jHt ]

(
x

N

)

×μη̄x,


[
c0

0,ej
(ζ )(ζ0 − ζej

)∇1
0,ej ¯

g(i)(ζ, η̄x,
)
]
,

K3,g,ĝ(t, η) := 1

2
Av
x

d∑
i=1

d∑
j=1

d∑
k=1

∂iϕt

(
x

N

)
∂kHt

(
x

N

)

×μη̄x,


[
c0

0,ej
(ζ )∇1

0,ej ¯
g(k)(ζ, η̄x,
)

×∇1
0,ej ¯

ĝ(i)(ζ, η̄x,
)
]
,

K4,g(t, η) := 1

2
Av
x

d∑
i=1

d∑
j=1

∂iϕt

(
x

N

)
∂jHt

(
x

N

)

×μη̄x,


[
c0

0,ei
(ζ )(ζ0 − ζei

)∇1
0,ei ¯

g(j)(ζ, η̄x,
)
]
,

K5(t, η) := Av
x

d∑
i=1

d∑
k=1

∂iϕt

(
x

N

)
σi,k(η̄x,
)[Ek + ∂kHt ]

(
x

N

)
.
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In the above definitions, instead of a generic family of good functions, we will
sometimes take the family of good functions provided by Lemma 4.4, which we
denote by g[δ]. In this case, we will add the dependence on δ in the notation. For
instance, T5,g[δ](t, η) denotes the function T5,g(t, η) when the family g is chosen
so that the bound (4.22) holds.

PROPOSITION 4.9. Let ϕ,H ∈ C1,2([0, T ] × Td), and let g, ĝ be families
of good functions. Then for each ζ > 0 the expressions T1, . . . , T16, K1, . . . ,K5

defined above satisfy the following super-exponential estimates:

lim sup
N↑∞

1

Nd
log P0,N

μN

(∣∣∣∣
∫ T

0
dt [T1 − T2](t, η(t))

∣∣∣∣ > ζ

)
=−∞,(4.28)

lim sup
δ↓0,
↑∞,a↓0,c↓0,N↑∞

1

Nd

(4.29)

× log P0,N
μN

(∣∣∣∣
∫ T

0
dt

[
T2 + T11,g[δ] + T12

]
(t, η(t))

∣∣∣∣ > ζ

)
=−∞,

lim sup

↑∞,N↑∞

1

Nd
log P0,N

μN

(∣∣∣∣
∫ T

0
dt [T3 + T4 −K1](t, η(t))

∣∣∣∣ > ζ

)
=−∞,(4.30)

lim sup

↑∞,N↑∞

1

Nd
log P0,N

μN

(∣∣∣∣
∫ T

0
dt [T6,g −K4,g](t, η(t))

∣∣∣∣ > ζ

)
=−∞,(4.31)

lim sup

↑∞,N↑∞

1

Nd
log P0,N

μN

(∣∣∣∣
∫ T

0
dt [T13,g −K2,g](t, η(t))

∣∣∣∣ > ζ

)
=−∞,(4.32)

lim sup

↑∞,N↑∞

1

Nd
log P0,N

μN

(∣∣∣∣
∫ T

0
dt [T15,g,ĝ −K3,g,ĝ](t, η(t))

∣∣∣∣ > ζ

)
=−∞,(4.33)

lim sup

↑∞,N↑∞

1

Nd
log P0,N

μN

(∣∣∣∣
∫ T

0
dt [T5,g − T6,g](t, η(t))

∣∣∣∣ > ζ

)
=−∞,(4.34)

lim sup

↑∞,N↑∞

1

Nd
log P0,N

μN

(∣∣∣∣
∫ T

0
dt [T7,g,ĝ − T8,g,ĝ](t, η(t))

∣∣∣∣ > ζ

)
=−∞,(4.35)

lim sup

↑∞,N↑∞

1

Nd
log P0,N

μN

(∣∣∣∣
∫ T

0
dt [T9,g − T10,g](t, η(t))

∣∣∣∣ > ζ

)
=−∞,(4.36)

lim sup

↑∞,N↑∞

1

Nd
log P0,N

μN

(∣∣∣∣
∫ T

0
dt [T10,g − T11,g](t, η(t))

∣∣∣∣ > ζ

)
=−∞,(4.37)

lim sup

↑∞,N↑∞

1

Nd
log P0,N

μN

(∣∣∣∣
∫ T

0
dt [T14,g,ĝ − T15,g,ĝ](t, η(t))

∣∣∣∣ > ζ

)
=−∞,(4.38)
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lim sup
δ↓0,
↑∞,N↑∞

1

Nd
log P0,N

μN

(∣∣∣∣
∫ T

0
dt

[
K3,g,g[δ] +K4,g

]
(t, η(t))

∣∣∣∣ > ζ

)
(4.39)

=−∞,

lim sup
δ↓0,
↑∞,N↑∞

1

Nd
log P0,N

μN

(∣∣∣∣
∫ T

0
dt

[
K1 +K2,g[δ] −K5

]
(t, η(t))

∣∣∣∣ > ζ

)
(4.40)

=−∞,

lim sup
κ↓0,
↑∞,a↓0,κ ′↓0,ε↓0,c↓0,N↑∞

1

Nd

× log P0,N
μN

(∣∣∣∣
∫ T

0
dt [T12 − T16](t, η(t))

∣∣∣∣ > ζ

)
(4.41)

=−∞.

PROOF. We prove the stated super-exponential bounds one after the other. We
denote by C a generic constant, independent of the parameters we are taking the
limit, whose numerical value can change from line to line.

The estimate (4.28). Summing by parts we get

T1(t, η)− T2(t, η)=N Av
x

d∑
i=1

j0
x,x+ei

Av
y : |y−x|≤
1

[
∇N

i ϕt

(
x

N

)
−∇N

i ϕt

(
y

N

)]
.

The term inside the square brackets, after taking average, gives a contribution of
the order 
2/N2. Hence, T1 − T2 is of the order 
2/N .

The estimate (4.29). This is the core of [33] and follows from [33], Theorem 3.9,
the arguments presented in Section 4.2 and the definition of g[δ] (look also at [33],
Step 3, page 637).

The estimate (4.30). It is an immediate consequence of the one block estimate.

The estimate (4.31). Let us define T
(1)
6,g (t, η) as the expression obtained from

T6,g by replacing the term g(j)(τzη, η̄z,
) with g(j)(τzη, η̄x,
). We observe that,
due to the definitions of good functions and of the gradient ∇1, both in T6,g and

T
(1)
6,g we can restrict the sum over z to the sites z such that |x − z| ≤ C. In view of

the Lipschitz property of good functions, we thus have

∣∣T6,g(t, η)− T
(1)
6,g (t, η)

∣∣≤ C

Nd

∑
x

∑
z : |z−x|≤C

|η̄x,
 − η̄z,
| ≤ C



·

Using again the above sum restriction and due to the smoothness of H , in T
(1)

6,g

we can afterward replace ∇N
j Ht(z/N) with ∇N

j Ht(x/N) with an error O(1/N).
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Finally, we can remove the sum restriction over z. At the end we get

T6,g(t, η)= 1

2
Av
x

d∑
i=1

d∑
j=1

∇N
i ϕt

(
x

N

)
∇N

j Ht

(
x

N

)
c0
x,x+ei

(η)(ηx − ηx+ei
)

×∇1
x,x+ei

∑
z

g(j)(τzη, η̄x,
)+O

(
1

N

)
+O

(
1




)

and (4.31) follows from the one block estimate.

The estimate (4.32). Recalling the definition of ∇1, we observe again that we
can restrict the sum over z to the sum over z : |z − y| ≤ C. As a consequence,
|z−x| ≤ C+
1. Hence, by an error of order O(
/N), we can replace ∇N

i ϕt (x/N)

with ∇N
i ϕt (z/N). We call T

(1)
13,g the resulting expression. Let us now define T

(2)
13,g as

T
(1)
13,g with g(i)(τyη, η̄x,
) replaced by g(i)(τyη, η̄x,aN). By the Lipschitz property

of good functions, we can estimate∣∣T (1)
13,g − T

(2)
13,g

∣∣(t, η)≤ C Av
x
|η̄x,
 − η̄x,aN |.

By the two blocks estimate (see Lemma 4.8), we conclude that

lim sup

↑∞,a↓0,N↑∞

1

Nd
ln P0,N

μN

(∣∣∣∣
∫ T

0
dt

[
T

(1)
13,g − T

(2)
13,g

]
(t, η(t)) dt

∣∣∣∣ > ζ

)
(4.42)

=−∞.

We next define T
(3)

13,g as T
(2)
13,g with g(i)(τyη, η̄x,aN) replaced by g(i)(τyη, η̄z,aN).

Since |x − z| ≤ C + 
1, by the Lipschitz property of good functions we get

∣∣T (2)
13,g − T

(3)
13,g

∣∣(t, η)≤ C Av
x
|η̄x,aN − η̄z,aN | ≤ C

C + 


aN
·

At this point we define T
(4)
13,g as T

(3)
13,g with the term g(i)(τyη, η̄z,aN) replaced

by g(i)(τyη, η̄z,
). As in (4.42), we obtain that the event {| ∫ T
0 [T (3)

13,g − T
(4)
13,g](t ,

ηt ) dt |> ζ } has super-exponentially small probability. In order to prove (4.32) we

can therefore replace T13,g with T
(4)
13,g,

T
(4)

13,g(t, η) := 1

2
Av
z

d∑
i=1

d∑
j=1

∇N
i ϕt

(
z

N

)
[Ej + ∂jHt ]

(
z

N

)
c0
z,z+ej

(η)(ηz − ηz+ej
)

×∇1
z,z+ej

∑
y

g(i)(τyη, η̄z,
).

The thesis now follows from the one block estimate.

The estimate (4.33). The proof of this bound follows by the same ideas used
in the proof of (4.32), apart the fact that now there are more indexes. Anyway, in
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T15,g,ĝ one can sum over z ∈ Td
N , y : |y − z| ≤ C, x : |x − y| ≤ 
1 and v : |v − z| ≤

C + 
. Then one has to use the two blocks estimate and, at the end, the one block
estimate.

The estimate (4.34). If

∇x,x+ei
g(j)(τzη, η̄z,
) �= ∇1

x,x+ei
g(j)(τzη, η̄z,
),(4.43)

then the bond {x, x+ei}must intersect both �z,
 and its complement. In particular,
given z the number of sites x leading to the inequality (4.43) are of order O(
d−1).
In addition, since g(j)(η, ρ) is Lipschitz in ρ uniformly in η, setting ω = ηx,x+ei

with {x, x + ei} intersecting both �z,
 and its complement, we get∣∣∇x,x+ei
g(j)(τzη, η̄z,
)−∇1

x,x+ei
g(j)(τzη, η̄z,
)

∣∣
= ∣∣g(j)(τzω, ω̄z,
)− g(j)(τzω, η̄z,
)

∣∣≤ C|ω̄z,
 − η̄z,
| ≤ C
1


d
.

The above observations imply that |T5,g − T6,g| ≤ C/
, which trivially implies
(4.34).

The estimate (4.35). We define

T
(1)

7,ĝ (t, η) :=N Av
x

d∑
i=1

∇N
i ϕt

(
x

N

)
Av

y : |y−x|≤
1
L1

0ĝ
(i)(τyη, η̄x,
),

T
(1)

8,ĝ (t, η) :=N Av
x

d∑
i=1

∇N
i ϕt

(
x

N

)
Av

y : |y−x|≤
1
L0ĝ

(i)(τyη, η̄x,
).

