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STOCHASTIC FUNCTIONAL DIFFERENTIAL EQUATIONS DRIVEN
BY LÉVY PROCESSES AND QUASI-LINEAR PARTIAL

INTEGRO-DIFFERENTIAL EQUATIONS1

BY XICHENG ZHANG

Wuhan University

In this article we study a class of stochastic functional differential equa-
tions driven by Lévy processes (in particular, α-stable processes), and ob-
tain the existence and uniqueness of Markov solutions in small time inter-
vals. This corresponds to the local solvability to a class of quasi-linear partial
integro-differential equations. Moreover, in the constant diffusion coefficient
case, without any assumptions on the Lévy generator, we also show the ex-
istence of a unique maximal weak solution for a class of semi-linear partial
integro-differential equation systems under bounded Lipschitz assumptions
on the coefficients. Meanwhile, in the nondegenerate case (corresponding to
�α/2 with α ∈ (1,2]), based upon some gradient estimates, the existence of
global solutions is established too. In particular, this provides a probabilistic
treatment for the nonlinear partial integro-differential equations, such as the
multi-dimensional fractal Burgers equations and the fractal scalar conserva-
tion law equations.

1. Introduction. Consider the following multi-dimensional fractal Burgers
equation in R

d :

∂tu = ν�α/2u − (u · ∇u), t ≥ 0, u0 = ϕ,(1)

where u = (u1, . . . , ud) and ν > 0 is a viscosity constant, and �α/2 with α ∈ (0,2)

is the usual fractional Laplacian defined by

�α/2u(x) := lim
ε↓0

∫
|z|≥ε

u(x + z) − u(x)

|z|d+α
dz.

This is a typical nonlinear partial integro-differential equation and is regarded as a
simplified model for the classical Navier–Stokes equation when α = 2. Recently,
there has been great interest in studying the multi-dimensional Burgers turbulence
(cf. [2, 17]), the fractal Burgers equation (cf. [3, 6, 11]) and the fractal conservation
law equation (cf. [7]), etc. All these works are based on the analytic approaches,
especially the energy method, Duhamel’s formulation and the maximum principle.
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The purpose of the present paper is to give a probabilistic treatment for a large
class of quasi-linear partial integro-differential equations. Let us first introduce the
main idea. By reversing the time variable, one can write Burgers’ equation (1) as
the following equivalent backward form:

∂tu + ν�α/2u − (u · ∇u) = 0, t ≤ 0, u0 = ϕ.(2)

Now, consider the case of α = 2, and for a given smooth solution ut (x) ∈
C∞

b (Rd;R
d) to the above equation, let Xt,s(x) solve the following stochastic dif-

ferential equation (abbreviated as SDE):

dXt,s(x) = −us(Xt,s(x))ds + √
2ν dWs, s ∈ [t,0], Xt,t (x) = x,(3)

where (Ws)s≤0 is a d-dimensional standard Brownian motion on R− := (−∞,0].
By Itô’s formula and the Markov property of the solution, it is well known that

ut (x) = Eϕ(Xt,0(x)).(4)

Conversely, assume that (u,X) solves the implicit system (3) and (4); then u also
solves the backward Burgers’ equation (2). This type of implicit stochastic dif-
ferential equation has been systematically studied by Freidlin [8], Chapter 5; see
also [4, 16].

Let us now substitute (4) for (3); then

dXt,s(x) = −[Eϕ(Xs,0(y))]y=Xt,s(x) ds + √
2ν dWs,

(5)
s ∈ [t,0], Xt,t (x) = x.

As the Markov property holds, one can write the above equation as a closed form,

dXt,s(x) = −E
Ft,s ϕ(Xt,0(x))ds + √

2ν dWs, s ∈ [t,0], Xt,t (x) = x,(6)

where Ft,s := σ {Wr − Wt : r ∈ [t, s]}, and E
Ft,s denotes the conditional expecta-

tion with respect to Ft,s . The question is this: Suppose that the stochastic equa-
tion (6) admits a unique solution family {Xt,s(x) : t ≤ s ≤ 0, x ∈ R

d}. Does ut (x)

defined by (4) solve Burgers’ equation (2)? To answer this question, the key point
is to establish the following Markov property: for all t1 ≤ t2 ≤ t3 ≤ 0 and x ∈ R

d ,

E
Ft1,t2 (ϕ(Xt1,t3(x))) = E(ϕ(Xt2,t3(y)))|y=Xt1,t2 (x) a.s.(7)

so that equation (6) can be written back to (5). This is not obvious since SDE (6)
involves a conditional expectation operator. On the other hand, one can replace the
Brownian motion in equation (6) by an α-stable process, as is done in [18], so that
we can give a probabilistic explanation for the Burgers equation (2).

Basing on this simple observation, in this paper we are mainly concerned about
the following general stochastic functional differential equation (abbreviated as
SFDE) driven by a Lévy process (Lt )t≤0:

dXt,s(x) = Gs(Xt,s−(x),E
Fs−(φs(Xt,·(x))))dLs,

(8)
s ∈ [t,0], Xt,t (x) = x,
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where Fs := σ {Ls′ − Ls′′ : s′′ < s′ ≤ s}, G and φ are some Lipschitz functionals
(see below). In Section 2, we are devoted to proving the existence and uniqueness
of a short time solution as well as the Markov property (7) for equation (8) un-
der Lipschitz assumptions on G and φ. Moreover, a locally maximal solution is
also achieved. Since Lévy processes usually have poor integrability, we have to
carefully treat the big jump part of Lévy processes. Compared with the classical
argument in Freidlin [9], it seems that SFDE (8) is easier to handle since it is a
closed equation.

Next, in Section 3 we apply our results to a class of quasi-linear partial integro-
differential equations (abbreviated as PIDE) and obtain the existence of short time
solutions. Here, we discuss two cases: G and φ satisfy linear growth conditions,
but Lévy processes have finite moments of arbitrary orders; G and φ are bounded,
but equation (8) has a constant coefficient in the big jump part. This is natural since
only the big jump is related to the moment of Lévy processes.

In Section 4, we turn to the investigation of the following system of semi-linear
PIDEs (nonlinear transport equation):

{
∂tut + L0ut + (

Gt(x,ut ) · ∇)
ut + Ft(x,ut ) = 0,

(t, x) ∈ R− × R
d, u0(x) = ϕ(x) ∈ R

m,
(9)

where L0 is the generator of the Lévy process given by (15) below. It is observed
that the following scalar conservation law equation can be written as the above
form: {

∂tut + L0ut + div(gt (x, ut )) + ft (x, ut ) = 0,

(t, x) ∈ R− × R
d, u0(x) = ϕ(x) ∈ R.

(10)

In particular, the one-dimensional fractal Burgers equation (2) takes the above
form. In equation (9), since there are not any analytic properties to be imposed
on L0, one can not appeal to the Duhamel formula or the energy method to give an
analytic treatment. In this situation, the probabilistic approach seems to be quite
suitable. In fact, by using purely probabilistic argument, we shall prove in Theo-
rem 4.2 below that PIDE (9) admits a unique maximal weak solution in the class
of bounded Lipschitz functions. In the nondegenerate case (corresponding to the
subcritical case for L0 = �α/2 with α ∈ (1,2]), the existence of global solutions
is also obtained by applying some gradient estimates. We mention that for the
one-dimensional Burgers equation (1), it has been proved in [11] that the global
analytic solution does exist for α ∈ [1,2], and the finite time blow up solution also
exists for α ∈ (0,1). However, in the critical case of α = 1, the existence of global
solutions for the general equation (9) is left open.

We conclude this introduction by introducing the following conventions: The
letter C with or without subscripts will denote a positive constant, whose value
may change in different places. If we write T = T (K1,K2, . . .), this means that T

depends only on these indicated arguments.
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2. A stochastic functional differential equation: Short time existence.

2.1. General facts about Lévy processes. Let (Lt )t∈R be an R
m-valued

Lévy process on the real line and defined on some complete probability space
(
,F ,P ), which means that:

• (Lt )t∈R has independent and stationary increments, that is, for all −∞ < t1 <

t2 < · · · < tn < +∞, the random variables (Lt2 − Lt1, . . . ,Ltn − Ltn−1) are in-
dependent, and the distribution of Lt+s − Ls does not depend on s.

• For P -almost all ω ∈ 
, the mapping t 
→ Lt(ω) is right-continuous and has
left-limit (also called càdlàg in French).

Let N be the total of all P -null sets. For −∞ ≤ t < s < +∞, define

Ft,s := σ {Lr − Lr ′ ; r, r ′ ∈ (t, s]} ∨ N .

By the independence of increments of the Lévy process, it is easy to see that for
−∞ ≤ t1 < t2 < t3 < +∞, Ft1,t2 and Ft2,t3 are independent. For simplicity of
notation, we write

Fs = F−∞,s , Fs− := ∨
t<s

Ft .

It is clear that Ft ⊂ Fs if t < s, and s 
→ Fs− is left-continuous. Moreover, Ls−
is Fs−-measurable. Throughout this paper, we shall work on the negative time
axes R− := (−∞,0].

REMARK 2.1. For any measurable process ηs ∈ L1(
,F0,P ), s ≤ 0, by the
predictable projection theorem (cf. [14], page 173, Theorem 5.3), there always ex-
ists a predictable version of s → E(ηs |Fs−), which will be denoted by E

Fs−(ηs).
Moreover, for any ξ ∈ L1(
,F0,P ), by the regularization theorem of martingales
(cf. [14], page 64, Proposition 2.7 and page 65, Theorem 2.9), we have

lim
s↑t

E
Fs−(ξ) = E

Ft−(ξ) = E
Ft (ξ ) a.s.,

where the second equality follows by P {Lt = Lt−} = 1 and a monotone class
argument.

