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ASYMPTOTIC BEHAVIOR OF ALDOUS’ GOSSIP PROCESS

BY SHIRSHENDU CHATTERJEE AND RICK DURRETT
Cornell University and Duke University

Aldous [(2007) Preprint] defined a gossip process in which space is
a discrete N x N torus, and the state of the process at time ¢ is the set
of individuals who know the information. Information spreads from a site
to its nearest neighbors at rate 1/4 each and at rate N~% to a site cho-
sen at random from the torus. We will be interested in the case in which
a < 3, where the long range transmission significantly accelerates the time
at which everyone knows the information. We prove three results that pre-
cisely describe the spread of information in a slightly simplified model on
the real torus. The time until everyone knows the information is asymptoti-
caly T = (2 — 20(/3)N"‘/3 log N. If py is the fraction of the population who
know the information at time s and ¢ is small then, for large N, the time until
ps reaches ¢ is T(e) ~ T + No/3 log(3e/M), where M is a random vari-
able determined by the early spread of the information. The value of ps at
time s = T(1/3) + tN%/3 is almost a deterministic function h(t) which sat-
isfies an odd looking integro-differential equation. The last result confirms a
heuristic calculation of Aldous.

1. Introduction. We study a model introduced by Aldous (2007) for the
spread of gossip and other more economically useful information. His paper
considers various game theoretic aspects of random percolation of information
through networks. Here we concentrate on one small part, a first passage perco-
lation model with nearest neighbor and long-range jumps introduced in his Sec-
tion 6.2. The work presented here is also related to work of Filipe and Maule
(2004) and Cannas, Marco and Montemurro (2006), who considered the impact of
long-range dispersal on the spread of epidemics and invading species.

Space is the discrete torus A(N) = (Z mod N)?. The state of the process at
time ¢ is & C A(N), the set of individuals who know the information at time 7.
Information spreads from i to j at rate

b 1/4, if j is a (nearest) neighbor of i,
U7 | an/N?, if not.

If Ay =0, this is ordinary first passage percolation on the torus. If we start with
& = {(0,0)}, then the shape theorem for nearest-neighbor first passage percola-
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tion, see Cox and Durrett (1981) or Kesten (1986), implies that until the process
exits (—N /2, N/2)?, the radius of the set & grows linearly and & has an asymp-
totic shape. From this we see that if Ay = 0, then there is a constant cg so that the
time Ty, until everyone knows the information, satisfies

In P
— — (0,
N

where 5> denotes convergence in probability.

To simplify things, we will remove the randomness from the nearest neighbor
part of the process, and formulate it on the (real) torus I'(N) = (R mod N )2. One
should be able to prove a similar result for the first passage percolation model but
there are two difficulties. The first and easier to handle is that the limiting shape is
not round. The second and more difficult issue is that the growth is not determin-
istic but has fluctuations. One should be able to handle both of these problems, but
the proof is already long enough.

We consider what we call the “balloon process,” in which the state of the process
attime ¢ is C; C I'(IV). It starts with one “center” chosen uniformly from the torus
at time 0. When a center is born at x, a disk with radius 0 is put there, and its radius
grows deterministically as r(s) = s /+/27, so that the area of the disk at time s after
its birth is s2 /2. If the area covered at time ¢ is C;, then births of new centers occur
at rate Ay C;. The location of each new center is chosen uniformly from the torus.
If the new point lands at x € C;, it will never contribute anything to the growth of
the set, but we will count it in the total number of centers, which we denote by X ‘.

Before turning to the details of our analysis we would like to point out that a
related balloon process was used by Barbour and Reinert (2001) in their study of
distances on the small world graph. Consider a circle of radius L and introduce a
Poisson mean p L /2 number of chords with length O connecting randomly chosen
points on the circle. To study the distance between a fixed point O and a point
chosen at random one wants to examine S(¢) = {x :dist(O, x) < t}. If we ignore
overlaps and let M (¢) be the number of intervals in S(z) then S’(r) = 2M (¢) and
M (¢) is a Yule process with births at rate 2p M (¢) due to the interval ends encoun-
tering points in the Poisson process of chords. This a balloon process in which the
new births come from the boundaries. As in our case one first studies the growth of
the ballon process and then estimates the difference from the real process to prove
the desired result. There are interesting parallels and differences between the two
proofs, see Section 5.2 of Durrett (2007) for a proof.

Here we will be concerned with Ay = N~%. To begin we will get rid of trivial
cases. If the diameter of C; grows linearly, then fOCON C,dt = O(NS). Soif o > 3,
with probability tending to 1 as N goes to oo, there is no long range jump before
the initial disk covers the entire torus, and the time Ty until the entire torus is
covered satisfies

Tn P
~ A where ¢; = /7.
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If o = 3, then with probabilities bounded away from 0, (i) there is no long range
jump and Ty = c1 N, and (ii) there is one that lands close enough to (N /2, N/2)
to make 7y < (1 —§)Nc;. Using = for weak convergence, this suggests that

THEOREM 0. When o =3, Ty /N = a random limit concentrated on [0, c1]
and with an atom at cy.

PROOF. Suppose without loss of generality that the initial center is at 0, and
view the torus as (—N /2, N /2]?. The key observation is that the set-valued process
{Cnt/N,t > 0} converges to a limit D,. Before the first long-range dispersal, the
state of D; is the intersection of the disk of radius 7/+/27 with (—1/2, 1/2]*. Long
range births occur at rate equal to the area of D; and are dispersed uniformly. Since
the distance from (0, 0) to (1/2,1/2) is l/ﬁ, if there are no long range births
before time ¢; = 4/ or if all long range births land inside D, then the torus is
covered at time c;. Computing the distribution of the cover time when it is < ¢
is complicated, but the answer is a continuous functional of the limit process, and
standard weak convergence results give the result. []

For the remainder of the paper we suppose Ay = N~ % with o < 3. The overlaps
between disks in C; pose a difficulty in analyzing the process, so we begin by
studying a simpler “balloon branching process” A;, in which A; is the sum of the
areas of all of the disks at time ¢, births of new centers occur at rate Ay A;, and
the location of each new center is chosen uniformly from the torus. Let X; be the
number of centers at time ¢ in A;.

Suppose we start Cp and Ap from the same randomly chosen point. The areas
C; = A; until the time of the first birth, which can be made to be the same in
the two processes. If we couple the location of the new centers at that time, and
continue in the obvious way letting C; and .4; give birth at the same time with the
maximum rate possible, to the same place when they give birth simultaneously,
and letting A, give birth by itself otherwise, then we will have

(1.1) C, C A, C; < Ay, X, <X, forallt>0.

X; is a Crump—Mode-Jagers branching process, but saying these words does
not magically solve our problems. Define the length process L; to be /27 times
the sum of the radii of all the disks at time ¢.

t t
L,:/ (t—s)dstf Xsds,
0 0

I (f — g)2 t
m:f( ”d&:/LM&
0 2 0

(1.2)

Here and later we use fé for integration over the closed interval [0, ¢], that is, we
include the contribution from the atom in d X at 0 (X¢9 = 1 while X; = 0 for
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s < 0). For the second equality on each line integrate by parts or note that L; = X,
and A} = L,. Since X, increases by 1 at rate AyA;, (X;, L;, A;) is a Markov
process.

To simplify formulas, we will often drop the subscript N from A . For compar-
ison with C;, the parameter A is important, but in the analysis of A; it is not. If we
let
(13)  X!'=Xx@r™13), LI =213 Lea153), Al =22B A3,

then (th, Ltl, Atl) is the process with A = 1.