By Taylor expansion of the perturbed jump rates [see (5.8) below together with
(4.26)], we can write T7,g,ĝ = T

(1)

7,ĝ +V and T8,g,ĝ = T
(1)

8,ĝ +W , where V and W are
uniformly bounded functions of t, η. One can then prove that ‖V −W‖∞ ≤ C/


by the same arguments used in the proof of (4.34). Finally, the event {|T (1)

7,ĝ −
T

(1)

8,ĝ | > ζ } has super-exponentially small probability as proved in [33], between
Lemma 3.8 and Theorem 3.9 there.

The estimate (4.36). In view of (4.6), we only need to prove that for each γ > 0

lim sup

↑∞,N↑∞

sup
t∈[0,T ]

sup spec
L2(μN)

{±(T9,g − T10,g)(t, η)+ γ−1N2−dL0}
(4.44)

≤ 0.

We point out three facts. (i) It holds N2−dL0 ≤ c(d)Avx N2
−dL0,�x,10

in the op-

erator sense. (ii) Since for self-adjoint operators W the quantity sup specL2(μN){W }
equals the supremum of (f,Wf )μN

among the functions f ∈ L2(μN) satisfying
(f, f )μN

= 1, the map W → sup specL2(μN){W } is subadditive. (iii) Both in T9,g
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and T10,g we can replace L0 with L0,�x,10

if 
 large. Combining (i), (ii) and (iii)

we deduce

sup spec
L2(μN)

{±(T9,g − T10,g)+ γ−1N2−dL0}

≤ C Av
x

sup
ν

sup spec
L2(ν)

{
±∇N

i ϕt

(
x

N

)
NL0,�x,10


R(τxη)(4.45)

+ c(d)γ−1N2
−dL0,�x,10


}
,

where ν varies among all canonical Gibbs measures on �x,10
 and

R(η) := Av
y : |y|≤
1

[
g(i)(τyη, η̄y,
)− g(i)(τyη, η̄
)

]
.

By the uniform strong mixing assumption on interaction, there exists a constant
C > 0 such that gap(L0,�x,10


) ≥ 
−2/C (see [12, 22, 34]). Applying Lemma 4.2
with L= c(d)γ−1N2
−dL0,�x,10


, using translation invariance and the expression
of the Dirichlet form for reversible processes, we can then bound the right-hand
side of (4.45) by

C
d sup
ν

(R,−L0,�10

R)ν

(4.46)

≤ C sup
ν

{
Av

x∈�10


d∑
j=1

I{{x,x+ej }⊂�10
}ν[(∇x,x+ej

dR)2]

}
,

where I denotes the indicator function. By the same arguments used in the proof of
(4.34), in (4.46) we can replace ∇x,x+ej

by ∇1
x,x+ej

with an error of order O(
−1).
On the other hand, due to the definition of good function, there exists a constant
K > 0 such that g(i)(·, ρ) has support in �K for all ρ ∈ [0,1]. We take 
 K .
Then, using the Lipschitz property of good functions, we can bound the right-hand
side of (4.46) by

C Av
x∈�10


d∑
j=1

I{{x,x+ej }⊂�10
}

× ν

[(
∇1

x,x+ej

∑
y∈�
1 : |y−x|≤2K

[
g(i)(τyη, η̄y,
)− g(i)(τyη, η̄
)

])2]

+O

(
1




)

≤ C Av
x∈�10


ν

[( ∑
y∈�
1 : |y−x|≤2K

|η̄y,
 − η̄
|
)2]
+O

(
1




)
.
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The proof is now concluded observing that the last bound above vanishes uni-
formly in ν as 
→∞ by the equivalence of ensembles.

The estimates (4.37) and (4.38). The proof is similar to the proof of (4.34).

The estimate (4.39). Due to (4.14) and (4.11) we can write

K3,g,g[δ](t, η)= Av
x

d∑
i=1

d∑
k=1

∂iϕt

(
x

N

)
∂kHt

(
x

N

)〈
L0g

(k)
ρ ,L0g

(i)
ρ [δ]

〉
ρ=η̄x,


,

K4,g(t, η)= Av
x

d∑
i=1

d∑
j=1

∂iϕt

(
x

N

)
∂jHt

(
x

N

)〈
j0

0,ei
,L0g

(j)
ρ

〉
ρ=η̄x,


·

Hence,[
K3,g,g[δ] +K4,g

]
(t, η)

=Av
x

d∑
i=1

d∑
k=1

∂iϕt

(
x

N

)
∂kHt

(
x

N

)〈
L0g

(k)
ρ , j0

0,ei
+L0g

(i)
ρ [δ]

〉
ρ=η̄x,


.

Due to Lemma 4.4, the orthogonal decomposition (4.15) and the definition of the
orthogonal projection P we can write for all ρ ∈ [0,1]〈

L0g
(k)
ρ , j0

0,ei
+L0g

(i)[δ]〉ρ = 〈
L0g

(k)
ρ ,Pj0

0,ei

〉+ o(1)= o(1),

where the error term o(1) goes to zero uniformly in ρ ∈ [0,1] as δ goes to zero.
The thesis follows.

The estimate (4.40). Using (4.10), (4.11) and Lemma 4.4 we can write

K1(t, η)= Av
x

d∑
i=1

∂iϕt

(
x

N

)
[Ei + ∂iHt ]

(
x

N

)
〈j0

0,ei
, j0

0,ei
〉ρ=η̄x,


,

K2,g[δ](t, η)= Av
x

d∑
i=1

d∑
j=1

∂iϕt

(
x

N

)
[Ej + ∂jHt ]

(
x

N

)〈
j0

0,ej
,L0g

(i)
ρ [δ]

〉
ρ=η̄x,


=−Av
x

d∑
i=1

d∑
j=1

∂iϕt

(
x

N

)
[Ej + ∂jHt ]

(
x

N

)
〈j0

0,ej
, (I− P)j0

0,ei
〉ρ=η̄x,


+ o(1).

We apply Lemma 4.3 in order to rewrite the above terms K1,K2,g[δ] in terms of
the matrix σ . By (4.20) and (4.21), respectively, we can write

K1(t, η)= Av
x

d∑
i=1

∂iϕt

(
x

N

)
[Ei + ∂iHt ]

(
x

N

)
σi,i(η̄x,
)+E(t, η),
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K2,g[δ](t, η)= Av
x

d∑
i=1

∑
j : 1≤j≤d

j �=i

∂iϕt

(
x

N

)
[Ej + ∂jHt ]

(
x

N

)
σi,j (η̄x,
)

−E(t, η)+ o(1),

where E(t, η) := Avx

∑d
i=1 ∂iϕt (

x
N

)[Ei + ∂iHt ]( x
N

)〈j0
0,ei

, [I − P ]j0
0,ei
〉ρ=η̄x,


.
Comparing with K5(t, η), the above identities trivially imply the thesis.

The estimate (4.41). Given x ∈ Td
N and s > 0, denote by Kx,s the σ -algebra

generated by the observables ηy , y ∈ Td
N \ �x,s , and by η̄x,s . In the proof

of Theorem 3.9 in [33], page 649, it is shown that in T12 one can replace
Di,j (η̄x,aN)Avy : |y−x|≤
1 �

(j)
y,N,c(η) with Di,j (η̄x,
)Avy : |y−x|≤
1(ηy+ej

−ηy). We
call T ′12 the resulting expression. As the proof is based on the two blocks esti-
mate and [33], Theorem 5.3, it needs the property that the function Di,j (η̄x,aN)

is Kx,AN for some A (take A = a). The same property holds indeed also for
Di,j (π̃

N(η)κ,a(x/N)) with A= (1− κ)a. In view of Assumption 3.1, it holds∣∣Di,j

(
π̃N(η)κ,a(x/N)

)−Di,j (η̄x,aN)
∣∣≤ Cκ,

which allows us to apply the two blocks estimate as in [33], page 650. As a con-
sequence, the expression T

(1)
12 , obtained from T12 by replacing Di,j (η̄x,aN) with

Di,j (π̃
N(η)κ,a(x/N)), is equivalent to T ′12 and therefore to T12,

lim sup
κ↓0,
↑∞,a↓0,c↓0,N↑∞

1

Nd
log P0,N

μN

(∣∣∣∣
∫ T

0
dt

[
T12 − T

(1)
12

]
(t, η(t))

∣∣∣∣ > ζ

)
=−∞.

By replacing ∇N
i ϕt with ∂iϕt and summing by parts, we can write

T
(1)

12 (t, η)

=−Av
x

d∑
i=1

d∑
j=1

η̄x,
1

1

2c

[
∂iϕt

(
x

N
+ cej

)
Di,j

(
π̃N (η)κ,a

(
x

N
+ cej

))

− ∂iϕt

(
x

N
− cej

)
Di,j

(
π̃N(η)κ,a

(
x

N
− cej

))]

+ o(1).

Observe that π̃N (η)κ,a belongs to C∞(Td). Moreover, fixed a, κ , we can bound
its derivatives by a constant depending only on a, κ . Hence, by Taylor expansion,∣∣∣∣ 1

2c

[
∂iϕt

(
x

N
+ cej

)
Di,j

(
π̃N (η)κ,a

(
x

N
+ cej

))

− ∂iϕt

(
x

N
− cej

)
Di,j

(
π̃N (η)κ,a

(
x

N
− cej

))]

− ∂j [∂iϕtDi,j (π̃
N(η)κ,a)]

(
x

N

)∣∣∣∣≤ Cc,
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where C = C(κ, a) and c is the scale parameter. Up to now we have proved that
T12 is equivalent, in the super-exponential sense stated in (4.41), to T

(1)
12 , which,

by the above observations, is equivalent to

T
(2)

12 (t, η)=−Av
x

d∑
i=1

d∑
j=1

η̄x,
1 ∂j [∂iϕtDi,j (π̃
N(η)κ,a)]

(
x

N

)
.

Note that the scale parameter c does not appear anymore. By the same argument
used in the proof of equation (4.28), in T

(2)
12 we can replace the local density η̄x,
1

with ηx paying an error bounded by C(a, κ)(
/N)2, and therefore negligible. We
call the new expression T

(3)
12 . By the same argument used to derive (4.28) we can

replace ηx by η̄x,εN with an error bounded by C(a, κ)ε2, therefore negligible. By
this replacement we get T

(4)
12 . Since |η̄x,εN − π̃N (η)κ

′,ε(x/N)| ≤ C(κ ′ + 1/Nε)

and the limits N ↑ ∞, κ ′ ↓ 0 and ε ↓ 0 are taken before the limit a ↓ 0, by a
uniform estimate we can replace η̄x,εN with π̃N (η)κ

′,ε(x/N) getting

T
(5)

12 (t, η) := −Av
x

d∑
i=1

d∑
j=1

π̃N (η)κ
′,ε

(
x

N

)
∂j [∂iϕtDi,j (π̃

N(η)κ,a)]
(

x

N

)
.

With an error negligible as N ↑∞, in T
(5)

12 we can replace the average Avx with the
integral over Td . By an integration by parts, the resulting expression is indeed T16.

�

5. Hydrodynamic limit. In this section we prove the hydrodynamic scaling
limit for the weakly asymmetric Kawasaki dynamics. In order to prove the dynam-
ical large deviation principle, we need a more general version of Theorem 3.2 that
is stated below. Recall that P

E,H,g,N

ηN is the law of the process with the perturbed
rates defined in (4.25) and observe that by setting H = 0 and g = 0 we recover
the law P

E,N

ηN of the original weakly asymmetric Kawasaki dynamics as defined in
(2.12).

THEOREM 5.1. Fix T > 0, functions E ∈ C1(Td;Rd), H ∈ C1,2([0, T ] ×
Td), a profile γ ∈ M , a sequence {ηN ∈ �N } associated to γ and a family
g = {g(i) : 1 ≤ i ≤ d} of good functions. The sequence of probability measures
{PE,H,g,N

ηN ◦ (πN)−1}N≥1 on M[0,T ] converges weakly to δu, where u is the unique
element of M[0,T ] satisfying the two following conditions.