By the Lévy–Khintchine formula (cf. [1], page 109, Corollary 2.4.20), the char-
acteristic function of Lt is given by

E(eiξ ·Lt ) = exp
{
t

[
ib · ξ − ξ tAξ +

∫
Rm

[
eiξ ·z − 1 − iξ · z1|z|≤1

]
ν(dz)

]}

(11)
=: et�(ξ),

where �(ξ) is a complex-valued function called the symbol of (Lt )t≤0, and b ∈
R

m, A ∈ R
m ×R

m is a positive definite and symmetric matrix, ν is a Lévy measure
on R

m, that is, ν{0} = 0 and∫
Rm

1 ∧ |z|2ν(dz) < +∞.(12)



SFDE DRIVEN BY LÉVY PROCESSES AND QUASI-LINEAR PIDE 2509

We call

A := (b,A, ν)(13)

the characteristic triple of Lt . If b = 0,A = 0 and ν(dz) = dz
|z|m+α , where α ∈ (0,2),

then Lt is the α-stable process with the Lévy exponent cm,α|ξ |α , and its generator
is the fractional Laplacian �α/2 by multiplying a constant c′

m,α .
By the Lévy–Itô decomposition (cf. [1], page 108, Theorem 2.4.16), Lt can be

written as

Lt = bt + WA
t +

∫
|z|≤1

zÑ(t,dz) +
∫
|z|>1

zN(t,dz),(14)

where WA
t is a Brownian motion with covariance matrix A = (aij ), N(t,dz) is the

Poisson random point measure associated with (Lt )t≤0 given by

N(t,�) := ∑
t<s≤0

1�(Ls − Ls−), � ∈ B(Rm)

and Ñ(t,dz) := N(t,dz)− tν(dz) is the compensated random martingale measure.
Here, (WA

t )t≤0 and (N(t,dz))t≤0 are independent. The generator of Lt is given by

L0u(x) = 1

2
aij ∂i∂ju + bi∂iu

(15)
+

∫
Rm

[
u(x + z) − u(x) − 1|z|<1∂iu(x)zi

]
ν(dz).

Here and after, we use the usual convention for summation: the same index in a
product will be summed automatically.

In the following, we denote by D the space of all càdlàg functions from R−
to R

d , which is endowed with the locally uniform metric ρ. Notice that this metric
is complete, but not separable. For given t < 0 and càdlàg function f : [t,0] → R

d ,
we extend f to R− in a natural manner by putting f (s) = f (t) for s < t so that
f ∈ D.

2.2. A general case. In this subsection, we consider the following general
SFDE in R

d driven by the Lévy process (Ls)s≤0:

Xt,s = ξ +
∫
(t,s]

Gr(Xt,r−,E
Fr−(φr(Xt,·)))dLr, t ≤ s ≤ 0,(16)

where ξ ∈ Ft , G : R− × R
d × R

k → R
d × R

m is a measurable function, and
φ : R− × D → R

k is a uniformly Lipschitz continuous functional in the sense that

‖φ‖Lip := sup
s∈R−

sup
ω �=ω′∈D

|φs(ω) − φs(ω
′)|

ρ(ω,ω′)
< +∞,(17)

where ρ(ω,ω′) := ∑
n 2−n(1 ∧ sups∈[−n,0] |ω(s) − ω′(s)|) is the locally uniform

metric on D.
The definition about the solutions to equation (16) is given as follows:
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DEFINITION 2.2. For fixed t < 0 and ξ ∈ Ft , an (Fs)-adapted càdlàg
stochastic process Xs =: Xt,s(ξ) is called a solution of equation (16) if for all
s ∈ [t,0],

Xs = ξ +
∫
(t,s]

Gr(Xr−,E
Fr−(φr(X·)))dLr a.s.

For T < 0, we say that equation (16) is (uniquely) solvable on (T ,0] (or [T ,0]) if
for all t ∈ (T ,0] (or t ∈ [T ,0]) and ξ ∈ Ft , equation (16) has a (unique) solution
starting from ξ at time t .

REMARK 2.3. In this definition, it has been assumed that φr(X·) ∈ L1(
,

F0,P ) so that E
Fr−(φr(X·)) makes sense by Remark 2.1, and further the stochas-

tic integral with respect to the Lévy process in the definition makes sense.

Below, we make the following assumptions on the coefficients and the Lévy
measure ν:

(HG) For some K0,K1 > 0 and all s ≤ 0, x, x′ ∈ R
d , u,u′ ∈ R

k ,

|Gs(0,0)| ≤ K0, |Gs(x,u) − Gs(x
′, u′)| ≤ K1(|x − x′| + |u − u′|).

(Hβ
ν ) For some β > 0, ∫

|z|≥1
|z|βν(dz) < +∞.

REMARK 2.4. Condition (Hβ
ν ), which is a restriction on the big jump of the

Lévy process, is equivalent to saying that the β-order moment of the Lévy process
is finite; cf. [15], Theorem 25.3. It should be noticed that for α-stable process,
condition (Hβ

ν ) is satisfied only for any β < α.

Now we prove the following result about the existence and uniqueness of solu-
tions for equation (16) in a short time.

THEOREM 2.5. Assume that (HG) and (Hβ
ν ) hold for some β > 1, and φ is

a Lipschitz continuous functional on D; see (17). Then there exists a time T =
T (K1,A , β,‖φ‖Lip) < 0 such that equation (16) is uniquely solvable on [T ,0]
for any Lβ -integrable initial value ξ ∈ Ft in the sense of Definition 2.2, and for
some C = C(T ,K0) and any t ∈ [T ,0],

E

(
sup

s∈[t,0]
|Xt,s(ξ)|β

)
≤ CE|ξ |β.(18)

Moreover, if ξ = x ∈ R
d is nonrandom, then for any t ∈ [T ,0), the unique solution

Xt,s is Ft,s -measurable for all s ∈ [t,0].
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PROOF. We prove the theorem for β ∈ (1,2). For β ≥ 2, the proof is similar
and simpler. Fix t < 0, which will be determined below. For ξ ∈ Lβ(
,Ft , P ),
set X

(0)
t,s ≡ ξ , and let X

(n)
t,s be the Picard iteration sequence defined as follows: for

n ∈ N,

X
(n)
t,s = ξ +

∫
(t,s]

Gr

(
X

(n−1)
t,r− ,E

Fr−(
φr

(
X

(n−1)
t,·

)))
dLr.(19)

Set

Z
(n)
t,s := X

(n+1)
t,s − X

(n)
t,s .

Using the Lévy–Itô decomposition (14), one can write

Z
(n)
t,s =

∫
(t,s]

∫
|z|<1

G(n)
r · zÑ(dr,dz)

+
∫
(t,s]

∫
|z|≥1

G(n)
r · zN(dr,dz)

+
∫
(t,s]

G(n)
r · b dr +

∫
(t,s]

G(n)
r dWA

r

=: I (n)
1 (s) + I

(n)
2 (s) + I

(n)
3 (s) + I

(n)
4 (s),

where

G(n)
r := Gr

(
X

(n)
t,r−,E

Fr−(
φr

(
X

(n)
t,·

))) − Gr

(
X

(n−1)
t,r− ,E

Fr−(
φr

(
X

(n−1)
t,·

)))
.

By Burkholder’s inequality (cf. [10], Theorem 23.12) and Young’s inequality,
thanks to β ∈ (1,2), we have that for any ε ∈ (0,1),

E

(
sup

r∈[t,0]
∣∣I (n)

1 (r)
∣∣β)

≤ CE

(∫
(t,0]

∫
|z|<1

∣∣G(n)
r · z∣∣2N(dr,dz)

)β/2

≤ CE

(
sup

r∈[t,0]
∣∣G(n)

r

∣∣2−β
∫
(t,0]

∫
|z|<1

∣∣G(n)
r

∣∣β · |z|2N(dr,dz)

)β/2

≤ εE

(
sup

r∈[t,0]
∣∣G(n)

r

∣∣β)
+ CεE

(∫
(t,0]

∫
|z|<1

∣∣G(n)
r

∣∣β · |z|2N(dr,dz)

)

= εE

(
sup

r∈[t,0]
∣∣G(n)

r

∣∣β)
+ CεE

(∫
[t,0]

∫
|z|<1

∣∣G(n)
r

∣∣β · |z|2ν(dz)dr

)

≤
(
ε + Cε|t |

∫
|z|<1

|z|2ν(dz)

)
E

(
sup

r∈[t,0]
∣∣G(n)

r

∣∣β)
.
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Here and below, the constant C or Cε is independent of t and n. For I
(n)
2 (s), by

Itô’s formula, we have

E

(
sup

r∈[t,s]
∣∣I (n)

2 (r)
∣∣β)

≤ E

(∫
(t,s]

∫
|z|≥1

∣∣∣∣I (n)
2 (r−) + G(n)

r · z∣∣β − ∣∣I (n)
2 (r−)

∣∣β ∣∣N(dr,dz)

)

= E

(∫
(t,s]

∫
|z|≥1

∣∣∣∣I (n)
2 (r−) + G(n)

r · z∣∣β − ∣∣I (n)
2 (r−)

∣∣β ∣∣ν(dz)dr

)

≤ CE

(∫
(t,s]

∣∣I (n)
2 (r)

∣∣β dr

)
+ C

(∫
|z|≥1

|z|βν(dz)

)
E

(∫
(t,0]

∣∣G(n)
r

∣∣β dr

)
,

which then implies that by (Hβ
ν ) and Gronwall’s inequality,

E

(
sup

r∈[t,0]
∣∣I (n)

2 (r)
∣∣β)

≤ C|t |E
(

sup
r∈[t,0]

∣∣G(n)
r

∣∣β)
.

Similarly, we have

E

(
sup

r∈[t,0]
∣∣I (n)

3 (r)
∣∣β)

≤ (|t | · |b|)βE

(
sup

r∈[t,0]
∣∣G(n)

r

∣∣β)
,

and for any ε ∈ (0,1),

E

(
sup

r∈[t,0]
∣∣I (n)

4 (r)
∣∣β)

≤ (ε + Cε|t |)E
(

sup
r∈[t,0]

∣∣G(n)
r

∣∣β)
.

Combining the above calculations, we obtain that for any ε ∈ (0,1),

E

(
sup

r∈[t,0]
∣∣Z(n)

t,r

∣∣β)
≤ (ε + Cε|t |) · E

(
sup

r∈[t,0]
∣∣G(n)

r

∣∣β)
.(20)

Noticing that by (HG),
∣∣G(n)

r

∣∣ ≤ K1

(∣∣Z(n−1)
t,r−

∣∣ + ‖φ‖LipE
Fr−

(
sup

s∈[t,0]
∣∣Z(n−1)

t,s

∣∣))
,

and in view of β > 1, we further have by Doob’s maximal inequality,

E

(
sup

s∈[t,0]
∣∣Z(n)

t,s

∣∣β)
≤ (ε + Cε|t |)C0E

(
sup

s∈[t,0]
∣∣Z(n−1)

t,s

∣∣β)
.