To study the growth of A, first we will compute the means of X;, L; and A;.
Let F(¢) = At3/3!. Using the independent and identical behavior of all the disks
in Ay it is easy to show that (see the proof of Lemma 2.4)

t
EX[=1+/ EX[_SdF(S).
0

Solving the above renewal equation and using (1.2), we can show
00 00 )\k[3k

EX,=) F*®)y=vny=)_ Gor

k=0 k=0
O ) kyp3k+1

& Gk + D!
OO ) ky3k+2

EA, =S"2—
! §(3k+2)!

To evaluate V (¢) we note that V" (t) = AV (¢) with V(0) =1, V'(0) = V" (0) =0,
SO

(1.5) V(1) = HexpA'P1) + exp(h P wr) + exp(h P o).

(1.4) EL,

Here w = (—1 + ,‘ﬁ)/z is one of the complex cube roots of 1 and w*=(—1-—
i~/3)/2 is the other. Note that each of w and w? has real part —1/2. So the second
and third terms in (1.5) go to 0 exponentially fast.

If 7, =o{X,, L,, A, :r <5}, then

4 X 0 0 A\ [X,
(1.6) SE | Li|F =110 ol|L,]|.
A, — \o 1 0/ [A,

Let Q be the matrix in (1.6). By computing the determinant of Q — 51 it is easy to
see that Q has eigenvalues 1 = M3 a3 w3, and e M (X, + nL; + 772A,)
is a (complex) martingale. To treat the three martingales separately, let

I =X, +AM3L, +2%34,, M, =exp(—A'3n)1,,
Ji = X; + (@A) Ly + (wr3)24,, Jy =exp(—wd 1) J;,
K, =X; + (@A V3L, + @*23)?%4,, K =exp(—o’2P0)K,,
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so that M, is the real martingale, and f, and K ¢ are the complex ones.
THEOREM 1. {M;:t > 0} is a positive square integrable martingale with re-
spect to the filtration {J”:, >0 EM, =My=1.
EM?=5 -1 exp( —21731) + O (exp(—=511731/2)),
E\J,|?, E|K,|2 Lexp(21!131) + O (exp(r!/31/2)).
Ifwe let M = lim;_, oo My, then P(M > 0) =1 and
exp(—A'30) X, A Bexp(=A30) Ly, 22 exp(—=APnA, - M/3
a.s. and in L?. The distribution of M does not depend on .
The last result follows from (1.3), which with (1.2) explains why the three quan-

tities converge to the same limit. The key to the proof of the convergence results is
to note that 1 4+ o + w? = 0 implies

X, =1L+ J + K,
3WBL, =1 + 0? U + 0K,
3}\,2/314[ = It + Cl)J[ +(1)2Kt

The real parts of w and w? are —1/2. Although the results for £ |Jt |> and E |K |2
show that the martingales J; and K; are not L? bounded, it is easy to show that
exp(— A138)J, and exp(— AMBHK, — 0 as. and in L2, and Theorem 1 then fol-
lows from M, = exp(—)»l/3t)1, — M.
Recall that Ay = N ™% and let

a(t) = (1/3)N**Bexp(N~*3t), 1) = N"Ba@),
1.7)

x(6) = N"**Pa(@),

sothat A;/a(t), L;/1(t), X;/x(t) > M as. Let

(1.8) S(e) = N*3[(2 — 2a/3) log N + log(3¢)],
soa(S(e)) =eN?. Let
(1.9) o(e)=inf{t: A, > eN?} and t(¢) =inf{r:C; > eN?}.

The first of these is easy to study.

THEOREM 2. [fO0<e < 1,thenas N — oo

N=B(c(e) — S(e)) > —log(M).

The coupling in (1.1) implies t (&) > o (¢). In the other direction, for any y > 0
1/3
limsup Pz () > o (1 + y)e)] < P(M < (1 + p)e'/3) + 115
14

N—o0
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The last result implies that for ¢ < 1
(1.10) T(e) ~ (2 —2a/3)N*3log N.

Our next goal is to obtain more precise information about 7(¢) and about how
|C;|/N? increases from a small positive level to reach 1.

The first result in Theorem 2 shows that (o (¢) — S(¢))/N @/3 is determined by
the random variable M from Theorem 1, which in turn is determined by what
happens early in the growth of the branching balloon process. Let

(1.11) R = N*"3[(2—2a/3)log N —log(M)],

R is defined so that a(R) = (1/3)N?/M, and hence Ag/N?> £ 1/3. Define
(1.12) ¢ () =R+ N, W =1 (log3e)) and I, = [log(3¢), 1]

for log(3e) < t. W is defined so that a(W) = 8N2/M and hence AW/N2 —P> e.
The arguments that led to Theorem 2 will show that if ¢ is small then Cy /Aw is
close to 1 with high probability.

To get a lower bound on the growth of C; after time W we declare that the cen-
ters in Cy and Aw to be generation 0 in C, and A,, respectively, and we number
the succeeding generations in the obvious way, a center born from an area of gen-
eration k is in generation k + 1. For ¢ > log(3¢), let Clv‘m, ) and A’{V,w ) denote the
areas covered at time ¥ (¢) by respective centers of generations j € {0, 1, ..., k}
and let

(t— log<3e))2}

go(t) = 8[1 + (¢t — log(3¢)) + 5

(1.13)
fo(t) = go(r) — &"/°.

To explain these definitions, we note that Lemma 4.3 will show that for any 7, there
is an g9 = gg(¢) so that for any 0 < & < &g

lim P( sup |N_2A%,’WS) —go(s)| > n) =0 for any n > 0,

N—o0 selg,

P(inf N7(Clyi =~ Alry) < —€7/°) < P < ') 1!/
Since CY, b < Ay, s ()» if € is small, with high probability go(r) and fo(r) pro-

vide upper and lower bounds, respectively, for C (V)V,W(t)‘
To begin to improve these bounds we let

t )2
@ =1-(1- fo(t))exp(— /llog(Ss) ¢ 2S) fo(S)dS),
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and define g similarly. To explain this equation note that an x ¢ C (v)V vt will not

bein C év w0 if and only if no generation 1 center is born in the space—time cone
K, ={0,s) eTWN) x [W,y(D]: ]y — x| < (¥ (1) —s5)/v 27}
Lemma 4.4 shows that for 0 < & < &g and § > 0,

limsupP( inf N™ CW Wis) fi(s) < —5) <PM < 81/3) +gl/12,

N—o00 s€le s

To iterate this we will let

N S)2
fierr () =1— (1 — fi(®)) exp( — / (fi(s) = fi—1(s)) ds
log(3¢)
for k > 1. The difference fi(s) — fx—1(s) in the integral comes from the fact that
a new point in generation k 4+ 1 must come from a point that is in generation k but
not in generation k — 1. Combining these equations we have

1 — fr+1(8)
o (t—s)?
=(1— — _
( fka))exp( /R)g@e) (fi(s) = fi 1<s>)ds)
. t (t —5)> k
=(1- fk—l(t))eXP(_ /log(%) 12;1 fi(s) — fl—l(s))ds)

t—9)? &

Z fi(s) = fi-1(s)) + fo(S)ds)
=1

t
= (1 — fo(1)) exp<— /10g(3s)

so that

t _ 2
(1.14) fk+1(f)=1—(1—f0(t))exp(— / 4 S) fk(s)ds>

0g(3e)

Since f1(t) > fo(t), letting k — oo, fi(¢) 1 fe(t), where f; is the unique solution
of

t 2
(1.15) fe()=1—(1— fo(t))exp(—/l 4 S) fs(S)dS)

0g(3¢)

with f.(log(3e)) =¢ —¢’/ 6. g1 (¢) and g, (¢) are defined similarly.
g¢(t) and f,(t) provide upper and lower bounds on the growth of Cy ) for
t > log(3¢). To close the gap between these bounds we let ¢ — 0.