(i) Energy estimate. The weak gradient of u is in L2([0, T ] ×Td, dt dr;Rd),∫ T

0
dt 〈∇ut ,∇ut 〉<+∞.(5.1)
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(ii) Hydrodynamic equation. The function u is a weak solution to

∂tu+∇ · [σ(u)(E +∇Ht)] = ∇ · [D(u)∇u], (t, r) ∈ (0, T )×Td,
(5.2)

u0(r)= γ (r), r ∈ Td .

To prove this result, we shall first discuss the tightness of the sequence
{PE,H,g,N

ηN ◦ (πN)−1}N≥1 and prove the energy estimate. Since these results are
also relevant for the large deviation principle, they will be proven at the super-
exponential level. We then discuss a microscopic characterization of the hydrody-
namic equation and conclude the proof of the hydrodynamic limit.

Exponential tightness. Recall that a sequence of probability measures {Pn} on
a Polish space X is exponentially tight iff there exists a sequence {K
} of compact
subsets of X such that

lim sup

↑∞,n↑∞

1

n
logPn(K�


)=−∞.(5.3)

LEMMA 5.2. Under the same hypotheses of Theorem 5.1, for each ϕ ∈
C2(Td) and each ζ > 0, it holds

lim sup
τ↓0,N↑∞

1

Nd
log P

E,H,g,N

ηN

(
sup

s,t∈[0,T ] : |s−t |≤τ

|〈πN
t , ϕ〉 − 〈πN

s ,ϕ〉|> ζ
)

(5.4)
=−∞.

PROOF. The bound (5.4) is proven in [33], Section 4, for the reversible process
P

0,N

μN . Therefore, by Remark 4.6, it holds also for P
E,H,g,N

ηN . �

Since M is compact, by definition of the weak* topology on M and standard
characterizations of compacts in the Skorohod space, the above lemma implies that
the sequence {PE,H,g,N

ηN ◦ (πN)−1}N≥1 is exponentially tight. We also observe that,
since in (5.4) we used the modulus of continuity on the set of continuous path and
not the one in the Skorohod space, Lemma 5.2 also implies that any limit point of
the sequence {PE,H,g,N

ηN }N≥1 is supported by C([0, T ];M).

Energy estimate. Let Q : M[0,T ] → [0,+∞] be the functional defined by

Q(π) := sup{QF (π),F ∈ C1([0, T ] ×Td;Rd)},(5.5)

where, given F ∈ C1([0, T ] ×Td;Rd),

QF (π) := −2
∫ T

0
dt 〈πt ,∇ · Ft 〉 −

∫ T

0
dt 〈Ft ,Ft 〉.(5.6)
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Observe that Q is convex and lower semicontinuous. Moreover, by a stan-
dard argument, Q(π) = supF (

∫ T
0 dt 〈πt ,Ft 〉)2/

∫ T
0 dt 〈Ft ,Ft 〉. Hence, Riesz rep-

resentation theorem implies that Q(π) < +∞ iff the weak gradient of π be-
longs to L2([0, T ] × Td, dt dr;Rd). If this is the case, we also have Q(π) =∫ T

0 dt 〈∇πt ,∇πt 〉. In view of Remark 4.6, the energy estimate proven in [33], Sec-
tion 5, implies the following bound.

LEMMA 5.3. Under the same hypotheses of Theorem 5.1, it holds

lim
α↑∞ sup

F∈C∞([0,T ]×Td ;Rd )

lim sup
N↑∞

1

Nd
log P

E,H,g,N

ηN

(
QF (πN) > α

)=−∞.

Fix a countable family {Fk} ⊂ C∞([0, T ] × Td;Rd) of smooth vector fields
dense in C1([0, T ] ×Td;Rd). Given n ∈N and α ∈R+, set

Mα,n :=
{
π ∈M[0,T ] : max

k∈{1,...,n}QFk
(π)≤ α

}
,(5.7)

so that Mα := {π ∈M[0,T ] : Q(π) ≤ α} =⋂
n Mα,n. The following statement is

then an immediate corollary of Lemma 5.3.

COROLLARY 5.4. Under the same hypotheses of Theorem 5.1, it holds

lim sup
α↑∞,n↑∞,N↑∞

1

Nd
log P

E,H,g,N

ηN (πN /∈Mα,n)=−∞.

Identification of the hydrodynamic equation. The following result will allow
us to characterize the limit points of {PE,H,g,N

ηN ◦ (πN)−1}N≥1. Recall the notation
for the smooth convolution introduced in (4.1).

PROPOSITION 5.5. Given ϕ ∈ C1([0, T ] ×Td) and a path π ∈M[0,T ], set

WT (π) := 〈πT ,ϕT 〉 − 〈π0, ϕ0〉 −
∫ T

0
dt 〈πt , ∂tϕt 〉

+
∫ T

0
dt 〈∇ϕt , σ (π̃

κ,a
t )[E +∇Ht ] −D(π̃

κ,a
t )∇π̃

κ ′,ε
t 〉.

Then, under the same hypotheses of Theorem 5.1, for each ζ > 0 it holds

lim sup
κ↓0,a↓0,κ ′↓0,ε↓0,N↑∞

P
E,H,g,N

ηN

(|WT (πN)|> ζ
)= 0.

The proof of the above result will be based on standard martingale estimates,
the super-exponential bounds in Proposition 4.9, the Taylor expansion of the rates

c
E,H,g
x,x+ei

(η)= c0
x,x+ei

(η)+ 1

2N
c0
x,x+ei

(η)(ηx − ηx+ei
)[Ei + ∂iHt ]

(
x

N

)
(5.8)

+ c0
x,x+ei

(η)∇x,x+ei
F̄ (t, η)+O

(
1

N2

)
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and of the currents

j
E,H,g
x,x+ei

(η)= j0
x,x+ei

(η)+ 1

2N
c0
x,x+ei

(η)(ηx − ηx+ei
)2[Ei + ∂iHt ]

(
x

N

)
(5.9)

+ c0
x,x+ei

(η)(ηx − ηx+ei
)∇x,x+ei

F̄ (t, η)+O

(
1

N2

)
,

where the function F̄ ≡ F̄ N
H,
,g is the one defined in (4.24).

PROOF. Given ψ1,ψ2 : Td →R, set 〈ψ1,ψ2〉∗ :=Avx ψ1(x/N)ψ2(x/N) and
observe that for any ϕ ∈ C([0, T ] ×Td) it holds

lim
N→∞〈π

N(η),ϕt 〉∗ = 〈πN(η),ϕt 〉
uniformly for t ∈ [0, T ] and η ∈ �N . Hence, it is enough to prove the statement
with 〈·, ·〉 replaced by 〈·, ·〉∗.

By standard martingale estimates (see [20]) and recalling the definition of

L
E,H,g
t,N given after (4.25), we get

lim
N↑∞P

E,H,g,N

ηN

(∣∣∣∣〈πN(η(T )), ϕT 〉∗ − 〈πN(η(0)), ϕ0〉∗

−
∫ T

0
dt 〈πN(η(t)), ∂tϕt 〉∗(5.10)

−
∫ T

0
dt L

E,H,g
t,N 〈πN(η(t)), ϕt 〉∗

∣∣∣∣ > ζ

)
= 0.

We next introduce the microscopic scale parameters 
, c and the family of good
functions provided by Lemma 4.4 which, as in the previous section, is denoted
by g[δ]. All approximations below have to be understood with respect to the limits
N ↑∞, c ↓ 0, ε ↓ 0, κ ′ ↓ 0, a ↓ 0, 
 ↑∞, κ ↓ 0 and finally δ ↓ 0. We use the func-
tions T1, . . . , T16 and K1, . . . ,K5 introduced in Section 4.4. Below we frequently
use Remark 4.6 without explicit mention.

Since

L
E,H,g
t,N ηx =N2

d∑
i=1

j
E,H,g
x−ei ,x

(η)−N2
d∑

i=1

j
E,H,g
x,x+ei

(η),

summing by parts and using the Taylor expansion (5.9) we deduce

L
E,H,g
t,N 〈πN(η),ϕt 〉∗ =N

d∑
i=1

Av
x
∇N

i ϕt

(
x

N

)
j

E,H,g
x,x+ei

(η)

= [T1 + T3 + T4 + T5,g](t, η)+ o(1).

In particular, inside (5.10) we can replace the last integrand by [T1 + T3 + T4 +
T5,g](t, η(t)). By (4.28) and (4.29), we can replace T1 by T2 and then T2 by
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−T11,g[δ] − T12. By (4.30), we can replace T3 + T4 by K1. By (4.34) and (4.31),
we can replace T5,g by T6,g and then T6,g by K4,g. In conclusion, inside (5.10) we
can replace the last integrand by[

K1 +K4,g − T11,g[δ] − T12
]
(t, η(t)).(5.11)

By a standard martingale estimate (see the paragraph before Lemma 3.6 in [33]),
it holds

lim sup

↑∞,N↑∞

P
E,H,g,N

ηN

(∣∣∣∣
∫ T

0
dt T8,g,g[δ](t, η(t))

∣∣∣∣ > ζ

)
= 0.

In particular, in (5.11) we can add T8,g,g[δ](t, η(t)). By (4.35), this last expression
is equivalent to T7,g,g[δ](t, η(t)). On the other hand, by the Taylor expansion (5.8)
we can write

T7,g,g[δ](t, η)= [
T11,g[δ] + T13,g[δ] + T14,g,g[δ]

]
(t, η)+ o(1).

By (4.32), we can replace T13,g[δ] by K2,g[δ], while by (4.38) and (4.33) we can
replace T14,g,g[δ] by T15,g,g[δ] and this by K3,g,g[δ].

Let us stop and see where we are: up to now we have showed that inside (5.10)
we can replace the last integrand by[

K1 +K2,g[δ] +K3,g,g[δ] +K4,g − T12
]
(t, η(t)).

In view of the estimates (4.39) and (4.40), the above expression can be re-
placed by [K5 − T12](t, η(t)). Finally, using the two blocks estimate in Lem-
ma 4.8, we can replace in K5 the microscopic scale 
 with the mesoscopic
one aN getting a new expression [K ′5 − T12](t, η(t)). Given π ∈ M, we
define πa(r) := π ∗ ψ(r) where ψ(r) := (2a)−dI(|r| ≤ a). Due to (4.41)
we can replace T12 with T16 and, using the regularity of σ , we can replace∫ T

0 dt K ′5(t, η(t)) by
∫ T

0 dt 〈∇ϕt , σ (πN(η(t))a)[E + ∇Ht ]〉. In addition, since
|πN(η)a − π̃N(η)κ

′,a|∞ ≤ Cκ ′, we can replace πN(η)a with π̃N (η)κ
′,a . Com-

paring with the definition of WT , the proof is complete. �

We can now conclude the proof of the hydrodynamic limit.

PROOF OF THEOREM 5.1. Set P E,H
N := P

E,H,g,N

ηN ◦ (πN)−1. As proven be-

fore, the sequence {P E,H
N } is relatively compact. We therefore only need to

show that any limit point P equals δu. By taking a subsequence, we can as-
sume that P E,H

N converges weakly to P . By the continuity of QF and Port-
manteau theorem P(Mα,n) ≥ lim supN P E,H

N (Mα,n). Corollary 5.4 then yields
limα→∞P(Mα) = 1. Hence, P almost surely, the weak gradient ∇π belongs to
L2([0, T ] ×Td, dt dr;Rd).