Now, let us choose

ε = 1

4C0
and T := − 1

4CεC0
,

and then for all t ∈ [T ,0],
E

(
sup

s∈[t,0]
∣∣Z(n)

t,s

∣∣β)
≤ 1

2
E

(
sup

s∈[t,0]
∣∣Z(n−1)

t,s

∣∣β)
≤ · · · ≤ 1

2n
E

(
sup

s∈[t,0]
∣∣Z(0)

t,s

∣∣β)
.(21)
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On the other hand, notice that

Z
(0)
t,s = X

(1)
t,s − ξ =

∫
(t,s]

Gr

(
X

(1)
t,r−,E

Fr−(φr(ξ))
)

dLr.

As above, and using Gronwall’s inequality, it is easy to derive that

E

(
sup

s∈[t,0]
∣∣Z(0)

t,s

∣∣β)
≤ CE|ξ |β.(22)

Hence, there exists an (Fs )-adapted and càdlàg stochastic process Xt,s such that

lim
n→∞E

(
sup

s∈[t,0]
∣∣X(n)

t,s − Xt,s

∣∣β)
= 0.(23)

By taking limits for equation (19), it is easy to see that Xt,s solves SFDE (16).
Moreover, estimate (18) follows from (21), (22) and (23). The uniqueness is clear
from the above proof.

Suppose now that ξ = x is nonrandom. From the Picard iteration (19), one sees
that for each n ∈ N and s ∈ (t,0], X

(n)
t,s is Ft,s -measurable. Indeed, suppose that

X
(n−1)
t,s is Ft,s -measurable for each s ∈ (t,0], and then it is clear that φr(X

(n−1)
t,· )

is independent of Ft . Noticing that for r > t , Fr− = Ft,r− ∨ Ft and Ft,r− is
independent of Ft , we have

E
Fr−(

φr

(
X

(n−1)
t,·

)) = E
Ft,r−(

φr

(
X

(n−1)
t,·

))
.

By induction method, starting from equation (19) with ξ = x, one finds that X
(n)
t,s is

also Ft,s -measurable for each s ∈ (t,0]. So, the limit Xt,s is also Ft,s -measurable.
�

REMARK 2.6. In this theorem, if Gs(x,u) = Gs(x) does not depend on u,
then the short time solution can be extended to any large time by the usual time
shift technique.

2.3. A special case. In Theorem 2.5, since we require β > 1, the result rules
out the α-stable process with α ∈ (0,1]. In this subsection, we drop assumption
(Hβ

ν ) in Theorem 2.5, and consider the following special form:

Xt,s = ξ +
∫
(t,s]

∫
|z|<1

Gr(Xt,r−,E
Fr−(φr(Xt,·))) · zÑ(dr,dz)

+
∫
(t,s]

∫
|z|≥1

zN(dr,dz)

(24)
+

∫
(t,s]

Gr(Xt,r−,E
Fr−(φr(Xt,·))) · b dr

+
∫
(t,s]

Gr(Xt,r−,E
Fr−(φr(Xt,·)))dWA

r ,
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where ξ ∈ Ft . In this equation, the big jump part has a constant coefficient. In
order to make sense for the integrals, we need to assume that G and φ are bounded.
We have:

THEOREM 2.7. In addition to (HG), we assume that G is bounded, and φ

is a bounded Lipschitz continuous functional on D. Then there exists a time
T = T (K1,A ,‖φ‖Lip) < 0 such that SFDE (24) is uniquely solvable on [T ,0].
Moreover, if ξ = x ∈ R

d is nonrandom, then for any t ∈ [T ,0), the unique solution
Xt,s is Ft,s -measurable for all s ∈ [t,0].

PROOF. For t < 0 and ξ ∈ Ft , set X
(0)
t,s ≡ ξ , and let X

(n)
t,s be the Picard iteration

sequence defined as follows:

X
(n)
t,s = ξ +

∫
(t,s]

∫
|z|≥1

zN(dr,dz)

+
∫
(t,s]

∫
|z|<1

Gr

(
X

(n−1)
t,r− ,E

Fr−(
φr

(
X

(n−1)
t,·

))) · zÑ(dr,dz)

(25)
+

∫
(t,s]

Gr

(
X

(n−1)
t,r− ,E

Fr−(
φr

(
X

(n−1)
t,·

))) · b dr

+
∫
(t,s]

Gr

(
X

(n−1)
t,r− ,E

Fr−(
φr

(
X

(n−1)
t,·

)))
dWA

r .

Set

Z
(n)
t,s := X

(n+1)
t,s − X

(n)
t,s .

Then

Z
(n)
t,s =

∫
(t,s]

∫
|z|<1

G(n)
r · zÑ(dr,dz) +

∫
(t,s]

G(n)
r · b dr +

∫
(t,s]

G(n)
r dWA

r ,

where

G(n)
r := Gr

(
X

(n)
t,r−,E

Fr−(
φr

(
X

(n)
t,·

))) − Gr

(
X

(n−1)
t,r− ,E

Fr−(
φr

(
X

(n−1)
t,·

)))
.

Notice that |G(n)
r | ≤ 2‖G‖∞, and by (HG),

∣∣G(n)
r

∣∣2 ≤ 2K2
1

(∣∣Z(n−1)
t,r−

∣∣2 + ‖φ‖2
Lip

(
E

Fr−
(

sup
s∈[t,0]

∣∣Z(n−1)
t,s

∣∣))2)
=: �(n)

r .

By Burkholder’s inequality and (12), we have

E

(
sup

s∈[t,0]

∣∣∣∣
∫
(t,s]

∫
|z|<1

G(n)
r · zÑ(dr,dz)

∣∣∣∣
2)

≤ CE

(∫
(t,0]

∫
|z|<1

∣∣G(n)
r · z∣∣2N(dr,dz)

)

≤ C|t |E
(

sup
r∈[t,0]

�(n)
r

)
.
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Here and below, the constant C is independent of t and n. Similarly, we have

E

(
sup

s∈[t,0]

∣∣∣∣
∫
(t,s]

G(n)
r · b dr

∣∣∣∣
2)

≤ C|t |2E

(
sup

r∈[t,0]
�(n)

r

)

and

E

(
sup

s∈[t,0]

∣∣∣∣
∫
(t,s]

G(n)
r dWA

r

∣∣∣∣
2)

≤ C|t |E
(

sup
r∈[t,0]

�(n)
r

)
.

Combining the above calculations and by Doob’s maximal inequality, we obtain

E

(
sup

s∈[t,0]
∣∣Z(n)

t,s

∣∣2)
≤ C0|t |E

(
sup

r∈[t,0]
�(n)

r

)
≤ C1|t |E

(
sup

s∈[t,0]
∣∣Z(n−1)

t,s

∣∣2)
.

Now, let us choose

T := − 1

2C1
,

and then for all t ∈ [T ,0],
E

(
sup

r∈[t,0]
∣∣Z(n)

t,r

∣∣2)
≤ 1

2
E

(
sup

r∈[t,0]
∣∣Z(n−1)

t,r

∣∣2)
≤ · · · ≤ 1

2n
E

(
sup

r∈[t,0]
∣∣Z(1)

t,r

∣∣2)
≤ C

2n
.

Hence, there exists an (Fs )-adapted and càdlàg stochastic process Xt,s such that

lim
n→∞E

(
sup

s∈[t,0]
∣∣X(n)

t,s − Xt,s

∣∣2)
= 0.

By taking limits for equation (25), it is easy to see that Xt,s solves SFDE (24). The
remaining proof is the same as in Theorem 2.5. �

2.4. Markov property. In this subsection, we prove the Markov property for
the solutions of equations (16) and (24), which is crucial for the development of
the next section.

We first show the continuous dependence of the solutions with respect to the
initial values.

PROPOSITION 2.8. In the situation of Theorem 2.5, for t ∈ [T ,0], let ξ (n), ξ ∈
Lβ(
,Ft , P ). If ξ (n) converges to ξ in probability as n → ∞, then X

(n)
t,s con-

verges to Xt,s uniformly with respect to s ∈ [t,0] in probability as n → ∞, where
{X(n)

t,s ; t ≤ s ≤ 0} and {Xt,s; t ≤ s ≤ 0} are the solutions of SFDE (16) correspond-
ing to the initial values ξ (n) and ξ .

PROOF. Define

An := {∣∣ξ (n) − ξ
∣∣ ≤ 1

} ∈ Ft .
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Then we can write

1An

(
X

(n)
t,s − Xt,s

) = 1An

(
ξ (n) − ξ

) +
∫
(t,s]

∫
|z|<1

1An G(n)
r · zÑ(dr,dz)

+
∫
(t,s]

∫
|z|≥1

1An G(n)
r · zN(dr,dz)

+
∫
(t,s]

1An G(n)
r · b dr +

∫
(t,s]

1An G(n)
r dWA

r ,

where

G(n)
r := Gr

(
X

(n)
t,r−,E

Fr−(
φr

(
X

(n)
t,·

))) − Gr(Xt,r−,E
Fr−(φr(Xt,·))).

As in (21), we can prove that for all t ∈ [T ,0],
E

(
1An sup

s∈[t,0]
∣∣X(n)

t,s − Xt,s

∣∣β)
≤ CE

(
1An

∣∣ξ (n) − ξ
∣∣β)

,(26)

where C is independent of n.
Now, for any ε > 0, we have

P
{

sup
s∈[t,0]

∣∣X(n)
t,s − Xt,s

∣∣ ≥ ε
}

≤ P
{
1An sup

s∈[t,0]
∣∣X(n)

t,s − Xt,s

∣∣ ≥ ε
}

+ P(Ac
n)

≤ 1

εβ
E

(
1An sup

s∈[t,0]
∣∣X(n)

t,s − Xt,s

∣∣β)
+ P(Ac

n)

≤ C

εβ
E

(
1An

∣∣ξ (n) − ξ
∣∣β) + P(Ac

n).

The proof is then complete by letting n → ∞. �

REMARK 2.9. In the situation of Theorem 2.7, the conclusion of this propo-
sition still holds, which can be proven by the same procedure.

The following lemma is a direct consequence of the uniqueness of solutions.