LEMMA 1.1. Foranyt < oo, if I, ; = [log(3¢), t], then as ¢ — O,

sup |fe(s) —h(s)l, sup [ge(s) —h(s)[ =0

SEIg,t SEISJ
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for some nondecreasing h with (a) lim;—, _oc h(t) =0, (b) lim;_ h(?) =1,

N2
© h(t)zl—exp(—/too ¢ 2S) h(s)ds)

and (d) 0 < h(t) <1 forallt.

If one removes the 2 from inside the exponential, this is equation (36) in Aldous
(2007). Since there is no initial condition, the solution is only unique up to time
translation.

THEOREM 3. Let h be the function in Lemma 1.1. For any t < 0o and 6 > 0,

. -2 _ _
lim P(ig)w Cy) —h)| <8)=1.

This result shows that the displacement of t(¢) from (2 — 2«/3) N /3 log N on
the scale N%/3 is dictated by the random variable M that gives the rate of growth
of the branching balloon process, and that once C; reaches e N2, the growth is

deterministic.
The solution 4 () never reaches 1, so we need a little more work to show that

THEOREM 4. Let Ty be the first time the torus is covered. As N — 00
T /(N log N) 5 2 — 2a/3.

The remainder of the paper is organized as follows. In Section 2, we prove the
properties of A; presented in Theorem 1. In Section 3, we prove the properties of
the hitting times s o (¢) and t(¢) stated in Theorem 2. In Section 4, we prove the
limiting behavior of C; mentioned in Theorem 3. Finally in Section 5, we prove
Theorem 4.

2. Properties of the balloon branching process .A;.

LEMMA 2.1, [§s" (1 — 5)" ds = Gtk it

PROOF. If you can remember the definition of the beta distribution, this is
trivial. If you cannot then integrate by parts and use induction. [

Let F(t) = At3/3! fort >0, and F(r) =0 fort < 0. Let V(t) = Y52, F* (1),
where xk indicates the k-fold convolution.

LEMMA 2.2. Ifw=(—1+i+/3)/2, then
00 )th3k

vin =3, (3k)!

k=0

1
= g[exp(kwt) + exp(Al/3wt) + exp(k1/3w2t)].



ALDOUS’ GOSSIP PROCESS 2455

PROOF. We first use induction to show that

{Akt3k/(3k)!, t>0,

*k _
@D Fr@= 0, t <0.

This holds for k = 0, 1 by our assumption. If the equality holds for k = n, then
using Lemma 2.1 we have for r > 0

tAN(t — s)3n As2 pt1g3n43

*(n+1) ' *n
F (t):/OF (t—S)dF(S)=/0 (3n)! 2 s—m'

It follows by induction that V (t) = Y2 AKg3k /(3k)!. To evaluate the sum we note
that setting A = 1, U (t) = Y 52, 1°%/(3k)! solves

U"(t)=U()  withU(©)=1and U'(0) = U"(0) =0.

This differential equation has solutions of the from e”?, where y3 =1, that is,
¥ =1, w and w?. This leads to the general solution

U(t) = Ae' + Be® + Ce”™!
for some constants A, B, C. Using the initial conditions for U (¢) we have
A+B+C=1, A+Bw+Ca®*=0, A+ Bw*+Cw=0.

Since 1 + w + w?> =0, we have A = B = C = 1/3. Since V(1) = U(A'31), we
have proved the desired result. [J

Our next step is to compute the first two moments of X;, L; and A;. For that we
need the following lemma in addition to the previous one.

LEMMA 2.3. Let {N;:t > 0} be a Poisson process on [0, c0) with intensity
A(-) and let T1; be the set of points at time t. If {Y;, Z; :t > 0} are two complex
valued stochastic processes satisfying

o=y + > Y .. Zi=z0+ Y. Zi_,,

s;elly; s;ell;

where (Yi, Zi), i=1,2,..., are i.id. copies of (Y, Z), and independent of N,
then

t
EY, =y() +/ EY; (A(s)ds,
0

t
E(Y,Z,) = (EY,)(EZ,) + /O E(Y,—Zs—y)i(s) ds.
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PROOF. N; has Poisson distribution with mean A; = fé A(s)ds. Given N; =
n, the conditional distribution of Il; is same as the distribution of {7, ..., #,},
where f1, ..., t, are i.i.d. from [0, t] with density (-) = A(-)/A;. Hence

Ny . t
EYIN) =y + Y EY/, =y()+ N, /0 EY,_,B(s)ds,

i=I

and taking expected values EY; = y(¢) + fé EY;_ A(s)ds.
Similarly EZ; = z(t) + fé EZ;_;A(s)ds. Using the conditional distribution of
[1; given Ny,

N; _ N _
EY,ZN) =yO)z(t) +YOEY ZI_, +z(OEY Y/,

i=l1 i=1
Nt .
- o
+ E |:Z Ytl—t[ Z;—t,* + Z Ytl—t,' Zt—l‘j:|
i=1 i#]
t
= y()2(t) + Y(O)N; /O EZ,_of(s)ds

t t
+ 2N, fo EY,_,f(s)ds + N, fo E(Yi_sZs_5)B(s)ds

F NN, — 1) /Ot EY,  B(s)ds /Ot EZ,_.B(s)ds.
Taking expectation on both sides and using EN;(N; — 1) = Atz, we get
E(Y,Z)=(EY,)(EZ;) + /Ot E(Yi—sZ,—s)\(s)ds,
which completes the proof. [
Now we use Lemmas 2.2 and 2.3 to have the first moments.
LEMMA 2.4. E(X;,L;, A))=(V(@),V"@)/A, V'(t)/1).

PROOF. Recall that F () = A¢3/3!. In the balloon branching process, the ini-
tial center x gives birth to new centers at rate F’(¢) = At%/2, and all the centers
behave independently and with the same distribution as the one at x. So

2.2) Xe=1+ Y X,

S,‘EH[

where 1, C [0, ] is the set of times when new centers are born in A, and X*,i =
1,2,..., areii.d. copies of X, and using Lemma 2.3,

t
EX[=1+/ EX[_SdF(S).
0
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Using (4.5) from Chapter 3 of Durrett (2005) and then (1.2):
kk t3k

EX,=V()= XE)@

)\‘kt3k+l

t o0
23 ELi=[ EX;ds=Y -
2 ’ fo o ;}(3“1)!

t )th3k+2
EA, =/ ELyds=Y —— .
0 20 3k +2)!

Since V(t) = 1 + 3020 A 113843 /(3k + 3)1, it is easy to see that EA, = V() /A
and EL, = V" ()/A. D

LEMMA 2.5. IfM; =exp(=A'30)[X; + 1B L, +2%3 A, then (M, :t > 0} is
a square integrable martingale with respect to the filtration {F; :t > 0}. EM; =1
and

EMP =3 — 3exp(=2'P0) +6,  where |6;] < {5 exp(=51'/%1/2)
and hence (8/7) — EMt2 <exp(—A'731).

PROOF. Let h(t, x, £, a) = exp(—A31)[x + A1/3¢ + A%/34], and let £ be the
generator of the Markov process (¢, X;, L;, A;). Equation (1.6) implies Lk =0, so
M; is a martingale from Dynkin’s formula. EM; = EMy = 1.