We write the function WT defined in Proposition 5.5 as WT (π̃κ,a, π̃κ ′,ε). More-
over, given π ∈MT satisfying the energy estimate, we let WT (π,π) be the same
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expression with π̃κ,a and π̃κ ′,ε both replaced by π . By Schwarz inequality and
the regularity of D and σ , there exists a constant C not depending on the scale
parameters such that

|WT (π̃κ,a, π̃κ ′,ε)−WT (π,π)| ≤ C(‖π̃κ,a − π‖2 + ‖∇π̃κ ′,ε −∇π‖2),

where ‖ · ‖2 is the norm in L2([0, T ] × Td, dt dr). Since ‖πt‖∞ ≤ 1 and P al-
most surely ∇π belongs to L2([0, T ] × Td, dt dr;Rd) by standard properties of
convolutions we deduce that for each ζ > 0

lim sup
κ↓0,ε↓0,κ ′↓0,a↓0

P
(|WT (π̃κ,a, π̃κ ′,ε)−WT (π,π)|> ζ

)= 0.

On the other hand, Proposition 5.5 and Portmanteau theorem imply that for each
ζ > 0

lim sup
κ↓0,ε↓0,κ ′↓0,a↓0

P
(|WT (π̃κ,a, π̃κ ′,ε)|> ζ

)

≤ lim sup
κ↓0,ε↓0,κ ′↓0,a↓0,N↑∞

P E,H
N

(|WT (π̃κ,a, π̃κ ′,ε)|> ζ
)= 0.

The above results readily imply that the identity WT (π,π)= 0 holds P almost
surely. Since by hypothesis the sequence {ηN } is associated to the profile γ , this
amounts to say that π is P almost surely a weak solution to (5.2). By the unique-
ness of such solution we conclude P = δu. �

6. Dynamical large deviation principle. In this section we prove Theo-
rem 3.3. Since the driving field E and the time T are here kept fixed, we drop them
from most of the notation. In particular, the space M[0,T ] is denoted by M and
the rate function defined in (3.10) by I (·|γ ). Recall that P E,N

ηN := P
E,N

ηN ◦ (πN)−1.

6.1. Upper bound. We first outline the basic strategy, which is the classical
Varadhan’s one [31] for Markov processes applied to the context of interacting
particle systems in the diffusive scaling limit [9, 20, 21, 25, 26]. In view of the
exponential tightness already proven, it is enough to show the upper bound (3.14)
for compact sets. Moreover, Corollary 5.4 implies that the probability of paths π

not satisfying the energy estimate is super-exponential small as N diverges; more
precisely, that the large deviations rate function is infinite if the weak gradient of
π does not belong to L2([0, T ] ×Td, dt dr;Rd), that is, the second line in (3.10).
By constructing a suitable family of exponential martingales for the probability
measures P

E,N

ηN , we then essentially prove that for any measurable set B in M and

any function H ∈ C1,2([0, T ] ×Td)

lim sup
N→∞

1

Nd
log P E,N

ηN (B)≤− inf
π∈B

JH,γ (π),(6.1)
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where, recalling (3.9), if π ∈M satisfies the energy estimate JH,γ (π) is given by

JH,γ (π)= 
γ,π (H)−
∫ T

0
dt 〈∇Ht,σ (πt )∇Ht 〉

= 〈πT ,HT 〉 − 〈γ,H0〉(6.2)

−
∫ T

0
dt

[〈πt , ∂tHt 〉 + 〈σ(πt )[E +∇Ht ] −D(πt)∇πt ,∇Ht 〉].
This is clearly the main step of the proof; the exponential martingales are con-
structed from the microscopic dynamics and are not a function of the empirical
density. However, the super-exponential bounds proven in Proposition 4.9 imply
that such exponential martingales can be approximated by functions of the em-
pirical density with probability super-exponentially close to one as N diverges.
In view of the variational definition (3.10) of the rate function I (·|γ ), the upper
bound (3.14) for compact sets then follows from (6.1) and (6.2) by an application
of a min–max lemma. As stated before, while for gradient models the exponential
martingales are constructed simply by changing the driving field, for nongradient
models, the correction provided by Lemma 4.4 is needed.

Exponential martingales. Fix E ∈ C1(Td;Rd), H ∈ C1,2([0, T ] × Td) and a
family of good functions g = {g(i) : 1 ≤ i ≤ d}. Given 
 ≥ 1, recall the definition
of the function F ≡ FN

H,
,g given in (4.23) and consider the exponential martingale

E ≡ E N
H,
,g associated to the function 2F , that is,

E (t) := exp
{

2F(t, η(t))− 2F(0, η(0))

(6.3)

−
∫ t

0
ds

[
e−2F(s,η(s))(∂s +LE,N)e2F(s,η(s))]}.

By, for example, [20], Appendix 1.7, E (t) is indeed a mean one positive martingale
with respect to the measure P

E,N

ηN . We next show that, as N diverges, E is super-

exponentially close to a function of the empirical density. The first step, stated
below, comes directly from a Taylor expansion of the exponential and (5.8); we
therefore omit the proof.

LEMMA 6.1. Set J N
H,
,g(η) :=N−d log E N

H,
,g(T ), η ∈D([0, T ];�N). Then

J N
H,
,g(η)= 〈πN(η(T )),HT 〉 − 〈πN(η(0)),H0〉

−
∫ T

0
dt [〈πN(η(t)), ∂tHt 〉 + J1(t, η(t))+ J2(t, η(t))

+ J3(t, η(t))+R(t, η(t))],
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where, for η ∈�N ,

J1(t, η)= JN
1,H,
,g(t, η)

:=N Av
x

d∑
i=1

c0
x,x+ei

(η)

[
∇N

i Ht

(
x

N

)
(ηx − ηx+ei

)

+∇x,x+ei

∑
z

d∑
j=1

∇N
j Ht

(
z

N

)
g(j)(τzη, η̄z,
)

]
,

J2(t, η)= JN
2,H,
,g(t, η)

:= 1

2
Av
x

d∑
i=1

c0
x,x+ei

(η)Ei

(
x

N

)
(ηx − ηx+ei

)

×
[
∇N

i Ht

(
x

N

)
(ηx − ηx+ei

)

+∇x,x+ei

∑
z

d∑
j=1

∇N
j Ht

(
z

N

)
g(j)(τzη, η̄z,
)

]
,

J3(t, η)= JN
3,H,
,g(t, η)

:= 1

2
Av
x

d∑
i=1

c0
x,x+ei

(η)

[
∇N

i Ht

(
x

N

)
(ηx − ηx+ei

)

+∇x,x+ei

∑
z

d∑
j=1

∇N
j Ht

(
z

N

)
g(j)(τzη, η̄z,
)

]2

,

while the error term R =RN
H,
,g satisfies

sup
t∈[0,T ]

sup
η∈�N

|R(t, η)| ≤ C

N

for some constant C > 0 depending on T ,H,
,g.

We next choose the family g as the one provided by Lemma 4.4; as usual, we
denote it by g[δ]. Then the super-exponential estimates in Proposition 4.9 together
with Remark 4.6 imply the following key result.

PROPOSITION 6.2. Fix T > 0, E ∈ C1(Td;Rd), H ∈ C1,2([0, T ] × Td),
a profile γ ∈M , a sequence {ηN ∈ �N } associated to γ , and let J N

H,
,g be de-
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fined as in Lemma 6.1. Then, for each ζ > 0 it holds

lim sup
δ↓0,κ↓0,
↑∞,a↓0,κ ′↓0,ε↓0,N↑∞

1

Nd
log P

E,N

ηN

(∣∣J N
H,
,g[δ](η)− ĴH,γ (πN(η))

∣∣ > ζ
)

=−∞,

where, for π ∈M,

ĴH,γ (π)= 〈πT ,HT 〉 − 〈γ,H0〉

−
∫ T

0
dt

[〈πt , ∂tHt 〉(6.4)

+ 〈σ(π̃
κ,a
t )[E +∇Ht ] −D(π̃

κ,a
t )∇π̃

κ ′,ε
t ,∇Ht 〉].

PROOF. In what follows we write g instead g[δ], understanding the depen-
dence on δ. In order to have compact formulae below, it is also convenient to
introduce the following notation. Given functions F1,F2 on [0, T ] ×�N depend-
ing also on the parameters δ, κ, 
, a, κ ′, ε, c,N , we write F1 ∼ F2 if for any ζ > 0
it holds

lim sup
δ↓0,κ↓0,
↑∞,a↓0,κ ′↓0,ε↓0,c↓0,N↑∞

1

Nd

× log P
E,N

ηN

(∣∣∣∣
∫ T

0
dt [F1(t, η(t))− F2(t, η(t))]

∣∣∣∣ > ζ

)
=−∞.

We use Lemma 6.1 and analyze separately the terms J1, J2, J3. We start by J1,
which can be rewritten as

J1(t, η)=N Av
x

d∑
i=1

∇N
i Ht

(
x

N

)[
j0
x,x+ei

(η)+L0g
(i)(τxη, η̄x,
)

]
.

Consider the expressions T1, . . . , T16,K1, . . . ,K5 defined in Section 4.4, where
now the function ϕ entering in their definition has to be replaced by H . By the
same arguments used to derive (4.28), it holds J1 ∼ T2 + T9,g. Due to (4.36) and
(4.37) we then get T9,g ∼ T10,g ∼ T11,g. Hence, we get that J1 ∼ T2+T11,g. Finally,
by (4.29) and (4.41), we get

J1(t, η)∼−T12(t, η)∼−T16(t, η).(6.5)

We now analyze the term J2. Due to Definition 4.1 of good function, in the
expression of J2 given in Lemma 6.1 we can restrict the sum over z to the set
{z : |z−x| ≤ (C+
)}, where the constant C > 0 is such that the functions g(i)(·, ρ)

have support inside �C for all i = 1, . . . , d and ρ ∈ [0,1]. As a consequence,
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in J2 we can first replace discrete gradients by partial derivatives; afterward we
can replace ∂jHt(z/N) by ∂jHt(x/N) with an error O(
/N). Moreover, similar
to (4.34), we can replace ∇x,x+ei

with ∇1
x,x+ei

. At this point, by the one block
estimate and (4.32), we get

J2(t, η)∼ 1

2
Av
x

d∑
i=1

Ei

(
x

N

)
∂iHt

(
x

N

)
μη̄x,


[c0
0,ei

(ζ )(ζ0 − ζei
)2]

+ 1

2
Av
x

d∑
i=1

d∑
j=1

Ei

(
x

N

)
∂jHt

(
x

N

)

×μη̄x,


[
c0

0,ei
(ζ )(ζ0 − ζi)∇1

0,ei ¯
g(j)(ζ, η̄x,
)

]
.

Recall the discussion of the CLTV in Section 4.3, in particular the definitions of
the inner product 〈·, ·〉ρ and of the orthogonal projector P . By (4.10), (4.11) and
Lemma 4.4 we then get

J2(t, η)∼ Av
x

〈
d∑

i=1

Ei

(
x

N

)
j0,ei

,

d∑
i=1

∂iHt

(
x

N

)[
j0,ei
+L1

0¯
g(i)(·, ρ)

]〉
ρ=η̄x,


∼ Av
x

〈
d∑

i=1

Ei

(
x

N

)
j0,ei

,

d∑
i=1

∂iHt

(
x

N

)
Pj0,ei

〉
ρ=η̄x,


.

In view of (4.18), we deduce that J2(t, η)∼AvxE(x/N) ·σ(η̄x,
)∇Ht(x/N). Ap-
plying the two blocks estimate and afterward making a uniform estimate, we con-
clude that

J2(t, η)∼ Av
x

E

(
x

N

)
· σ

(
π̃N (η)κ,a

(
x

N

))
∇Ht

(
x

N

)
(6.6)

∼ 〈E,σ(π̃N(η)κ,a)∇Ht 〉.
We finally consider J3. As done for J2, we can replace discrete gradients by

partial derivatives; afterward we can replace ∂jHt(z/N) by ∂jHt(x/N) and fi-
nally ∇x,x+ei

by ∇1
x,x+ei

. Then, by the one block estimate together with (4.32) and
(4.33), we can write

J3(t, η)∼ 1

2
Av
x

d∑
i=1

∂iHt

(
x

N

)2

μη̄x,

[c0

0,ei
(ζ )(ζ0 − ζei

)2]

+Av
x

d∑
i=1

d∑
j=1

∂iHt

(
x

N

)
∂jHt

(
x

N

)
μη̄x,


× [
c0

0,ei
(ζ )(ζ0 − ζei

)∇1
0,ei ¯

g(j)(ζ, η̄x,
)
]
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+ 1

2
Av
x

d∑
i=1

d∑
j=1

d∑
k=1

∂jHt

(
x

N

)
∂kHt

(
x

N

)

×μη̄x,


[
c0

0,ei
(ζ )∇1

0,ei ¯
g(j)(ζ, η̄x,
)

×∇1
0,ei ¯

g(k)(ζ, η̄x,
)
]
.