LEMMA 2.10. Suppose that SFDE (16) is uniquely solvable on the time inter-
val (T ,0]. Then for all T < t1 < t2 < t3 ≤ 0 and ξ ∈ Ft1 , we have

Xt2,t3(Xt1,t2(ξ)) = Xt1,t3(ξ) a.s.(27)

Moreover, for any T < t < s ≤ 0, xi ∈ R
d, i = 1, . . . , n and disjoint �i ∈ Ft , i =

1, . . . , n with
⋃

i �i = 
,

Xt,s

(∑
i

1�i
xi

)
= ∑

i

1�i
Xt,s(xi) a.s.(28)
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PROOF. For T < t1 < t2 < s ≤ 0, we can write

Xt1,s(ξ) = Xt1,t2(ξ) +
∫
(t2,s]

Gr(Xt1,r−(ξ),E
Fr−(φ(Xt1,·(ξ))))dLr a.s.

On the other hand, if we set

Ys := Xt2,s(Xt1,t2(ξ)) ∀s ∈ [t2,0],
then Ys satisfies

Ys = Xt1,t2(ξ) +
∫
(t2,s]

Gr(Yr−,E
Fr−(φ(Y·)))dLr a.s.

Equality (27) follows by the uniqueness.
As for (28), noticing that for all r ∈ (t,0],

∑
i

1�i
Gr(Xt,r−(xi),E

Fr−(φr(Xt,·(xi))))

= ∑
i

Gr(1�i
Xt,r−(xi),1�i

E
Fr−(φr(Xt,·(xi))))

= Gr

(∑
i

1�i
Xt,r−(xi),E

Fr−
(
φr

(∑
i

1�i
Xt,·(xi)

)))
,

it follows by the uniqueness as above. �

Now we can prove the following Markov property.

PROPOSITION 2.11. In the situation of Theorem 2.5 or Theorem 2.7, let
{Xt,s(x);T ≤ t < s ≤ 0} be the solution family of SFDE (16) or (24). Then for
any T ≤ t1 < t2 < t3 ≤ 0, x ∈ R

d and bounded continuous function ϕ, we have

E
Ft2 (ϕ(Xt1,t3(x))) = E(ϕ(Xt2,t3(y)))|y=Xt1,t2 (x) a.s.(29)

PROOF. We only prove (29) in the case of Theorem 2.5. By Proposition 2.8,
the mapping y 
→ E(ϕ(Xt2,t3(y))) := �(y) is continuous. So, �(Xt1,t2(x)) is Ft2 -
measurable. Thus, for proving (29), it suffices to prove that for any � ∈ Ft2 ,

E(1�ϕ(Xt1,t3(x))) = E(1��(Xt1,t2(x))).

Let ξ (n) = ∑mn

i=1 xi1�i
be a sequence of simple functions, where xi ∈ R

d , �i ∈ Ft2

disjoint and
⋃

i �i = 
, and such that

ξ (n) → Xt1,t2(x) in Lβ as n → ∞.
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By Proposition 2.8 again, we have

E(1�ϕ(Xt1,t3(x)))
(27)= E(1�ϕ(Xt2,t3(Xt1,t2(x))))

= lim
n→∞E

(
1�ϕ

(
Xt2,t3

(
ξ (n))))

(28)= lim
n→∞

mn∑
i=1

E(1�1�i
ϕ(Xt2,t3(xi))).

Since Xt2,t3(xi) is Ft2,t3 -measurable and independent of Ft2 , we further have

E(1�ϕ(Xt1,t3(x))) = lim
n→∞

mn∑
i=1

E(1�1�i
�(xi))

= lim
n→∞E

(
1��

(
ξ (n))) = E(1��(Xt1,t2(x))).

The proof is complete. �

2.5. Locally maximal solutions. Now, suppose that φ takes the following
form:

φs(ω) = ϕ(ω(0)) +
∫ 0

s
fr(ω(r))dr, ω ∈ D,(30)

where ϕ : Rd → R
k and f : R− × R

d → R
k satisfy that for some K2 > 0 and all

s ∈ R− and x, x′ ∈ R
d ,

|ϕ(x) − ϕ(x′)| + |fs(x) − fs(x
′)| ≤ K2|x − x′|.(31)

In this case, we have the following existence result of a unique maximal solution.

THEOREM 2.12. Assume that (31), (HG) and (Hβ
ν ) hold for some β > 1. Then

there exists a time T = T (K1,K2,A , β) ∈ [−∞,0) such that SFDE (16) is solv-
able on (T ,0] for any initial value x ∈ R

d , and if T is finite, then

lim
t↓T

‖ut‖Lip := sup
x �=x′∈Rd

|ut(x) − ut (x
′)|

|x − x′| = +∞,(32)

where

ut(x) := E

(
ϕ(Xt,0(x)) +

∫ 0

t
fs(Xt,s(x))ds

)
.(33)

Moreover, the family of solutions {Xt,s(x), T < t < s ≤ 0, x ∈ R
d} is unique in the

class that for all T < t1 < t2 < t3 ≤ 0 and x ∈ R
d ,

Xt1,t2(x) ∈ Lβ(
,Ft1,t2,P ), Xt1,t3(x) = Xt2,t3(Xt1,t2(x)) a.s.

We also have the following uniform estimate: for any T ′ ∈ (T ,0) and x ∈ R
d ,

sup
t∈[T ′,0]

E

(
sup

s∈[t,0]
|Xt,s(x)|β

)
≤ CT ′,x .(34)
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PROOF. First of all, let T1 be the existence time in Theorem 2.5. By (26),
there exists a constant C = C(K1,K2,A , β) > 0 such that for all x, x′ ∈ R

d and
t ∈ [T1,0],

E

(
sup

s∈[t,0]
|Xt,s(x) − Xt,s(x

′)|β
)

≤ C|x − x′|β.

Using this estimate and (31), it is easy to check that

‖uT1‖Lip < +∞.

Next, we consider the following SFDE on [t, T1]:
Xt,s(x) = x +

∫
(t,s]

Gr

(
Xt,r−(x),

E
Fr−

(
uT1(Xt,T1(x)) +

∫ T1

r
fr ′(Xt,r ′(x))dr ′

))
dLr.

Repeating the proof of Theorem 2.5, one can find another T2 < T1 so that this
SFDE is uniquely solvable on [T2, T1]. Meanwhile, one can patch up the solution
by setting

Xt,s(x) := XT1,s(Xt,T1(x)) ∀s ∈ [T1,0], t ∈ [T2, T1].
It is easy to verify that {Xt,s(x), T2 ≤ t < s ≤ 0, x ∈ R

d} solves SFDE (16) on
[T2,0]. Proceeding this construction, we obtain a sequence of times

0 > T1 > T2 > · · · > Tn ↓ T ,

and a family of solutions

{Xt,s(x), T < t < s ≤ 0, x ∈ R
d}.

From the construction of T , one knows that (32) holds. As for the uniqueness, it
can be proved piecewisely on each [Tn,Tn−1]. Estimate (34) follows from (18) and
induction. �

REMARK 2.13. By this theorem, for obtaining the global solution, it suffices
to give an a priori estimate for ‖uT ‖Lip = ‖∇uT ‖∞.

The following result can be proved similarly. We omit the details.

THEOREM 2.14. In addition to (31) and (HG), we assume that G,ϕ and f are
uniformly bounded. Then there exists a time T = T (K1,K2,A ) ∈ [−∞,0) such
that SFDE (24) is solvable on (T ,0] and estimate (32) holds provided T > −∞.
Moreover, the family of solutions {Xt,s(x), T < t < s ≤ 0, x ∈ R

d} is unique in the
class that for all T < t1 < t2 < t3 ≤ 0 and x ∈ R

d ,

Xt1,t2(x) ∈ Ft1,t2, Xt1,t3(x) = Xt2,t3(Xt1,t2(x)) a.s.
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3. Application to quasi-linear partial integro-differential equations. In
this section, we establish the connection between stochastic functional differen-
tial equations and a class of quasi-linear partial integro-differential equations. For
this aim, we consider φ taking the form of (30) and assume that for some k ∈ N,
(Hk), G,f and ϕ are continuous functions in s, x, u, and for any j = 1, . . . , k,
∇jGs(x,u), ∇jfs(x), ∇jϕ(x) are uniformly bounded continuous functions with
respect to s ∈ R−, where ∇j denotes the j th order gradient with respect to x,u.
We also denote

K := sup
s∈R−

(‖∇Gs‖∞ + ‖∇fs‖∞) + ‖∇ϕ‖∞.(35)

Under this assumption, it is clear that (31) and (HG) hold. Let ut(x) be defined
by (33). By Theorem 2.12, the mapping x 
→ ut (x) is Lipschitz continuous. How-
ever, it is in general not C2-differentiable since we have poor integrabilities for
∇Xt,s(x). We shall divide two cases to discuss this problem.

3.1. Unbounded data and ν has finite moments of arbitrary orders. In this
subsection, we consider equation (16), and assume that (Hk) holds for some k ≥ 3,
and (Hβ

ν ) holds for all β ≥ 2. In this case, we can write

Lt = b̂t + WA
t +

∫
Rm

zÑ(t,dz),

where b̂ := b + ∫
|z|>1 zν(dz) ∈ R

m.
Let T < 0 be the maximal time given in Theorem 2.12 and {Xt,s(x), T < t <

s ≤ 0, x ∈ R
d} the solution family of equation (16). For simplicity of notation,

below we shall write

Gt,r := Gt,r (x)
(36)

:= Gr

(
Xt,r−(x),E

Fr−
(
ϕ(Xt,0(x)) +

∫ 0

r
fr ′(Xt,r ′(x))dr ′

))
.

Let g : Rd → R
k be a C2-function with bounded first and second order partial

derivatives. By Itô’s formula (cf. [1], page 226, Theorem 4.4.7), we have

g(Xt,s) = g(x) +
∫
(t,s]

∫
Rm

[g(Xt,r− + Gt,r · z) − g(Xt,r−)

− ∂ig(Xt,r−)Gij
t,rzj ]ν(dz)dr

(37)
+

∫
(t,s]

∂ig(Xt,r−)Gij
t,r b̂j dr

+ 1

2

∫
(t,s]

∂i∂jg(Xt,r−)(G t
t,rAGt,r )

ij dr + M
g
t,s,
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where

M
g
t,s :=

∫
(t,s]

∫
Rm

[g(Xt,r− + Gt,r · z) − g(Xt,r−)]Ñ(dr,dz)

+
∫
(t,s]

∂ig(Xt,r−)Gij
t,r d(WA

r )j

is a square integrable (Ft,s)-martingale by (34). Here and below, the superscript
“t” denotes the transpose of a matrix.