To compute EM,2 we use Lemma 2.3 as follows. Let ¥, = Z, = X, + A1/3L, +
123 A, and g(r) = (EY;)?. Since EM; = 1, g(t) = exp(2A!/3). Combining (1.2)
and (2.2), letting Lﬁ = fé X; ds and A; = fé L; ds,i=1,2,..., and changing the
variables u = s — s;, we see that

/|:+ZXSS} s—t-l—Z/ X' d u—t—i-ZLts
si€llg siell; s; €Iy
and hence
/[t+ZLss}ds_t/2+Z/ Lidu=7224+ Y Al
s; €l s; €Ty si€lly

Thus all of X;, L; and A; satisfy the hypothesis of Lemma 2.3 and so do Y; and Z;,
as they are linear combinations of X;, L; and A;. So applying Lemma 2.3

—g(t)—i—/ EY  (dF(s).
Solving the renewal equation using (4.8) in Chapter 3 of Durrett (2005),

t
EY?=gx V() =expr!/?r) +/ exp(2Al3(r — 5))V/(s) ds,
0
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where V=372 F *k To evaluate the integral we use Lemma 2.2 to conclude

t
/ exp(—2k1/3s)V/(s) ds
0

1 t
=—/ exp(—211/3)
3Jo

X A1/3[exp(kl/3s) + a)exp()»lﬂa)s) +w? exp(k1/3w2s)] ds

w

_1r 13 oy 13
_3[1_2{exp( APH — 1)+ 2{exp((w 2 Pt) — 1}

w

»? 2 1/3
o 2{exp((w —2)APt) — 1}]
Now using 1 = —w — w? and @’ = 1,
w w? w0 =20+ o’ — 20 4 3
11— — =1- =1—=-=-.
w—2 -2 w3 —2w? =202 + 4 7 7
Since w = (—1 4 i+/3)/2 and w? = (—1 — i+/3)/2, the remaining error satisfies
316;] = ) ? 5 exp((w — 2))»1/3l)) + ‘ﬁ exp((w? — 2)1'731)
= : + : ex (—5A1/3t/2)<2-%ex (=52131)2
(omzit oz =25 /2

since w — 2 and w? — 2 each have real part —5/2. Putting all together
! 1 1
(2.4) / exp(=2A135)V/(s) ds = =73 exp(—2131) +6;,
0
since EM? = exp(—2A!/3t) EY?, the desired result follows. [J

We use the previous calculation to get bounds for EA?, EL? and EX?, which
will be useful later.

LEMMA 2.6. Leta(-),l(-) and x(-) be as in (1.7). Then
EA} <¥a*(), EL}<FP*(1, EX;<ZxX0).

PROOF. By (2.4) we have
4 43

2.5) [ Cexp(e2 P Visyds < L4 Lo B L
' 0 =715 105 "2

Now using Lemma 2.3

t t
EA,Z:(EA,)Z—i—f EA?__dF(s), EL?:(EL,)Z—l—/ EL? (dF(s),
0 0

t
EX?=(EX,)? +/ EX? _dF(s).
0
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Solving the renewal equations EAt2 =g x V(1), EL,2 =¢; * V(t) and Eth =
¢y * V (1), where V(-) is as in Lemma 2.2 and ¢,(t) = (EA,)?, ¢1(t) = (EL;)?
and ¢, (1) = (EX;)?. A crude upper bound for ¢,(¢) is 9a(¢). Since a(t — s) =
a(t)exp(—1'7s),

34 (1)
2

(2.6) a’x V()= az(t)[l + ft exp(—xl/%)v/(s)ds] <
0

by (2.5). Hence EA? <9a” x V(t) < (27/2)a’(t).

Similarly using the bounds 912(r) and 9x2(¢) for ¢1(¢) and ¢, (), respectively,
and noting that [(t — s)/I(t) = x(t —5)/x(t) = exp(—k1/3s), we get the desired
bounds for EL,2 and EXIZ. [l

LEMMA 2.7. Let J;, Kl = e (X, + nL; + n*A,) with n = wr/3, 1173,
respectively. Then J, and K, are complex martingales with respect to the filtration
Fi, and

E|J )% EIK = Lexp@a Py + 5 +6,  where |6, < 3exp(2!/?1)2),
and hence E|J;|?, E|K;|? < (4/3) exp(2A1/31).

PROOF. Let h(t,x,£,a) = e " (x + nf + na), and let £ be the generator
of the Markov process (t, X, Ly, Ar). Equation (1.6) implies £k = 0 when n =
13w, AB3w?, so that J; and K; are complex martingales by Dynkin’s formula.

First we compute E\J; |2, where J;, = exp(k1/3wt)J,. For that we use Lemma 2.3

with ¥; = J; and Z; = J;, the complex conjugate. Since J; is a complex martingale
with Jo=1and w = (=1 +i+/3)/2, EJ; = 1 and hence

|EJ;|> = exp(—=A'731).

Using Lemma 2.3 E|J;|?> = |EJ;|? —|—f0 E|J,_s|>dF (s). Solving the renewal equa-
tion as we have done twice before

t
E|J;|> = exp(=2'31) + / exp(—A!3(t — ) V' (s) ds.
0

Repeating the first part of the proof for K, = exp(A'/3w?t)K,, we see that E|K,|>
is also equal to the right-hand side above.
The integral is exp(—A'/3¢) times

1 t
3 / exp(kl/3s) -A1/3[exp(kl/3s) + wexp(kl/3ws) + w? exp(kl/3w2s)] ds
0

_Ir i 13,4 w 13,
_3|:1+1{exp(2k 1) 1}—|—a)+1{exp((a)+1)k 1) —1}

w2

+ {exp((@* + D)A3r) — 1}]

w?+1
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Now using 1 = —w — w? and > =1,
1 ) w? 1 a)3—|—a)+a)3—|—w2_ 3

2 o+l 2+1 2 P+t tot+l 2
Since w = (—1 4+ i+/3)/2 and w? = (—1 — i/3)/2, if we take

b= L2 exp((o+ 210 4~ o
T3lor1 7PN 0 +1

3l o 1 exp((w* + D3 ):|

then

3|0,|s< L ! )exp(x“%/mszexp(xl/%/z),
PESTREPT

since each of @ + 1 and w? 4 1 has real part 1/2. Putting all together
(2.7) E|J)? < texp'P1) + Lexp(=a!31) + Zexp(—2'/31)2),
which completes the proof, since E|J~,|2/E|Jt|2 =exp(A131) = E|I€,|2/E|Kt|2.
O
LEMMA 2.8. If M =lim;_, oo My, we have P(M > 0) =1 and
M
exp(—=A'30) X, M B exp(=A30) Ly, 223 exp(=21 P A, — 5
a.s. and in L?.
PROOF. M = lim,_, o M, exists a.s. and in L2, since M, is an L% bounded
martingale. Recall that
L=X,+2PL, +2234,,
Ji =X+ oML + 0?4,
K, =X; +o*ABPL 4+ 0r?P A,
Since | + w +w?*=0and v’ =1,
3Xe =L+ Ji + Ky,
(2.8) 3MBL, =1 + 0?J; + 0K,
3)\'2/3Al‘ = I[ + C()Jt + Q)ZK[.