Recalling that 〈f,f 〉ρ = Vρ(f ), from the identities (4.10), (4.11), (4.14) and
Lemma 4.4 we deduce

J3(t, η)∼ Av
x

Vρ=η̄x,


(
d∑

i=1

∂iHt

(
x

N

)[
j0

0,ei
+L1

0g
(i)(·, ρ)

])

(6.7)

∼ Av
x

Vρ=η̄x,


(
d∑

i=1

∂iHt

(
x

N

)
Pj0

0,ei

)
.

Then, by (4.18), we get J3(t, η)∼ Avx ∇Ht(x/N) · σ(η̄x,
)∇Ht(x/N). As in the
derivation (6.6) we then conclude

J3(t, η)∼ Av
x
∇Ht

(
x

N

)
· σ (

π̃N (η)κ,a(x/N)
)∇Ht

(
x

N

)
(6.8)

∼ 〈∇Ht,σ (π̃N(η)κ,a)∇Ht 〉.
The thesis now follows combining Lemma 6.1, (6.5), (6.6) and (6.8). �

Conclusion. Recall the definitions of the set Mα,n in (5.7) and of the func-
tional ĴH,γ in (6.4). Let J

α,n
H,γ : M→[0,+∞] be the functional defined by

J
α,n
H,γ (π) :=

{
ĴH,γ (π), if π ∈Mα,n,
+∞, otherwise.

(6.9)

Note that, even if not explicitly indicated in the notation, the functional J
α,n
H,γ de-

pends also on the parameters κ, a, κ ′, ε.

LEMMA 6.3. Fix T > 0, a vector field E ∈ C1(Td;Rd), a profile γ ∈M and
a sequence {ηN ∈�N } associated to γ . For each H ∈ C1,2([0, T ]×Td) and each
measurable set B ⊂M, it holds

lim sup
N→∞

1

Nd
log P E,N

ηN (B)≤
[
− inf

π∈B
J

α,n
H,γ (π)

]
∨R

α,n
κ,
,a,κ ′,ε,

where

lim sup
α↑∞,n↑∞,κ↓0,
↑∞,a↓0,κ ′↓0,ε↓0

R
α,n
κ,
,a,κ ′,ε =−∞.
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PROOF. Recall Proposition 6.2 and, given ζ > 0, let GN
H (ζ ) be the subset of

D([0, T ];�N) defined by

GN
H (ζ ) := {

η ∈D([0, T ];�N) :
∣∣J N

H,
,g[δ](η)− ĴH,γ (πN(η))
∣∣≤ ζ

}
.

Given the measurable set B ⊂M, set also

BN
H (ζ ) := {η ∈D([0, T ];�N) :πN(η) ∈ B ∩Mα,n} ∩ GN

H (ζ ).

Then, by Proposition 6.2 and Corollary 5.4, for each ζ > 0

lim sup
α↑∞,n↑∞,δ↓0,κ↓0,
↑∞,a↓0,κ ′↓0,ε↓0,N↑∞

1

Nd
log P

E,N

ηN (BN
H (ζ )�)=−∞.

On the other hand, recalling E (t) in (6.3) is a positive mean one martingale with
respect to the probability P

E,N

ηN and E (T )= exp{Nd J N
H,
,g},

P
E,N

ηN (BN
H (ζ ))= E

E,N

ηN

(
E (T ) exp

{−Nd J N
H,
,g[δ]

}
IBN

H (ζ )

)
≤ sup

π∈B
exp{−Nd [Jα,n

H,γ (π)− ζ ]}.
The statement is a straightforward consequence of the above bounds. �

PROOF OF THEOREM 3.3 THE UPPER BOUND. In view of the exponential
tightness of the sequence {P E,N

ηN }, it is enough to prove the bound (3.14) for com-

pact sets. Observe that, for each H ∈ C1,2([0, T ] × Td), the functional J
α,n
H,γ is

lower semicontinuous on M. From Lemma 6.3 and the min–max lemma in [20],
Appendix 2, Lemma 3.3, we deduce that for each compact K⊂M

lim sup
N→∞

1

Nd
log P E,N

ηN (K)≤− inf
π∈K

sup
H,α,n,κ,
,a,κ ′,ε

{Jα,n
H,γ (π)∧ (−R

α,n
κ,
,a,κ ′,ε)}.

In view of Lemma 6.3 and the variational definition (3.10) of the rate function,
the proof of (3.14) is now completed by taking the limits ε ↓ 0, κ ′ ↓ 0, a ↓ 0, 
 ↑
∞, κ ↓ 0, n ↑∞, α ↑∞, and finally optimizing over H (see [9], Section 3.3, for
more details). �

6.2. Lower bound. The following is a general result concerning the large de-
viation lower bound. Its proof is elementary (see [18], Proposition 4.1). Given two
probability measures P and Q we denote by Ent(Q|P)= ∫

dQ log dQ
dP

the relative
entropy of Q with respect to P .

LEMMA 6.4. Let {Pn} be a sequence of probability measures on a Polish
space X and X ◦ ⊂ X . Assume that for each x ∈ X ◦ there exists a sequence of
probability measures {Qx

n} which converges weakly to δx and such that

lim sup
n

1

n
Ent(Qx

n|Pn)≤ I ◦(x)(6.10)
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for some function I ◦ : X ◦ → [0,+∞]. Then {Pn} satisfies the large deviation lower
bound with rate function I : X →[0,+∞] given by

I (x)= sup
O∈Nx

inf
y∈O∩X 0

I ◦(y),(6.11)

where Nx denotes the collection of open neighborhoods of x.

Let Ĩ : X →[0,+∞] be the functional defined by

Ĩ (x) :=
{

I ◦(x), if x ∈X ◦,
+∞, otherwise.

Then the functional I in (6.11) is the lower semicontinuous envelope of Ĩ , that
is, the largest lower semicontinuous functional below Ĩ . As is simple to show, the
condition that a large deviation rate function is lower semicontinuous is not re-
strictive. More precisely, if a sequence of probabilities satisfies the large deviation
lower bound for some rate function Ĩ , then the lower bound still holds with the
lower semicontinuous envelope of Ĩ . The previous lemma is therefore stating that
the entropy bound (6.10) implies the large deviation lower bound.

We are going to use Lemma 6.4 with X ◦ given by the collection of some “nice”
paths in M. For such paths we can prove the bound (6.10) with I ◦ given by the
restriction of the functional I (·|γ ) defined in (3.10). To conclude the proof of the
lower bound (3.15) we then need to show the functional I in (6.11) coincides with
the functional I (·|γ ) on the whole space M. We start by defining precisely what
we mean by “nice” paths. We basically require that π is a smooth function bounded
away from zero and one. However, as I (π |γ ) <+∞ implies π0 = γ and γ ∈M

is not necessary smooth and bounded away from zero and one, we shall require
that π solves the hydrodynamic equation (3.7) in some time interval [0, τ ) and π

is smooth only on [τ, T ] ×Td .

DEFINITION 6.5. Given T > 0 and γ ∈M , let M◦
γ be the collection of the

paths π ∈M, called nice paths, satisfying the following conditions:

(i) the map (0, T ] ×Td � (t, r) 	→ πt(r) is continuous;
(ii) for each δ ∈ (0, T ] there exists ε > 0 such that ε ≤ π ≤ 1−ε in [δ, T ]×Td ;

(iii) there exists τ = τπ ∈ (0, T ] such that, in the time interval [0, τ ), the path
π satisfies the energy estimate and solves (3.7) while in the time interval [τ, T ],
the map (t, r) 	→ πt(r) is in C1,2([τ, T ] ×Td).

Observe that if π belongs to M◦
γ , then πt → γ in M as t ↓ 0. Moreover, nice

paths trivially satisfy the energy estimate (3.6).
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Lower bound for nice paths. Fix γ ∈M , a sequence {ηN ∈�N } associated to
γ and a nice path π ∈M◦

γ . Given t ∈ [τπ , T ], regard the first equation in (3.13) as
a Poisson equation for �γ,π . In view of Assumption 3.1, item (ii) in Definition 6.5
and the bounds (3.3), (3.4), the symmetric matrix σ(π) is uniformly elliptic and
continuously differentiable. Since π belongs to C1,2([τπ , T ]×Td), by elliptic reg-
ularity, we can solve this equation and get a function, denoted by H =Hπ , which
belongs to C1,2([τπ , T ] × Td). We understand that for t = τπ the time derivative
∂tπ stands for the right derivative. We finally extend H to a piecewise smooth
function on [0, T ] × Td by setting H = 0 on [0, τπ )× Td . We remark that H can
be discontinuous at τπ . In any case, H belongs to H1(σ (π)) and therefore, by
(3.12),

I (π |γ )=
∫ T

τ
dt 〈∇Ht,σ (πt )∇Ht 〉.(6.12)

Recall the exponential martingale introduced in (6.3) and let, for the function
H =Hπ constructed above, P

N,E,π

ηN be the probability measures on D([0, T ];�N)

defined by

dP
N,E,π

ηN = E N
Hπ,
,g[δ](T ) dP

N,E

ηN ,(6.13)

where g[δ] is the family of good functions provided by Lemma 4.4. Observe that
the measures P

N,E,π

ηN and P
N,E

ηN are equal if restricted to the time interval [0, τπ ).

As we next show, the sequence {PN,E,π

ηN ◦ (πN)−1} fulfils the requirements
in Lemma 6.4. By, for example, [20], Appendix 1, Proposition 7.3, the proba-
bility P

N,E,π

ηN restricted to the time interval [τ, T ] is the distribution of the per-

turbed Kawasaki dynamics with rates c
E,2H,g[δ]
x,y [see (4.25)]. The construction of

the function H and the hydrodynamic limit of the perturbed Kawasaki dynamics
stated in Theorem 5.1 (applied with H = 0, g= 0 in the time interval [0, τπ ) and
with H =Hπ , g= g[δ] in the time interval [τπ , T ]) then imply that the sequence
{PN,E,π

ηN ◦ (πN)−1} converges weakly to δπ . The entropic bound (6.10) is an im-
mediate consequence of the next statement.

PROPOSITION 6.6. Fix T > 0, a vector field E ∈ C1(Td;Rd), a profile
γ ∈M , a sequence {ηN ∈�N }, a nice path π ∈M◦

γ and let P
N,E,π

ηN be the proba-
bility measures on D([0, T ];�N) constructed above. Then

lim sup
δ↓0,
↑∞,N↑∞

1

Nd
Ent(PN,E,π

ηN |PN,E

ηN )≤ I (π |γ ).

We premise an elementary lemma on perturbations of Markov chains.

LEMMA 6.7. Let X be a continuous time Markov chain on a finite state space
E with generator Lf (i) =∑

j ci,j [f (j)− f (i)] and, given T > 0, denote by Pi
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its law in the time interval [0, T ] starting from i ∈ E. Fix a function F : [0, T ] ×
E→R, consider the time inhomogeneous Markov chain with generator LF

t f (i)=∑
j ci,j exp{F(t, j)− F(t, i)}[f (j)− f (i)] and denote by PF

i its law in the time
interval [0, T ] starting from i ∈E. Then

Ent(PF
i |Pi )= EF

i

∫ T

0
dt S(t,X(t)),

where EF
i is the expectation with respect to PF

i and

S(t, i)=∑
j

ci,j e
F(t,j)−F(t,i){e−[F(t,j)−F(t,i)] − 1+ F(t, j)− F(t, i)

}
.