Fix t ∈ (T ,0] and h > 0 so that t − h ∈ (T ,0]. By taking expectations for both
sides of (37), we have

1

h
[Eg(Xt−h,t ) − g(x)] = I

g
1 (h) + I

g
2 (h) + I

g
3 (h),

where

I
g
1 (h) := 1

h
E

(∫ t

t−h

∫
Rm

[g(Xt−h,r + Gt−h,r · z) − g(Xt−h,r)

− ∂ig(Xt−h,r )Gij
t−h,rzj ]ν(dz)dr

)
,

I
g
2 (h) := 1

h
E

(∫ t

t−h
∂ig(Xt,r )Gij

t−h,r b̂j dr

)
,

I
g
3 (h) := 1

2h
E

(∫ t

t−h
∂i∂jg(Xt,r )(G t

t−h,rAGt−h,r )
ij dr

)
.

We have:

LEMMA 3.1. As h ↓ 0, it holds that

I
g
1 (h) →

∫
Rm

[
g
(
x + Gt (x) · z) − g(x) − ∂ig(x)G

ij
t (x) · zj

]
ν(dz),

I
g
2 (h) → ∂ig(x)G

ij
t (x)b̂j , I

g
3 (h) → 1

2∂i∂jg(x)(G t
t (x)AGt (x))ij ,

where

Gt (x) := Gt

(
x,E

(
ϕ(Xt,0(x)) +

∫ 0

t
fs(Xt,s(x))ds

))
.

PROOF. We only prove the first limit, the others are analogous. By the change
of variables, we can write

I
g
1 (h) = E

(∫ 1

0

∫
Rm

[g(Xt−h,t−hs + Gt−h,t−hs · z)

− g(Xt−h,t−hs) − ∂ig(Xt−h,t−hs)Gij
t−h,t−hszj ]ν(dz)ds

)
.
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Notice that

Xt−h,t−hs(x) − x

=
∫
(t−h,t−hs]

∫
Rm

Gt−h,r(x) · zÑ(dr,dz) +
∫
(t−h,t−hs]

Gt−h,r (x) · b̂ dr

+
∫
(t−h,t−hs]

Gt−h,r(x)dWA
r

=: J1(h) + J2(h) + J3(h).

By the isometric property of stochastic integrals, we have

E|J1(h)|2 = E

(∫ t−hs

t−h

∫
Rm

|Gt−h,r (x) · z|2ν(dz)dr

)

≤ |h|E
(

sup
r∈[t−h,t−hs]

|Gt−h,r (x)|2
∫

Rm
|z|2ν(dz)

)

≤ C|h|E
(
1 + sup

r∈[t−h,0]
|Xt−h,r (x)|2

)
(34)→ 0 as h ↓ 0,

where in the last inequality, we used Doob’s maximal inequality and that G,φ

and f in definition (36) of Gt,r are linear growth in x and u, respectively. Similarly,

E|J2(h)|2 + E|J3(h)|2 → 0 as h ↓ 0.

Hence, for fixed t, s, x,

lim
h↓0

E|Xt−h,t−hs(x) − x|2 = 0.(38)

Noticing that

g(x + y) − g(x) = y ·
∫ 1

0
∇g(x + θy)dθ,(39)

we have

E|g(Xt−h,t−hs + Gt−h,t−hs · z) − g(Xt−h,t−hs) − ∂ig(Xt−h,t−hs)Gij
t−h,t−hszj |

= E

∣∣∣∣
(∫ 1

0
[∂ig(Xt−h,t−hs + θ Gt−h,t−hs · z) − ∂ig(Xt−h,t−hs)]dθ

)

× Gij
t−h,t−hszj

∣∣∣∣
≤ CE|Gt−h,t−hs |2|z|2 ≤ CE

(
1 + sup

r∈[t−h,0]
|Xt−h,r (x)|2

)
|z|2 (34)≤ C|z|2,
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where the second-to-last inequality is the same as above, and the constant C is
independent of h, s, z. Thus, for proving the first limit, by the dominated conver-
gence theorem, it suffices to prove that for fixed s ∈ [0,1] and z ∈ R

m,

E

((∫ 1

0
[∂ig(Xt−h,t−hs + θ Gt−h,t−hs · z) − ∂ig(Xt−h,t−hs)]dθ

)
Gij

t−h,t−hszj

)

→
(∫ 1

0

[
∂ig

(
x + θGt (x) · z) − ∂ig(x)

]
dθ

)
G

ij
t (x)zj as h ↓ 0.

By (38) and Remark 2.1, this limit is easily obtained. �

We also need the following differentiability of the solution Xt,s(x) with respect
to x in the Lp-sense.

LEMMA 3.2. For any p ≥ 2, there exists a time T∗ = T∗(p, k,A ,K ) ∈
(T ,0), where A is defined by (13), and K is defined by (35), such that for any
T∗ ≤ t ≤ s ≤ 0, the mapping x 
→ Xt,s(x) is Ck−1-differentiable in the Lp-sense
and for any j = 1, . . . , k − 1,

sup
x∈Rd

sup
s∈[t,0]

E|∇jXt,s(x)|p < +∞.

PROOF. Since the proof is standard (cf. [13], Theorem 39 or [12], Section 4.6),
we sketch it. Let {ei, i = 1, . . . , d} be the canonical basis of R

d . For δ > 0 and
i = 1, . . . , d , define

X
δ,i
t,s := X

δ,i
t,s (x) = Xt,s(x + δei) − Xt,s(x)

δ

and

Gδ,i
t,s := Gδ,i

t,s (x) = Gt,s(x + δei) − Gt,s(x)

δ
,

where Gt,s(x) is defined by (36). Then,

X
δ,i
t,s = ei +

∫
(t,s]

∫
Rm

Gδ,i
t,r · zÑ(dr,dz) +

∫
(t,s]

Gδ,i
t,r · b̂ dr +

∫
(t,s]

Gδ,i
t,r dWA

r .(40)

As in (20), by Burkholder’s inequality, we have that for any p ≥ 2,

E

(
sup

r∈[t,0]
|Xδ,i

t,r |p
)

≤ Cp,A |t |E
(

sup
r∈[t,0]

|Gδ,i
t,r |p

)
.(41)

Moreover, by (Hk) and Doob’s maximal inequality, we easily derive that

E

(
sup

r∈[t,0]
|Gδ,i

t,r |p
)

≤ Cp,K E

(
sup

r∈[t,0]
|Xδ,i

t,r |p
)
.
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Substituting this into (41), we find that for some Cp,A ,K > 0 independent of x, t

and δ,

E

(
sup

r∈[t,0]
|Xδ,i

t,r |p
)

≤ Cp,A ,K |t |E
(

sup
r∈[t,0]

|Xδ,i
t,r |p

)
.

From this, we deduce that there exists a time T∗ = T∗(p,A ,K ) ∈ (T ,0) such that
for all t ∈ [T∗,0],

sup
δ∈(0,1)

sup
x∈Rd

sup
t∈[T∗,0]

E

(
sup

r∈[t,0]
|Xδ,i

t,r (x)|p
)

< +∞.(42)

On the other hand, let Y i
t,s = Y i

t,s(x) satisfy the following SFDE:

Y i
t,s = ei +

∫ s

t
∇xGr

(
Xt,r−(x),E

Fr−
(
ϕ(Xt,0(x)) +

∫ 0

r
fr ′(Xt,r ′(x))dr ′

))

× Y i
t,r dLr

(43)
+

∫ s

t
∇yGr(Xt,r ,E

Fr−(φr(Xt,·)))

× E
Fr−

(
∇ϕ(Xt,0)Y

i
t,0 +

∫ 0

r
∇f ′

r (Xt,r ′)Y i
t,r ′ dr ′

)
dLr,

which can be solved on [T∗,0] as in Theorem 2.5. Using the uniform estimate (42)
and formula (39), it is not hard to deduce that

lim
δ→0

E

(
sup

r∈[t,0]
|Xδ,i

t,r (x) − Y i
t,r (x)|p

)
= 0.

In particular,

sup
x∈Rd

sup
t∈[T∗,0]

E

(
sup

r∈[t,0]
|Y i

t,r (x)|p
)

< +∞.

The higher derivatives can be estimated similarly from (43). �

Now we can prove the following result, which was originally due to [4, 8, 16].

THEOREM 3.3. Assume that (Hk) holds for some k ≥ 3, and (Hβ
ν ) holds for all

β ≥ 2. Let {Xt,s(x), T < t ≤ s ≤ 0, x ∈ R
d} be the maximal solution of SFDE (24)

in Theorem 2.12, and ut(x) be defined by

ut (x) := Eϕ(Xt,0(x)) + E

(∫ 0

t
fs(Xt,s(x))ds

)
.(44)

Then there exists a time T∗ = T∗(k,A ,K ) ∈ (T ,0) such that for each t ∈ [T∗,0],
x 
→ ut (x) has bounded derivatives up to (k − 1)-order, and solves the following
quasi-linear partial integro-differential equation:

ut (x) = ϕ(x) +
∫ 0

t
[Lcus(x) + Ldus(x) + fs(x)]ds ∀(t, x) ∈ [T∗,0] × R

d,
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where

Lcut (x) := ∂iut (x)G
ij
t (x, ut (x))b̂j + 1

2∂i∂jut (x)(Gt
t (x, ut (x))AGt(x,ut (x)))ij

and

Ldut (x) :=
∫

Rm

[
ut

(
x +Gt(x,ut (x)) ·z)−ut(x)−∂iut (x)G

ij
t (x, ut (x)) ·zj

]
ν(dz).

PROOF. We follow the argument of Friedman [9]. By Proposition 2.11, for
T < t − h < t ≤ 0, we have

ut−h(x) = E
[
(Eϕ(Xt,0(y)))|y=Xt−h,t (x)

] + E

[
E

(∫ 0

t
fr (Xt,r (y))dr

)∣∣∣∣
y=Xt−h,t (x)

]

+ E

(∫ t

t−h
fr(Xt−h,r(x))dr

)

= Eut(Xt−h,t (x)) + E

(∫ t

t−h
fr(Xt−h,r (x))dr

)
.