Since M; = exp(— MBI, — M, it suffices to show that exp(— A36) 7, and
exp(—A!31)K; go to 0 a.s. and in L?. We will only prove this for J;, since the
argument for K; is almost identical. J; is a complex martingale, so |J,| is a real
submartingale. Using the L? maximal inequality, (4.3) in Chapter 4 of Durrett
(2005) and Lemma 2.7,

3 -, 16
(2.9) E( max |J; |2) <4E|J,? < = exp2r!/3p).
0<s<t 3
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The real part of w is —1/2. So writing fs = exp(k1/3(1 —w)s) - exp(—kl/3s)Js,
we see that

712 1/3 . 1/3 2
(2.10) E(Mlg% A ) > exp(3X u)E(g@exp( By )

Combining these bounds with Chebyshev inequality, and taking 7, = 2A~'/3logn
forn=1,2,...

P( max |exp(—k1/3s)Js|228)Ss_zE( max |exp(—k1/3s)Js|2)

In<S=<Ilp+1 In=S=<lp41
16 _, 1/3
(2.11) < ?8 exp(A/° 2tpy1 — 3ty))

16 _,(m+1)*
_8 —
3 no

for any ¢ > 0. Summing over n, and using the Borel-Cantelli lemma

|exp(—k1/3s)Js| -0 a.s.
To get convergence in L? we use (2.7).
E|exp(—)\l/3t)J,|2 < %exp(—klﬁt) —0 ast — oo.

To prove that P(M > 0) = 1 we begin by noting that convergence in L? implies
that P(M > 0) > 0. Every time a new balloon is born it has positive probability of
starting a process with a positive limit, so this will happen eventually and P(M >
0O=1 04

3. Hitting times for .A; and C;. Recall that o(g) = inf{r: A, > ¢N?} and

t(e) = inf{t: C; > e N?}. Also recall the definitions of a(-), [(-), x(-) and S(-) from
(1.7) and (1.8). Note that a(S(¢)) = eN? and As/a(t), L /1(t), X /x(t) > M a.s.
by Theorem 1. We begin by estimating the difference between M and each of
As/a(t), Ly /1(t) and X, /x(t).

LEMMA 3.1. Forany y,u >0

P(supl A, /a(t) — M| > y?) < Cy~* exp(—2'u)

t>u

Jor some constant C. The same bound holds for P(sup,,|L./1(t) — M| > y2) and
P(sup,, | Xi/x (1) = M| = y?).

PROOF. Using (2.8) A;/a(t) = M; + wexp(—A'31)J; + w? exp(—A30)K;.
For 0 < u <t the triangle inequality implies

(3.1) |A/a(t) — M| < |M; — M| + |exp(—=2'30) J;| + lexp(—=A'31) K, .
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Taking the supremum over ¢,

P(suplA;/a() — M| = v?)

t>u

(32 < P(suplM, — M| = y?/3) + P(suplexp(=2"71) 11l = y*/3)
t>u

t>u

+ P(sup|exp(—k1/3t)K,| > )/2/3).

t>u
To bound the first term in the right-hand side of (3.2) we note that
— M2 = 1 a2

E(fggm M| ) = lim_ E(ursntanU|M, M| )
Using triangle inequality |M; — M| < |M; — M,,| + |M,, — M|. Taking supremum
over ¢ € [u, U] and using the inequality (a + b)? <2(a® + b?),

E( max |M, — M|2) < 2(E( max |M; — Mu|2) T E|M, — M|2).

u<t<U u<t<U

Using the L? maximal inequality, (4.3) in Chapter 4 of Durrett (2005) and orthog-
onality of martingale increments,

E( max | M, — Mu|2) <4EMy — M,)? =4(EM% — EMD).

u<t<U

Since the martingale M; converges to M in L%, EM? = lim;_, o EMI2 =8/7.
Then using orthogonality of martingale increments and Lemma 2.5,

EM, — M)* = EM? — EM? < exp(—1'3u).
Combining the last four bounds with Lemma 2.5, and using Chebyshev inequality
3-3) P(Sup|Mt - M| > 7/2/3) <9y ~* . 10exp(—1'Pu).

t>u

To bound the second term in the right-hand side of (3.2) we take #, = u +
20" 131logn for n =1,2,... and use an argument similar to the one leading to
(2.11) together with Chebyshev inequality to get

o
P(suplexp(—k1/3t)Jt| > y2/3) < Z P( max |exp(— ABHL >y /3)

t>u —  In=I=he
o0
—4 13
<9y Z:IE(tnglilt):HIexp( B30, |)
n—=
(3.4)

16 ©
<9. ?V_4 > exp(A? 2ty 41 —31y))

n=1

14
=48y Yexp(—1!3u )Z(n+ )

n=1
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Repeating the previous argument for the third term in the right-hand side of (3.2)
we get the same upper bound as in (3.4). Combining (3.2), (3.3) and (3.4) we get
the desired bound for A;/a(¢).

The bound in (3.1) also works for both L;//(¢) and X;/x(¢), since using (2.8)

L:/1(t) = M; + o* exp(=A'31) J; + wexp(=A'*1) K,
X, /x(t) = My + exp(—=A30) J; + exp(=A P10 K,
and so the assertion of this lemma holds if A;/a(t) is replabed by L,/I(t) or
X /x(@). O
We now use Lemma 3.1 to study the limiting behavior of o (¢).
LEMMA 3.2. Let Wy = S(¢/M), where S(-) is as in (1.8) and M is the limit
random variable in Theorem 1. Then for any n > 0
lim P(|Aw, —eN?|>nN?) = lim P(|Lw, —eN>"%3 > nN?>72/3)
N—o00 N—o0
= lim P(|Xw, — eNZ23| 5 pNZ2/3)
N—o00
=0.
PROOF. Since P(M > 0) =1, given 8 > 0, we can choose y = y () > 0 so
that y < n/e and
(3.5) P(M<y)<6.
Using Lemma 3.1 we can choose a constant b = b(y, 6) such that

P( sup |A/a(t) — M| >y?) <6.
t>bN®/3

Combining with (3.5)

P( sup |A;/a(t) — M| >yM) <26.
t>bNe/3

Since a(W,) = 8N2/M, by the choices of y and b,
P(|Aw, —eN?| = nN?) < P(|Aw, —eN?| = ey N?)
= P(|Aw,/a(We) — M| > y M)
<20+ P(W, < bN%/3).
By the definition of S(-),

3
P(W, < bN¥/3) = P<M > §N2—2“/3> -0



2464 S. CHATTERIJEE AND R. DURRETT

as N — oo, and so limsupy_, . P(|Aw, — eN?| > nN?) < 26. Since 6 > 0 is
arbitrary, we have shown that

lim P(|Aw, —eN?|>nN?) =0.
N—o0

Repeating the argument for Ly, and Xw,, and noting that /(W;) = e¢N =3 /M
and x (W) = eN?>72¢/3 /M, we get the other two assertions. [

As a corollary of Lemma 3.2 we get the first conclusion of Theorem 2.

COROLLARY 1. As N — 00, N~%3(0(e) — S(&)) > — log(M).

PROOF. For any n > 0 choose y > 0 so that log(1 + y) < n and log(1 —y) >
—n. Let W be as in Lemma 3.2. Clearly W(14,)s = S(¢) + N“/S[log(l +y) —
log M] and W(1_). = S(e) + N"‘/3[10g(1 —y) —log M]. Using Lemma 3.2

P[N"*3(o(e) — S(e)) > —log M + 1]

< P(0(e) > Wigy)e) = P(Aw,,,. <eN?) —0,
P[N"*3(o(e) — S(e)) < —logM — 1]

< P(o(e) < Wi—y)e) = P(Aw,_,,, > eN?) >0

as N — oo, and the proof is complete. [

The second conclusion in Theorem 2 follows from C; < A;. To get the third
we have to wait till Lemma 3.5. First we need to show that when A,/N? is small,
C;/N? is not very much smaller. To prepare for that we need the following result.