PROOF. From the explicit expression of the Radon–Nikodym derivative
in [20], Appendix 1, Proposition 7.3, we deduce

Ent(PF
i |Pi )

= EF
i

[
F(T ,X(T ))− F(0,X(0))−

∫ T

0
dt e−F(t,X(t))(∂t +L)eF(t,X(t))

]
.

By using that F(t,X(t))− F(0,X(0))− ∫ t
0 ds (∂s +LF

s )F (s,X(s)) is a PF
i mar-

tingale, straightforward computations yield the result. �

PROOF OF PROPOSITION 6.6. Set τ := τπ . By definition (6.13) [see also
(6.3)] and Lemma 6.7, a Taylor expansion of the exponential yields

lim sup
N↑∞

1

Nd
Ent(PN,E,π

ηN |PN,E

ηN )= lim sup
N↑∞

E
N,E,π

ηN

∫ T

τ
dt J3(t, η(t)),

where J3 is defined in Lemma 6.1. In the sequel we shall make use of the super-
exponential estimates in Proposition 4.9 together with Remark 4.6 keeping the
family g[δ] fixed. In particular, the first super-exponential equivalence in (6.7)
holds also with respect to the measure P

N,E,π

ηN . Since the function J3 is bounded
uniformly in N and 
, we deduce

lim sup

↑∞,N↑∞

1

Nd
Ent(PN,E,π

ηN |PN,E

ηN )

= lim sup

↑∞,N↑∞

E
N,E,π

ηN

∫ T

τ
dt Av

x
Vρ=η̄x,
(t)

×
(

d∑
i=1

∂iHt

(
x

N

)

× [
j0

0,ei
+L1

0g
(i)[δ](·, η̄x,
(t))

])
.
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In view of the two blocks estimate in Lemma 4.8, we can replace above η̄x,
 with
π̃N (η)κ,a(x/N). Recalling that the family g[δ] is still kept fixed, the hydrodynamic
limit in Theorem 5.1 yields

lim sup

↑∞,N↑∞

1

Nd
Ent(PN,E,π

ηN |PN,E

ηN )

=
∫ T

τ
dt

∫
Td

dr Vρ=π̃
κ,a
t (r)

(
d∑

i=1

∂iHt (r)
[
j0

0,ei
+L1

0g
(i)[δ](·, π̃κ,a

t (r))
])

+ ζκ,a,

where lim supκ↓0,a↓0 ζκ,a = 0. In view of the identities (4.10), (4.11), (4.14) and
Lemma 4.4, by taking the limits a ↓ 0, κ ↓ 0 and finally δ ↓ 0 we get

lim sup
δ↓0,
↑∞,N↑∞

1

Nd
Ent(PN,E,π

ηN |PN,E

ηN )=
∫ T

τ
dt 〈∇Ht,σ (πt )∇Ht 〉,

which, recalling (6.12), concludes the proof. �

Conclusion. We here conclude the proof of the lower bound (3.15) by showing
how to approximate arbitrary paths in M by nice ones. To this end we need a
suitable a priori estimate. Let χ0 : [0,1] → R+ be defined by χ0(ρ) = ρ(1 − ρ)

and recall the bound (2.8). Let Q̃ : M→[0,+∞] be the functional defined by

Q̃(π) := sup{Q̃F (π),F ∈ C1([0, T ] ×Td;Rd)},
where, given F ∈ C1([0, T ] ×Td;Rd),

Q̃F (π) := −2
∫ T

0
dt 〈πt ,∇ · Ft 〉 −

∫ T

0
dt 〈Ft ,χ0(πt )Ft 〉.

By the concavity of χ0, the functional Q̃ is lower semicontinuous. Recalling (5.6),
we note that Q(π) ≤ Q̃(π). We next show that the Q̃ can be bounded by the rate
function I (·|γ ).

LEMMA 6.8. Fix T > 0 and a vector field E ∈ C1([0, T ] × Td;Rd). There
exists a constant C0 = C0(T ,E) such that for any γ ∈M and π ∈M

Q̃(π)≤C0[I (π |γ )+ 1].

PROOF. We can assume I (π |γ ) < +∞. We first observe that in such a case
the linear functional 
γ,π in (3.9) can be extended to a linear functional on

H1(σ (π)) and the supremum in (3.10) can be taken over all H ∈H1(σ (π)). Pick
a positive function φ ∈ C2(R) uniformly convex and such that for any ρ ∈ [0,1]
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we have φ′′(ρ)≤ (1/2)χ(ρ)−1. Since π satisfies the energy estimate, the function
H = φ′(π) is a legal test function in (3.10). We deduce

I (π |γ ) ≥ 
γ,π (φ′(π))−
∫ T

0
dt 〈∇φ′(πt ), σ (πt )∇φ′(πt )〉

=
∫

dr [φ(πT (r))− φ(π0(r))]

−
∫ T

0
dt [〈σ(πt )E −D(πt)∇πt ,φ

′′(πt )∇πt 〉
+ 〈φ′′(πt )∇πt , σ (πt )φ

′′(πt )∇πt 〉].
Whence, recalling D = σχ−1 and the bounds (2.8), (3.3), by Schwarz inequality
we deduce there exists α > 0 and a real Cα such that

α

∫ T

0
dt 〈∇πt ,φ

′′(πt )∇πt 〉 ≤ I (π |γ )+
∫

dr φ(π0(r))+Cα

∫ T

0
dt 〈E,σ(πt )E〉.

Since Q̃(π) = ∫ T
0 dt 〈χ0(πt )∇πt ,∇πt 〉, the proof is now completed optimizing

over φ. �

In view of Lemma 6.8, the following proposition can be proven by adapting the
arguments given in [26], Section 6, or in [9], Section 5.

PROPOSITION 6.9. Fix T > 0, a vector field E ∈C1(Td;Rd) and γ ∈M . The
functional I (·|γ ) : M → [0,+∞] has compact level sets, in particular is lower
semicontinuous. Moreover, for each π ∈M such that I (π |γ ) <+∞ there exists
a sequence of nice paths {πn} ⊂ M◦

γ such that πn→ π in M and I (πn|γ )→
I (π |γ ).

PROOF OF THEOREM 3.3 THE LOWER BOUND. Apply Lemma 6.4 with X ◦
given by M◦

γ and choose the perturbation as discussed above. In view of Proposi-
tion 6.6, the bound (6.10) holds with I ◦ given by the restriction to M◦

γ of I (·|γ ).
Finally, Proposition 6.9 implies that the functional in (6.11) coincides with I (·|γ ).

�

7. The quasi-potential. In this section we analyze the variational problems
(3.19) and (3.23) defining the quasi-potential and prove Theorem 3.5. Throughout
this section we assume that the vector field E is orthogonally decomposable (recall
Definition 3.4) without further mention. We shall only discuss the case in which
assumption (iii) in Theorem 3.5 holds; the other two cases are actually simpler and
the corresponding details are omitted. We will first consider the problem (3.23) and
show that it admits a unique minimizer which is explicitly characterized. From
this we then deduce V̂ E

ρ̄ = F U
ρ̄ . Finally, we prove the identity V E

ρ̄ = V̂ E
ρ̄ . The

characterization of the minimizer will be achieved by exploiting a time reversal
duality analogous to the one in [16], Theorem 4.3.1, and the convergence, as t→
+∞, of the solution to (3.24) to a stationary solution γρ̄ , ρ̄ ∈ [0,1].
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Time reversal duality. Given T ∈ (0,+∞], we introduce the time reversal
θ : M[−T ,0] →M[0,T ] as follows. For π ∈M[−T ,0] we set (θπ)t := π−t for any
t ∈ [0, T ] such that −t is a continuity point of π . This defines the values of θπ

apart a countable subset of [0, T ] where the values of θπ are determined by im-
posing that θπ ∈M[0,T ]. For the next result, recall (3.21) and (3.22). Moreover,
for π ∈M[0,+∞) set IE[0,+∞)(π) := limT→+∞ IE[0,T ](π).

THEOREM 7.1. Fix ρ̄ ∈ [0,1]. For each π ∈M(−∞,0](ρ̄) it holds

I−∇U+Ẽ
(−∞,0] (π)=F U

ρ̄ (π0)+ I−∇U−Ẽ
[0,+∞) (θπ).(7.1)

Of course, the identity (7.1) means that either both sides are infinite or both sides
are finite and the respective values coincide. In order to prove this result, we need
to introduce some more notation. The norms in L2(Td, dr) and in the standard
Sobolev space W 1,2(Td, dr) are, respectively, denoted by ‖ · ‖L2 and ‖ · ‖W 1,2 . Fix
T1 < T2. By choosing a test function independent on the space variable, we easily
deduce that IE[T1,T2](π) < +∞ implies that the total mass

∫
dr πt (r) is constant

in time. Given ρ̄ ∈ [0,1], we then set M[T1,T2](ρ̄) := D([T1, T2];M(ρ̄)) [recall
(3.18)]. Also let M◦[T1,T2](ρ̄)⊂M[T1,T2](ρ̄) be the collection of paths π ∈M[T1,T2]
satisfying the following conditions: (i) there exists ε > 0 such that ε ≤ π ≤ 1− ε,
(ii) the map [T1, T2] × Td → πt(r) belongs to C1,2([T1, T2] × Td). Note that if
π ∈ M◦[−T ,0](ρ̄) then θπ ∈ M◦[0,T ](ρ̄). Given γ ∈M , we denote by M◦[T1,T2],γ
the collection of nice paths, as in Definition 6.5, in M[T1,T2]. We observe that if π

belongs to M◦[T1,T2](ρ̄) for some ρ̄ ∈ [0,1] then the linear functional 
π in (3.20)
can be rewritten as


E
π (H)=

∫ T2

T1

dt 〈∂tπt +∇ · [σ(πt )E −D(πt)∇πt ],Ht 〉,(7.2)

where we also included in the notation the dependence on the driving field E.
The next elementary result will be the key point in the proof of Theorem 7.1.

Recall (3.26) and, given ρ̄ ∈ (0,1), let gρ̄ : Td×[0,1]→R be the function defined
by

gρ̄(r, ρ) := ∂

∂ρ
f U

ρ̄ (r, ρ)= f ′(ρ)− f ′(γρ̄(r)).(7.3)

LEMMA 7.2. Fix ρ̄ ∈ (0,1) and ρ ∈ C2(Td; (0,1)). Let G=Gρ : Td →R be
the function defined by G(r) := gρ̄(r, ρ(r)). Then

〈∇ · [σ(ρ)E −D(ρ)∇ρ],G〉 − 〈∇G,σ(ρ)∇G〉 = 0.

REMARK 7.3. Recall that the vector field E satisfies (3.16). The statement of
Lemma 7.2 does not depend on the divergenceless part Ẽ; in particular, it holds
also if E is replaced by the vector field −∇U − Ẽ.
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PROOF OF LEMMA 7.2. By the definition of G and (3.17),

∇G(r)= f ′′(ρ(r))∇ρ(r)− f ′′(γρ̄(r))∇γρ̄(r)= f ′′(ρ(r))∇ρ(r)+∇U(r).

Recalling (2.7), (3.5) and that we assumed σ to be a multiple of the identity, the
statement of the lemma is therefore equivalent to

〈σ(ρ)E + σ(ρ)∇U,f ′′(ρ)∇ρ +∇U〉 = 0.

Recall that E =−∇U + Ẽ. Using again (2.7) and (3.5), the above equation holds
if and only if

〈Ẽ,D(ρ)∇ρ〉 + 〈σ(ρ)Ẽ,∇U〉 = 0.