By Lemma 3.2, it is easy to see that there exists a time T∗ = T∗(k,A ,K ) < 0
such that for each t ∈ [T∗,0], ut (x) has bounded derivatives up to (k − 1)-order.
Thus, we can invoke Lemma 3.1 to derive that

1

h

(
ut−h(x) − ut(x)

)

= 1

h

(
Eut (Xt−h,t (x)) − ut (x)

) + 1

h
E

(∫ t

t−h
fr(Xt−h,r(x))dr

)

→ Lcut(x) + Ldut (x) + ft (x) as h ↓ 0.

On the other hand, from the above proof, it is also easy to see that for fixed x ∈ R
d ,

t 
→ ut(x) is Lipschitz continuous. Hence,

ut (x) − ϕ(x) = −
∫ 0

t
∂sus(x)ds =

∫ 0

t
[Lcus(x) + Ldus(x) + fs(x)]ds.

The proof is thus complete. �

3.2. Bounded data and constant big jump. In this subsection we assume that
(Hk) holds for some k ≥ 3, and G,ϕ and f are uniformly bounded and continuous
functions. Consider the following SFDE:

Xt,s(x) = x +
∫
(t,s]

∫
|z|<1

Gt,r (x) · zÑ(dr,dz) +
∫
(t,s]

∫
|z|≥1

zN(dr,dz)

+
∫
(t,s]

Gt,r (x) · b dr +
∫
(t,s]

Gt,r (x)dWA
r ,
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where Gt,r (x) is defined by (36). In this case, Lemmas 3.1 and 3.2 still hold. We
just want to mention that (38) should be replaced by

Xt−h,t−hs(x) → x in probability as h ↓ 0,

and (40) becomes

X
δ,i
t,s = ei +

∫
(t,s]

∫
|z|≤1

Gδ,i
t,r · zÑ(dr,dz) +

∫
(t,s]

Gδ,i
t,r · b dr +

∫
(t,s]

Gδ,i
t,r dWA

r .

Thus, the following result can be proved along the same lines as in Theorem 3.3.
We omit the details.

THEOREM 3.4. Assume that (Hk) holds for some k ≥ 3, and G,ϕ and f are
uniformly bounded and continuous functions. Let {Xt,s(x), T < t ≤ s ≤ 0, x ∈ R

d}
be the short time solution of SFDE (24) in Theorem 2.14, and ut(x) be defined
by (44). Then there exists a time T∗ = T∗(k,A ,K ) ∈ (T ,0) such that for each
t ∈ [T∗,0], x 
→ ut(x) has bounded derivatives up to (k − 1)-order, and solves the
following quasi-linear partial integro-differential equation:

ut (x) = ϕ(x) +
∫ 0

t
[Lcus(x) + Ldus(x) + fs(x)]ds ∀(t, x) ∈ [T∗,0] × R

d,

where

Lcut (x) := ∂iut (x)G
ij
t (x, ut (x))bj + 1

2∂i∂jut (x)(Gt
t (x, ut (x))AGt(x,ut (x)))ij

and

Ldut (x) :=
∫
|z|<1

[
ut

(
x + Gt(x,ut (x)) · z) − ut (x) − ∂iut (x)G

ij
t (x, ut (x)) · zj

]

× ν(dz)

+
∫
|z|≥1

[ut(x + z) − ut (x)]ν(dz).

4. Semi-linear partial integro-differential equation: Existence and unique-
ness of weak solutions. In this section we consider the following semi-linear
partial integro-differential equation:

∂tut + L0ut + Gi
t (x, ut )∂iut + Ft(x,ut ) = 0, u0 = ϕ, t ≤ 0,(45)

where L0 is the generator of the Lévy process Lt given by (15), and

G ∈ B
(
R−;W

1,∞(Rd × R
k;R

d)
)
, F ∈ B

(
R−;W

1,∞(Rd × R
k;R

k)
)
,

(46)
ϕ ∈ W

1,∞(Rd;R
k).

Here and below, W
1,∞ denotes the space of bounded and Lipschitz continuous

functions, B or Bloc denotes the space of uniformly or locally bounded measurable
functions.

Let us first give the following definition about the maximal weak solution for
equation (45).
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DEFINITION 4.1. For T ∈ [−∞,0), we call u ∈ Bloc((T ,0];W
1,∞(Rd;R

k))

a maximal weak solution of equation (45) if

lim
t↓T

‖∇ut(x)‖∞ = +∞ when T > −∞,(47)

and for all ψ ∈ C∞
0 (Rd;R

k) and t ∈ (T ,0],

〈ut ,ψ〉 = 〈ϕ,ψ〉 +
∫ 0

t
〈us, L∗

0ψ〉dr +
∫ 0

t
〈Gi

s(us)∂ius + Fs(us),ψ〉ds,(48)

where 〈ϕ,ψ〉 := ∫
Rd ϕ(x) ·ψ(x)dx, and L∗

0 is the adjoint operator of L0 and given
by

L∗
0ψ(x) := 1

2
aij ∂i∂jψ − bi∂iψ +

∫
Rd

[
ψ(x − z) − ψ(x) + 1|z|<1∂iψ(x)zi

]
ν(dz).

The main aim of this section is to prove the following existence and uniqueness
of a maximal weak solution as well as the global solution for equation (45).

THEOREM 4.2. (i) (Locally maximal weak solution) Under (46), there exists
a unique maximal weak solution ut (x) for equation (45) in the sense of Defini-
tion 4.1. Moreover, let T be the maximal existence time, then for any t ∈ (T ,0],

‖ut‖∞ ≤ ‖ϕ‖∞ + |t | sup
s∈[t,0]

‖Fs‖∞.(49)

(ii) (Nonnegative solution) If for some j = 1, . . . , k, the components ϕj and
Fj are nonnegative, then the corresponding component uj of weak solution in (i)
are also nonnegative.

(iii) (Global solution) Let �(ξ) be the Lévy symbol defined in (11) with b =
A = 0. If for some α ∈ (1,2),

Re(�(ξ)) � |ξ |α as |ξ | → ∞,(50)

where a � b means that for some c1, c2 > 0, c1b ≤ a ≤ c2b, then the maximal
existence time T in (i) equals to −∞. In the case that b = ν = 0 and A is strictly
positive, then T also equals to −∞.

REMARK 4.3. Since we have estimate (49), it is easy to see that the assump-
tion on G in (46) can be replaced by

G ∈ B
(
R−;W

1,∞(Rd × BR;R
d)

) ∀R > 0,

where BR := {x ∈ R
k : |x| ≤ R}.

For proving this theorem, let us begin with studying:
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4.1. Linear partial integro-differential equation. In this subsection, we firstly
study the existence and uniqueness of weak solutions for the following linear
PIDE:

∂tut + L0ut + Gi
t (x)∂iut + Ht(x)ut + ft (x) = 0, u0 = ϕ, t ≤ 0,(51)

where G : R− × R
d → R

d , H : R− × R
d → R

k × R
k , f : R− × R

d → R
k and

ϕ : Rd → R
k are bounded measurable functions.

Let us start with the following case of smooth coefficients, which is the classical
Feynman–Kac formula. Here, the main point is to prove the uniqueness.

THEOREM 4.4 (Feynman–Kac formula). Assume that

G ∈ B(R−;C∞
b (Rd;R

d)), H ∈ B
(
R−;C∞

b (Rd;R
k × R

k)
)
,

f ∈ B(R−;C∞
b (Rd;R

k)), ϕ ∈ C∞
b (Rd;R

k),

where C∞
b denotes the space of bounded smooth functions with bounded deriva-

tives of all orders. Let {Xt,s(x), t ≤ s ≤ 0, x ∈ R
d} solve the following SDE:

Xt,s(x) = x +
∫ s

t
Gr(Xt,r (x))dr +

∫ s

t
dLr,

and {Zt,s(x), t ≤ s ≤ 0, x ∈ R
d} solve the following ODE:

Zt,s(x) = Im×m +
∫ s

t
Hr(Xt,r (x)) · Zt,r (x)dx.

Define

ut(x) := E[Zt,0(x)ϕ(Xt,0(x))] + E

[∫ 0

t
Zt,r (x)fr(Xt,r (x))dr

]
.(52)

Then u ∈ C(R−;C∞
b (Rd;R

k)) uniquely solves the following linear PIDE:

ut (x) = ϕ(x) +
∫ 0

t
[L0us(x) + Gi

s(x)∂ius(x) + Hs(x)us(x) + fs(x)]ds

(53)
∀(t, x) ∈ R− × R

d .

PROOF. By smoothing the time variable and then taking limits, as in Sec-
tion 3, by careful calculations, one can find that u defined by (52) belongs to
C(R−;C∞

b (Rd;R
k)) and satisfies (53); see [9], page 148, Theorem 5.3 or [5, 18].

We now prove the uniqueness by the duality argument. Let X̂t,s(x) solve the
following SDE:

X̂t,s(x) = x −
∫ s

t
Gr(X̂t,r (x))dr −

∫ s

t
dLr,
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and Ẑt,s(x) solve the following ODE:

Ẑt,s(x) = Im×m +
∫ s

t
[Hr(X̂t,r (x))t + divGr(X̂t,r (x))Im×m] · Ẑt,r (x)dx.

Fix T < 0 and ψ ∈ C∞
0 (Rd;R

k) define

ût (x) := E[ẐT −t,0(x)ψ(X̂T −t,0(x))].
As above, one can check that

ût (x) = ψ(x)+
∫ t

T
[L∗

0ûs(x)−Gi
s(x)∂iûs(x)+Hs(x)tûs(x)+divGs(x)ûs(x)]ds.

Let u ∈ C(R−;C∞
b (Rd;R

k)) satisfy equation (53) with ϕ = f = 0. Then by the
integration by parts formula, we have for almost all t ∈ [T ,0],

∂t 〈ut , ût 〉 = −〈L0ut + Gi
t∂iut + Htut , ût 〉

+ 〈ut , L∗
0ût − Gt∂iût + H t

t û + divGtût 〉
= 0.