LEMMA 3.3. Let F(t) = M3/3!. If u(-) and B(-) are functions such that
u(t) < B@)+ Jout —s)dF(s) forall t >0, then

t
ut) < BV =0+ [ Bu—9dV ().
where V (-) is as in Lemma 2.2.

PROOF. Define B(t) =801+ fé u(t —s)dF(s) —u(t). So B(t) > 0 for all
t>0.1f B(r) = B(t) — B(1), then

u(z>=f3<t>+/0 u(t — 5)dF(s).

Solving the regewal equation we get u(t) = B * V(t), where V(-) is as in Lem-
ma 2.2. Since B(t) < B(¢) for all t > 0, we get the result. [

We now apply Lemma 3.3 to estimate the difference between EA; and EC;.



ALDOUS’ GOSSIP PROCESS 2465

LEMMA 3.4. Foranyt > 0anda(-) asin (1.7),

11a%(r)

EC > EA; = —

PROOF. In either of our processes, if a center is born at time s, then the radius
of the corresponding disk at time ¢ > s will be ( —s)/+/ 2. Thus x will be covered
at time ¢ if and only if there is a center in the space—time cone

(3.6) Kii={(,5) eT(N) x [0,1]:]y — x| < (t —s)/~/27}.

If 0 = 59, 51, 52, . . . are the birth times of new centers in C;, then

(r—si) (t —si)?
P(x ¢ C;lsg, 51,52, ...) = [1—7}56X [— },
(x & Ctls0, 51,52,...) izls_i[g N2 p i:in:St N2

since 1 —x <e™*. Let q(t) = P(x ¢ C;), which does not depend on x, since we
have a random chosen starting point. Recall that X; is the number of centers born
by time ¢ in C;. Using the last inequality

o )

H<E — dX
o < Eexp| - [ 5T,

and EC; = N*(1 — q(t)). Integrating e ™ > 1 —y gives | —e™* > x — x2/2 for

x >0. So
t 2
EC, > N2E|1 =97 %
= —exp| — | Sy dXs

r(f— 2 1 It — 2 \2
> NZE[/ U9 %, - —(/ des) }
0o 2N2 2\Jo 2NZ
For the first term on the right we use EX, = 1 4 A f0’ EC;ds. For the second term
on the right, we use the coupling between C; and A; described in the Introduction,

see (1.1), so that we have f(; (t —s$)2dX, < fot(t — 5)?dX,. Combining these two
facts

3.7

2 [ —s)? 1 Lt —s)? 2
ECi > = +f0 MECds — 5 E /0 dXg

2 2
(3.8)
e +ft =97, b as - EAL
=— s — .
2 Jo 2 ’ 2N2
The last equality follows from (1.2), as does the next equation for E A;:
12 t(t—s)?_, 12 t(t—s)?
(3.9) EAt:——i—/ 1% (s)ds:——i—/ AEAds.
2 Jo 2 2 Jo 2
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Here V(-) isasin Lemma 2.2 and EA; = V'(t) /A by Lemma 2.4. Combining (3.8)
and (3.9), if u(t) = EAt EC;, and F(s) = As3/3' then

L~ s)2
u(t) < 2N2 +/ Au(s)ds = 2N2 u(t —r)dF(r),
where the last step is obtalned by changing Varlables sH—t—r. If @) =
EA?/2N?, then by Lemma 2.6 B(t) < 27a*(t)/4N?, and using Lemma 3.3 and
(2.6)

WO =BV 2 @) V(D) = a0,

which gives the result, since 81/8 < 11. [

To complete the proof of Theorem 2 it remains to show the third conclusion of
it, which we separate as the following lemma and prove it using Lemma 3.4.

LEMMA 3.5. Foranyy >0
1/3
limsup P(z(e) > o (1 + y)e)) < P(M < (1 + p)e!/3) + 115
N—o0
PROOF. LetU =o((1+y)e)and T = S(¢*/3), where S(-) is as in (1.8). Now
S(e*?) = S((1 + y)e) = N*[—1log(e) — log(1 + )]
It follows from Corollary 1 that
1
limsupP(U>T) < P(—log(M) > —glog(e) —log(1 + y))

N—oo
=P(M <(1+y)e').
Using Markov’s inequality, Lemma 3.4, and a(T) = ¢*/3N?,
E(Ar — Cr) _ 6(a(T))* g!l?

3.100 P(Ar—C N?) < < <11- .
(3.10)  P(JAr —Cr|>yeN") < JENT = peNd »

Using these two bounds and the fact that |A; — C;| is nondecreasing in ¢, we get

limsup P[z(¢) > o ((1 + y)¢)]

N—oo

= limsup P[|Ay — Cy| > yeN?]

N—o00

<limsup P(U > T) + limsup P[|Ay — Cy| > yeNQ, U<T]
N—o00 N—o00

<limsup P(U >T) + P(|Ar — Cr| > yeN?),
N—o00

which completes the proof. [J
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4. Limiting behavior of C;. Let C? , be the set of points covered in C; at time
t by the balloons born before time s. If we number the generations of centers in C;
starting with those existing at time s as C;-centers of generation 0, then Cg ; 1s the

set of points covered at time ¢ by the generation O centers of C;. Let Csl’, be the set of
points, which are either in Cﬁ,, or are covered at time ¢ by a balloon born from this

area. This is the set of points covered by C;-centers of generations < 1 at time 7,
ignoring births from Csl’ ‘ \CR,, which are second generation centers. Continuing
by induction, we let Cf’t be the set of points and C;‘J = |C§t| be the total area
covered by C;-centers of generations 0 < j < k at time ¢. Similarly Al;,t denotes
the total area of the balloons in A; of generations j € {0, 1, ..., k} at time ¢, where
generation O centers are those existing at time s.
Recall the following definitions from (1.7), (1.8), (1.11) and (1.12).
a(t) = (1/3)N**3 exp(N~%31),
S(e) = N*3[(2 — 2a/3)log N + log(3e)],
R =N*B[(2=2a/3)log N —log(M)],
where M is the limit random variable in Theorem 1, and for log(3e) <,
Y(@) =R+ NP, W=y(logB3e) and I, = [log(3e),1].

Note that ¥ (t) < 0 only if M > N>~2%/3¢,
Obviously CS ;= A?y ;- For the other direction we have the following lemma.

LEMMA 4.1. Forany (0O <s <t,

2
0 o _a’(s) 1/3
ECS,I‘ > EAS,Z‘ — Wp((t - S))\, / ),
where for some positive constants c1, co and ca,
4.1) p(x) =c1 + cax? /2! + cax* /4.