Since D is also a multiple of the identity, the first term above vanishes because Ẽ

is divergenceless. Finally, as we assumed Ẽ(r) · ∇U(r) = 0 for any r ∈ Td ; also
the second term above vanishes. �

LEMMA 7.4. Fix ρ̄ ∈ (0,1) and T > 0. For each H ∈ C1([−T ,0] × Td) and
each π ∈M◦[−T ,0](ρ̄) it holds [recall (7.2)]


−∇U+Ẽ
π (H)−

∫ 0

−T
dt 〈∇Ht,σ (πt )∇Ht 〉

=F U
ρ̄ (π0)−F U

ρ̄ (π−T )+ 
−∇U−Ẽ
θπ (−θH̃ )(7.4)

−
∫ T

0
dt 〈∇(θH̃ )t , σ ((θπ)t )∇(θH̃ )t 〉,

where H̃ ≡ H̃t (r) is given by

H̃ =H − [f ′(π)− f ′(γρ̄)].(7.5)

PROOF. The proof follows by a direct computation. As in Lemma 7.2, we call
G : [−T ,0]×Td→R the function Gt(r) := f ′(πt (r))−f ′(γρ̄(r)). We start from

the left-hand side of (7.4) and add and subtract 
−∇U+Ẽ
π (G). We obtain the sum of

three terms: the first one is∫ 0

−T
dt 〈∂tπt +∇ · [σ(πt )(−∇U + Ẽ)−D(πt)∇πt ],Ht −Gt 〉

(7.6)

−
∫ 0

−T
dt 〈∇Ht,σ (πt )∇Ht 〉 +

∫ 0

−T
dt 〈∇Gt,σ (πt )∇Gt 〉,

the second one is ∫ 0

−T
dt 〈∂tπt ,Gt 〉 =F U

ρ̄ (π0)−F U
ρ̄ (π−T )(7.7)
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and the third one is∫ 0

−T
dt 〈∇ · [σ(πt )(−∇U + Ẽ)−D(πt)∇πt ],Gt 〉

(7.8)

−
∫ 0

−T
dt 〈∇Gt,σ (πt )∇Gt 〉.

From Lemma 7.2 it immediately follows that this last term vanishes.
We now elaborate the first term (7.6). Using (7.5), that is, H̃ = H − G, and

performing an integration by parts, it can be rewritten as∫ 0

−T
dt 〈∂tπt +∇ · [σ(πt )(−∇U + Ẽ)−D(πt)∇πt ], H̃t 〉

(7.9)

−
∫ 0

−T
dt 〈∇H̃t , σ (πt )∇H̃t 〉 + 2

∫ 0

−T
dt 〈∇ · [σ(πt )∇Gt ], H̃t 〉.

From the Einstein relation (3.5) and (3.17) we obtain σ(π)∇G = D(π)∇π +
σ(π)∇U which, inserted into (7.9), gives∫ 0

−T
dt 〈∂tπt +∇ · [σ(πt )(∇U + Ẽ)+D(πt)∇πt ], H̃t 〉

−
∫ 0

−T
dt 〈∇H̃t , σ (πt )∇H̃t 〉.

Performing a change of variable in the time integral and adding (7.7) we obtain the
right-hand side of (7.4). �

From Lemma 7.4 we deduce the time reversal duality for bounded intervals.

LEMMA 7.5. Fix ρ̄ ∈ [0,1] and T > 0. For each π ∈M[−T ,0](ρ̄) it holds

I−∇U+Ẽ
[−T ,0] (π)=F U

ρ̄ (π0)−F U
ρ̄ (π−T )+ I−∇U−Ẽ

[0,T ] (θπ).(7.10)

PROOF. Since the statement is trivial when ρ̄ = 0 or ρ̄ = 1, we can assume
ρ̄ ∈ (0,1). First consider the case π ∈M0[−T ,0](ρ̄); then the correspondence H ↔
−θH̃ [see (7.5)] define a bijection between C1([−T ,0] × Td) and C1([0, T ] ×
Td). From (7.4) we deduce

I−∇U+Ẽ
[−T ,0] (π)= sup

H

{

−∇U+Ẽ
π (H)−

∫ 0

−T
dt 〈∇Ht,σ (πt )∇Ht 〉

}

= F U
ρ̄ (π0)−F U

ρ̄ (π−T )

+ sup
H

{

−∇U−Ẽ
θπ (−θH̃ )−

∫ T

0
dt 〈∇(θH̃ )t , σ ((θπ)t )∇(θH̃ )t 〉

}

= F U
ρ̄ (π0)−F U

ρ̄ (π−T )+ I−∇U−Ẽ
[0,T ] (θπ).
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Now consider an arbitrary path π ∈M[−T ,0](ρ̄) such that I−∇U+Ẽ
[−T ,0] (π) <+∞. By

Proposition 6.9, there exists a sequence {πn} ⊂M◦[−T ,0],π−T
such that πn→ π in

M[−T ,0] and I−∇U+Ẽ
[−T ,0] (πn)→ I−∇U+Ẽ

[−T ,0] (π); in particular, {πn} ⊂M[−T ,0](ρ̄). Let
τn > 0 be the time such that πn solves (3.7) in the time interval [−T ,−T + τn].
From the result for nice paths we deduce that for each n

I−∇U+Ẽ
[−T ,0] (πn)= I−∇U+Ẽ

[−T+τn,0](π
n)

(7.11)
= F U

ρ̄ (πn
0 )−F U

ρ̄ (πn−T+τn)+ I−∇U−Ẽ
[0,T−τn](θπn),

where the second identity follows from the fact that the restriction of πn to
the time interval [−T + τn,0] belongs to M0[−T+τn,0](ρ̄). It is easy to see that
we can always choose πn in such a way that limn τn = 0. This implies that
limn ‖πn−T+τn−π−T ‖L2 = 0. Since F U

ρ̄ is continuous with respect to the L2 topol-

ogy, we get limn F U
ρ̄ (πn−T+τn)=F U

ρ̄ (π−T ). By using the lower semicontinuity of

F U
ρ̄ on M and of I−∇U−Ẽ

[0,T ] on M[0,T ], from (7.11) we then deduce that for each
S ∈ (0, T ) it holds

I−∇U+Ẽ
[−T ,0] (π)= lim

n→+∞ I−∇U+Ẽ
[−T ,0] (πn)

≥ lim inf
n→+∞

{
F U

ρ̄ (πn
0 )−F U

ρ̄ (πn−T+τn)+ I−∇U−Ẽ
[0,T−τn](θπn)

}
≥ F U

ρ̄ (π0)−F U
ρ̄ (π−T )+ I−∇U−Ẽ

[0,S] (θπ).

Observing that θπ is necessarily continuous, we can take the limit S ↑ T and
deduce

I−∇U+Ẽ
[−T ,0] (π)≥F U

ρ̄ (π0)−F U
ρ̄ (π−T )+ I−∇U−Ẽ

[0,T ] (θπ).

The proof is now completed by exchanging the roles of π and θπ . �

Recall that the set M(−∞,0](ρ̄) has been defined in (3.21) by requiring that
πt → γρ̄ in M as t→−∞. The next lemma states that if IE

(−∞,0](π) <+∞, the

above convergence actually takes place also with respect to the L2 topology. The
proof, which is omitted, is achieved by repeating the arguments of [7], Lemma 5.2,
in the present setting.

LEMMA 7.6. Fix ρ̄ ∈ [0,1] and a path π ∈M(−∞,0](ρ̄) with finite rate, that
is, satisfying IE

(−∞,0](π) <+∞. Then limt→−∞‖πt −γρ̄‖L2 = 0. Moreover, there
exists a sequence Tn→−∞ such that limn→∞‖πTn − γρ̄‖W 1,2 = 0.

PROOF OF THEOREM 7.1. Consider the case in which π ∈ M(−∞,0](ρ̄) is

such that I−∇U+Ẽ
(−∞,0] (π) <+∞. From Lemma 7.6 and the continuity of F U

ρ̄ in L2 we
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deduce limT→+∞F U
ρ̄ (π−T ) = 0. Therefore, (7.1) follows from (7.10) by taking

the limit T →+∞. In particular, if I−∇U+Ẽ
(−∞,0] (π) <+∞ then also I−∇U−Ẽ

[0,+∞) (θπ) <

+∞. The proof is now completed by exchanging the roles of π and θπ . �

Convergence to a stationary solution. We next discuss the asymptotic behavior
of the solutions to the equation (3.24). Observe that, since ∇U(r) · Ẽ(r) = 0 for
any r ∈ Td , for each ρ̄ ∈ [0,1] the function γρ̄ defined in (3.17) is also a stationary
solution to (3.24). While the following result is stated for the equation (3.24), it
holds also for the hydrodynamic equation (3.7). As we need to emphasize the
dependence on the initial condition, given ρ ∈M , we denote by vt (ρ)≡ vt (r;ρ)

the solution to (3.24) with initial condition ρ.

THEOREM 7.7. Fix ρ̄ ∈ [0,1] and let vt (ρ) be the solution to (3.24). Then,

lim
t→+∞ sup

ρ∈M(ρ̄)

‖vt (ρ)− γρ̄‖L2 = 0.

Moreover, for each ρ ∈ M(ρ̄) there exists a sequence Tn → +∞ such that
limn→∞‖vTn(ρ)− γρ̄‖W 1,2 = 0.

The proof of this result will be achieved by showing that F U
ρ̄ is a Lyapunov

functional for the flow defined by (3.24) and using comparison arguments.

LEMMA 7.8. If 0 < ρ̄1 < ρ̄2 < 1 then 0 < γρ̄1 < γρ̄2 < 1. Moreover, if ρ̄ ↑ 1
or ρ̄ ↓ 0 then γρ̄ ↑ 1 or γρ̄ ↓ 0, respectively.

PROOF. Recall that f ′ : (0,1) → R is strictly increasing and denote by
(f ′)−1 : R→ (0,1) its inverse. Then the map ρ̄ 	→ α(ρ̄) in (3.17) is defined by
requiring ∫

Td
dr (f ′)−1(−U(r)+ α(ρ̄)

)= ρ̄ .

In particular, since (f ′)−1 is strictly increasing, the map ρ̄ 	→ α(ρ̄) is strictly in-
creasing. Again by the strict monotonicity of (f ′)−1, the first statement follows.
To prove the second, it is enough to notice that if ρ̄ ↑ 1, respectively, ρ̄ ↓ 0, then
α(ρ̄) ↑+∞, respectively, α(ρ̄) ↓−∞. �

LEMMA 7.9. Let v : [0,+∞)× Td → [0,1] be the solution to (3.24) and as-
sume there exist 0 < ρ̄1 < ρ̄2 < 1 such that γρ̄1 ≤ ρ ≤ γρ̄2 . Then for any t ≥ 0 we
have γρ̄1 ≤ vt (ρ)≤ γρ̄2 .

PROOF. By classical results for uniformly parabolic equation, v is smooth on
(0,+∞) × Td . Let w : [0,+∞) × Td → [0,1] be defined by wt(r) := γρ̄1(r) −
vt (r;ρ) and observe that, by hypotheses, w0 < 0. Recall the bounds (2.8), (3.3),
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(3.4), definition (3.5) and that σ is a multiple of the identity. Since γρ̄1 is a sta-
tionary solution to (3.24), it is simple to check that w solves the linear parabolic
equation

∂tw = a�w+ b · ∇w+ cw

for some continuous functions a, b, c on [0,+∞)×Td . Moreover, a is uniformly
positive on [0,+∞)×Td . By Theorem 3.7 and the remark (ii) following it in [24],
we then deduce wt ≤ 0 for any t ≥ 0. The inequality vt (ρ)≤ γρ̄2 is proven by the
same argument. �

LEMMA 7.10. Fix ρ̄ ∈ (0,1). For each t0 > 0 there exists δ ∈ (0,1/2) such
that for any t ≥ t0 and any ρ ∈M(ρ̄) it holds δ ≤ vt (ρ)≤ 1− δ.