From this, we get

〈uT ,ψ〉 = 〈uT , ûT 〉 = 〈u0, û0〉 = 0,

which leads to uT (x) = 0 by the arbitrariness of ψ . �

For � ∈ N, we introduce a family of mollifiers in R
�. Let ρ : R� → [0,1] be a

smooth function satisfying that

ρ(x) = 0 ∀|x| > 1,

∫
R�

ρ(x)dx = 1.

We shall call {ρε(x) := ε−�ρ(x/ε), ε ∈ (0,1)} a family of mollifiers in R
�.

Next, we relax the regularity assumptions on G,H,f and ϕ, and prove the
following:

THEOREM 4.5. Assume that

G ∈ B(R−;W
1,∞(Rd;R

d)), H ∈ B(R− × R
d;R

k × R
k),

f ∈ B(R−;W
1,∞(Rd;R

k)), ϕ ∈ W
1,∞(Rd;R

k).

Let ut (x) be defined as in (52). Then ut(x) ∈ Bloc(R−;W
1,∞(Rd;R

k)) is a unique
weak solution of equation (51) in the sense of Definition 4.1.

PROOF. We only prove the uniqueness. As for the existence, it follows by
smoothing the coefficients and then taking limits as done in Theorem 4.8 below.
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Suppose that u ∈ Bloc(R−;W
1,∞(Rd;R

k)) is a weak solution of equation (51)
with ϕ = f = 0 in the sense of Definition 4.1. We want to prove that u ≡ 0. Let ρε

be a family of mollifiers in R
d . Define

uε
t (x) := ut ∗ ρε(x), Gε

t (x) := Gt ∗ ρε(x), Hε
t (x) := Ht ∗ ρε(x).

Taking ψ(·) = ρε(x − ·) in (48), one finds that uε
t (x) satisfies

uε
t (x) =

∫ 0

t
[L0u

ε
s (x) + Gε,i

s (x)∂iu
ε
s (x) + Hε

s (x)uε
s (x) + f ε

s (x)]ds,

where

f ε
s (x) = (Gi

s∂iu) ∗ ρε(x) − Gε,i
s (x)∂iu

ε
s (x) + (Hsus) ∗ ρε(x) − Hε

s (x)uε
s (x).

By the property of convolutions, we have

‖f ε
s ‖∞ ≤ 2‖Gs‖∞‖∇u‖∞ + 2‖Hs‖∞‖u‖∞,(54)

and for fixed s and Lebesgue almost all x ∈ R
d ,

f ε
s (x) → 0, ε → 0.(55)

Let Xε
t,s(x) solve the following SDE:

Xε
t,s(x) = x +

∫ s

t
Gε

r (X
ε
t,r (x))dr +

∫ s

t
dLr,(56)

and Zε
t,s(x) solve the following ODE:

Zε
t,s(x) = Im×m +

∫ s

t
H ε

r (Xε
t,r (x)) · Zε

t,r (x)dx.(57)

By Theorem 4.4, uε
t (x) can be uniquely represented by

uε
t (x) := E

[∫ 0

t
Zε

t,s(x)f ε
s (Xε

t,s(x))ds

]
.

For completing the proof, it suffices to prove that for each (t, x) ∈ R− × R
d ,

uε
t (x) → 0, ε → 0.

Since by (57), Zε
t,s(x) is uniformly bounded with respect to x, ε and s ∈ [t,0], we

need only to show that for any nonnegative ψ ∈ C∞
0 (Rd),

I ε
t := E

[∫ 0

t

∫
Rd

|f ε
s |(Xε

t,s(x))ψ(x)dx ds

]
→ 0, ε → 0.
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For any R > 0, by (54) and the change of variables, we have

I ε
t ≤ E

[∫ 0

t

∫
|Xε

t,s (x)|≤R
|f ε

s |(Xε
t,s(x))ψ(x)dx ds

]

+ CtE

[∫ 0

t

∫
|Xε

t,s (x)|>R
ψ(x)dx ds

]

(58)

≤ E

[∫ 0

t

∫
BR

|f ε
s |(x)ψ(X

ε,−1
t,s (x))det(∇X

ε,−1
t,s (x))dx ds

]

+ Ct

∫ 0

t

∫
Rd

P {|Xε
t,s(x)| > R}ψ(x)dx ds,

where X
ε,−1
t,s (x) denotes the inverse of x 
→ Xε

t,s(x). From equation (56), it is by
now standard to prove that (e.g., see Kunita [12], Lemma 4.3.1)

det(∇X
ε,−1
t,s (x)) = exp

{
−

∫ s

t
(divGε

r)(X
ε
t,r (X

ε,−1
t,s (x)))dr

}
,

which then yields

C0 := sup
ε∈(0,1)

sup
x∈Rd

sup
s∈[t,0]

|det(∇X
ε,−1
t,s (x))| < +∞.

Thus, for fixed R > 0, the first term in (58) is less than

C0‖ψ‖∞
∫ 0

t

∫
BR

|f ε
s |(x)dx ds

(55)→ 0, ε → 0.

Moreover, by equation (56), we also have

lim
R→∞ sup

ε
P {|Xε

t,s(x)| > R} ≤ lim
R→∞P

{
|x|+

∫ 0

t
‖Gr‖∞ dr +|Ls −Lt | > R

}
= 0.

The proof is complete by first letting ε → 0 and then R → ∞ in (58). �

As an easy corollary of this theorem, we first establish the uniqueness for equa-
tion (45).

THEOREM 4.6. Under (46), there exists, at most, one weak solution for equa-
tion (45).

PROOF. Let u(i) ∈ Bloc((T ,0];W
1,∞(Rd;R

k)), i = 1,2 be two weak solu-
tions of equation (45) in the sense of Definition 4.1. Define ut (x) := u

(1)
t (x) −

u
(2)
t (x). Then ut(x) satisfies that for all ψ ∈ C∞

0 (Rd;R
k),

〈ut ,ψ〉 =
∫ 0

t
〈us, L∗

0ψ〉dr +
∫ 0

t

〈
Gi

s

(
u(1)

s

)
∂ius,ψ

〉
ds +

∫ 0

t
〈Hsus,ψ〉ds,
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where

Hs(x) :=
(∫ 1

0
∇uG

i
s

(
x,u(1)

s (x) + θus(x)
)

dθ

)
∂iu

(2)
s (x)

+
∫ 1

0
∇uFs

(
x,u(1)

s (x) + θus(x)
)

dθ.

By (46), it is easy to verify that

(s, x) 
→ Gs

(
x,u(1)

s (x)
) ∈ Bloc((T ,0];W

1,∞(Rd;R
d))

and

(s, x) 
→ Hs(x) ∈ Bloc((T ,0]; B(Rd;R
k)).

Thus, by Theorem 4.5, we conclude that ut (x) = 0. �

4.2. A special form: Ft(x,u) = ft (x) independent of u. Consider the follow-
ing SFDE:

Xt,s(x) = x +
∫ s

t
Gr

(
Xt,r(x),E

Fr

(
ϕ(Xt,0(x)) −

∫ 0

r
fr ′(Xt,r ′(x))dr ′

))
dr

(59)
+

∫ s

t
dLr,

where G : R− ×R
d ×R

k → R
d , f : R− ×R

d → R
k and ϕ : Rd → R

k are bounded
measurable functions.

We need the following continuous dependence of the solutions with respect to
the coefficients.

PROPOSITION 4.7. Suppose that (G(i), f (i), ϕ(i)), i = 1,2 are two groups of
bounded measurable functions, and for some K > 0 and all t ∈ R−, x, x′ ∈ R

d

and u,u′ ∈ R
k ,∣∣G(i)

t (x, u) − G
(i)
t (x′, u′)

∣∣ + ∣∣f (i)
t (x) − f

(i)
t (x′)

∣∣ + ∣∣ϕ(i)(x) − ϕ(i)(x′)
∣∣

≤ K(|x − x′| + |u − u′|).
Then there exists a time T < 0 depending only on K such that for all t ∈ [T ,0]
and x, y ∈ R

d ,

sup
s∈[t,0]

E
∣∣X(1)

t,s (x) − X
(2)
t,s (y)

∣∣

≤ 2|x − y| + 2
∫ 0

t

∥∥G(1)
r − G(2)

r

∥∥∞ dr(60)

+ 2K|T |
(∥∥ϕ(1) − ϕ(2)

∥∥∞ +
∫ 0

t

∥∥f (1)
r − f (2)

r

∥∥∞ dr

)
,

where X
(i)
t,s (x) is the solution of (59) corresponding to (G(i), f (i), ϕ(i)).
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PROOF. Set

Zt,s := X
(1)
t,s (x) − X

(2)
t,s (y).

By (59) and the assumptions, we have

E|Zt,s | ≤ |x − y| +
∫ s

t

∥∥G(1)
r − G(2)

r

∥∥∞ dr

+ K

∫ s

t

(
E|Zt,r | +

∥∥ϕ(1) − ϕ(2)
∥∥∞ + KE|Zt,0|

+
∫ 0

r

∥∥f (1)
r ′ − f

(2)
r ′

∥∥∞ dr ′ + K

∫ 0

r
E|Zt,r ′ |dr ′

)
dr

≤ |x − y| +
∫ 0

t

∥∥G(1)
r − G(2)

r

∥∥∞ dr

+ K|t |
(∥∥ϕ(1) − ϕ(2)

∥∥∞ +
∫ 0

t

∥∥f (1)
r − f (2)

r

∥∥∞ dr

)

+ K

∫ s

t
E|Zt,r |dr + K2|t |

(
E|Zt,0| +

∫ 0

t
E|Zt,r |dr

)

≤ |x − y| +
∫ 0

t

∥∥G(1)
r − G(2)

r

∥∥∞ dr

+ K|t |
(∥∥ϕ(1) − ϕ(2)

∥∥∞ +
∫ 0

t

∥∥f (1)
r − f (2)

r

∥∥∞ dr

)

+ (K|t | + K2|t | + K2|t |2) sup
r∈[t,0]

E|Zt,r |.

From this, we immediately conclude the proof. �

THEOREM 4.8. Assume that (G,f,ϕ) are bounded measurable functions and
satisfy for some K > 0 and all t ∈ R−, x, x′ ∈ R

d and u,u′ ∈ R
k ,

|Gt(x,u)−Gt(x
′, u′)|+|ft (x)−ft (x

′)|+|ϕ(x)−ϕ(x′)| ≤ K(|x −x′|+|u−u′|).
Then there exists a time T = T (K) < 0 such that

ut(x) := Eϕ(Xt,0(x)) + E

(∫ 0

t
fr (Xt,r (x))dr

)
(61)

is a unique weak solution of equation (45) on [T ,0] in the sense of Definition 4.1.