PROOF. By the definition of Ag, P

S (1 — )2 2
@ A= [ =X 9L+ A
’ 0 2 2
For the second equality we have written (# — =0 —s5)24+20t—s)(s—r)+
(s — r)? and used (1.2). As in Lemma 3.4, a point x is not covered by time ¢ by
the balloons born before time s, if and only if no center is born in the truncated
space—time cone

Kisi={(,r) €eT(N) x [0,5]: |y — x| < (t —r)//27).
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So using arguments similar to the ones for (3.7) and 1 — e > x — x2/2,

2
l‘_
EC?J > N’E [1 — exp( 2Ng) r)}

S — 2 - S _ 2 - 2
zNz[E/ udx,—lE</ udX,) }
o 2N2 2"\ T2n2

For the first term on the right, we use Ef(t =1+ fé EC;ds. For the second term
on the right, we use the coupling between C; and A; described in the Introduction,
see (1.1), to conclude that

s - K
/0 (t —r)*dX, 5/0 (t —r)?dX, =247,

Combining these two facts, using the first equality in (4.2), EX; =1+X fé EAgds,
and Lemma 3.4,

2 s (t—r)2 (A )2
EC), > — +/ AEC,dr — TZZ
f— )2 f — )2 rg? E(AQ )2
4.3) z / ( r) AEA, dr—ll/ ( r) as(r) . E(45)”
N2 2N?2
_EA —11/ (r - r)zxaz(r) _E@A)?

To estimate the second term in the rlght—hand side of (4.3), we write
(t—r)22=01 =524 @ —s)(s—r)+ (s —r)?/2,

change variables r =s — ¢, and note a(s — q) = a(s) exp(—k1/3q), to get
5 (f—r)2
/ ikaz(r) dr
0 2
=d’(s )[( _2 ,\2/3f AP exp(—2113¢) dg

(4.4) +(t —s)A!/3 / A3qexp(—2x13¢) dg
0

Ky 2
+ / )»q? exp(—ZAl/Sq) dq}
0

2 2
< a“(s) |:(t —5) 52/3
-2 2

For the last inequality we have used

+ @ —s)AV3 4+ 1].

s 00 k!
/ rk exp(—ur)dr < / rk exp(—ur)dr = —
0 0 I
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To estimate the third term in the right-hand side of (4.3) we use (4.2) to get
E[(A) )Y <3IEX{(t —9)*/4+ EL(t —5)* + EA]].
Applying Lemma 2.6 and using the fact that a(s) = A~ 131(s) = A=23x(s),
(t — 5)4

E[(A°,)] <3 [ () +12<s><z—s>2+a2<s>}

4.5)
2 (1 —s)* 4/3 (t—s)* 2/3
< 243a“(s) a0 — A7+ o — A7+ 1.
Combining (4.3), (4.4) and (4.5) we get the result. [J

To show uniform convergence of C{jv v 10 Cy(), we also need to bound the
difference A; and Aé‘, ; for suitable choices of s and 7.

LEMMA 4.2. IfT = S(¢*/3), where S(-) is as in (1.8), then for any t > 0

2/3 772 =t
EAT—I—INO‘/‘; EAT T+t Ne/3 538 N Z —‘
j=k+1"

PROOF. By (4.2) EAY, = EA; + ELy(t —s) + EX,(t — s)?/2. If X}, and
L’s", denote the number of centers and sum of radii of all the balloons in A; of

generations j € {1, 2, ..., k} at time ¢, where generation O centers are those which
are born before time s, then for 7 > s,

d
—EX,, =N""EA?,,
dt
Integrating over [s, t] and using (4.2) we have
[ (r—s)? (t—s)°

EX), =N"*(t—s)EAs+ TELS + TEXS],

- 2 3 4
r — t — tr—
EL!, =N~ ( 2's) EA, 1 s) EL, 4\ S)

Tt —s)3 t—s4 f—s)°
( 3‘) EAs—i—( 1 ) EL; +%EXS:|.

Turning to other generations, for k > 2 and ¢t > s,

d 1 1 d 1 1
EL =EX|,  —EAj,=EL{,

EXS}?

EAj,=N""°

—(EXk —EXSh = N"Y(EAS - EASD),
—(EL’; —ELY Y =(EXY, — EXED,

—(EA" —EAS Y =(ELY, - EL' Y,
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and using induction on k we have
Al Z N- a,[(t — )% (1 — )% ! (t —5)¥+2 }

o @GH T G+ T G+ T
Since As,t T A;forany s <t, EA; =limg_, o E AIS‘J by Monotone Convergence
theorem. Replacing s by 7 and ¢ by T + tN%/3,

EA7 . Nes3 — E Ak

«/3
(4.6) T,T+tN ' '
[3] 3j+1 t3]+2
= Z [ 7N“/3ELT—|—,7N2"‘/3EXT].
(3])' (3j+ 1)! (3j +2)!

Jj=k+1

Using the fact that EAr + N*ELyp + N**PEXy — 3a(T) =0 and a(T) =
£?/3N?, the right-hand side of (4.6) is < 3¢2/3N? Z?‘;Hl tJ/j!, which completes
the proof. [

Recall the definitions of ¥ (-), W and I ; from the displays before Lemma 4.1
and that for log(3¢) <1,

(t— log(38))2]

“.7) 00 =e| 1+ (1 ~ log(3e)) + %

LEMMA 4.3. Foranyt < oo, there is an g9 = o(t) > 0 so that for 0 < & < &g,

hm P( sup [N~ AW v (s) —go(s)| > )7) =0 forany n > 0,

N—o0 sel; ot

0 0 7/6 1/3 1/12
(mf N=CY i) = Apis)) < =&/ ) < P(M <&'3) 1+ !/12,

sel, et

PROOF. To prove the first result we use (4.2) to conclude

t —log(3e))?

Applying Lemma 3.2

hm P(sup IN~ AW sis) — 80(9)| > 77)

N—o0 sel; ot

< lim P(}N—<2—20‘/3>XW—8|>2—’7>
T N—o>oo 3(t —10g(38))2

lim P(IN"@ Ly —e|>-— 1 )
T, (' w—el> 3(r — log(3¢))

. _ n
lim P(|N %Ay — ~)=0.
+Ngnoo (I v 8|>3>
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Let g = g¢(¢) be such that sé/lzp(t —log(3¢)) <1, where p(-) is the polyno-
mial in (4.1). Let T = S(¢2/3), where S(-) is defined in (1.8), and T/ =T + (t —
log(3¢))N*/3. Using the fact that A?’Ht - C?,H-z is nondecreasing in s, Markov’s
inequality, and then Lemma 4.1 we see that

P(sup |A% () = Clryo| > /N> W < T)

selg;
0 0
ElAT,T’ - CT,T/I
e1/6 N2

<P(A} 7 —Ch | >e"/°N?) <

a*(T)p(t —log(3¢))
- c1/6N4

Noting that P(W > T) = P(M < £'/3), a(T) = ¢?/3N? and ¢'/'? p(t —1log(3¢)) <
1 for € < g9 we have

P( sup [Aw.y) — Cw.yo| > 87/6N2) <P(M <e'P) 412,

selg;

which completes the proof. [

Our next step is to improve the lower bound in Lemma 4.3. Let
0= N2 Ay g — 7.
On the event
(4.8) F={|NT2Cy, (| = p) forall s € I ;},
which has probability tending to 1 as ¢ — 0 by Lemma 4.3, C%)V’]// (5) Can be coupled

with a process Bg(s) so that N‘2|Bg(s)| = ,0? and CeV,W(S) ) BOWS) fors el ,. If

fork>1 Bk‘/, (1) is obtained from Bg () in the same way as C{‘W// (1) is obtained from

0 k k
CW,W(I)’ then, on F, CW’WS) D) BWS) fors el ;. Fork>1let

Py = N_z}Bﬁ(sﬂ-

We begin with the case k = 1. For fy(t) = go(¢) — ¢’/% where go is asin (4.7), let

t 2
4.9) f1(t)=1—(1—fo(t))e><p(— /1 =5 fo(s)ds).

og3e) 2

LEMMA 4.4. For anyt < oo there is an ey = o(t) > 0 so that for 0 < & < g9
and any § > 0,

limsup P inf (N"2Cy ) = fi(9) < —8] < P(M <&') 4+ '/12

N—o0 s€les
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PROOF. Asin Lemma 3.4, if x ¢ B?m), then x ¢ B}W) if and only if no gen-

eration 1 center is born in the space—time cone
Ky, ={(,s) e DIN) x [W, ¥ (D)]: |y — x| < (¥ (1) —s)/v27}.