PROOF. Let ρ ∈M and consider a sequence {ρn} ⊂M converging to ρ in M .
By standard parabolic regularity, for each t > 0 the sequence of functions on Td

given by vt (·;ρn) converges uniformly to vt (·;ρ). Set

δ0 := inf{vt0(r;ρ), r ∈ Td, ρ ∈M(ρ̄)}.
By the compactness of M(ρ̄) and the above continuity, there exists ρ∗ ∈M(ρ̄)

such that δ0 = inf{vt0(r;ρ∗), r ∈ Td}. Since ρ∗ is not identically equal to zero,
by applying Theorem 3.7 and the remark (ii) following it in [24], we deduce
δ0 > 0. By Lemma 7.8, there exists ρ̄1 ∈ (0,1) such that γρ̄1 ≤ δ0. Setting δ :=
min{γρ̄1(r), r ∈ Td} and using Lemma 7.9 we deduce that for any t ≥ t0 we have
vt (ρ)≥ γρ̄1 ≥ δ.

The uniform upper bound is proven by the same argument. �

PROOF OF THEOREM 7.7. Since the statement is trivial when ρ̄ = 0 or ρ̄ = 1,
we assume ρ̄ ∈ (0,1). Recall that the functional F U

ρ̄ :M → [0,+∞) has been
defined in (3.25). In view of the uniform convexity of the free energy f , it is simple
to show that for each ρ̄ ∈ (0,1) the functional F U

ρ̄ (·) is equivalent to | · −γρ̄ |2L2 .
Namely, there exists a constant C0 = C0(ρ̄) > 0 such that for any γ ∈M(ρ̄) we
have

1

C0
‖γ − γρ̄‖2

L2 ≤F U
ρ̄ (γ )≤ C0‖γ − γρ̄‖2

L2 .(7.12)

By parabolic regularity, the function v(ρ) is smooth on (0,+∞)× Td . Using
Remark 7.3 we then deduce that for t > 0 it holds

d

dt
F U

ρ̄ (vt (ρ))=−〈∇Gt,σ (vt (ρ))∇Gt 〉,(7.13)

where, recalling (7.3), G is the function defined by Gt(r) = gρ̄(r;vt (r;ρ)). In
particular, F U

ρ̄ is a Lyapunov functional for both the flows defined by (3.24) and
(3.7). Given ε > 0 set

Aε := {γ ∈M(ρ̄) : F U
ρ̄ (γ ) < ε}
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and let τε(ρ) := inf{t > 0 :vt (ρ) ∈ Aε} ∈ [0,+∞]. In view of (7.12) and (7.13),
the proof of the theorem is completed once we show that for each ε > 0 the hitting
time τε(ρ) is bounded uniformly for ρ ∈M(ρ̄).

Given ρ̄ ∈ (0,1) and δ ∈ (0,1/2) set

M̂δ(ρ̄) :=
{
γ ∈ L2(Td, dr), δ ≤ γ ≤ 1− δ,

∫
dr γ (r)= ρ̄

}
,

which is a closed subset of L2(Td, dr) that we consider endowed with the relative
topology. Fix t0 > 0 and observe that if we choose δ as in Lemma 7.10 then this
lemma implies that vt (ρ) ∈ M̂δ(ρ̄) for any t ≥ t0 and ρ ∈M(ρ̄). Moreover, the
functional F U

ρ̄ is continuous on M̂δ(ρ̄). Given γ ∈ M̂δ(ρ̄) let Gγ : Td →R be the

function defined by Gγ (r)= gρ̄(r, γ (r)). Let also Rρ̄ : M̂δ(ρ̄)→ [0,+∞] be the
lower semicontinuous functional defined by

Rρ̄ (γ ) := sup
F

{−2〈∇ · F,Gγ 〉 − 〈F,F 〉},

where the supremum is over all F ∈ C1(Td;Rd). If Rρ̄ (γ ) < +∞ then Gγ be-
longs to the Sobolev space W 1,2(Td, dr) and Rρ̄ (γ )= 〈∇Gγ ,∇Gγ 〉. In particu-
lar, by Sobolev embedding and elementary estimates, the functional Rρ̄ has com-
pact level sets. It is finally straightforward to check that Rρ̄ (γ )= 0 if and only if
γ = γρ̄ . Recalling (7.12), we deduce that for each ε > 0 and δ > 0

cε := inf{Rρ̄ (γ ), γ ∈ M̂δ(ρ̄) \Aε}> 0.

Given t0 > 0, let δ ∈ (0,1/2) be as in Lemma 7.10 and set m=min{σ(u), δ ≤
u ≤ 1− δ}> 0. Set also K = sup{F U

ρ̄ (γ ), γ ∈M(ρ̄)}<+∞. We are now ready
to conclude the proof. If τε(ρ) < t0 there is nothing to prove, otherwise, in view of
Lemma 7.10 and (7.13), we deduce that for each ε > 0, ρ ∈M(ρ̄) and t ≥ t0

K ≥ F U
ρ̄ (vt0(ρ))=F U

ρ̄

(
vt∧τε(ρ)(ρ)

)+ ∫ t∧τε(ρ)

t0

ds 〈∇Gs,σ (vs(ρ))∇Gs〉

≥m

∫ t∧τε(ρ)

t0

ds Rρ̄ (vs(ρ))≥mcε[t ∧ τε(ρ)− t0].
By taking the limit t ↑ +∞, the previous bound yields sup{τε(ρ), ρ ∈M(ρ̄)} <
+∞.

It remains to prove the second statement. By the regularity and uniform con-
vexity of the free energy f , it is simple to check that for each ρ̄ ∈ (0,1) and
δ ∈ (0,1/2) there exists a real C1 = C1(ρ̄, δ) such that for any γ ∈ M̂δ(ρ̄)

‖γ − γρ̄‖2
W 1,2 ≤ C1[Rρ̄ (γ )+ ‖γ − γρ̄‖2

L2].
Fix t0 > 0 and let δ be as in Lemma 7.10. From (7.13) we deduce that for any
ρ ∈M(ρ̄) and any t ≥ t0

F U
ρ̄ (vt (ρ))+m

∫ t

t0

ds Rρ̄ (vs(ρ))≤F U
ρ̄ (vt0(ρ))≤K.
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In particular, there exists a sequence Tn→+∞ such that Rρ̄ (vTn(ρ))→ 0. �

Conclusion. We next conclude the proof of the identity between the quasi-
potential and the functional F U

ρ̄ and the characterization of the minimizer for
(3.23).

PROOF OF THEOREM 3.5 (THE IDENTITY V̂ E
ρ̄ = F U

ρ̄ ). For ρ̄ ∈ [0,1] and
ρ ∈M(ρ̄), let π ∈M(−∞,0](ρ̄) be such that π0 = ρ. From Theorem 7.1 we get

I−∇U+Ẽ
(−∞,0] (π)=F U

ρ̄ (ρ)+ I−∇U−Ẽ
[0,+∞) (θπ).(7.14)

Since I−∇U−Ẽ
[0,+∞) ≥ 0, we deduce I−∇U+Ẽ

(−∞,0] (π)≥F U
ρ̄ (ρ). The lower bound V̂ E

ρ̄ (ρ)≥
F U

ρ̄ (ρ) follows.

Now let v ≡ v(ρ) : [0,+∞) × Td → [0,1] be the solution to (3.24). Theo-
rem 7.7 implies that v ∈ M[0,+∞)(ρ̄) and therefore θv ∈ M(−∞,0](ρ̄). Since

I−∇U−Ẽ
[0,T ] (v) = 0 for every T > 0, it holds I−∇U−Ẽ

[0,+∞) (v) = 0. Considering (7.14)

when π = θv we get I−∇U+Ẽ
(−∞,0] (θv)=F U

ρ̄ (ρ). Whence V̂ E
ρ̄ (ρ)≤F U

ρ̄ (ρ). �

PROOF OF THEOREM 3.5 (CHARACTERIZATION OF THE MINIMIZER). As
the previous argument implies that θv is a minimizer for (3.23), it remains only to
prove uniqueness. Suppose that π∗ is a minimizer for (3.23). By (7.14), it neces-

sarily holds I−∇U−Ẽ
[0,+∞) (θπ∗)= 0 and, by monotonicity, this is possible if and only

if I−∇U−Ẽ
[0,T ] (θπ∗)= 0 for any T > 0. This is equivalent to say that θπ∗ is a weak

solution to (3.24) in any time interval [0, T ]. Whence π∗ = θv. �

LEMMA 7.11. Fix ρ̄ ∈ (0,1) and let γ ∈M(ρ̄) be such that δ ≤ γ ≤ 1− δ for
some δ ∈ (0,1/2). Then there exist a constant C = C(δ) > 0, a time T0 > 0 and a
path π0 ∈M[0,T0] such that π0

0 = γρ̄ , π0
T0
= γ and

IE[0,T0](π
0|γρ̄)≤ C‖γ − γρ̄‖2

W 1,2 .

PROOF. Elementary computations (see, e.g., [7], Lemma 4.3) show that, by
taking T0 = 1, the “straight” path πt = γ t +γρ̄(1− t) fulfils the requirements. �

PROOF OF THEOREM 3.5 (THE IDENTITY V E
ρ̄ = V̂ E

ρ̄ ). Fix ρ̄ ∈ [0,1] and

ρ ∈M(ρ̄). Recall that any path π ∈M[−T ,0] such that IE[−T ,0](π |γρ̄) <+∞ sat-
isfies necessarily the condition π−T = γρ̄ . This means that if we extend π to an
element π̂ ∈ M(−∞,0](ρ̄) by setting π̂t = γρ̄ for t ∈ (−∞,−T ), we then have
IE
(−∞,0](π̂)= IE[−T ,0](π |γρ̄). This readily implies the inequality V̂ E

ρ̄ (ρ)≤ V E
ρ̄ (ρ).

Since we have already proven that V̂ E
ρ̄ = F U

ρ̄ (ρ), it is enough to show V E
ρ̄ ≤

F U
ρ̄ . Fix ρ̄ ∈ (0,1). We need to prove the following statement. For each ρ ∈M(ρ̄)
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and ε > 0 there exist a time T > 0 and a path π ∈M[−T ,0] such that π−T = γρ̄ ,
π0 = ρ and IE[−T ,0](π |γρ̄)≤F U

ρ̄ (ρ)+ ε.
Let v(ρ) be the solution to (3.24). Given ε1 > 0 to be chosen later, by Theo-

rem 7.7, there exists a time T1 such that ‖vT1(ρ)− γρ̄‖W 1,2 ≤ ε1. Set γ := vT1(ρ);
by Lemmas 7.10 and 7.11 there exists a time T0 and a path π0 ∈M[−T1−T0,−T1]
such that π0−T1−T0

= γρ̄ , π0−T1
= γ and IE[−T1−T0,−T1](π

0|γρ̄)≤ Cε2
1. We claim the

path π ∈M[−T1−T0,0] defined by

πt :=
{

π0
t , if t ∈ [−T0 − T1,−T1),

(θv(ρ))t , if t ∈ [−T1,0],
fulfils the above requirement with T = T0 + T1. Since π is continuous, we indeed
have

I−∇U+Ẽ
[−T ,0] (π |γρ̄)= I−∇U+Ẽ

[−T1−T0,−T1](π
0|γρ̄)+ I−∇U+Ẽ

[−T1,0] (θv)

≤ Cε2
1 +F U

ρ̄ (ρ)−F U
ρ̄ (γ )+ I−∇U−Ẽ

[0,T1] (v)≤ Cε2
1 +F U

ρ̄ (ρ).

We conclude the proof choosing ε1 small enough. �
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