PROOF. Let (Gε,f ε,ϕε) be the smooth approximation of (G,f,ϕ) defined by

Gε
t (x,u) := G ∗ ρ(1)

ε (t, x, u), f ε
t (x) := f ∗ ρ(1)

ε (t, x),

ϕε(x) = ϕ ∗ ρ(1)
ε (x),
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where ρ
(1)
ε [resp., ρ(2)

ε and ρ
(3)
ε ] are the mollifiers in R

d+k+1 (resp., R
d+1 and R

d ).
It is clear that

‖∇Gε
t ‖∞ + ‖∇f ε

t ‖∞ + ‖∇ϕε‖∞ ≤ K.

By Theorem 2.7 and Proposition 4.7, there exists a time T = T (K) such that for
all T ≤ t ≤ s ≤ 0 and x ∈ R

d ,

lim
ε↓0

E|Xε
t,s(x) − Xt,s(x)| = 0,

where Xε
t,s (resp., Xt,s) is the solution family of SFDE (59) corresponding to the

coefficients (Gε,f ε,ϕε) [resp., (G,f,ϕ)]. Using this limit, and by the dominated
convergence theorem, it is easy to verify that for each (t, x) ∈ [T ,0] × R

d ,

uε
t (x) → ut (x),(62)

where uε
t (x) is defined through ϕε, f ε and Xε

t,s(x) as in (61). Moreover, by Propo-
sition 4.7, we also have

sup
ε∈(0,1)

sup
t∈[T ,0]

‖∇uε
t ‖∞ + sup

t∈[T ,0]
‖∇ut‖∞ ≤ CT,K < +∞.(63)

On the other hand, thanks to (63), by Theorem 3.4, there exists another time T ′ =
T ′(K) ∈ [T ,0) independent of ε such that

uε
t (x) = ϕε(x) +

∫ 0

t
L0u

ε
r (x)dr +

∫ 0

t
Gi

r (x, uε
r (x))∂iu

ε
r (x)dr +

∫ 0

t
f ε

r (x)dr.

In particular, for all ψ ∈ C∞
0 (Rd) and all t ∈ [T ′,0],

〈uε
t ,ψ〉 = 〈ϕε,ψ〉 +

∫ 0

t
〈uε

r , L∗
0ψ〉dr +

∫ 0

t
〈Gi

r(u
ε
r )∂iu

ε
r ,ψ〉dr

(64)

+
∫ 0

t
〈f ε

r ,ψ〉dr.

We want to take limits for both sides of the above identity by (62). The key point
is to prove ∫ 0

t
〈Gε,i

r (uε
r )∂iu

ε
r ,ψ〉dr →

∫ 0

t
〈Gi

r(ur)∂iur ,ψ〉dr,

which will be obtained by proving the following two limits:∫ 0

t

〈(
Gε,i

r (uε
r ) − Gi

r(ur)
)
∂iu

ε
r ,ψ

〉
dr → 0, ε → 0,

∫ 0

t
〈Gi

r(ur)∂i(u
ε
r − ur),ψ〉dr → 0, ε → 0.

The first limit is clear by (62), (63) and the dominated convergence theorem. The
second limit follows by (62), (63) and the integration by parts formula. �

Now we are in a position to give:
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4.3. Proof of Theorem 4.2. We divide the proof into three steps.
(Step 1). For h ∈ B(R−;W

1,∞(Rd;R
k)), define

f h
r (x) := Fr(x,hr(x))

and

K := sup
s∈R−

(‖∇Gs‖∞ + ‖∇Fs‖∞) + ‖∇ϕ‖∞.

In this step, we prove the following claim:

CLAIM. For given U ≥ 4‖∇ϕ‖∞, there exists a time T = T (K ,U) < 0
such that for any bounded measurable function h : R− × R

d → R
m satisfying

supt∈[T ,0] ‖∇ht‖∞ ≤ U , it holds that

‖uh
t ‖∞ ≤ ‖ϕ‖∞ + |t | sup

s∈[t,0]
‖f h

s ‖∞,(65)

and

sup
t∈[T ,0]

‖∇uh
t ‖∞ ≤ U,(66)

where uh
t (x) is defined by (61) in terms of ϕ,f h and Xh

t,s(x), and {Xh
t,s(x), T ≤

t ≤ s ≤ 0, x ∈ R
d} is the unique solution family of SFDE (59) corresponding to

(G,f h,ϕ).

PROOF OF THE CLAIM. By Proposition 4.7, there exists a time T1 :=
T1(K ,U) < 0 such that for all x, y ∈ R

d ,

sup
T1≤t≤s≤0

E|Xt,s(x) − Xt,s(y)| ≤ 2|x − y|.

Using this and by the definition of uh
t (x) [see (61)], we have

|uh
t (x) − uh

t (y)| ≤ 2‖∇ϕ‖∞|x − y| + 2
∫ 0

t
(‖∇xFr‖∞ + ‖∇uFr‖∞U)|x − y|dr.

So,

sup
s∈[t,0]

‖∇uh
s ‖∞ ≤ 2‖∇ϕ‖∞ + 2|t | sup

s∈[t,0]
(‖∇xFs‖∞ + ‖∇uFs‖∞U)

≤ 2‖∇ϕ‖∞ + 2|t |K (U + 1).

Since U ≥ 4‖∇ϕ‖∞, choosing T = U−2‖∇ϕ‖∞
2K (U+1)

∧T1, we obtain (66). Estimate (65)
follows from definition (61). �
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(Step 2). Set u0
t (x) := ϕ(x). We construct the following iteration approximation

sequence: for n ∈ N,

Xn
t,s(x) := Xun−1

t,s (x), un
t (x) := uun−1

t (x),

f n
t (x) := f un−1

t (x) := Ft(x,un−1
t (x)).

By the above claim, there exists a time T1 = T1(K ) < 0 such that for all n ∈ N,

‖un
t ‖∞ ≤ ‖ϕ‖∞ + |t | sup

s∈[t,0]
‖Fs‖∞, sup

t∈[T1,0]
‖∇un

t ‖∞ ≤ 4‖∇ϕ‖∞.(67)

Hence,

‖∇f n
t ‖∞ ≤ ‖∇xFt‖∞ + ‖∇uFt‖∞‖∇un−1

t ‖∞ ≤ ‖∇xFt‖∞ + 4‖∇uFt‖∞‖∇ϕ‖∞.

Thus, by the definition of un
t (x) [see (61)] and Proposition 4.7 again, there exists

another time T = T (K ) ∈ [T1,0) such that for all n,m ∈ N and t ∈ [T ,0),

‖un
t − um

t ‖∞ ≤ ‖∇ϕ‖∞ sup
x∈Rd

E|Xn
t,0(x) − Xm

t,0(x)| +
∫ 0

t
‖f n

r − f m
r ‖∞ dr

+
∫ 0

t
‖∇f n

r ‖∞ sup
x∈Rd

E|Xn
t,r (x) − Xm

t,r (x)|dr

≤ C

∫ 0

t
‖f n

r − f m
r ‖∞ dr ≤ C

∫ 0

t
‖un−1

r − um−1
r ‖∞ dr,

where C is independent of n,m. By Gronwall’s inequality, we obtain that

lim
n,m→∞ sup

t∈[T ,0]
‖un

t − um
t ‖∞ = 0.

Hence, there exists a ut ∈ B([T ,0] × R
d;R

k) such that

lim
n→∞ sup

t∈[T ,0]
‖un

t − ut‖∞ = 0,(68)

and by (67),

‖ut‖∞ ≤ ‖ϕ‖∞ + |t | sup
s∈[t,0]

‖Fs‖∞, sup
t∈[T ,0]

‖∇ut‖∞ ≤ 4‖∇ϕ‖∞.

On the other hand, by Theorem 4.8, un
t (x) satisfies that for all ψ ∈ C∞

0 (Rd;R
k),

〈un
t ,ψ〉 = 〈ϕ,ψ〉 +

∫ 0

t
〈un

s , L∗
0ψ〉dr +

∫ 0

t
〈Gi

s(u
n
s )∂iu

n
s + Fs(u

n−1
s ),ψ〉ds.

Thus, one can take limits as in Theorem 4.8 to obtain the existence of a short time
weak solution for equation (45). Moreover, (ii) follows from (61). The existence
of a maximal weak solution can be obtained as in the proof of Theorem 2.12 by
shifting the time and the induction. Thus, we conclude the proof of (i). As for (ii),
it follows by (68) and the definition of un

t (x).
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(Step 3). Let u ∈ Bloc((T ,0];W
1,∞(Rd;R

k)) be a maximal weak solution of
equation (45). Define for (t, x) ∈ (T ,0] × R

d ,

bt (x) := Gt(x,ut (x)), ft (x) := Ft(x,ut (x)).

Then it is clear that

b ∈ Bloc((T ,0];W
1,∞(Rd;R

d)), f ∈ Bloc((T ,0];W
1,∞(Rd;R

k)).

For t ∈ (T ,0], let {Xt,s(x), t ≤ s ≤ 0, x ∈ R
d} solve the following SDE:

Xt,s(x) = x +
∫ s

t
br (Xt,r (x))dr +

∫ s

t
dLr, s ∈ [t,0].

Define

ũt (x) := E(ϕ(Xt,0(x))) +
∫ 0

t
E(fs(Xt,s(x)))ds.(69)

By Theorem 4.5, we have

ũt (x) = ut(x) ∀(t, x) ∈ (T ,0] × R
d .

Suppose now that T > −∞. For completing the proof, by (47) it is enough to show
that

lim
t↓T

‖∇ũt (x)‖∞ < +∞.

It immediately follows from (69) and the following claim proved in [18], Theo-
rem 4.5, which is stated in a slight variant.

CLAIM. Under (50) or A nondegenerate, for any bounded continuous func-
tion ϕ and T < t < s ≤ 0,

‖∇Eϕ(Xt,s(·))‖∞ ≤ C1(|t − s| ∧ 1)−1/α‖ϕ‖∞,

where C1 only depends on d,α,T and the bound of b.
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