Conditioning on G = G{Bg,(s) :s € I ;}, the locations of generation 1 centers

in B,l is a Poisson point process on I'(N) x [W, ¥ (¢)] with intensity
-2 0 A= _ 0 -
N7 x |BJIN"* = pw,l(s)N .

Using this and then changing variables s = ¥ (r), where ¥/ (r) = R + N /3

v (1) —$)?
Plx # Bl I6?) = (1 = pyexp(— [ LEZL 00

= —p?)eXp(—/lt ¢ _r)zpﬁ)dr)

ogBe) 2
Let Ey, = {x ¢ B!}. Since K;, and K§, are disjoint if |x — y| > 2(t —
log(3e)) N /3 /~/2m, the events E, ; and E\ ; are conditionally independent given

Q,O if this holds. Define the random variables Yy, x € I'(N), so that Y, = 1 if E, ;
occurs, and Y, = 0 otherwise. From (4.10)

N~¢ ds)

t 2
(4.10) E(Yx|g,°)=(1—p?)exp(—fl (¢ —5) p?ds).

og3s) 2

Using independence of Y, and Y, for |x — z| > 2(t — log(3¢))N%/3 /s/27, and the
fact that {z: |x — z| < 2(t — log(3¢))N*/3//27} has area 2(t — log(3¢))>N2%/3,

Var(/ Yy dx|g?>
xel'(N)

(4.11) - r(N)[E(Yxmg?) — E(Y(|GHE(Y, |G dx dz

< N?.2(t —log(3e))*N>*/3.
Using Chebyshev’s inequality, we see that

_ 0
P( /XEF(N)(YX E(Y,|GY))dx

- 4var(fxer(N) Y, dx|g§))
= n2N* :
Combining (4.10), (4.11) and (4.12) gives
to(t—s)? n
P(‘(l—p})—(l—p?)exp(—f1 5 p?ds)‘>5\g?)

0g(3¢)

> gNZ‘g,O>
(4.12)

8(r — log(3¢))?
= n2N272a/3
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The same bound holds for the unconditional probability. By Lemma 4.3 if n > 0
and

Foy={suplpl = o)l <n}  then Jim P(Fg,) =0,

s€lg

Let n' = n[1 + (t —log(3¢))?/3!1~! /2. Using (4.9) and the fact that for x, y > 0

y
/ e tdz
X

we see that on the event Fy ,/, we have for any s € I, ;

a-exp(- [ 2 ’")zp?dr) (1= /i)

ogBe) 2

(4.13) e —e ™| = =lx—=yl

s 2
5}(1—p‘?)—(1—fo(8))|+n// G0y,

log(3¢) 2

) +n,(s—10g(3s))3

<7
3! )

=7
So for any s € I, ;
lim P(lp] — fi(s)| > 1)
N—o0

< lim P(F§ ,
_Ngnoo ( 0"7)

. S (s—r)? n
i {0 - a-sen( [ 5] )
+ lim (‘( py) — (1 = pg)exp e 2 )72

=0.

Since 1 > 0 is arbitrary, the two quantities being compared are increasing and
continuous, and on the event F defined in (4.8) N‘ZCéV v 2 ,os1 fors e I,

limsup P[ inf (N2Cly ) — fi(5)) < 6]

N—=o0 SEIg,[

< P(F%)+limsup P( sup [p} — f1(s)] > 8) < P(F°),

N—o0 selg

and the desired conclusion follows from Lemma 4.3. [

To improve this we will let

t 2
(4.14) fk+1(f):1—(1—fk(t))exp<— | ¢—s) (fk(s)—fk_l(s»ds),

ogBe) 2
and recall from (1.15) that as k 1 oo, fi(¢) 1 fe(2).
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LEMMA 4.5. Foranyt < oo there is an g = €o(t) > 0 so that for 0 < € < g9
and any § > 0,

limsup P[ inf (N2Cyp) = fe(9)) < =8| < P(M <&'/?) 4612,

N—oo s€les

PROOF. Conditioning on gtk = U{B{/./(s) :0<j<k,sel}, wehave

t 2
Pl #8506 = (1 = pbrews(— [ 50k - ptas ).

Let Fi, = {supsey,, 10§ — fi()| < n}, and 0’ = nll + 2(t — log(3¢))* /317" /2.
Using (4.14) and |e™ — e77| < |x — y| for x, y > 0, we see that on the event
Gy = Fre,y N Fr—1,y5 forany s € I ;

t )2
a=ehew(= [ L2k =k ds) = (1= fin @)

ds

t )2
§|(1—P,k)—(1—fk(l))|+277/f =)

log(3¢) 2

=n'+2n/(t —log(3e))’ /3 < n/2.
Bounding the variance as before we can conclude by induction on k that for any

n=>0

. k .
4.15) lim P(sup lof = fi(s)| > n) =0.

selg;

Next we bound the difference between fi(¢) and f.(¢). Let G(t) = 3 /3! for
t >0and G(t) =0fort < 0. If xk indicates the k-fold convolution, then for k > 1,
using arguments similar to the ones in the proof of Lemma 2.2, G**(t) = 13 / (3k)!
for t > 0 and G*(t) = 0 for t < 0. Now if f * G*(t) = [§ f(t — r)dG*(r),
fe() = fi(- +1logBe)) and fi(-) = fo(- 4 log(3¢)), then changing variables s —>
t —r in (1.14) and (1.15), and using the inequality in (4.13),
| fi(t —log(3e)) — fe(t —log(3e))|

< lexp(—fi—1 % G (1 —log(3¢))) — exp(— fz * G (t — log(3¢)))|

< |fe-1 = fel ¥ G (1 — log(3¢)).
Iterating the above inequality and using | fa(s) — fo(s)l = f;(s) — fo(s) <1,

/@) = fe O] =] fi(t —log(3e)) — fe(t —log(3e))]

(4.16) <|fo— fel * G*(r —log(3e))

(t —log(3e))*

< G*k(t —log(3¢)) = Gl ,
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where the last equality comes from (2.1).
Choose K = K(g,t) so that (r — 10g(38))3K/(3K)! < §/2. Since Cy )
C{C’V,l//(l) for any k > 0, and on the event F defined in (4.8), we have C]‘jV,w(t)

vV v

|B§(t) |, we have

P( inf (N"2Cys) — fo(5)) < —5) < P(F°) + P( sup [0X — fi ()] > 5/2).

selg SEIS,I

Using (4.15) and Lemma 4.3 we get the result. [J

It is now time to get upper bounds on Cy, (). Recall go(¢) defined in (4.7), let
g—1(t)=0and for k > 1 let

k(@) =1—(1-gr-1(0)

t _ 2
xexp(— /1 =5 (gk_l(s>—gk_z<s))ds).

0gBe) 2

4.17)

As in the case of fi(¢), the equations above imply

t N2
gk(f)zl—(l—go(t))eXp(— /1 =5 gkl(s>ds),

og3e) 2
so we have gi(¢) 1 g-(¢) as k 1 oo, where g.(¢) satisfies

t 2
ge(t)=1—(1— go(t))eXp<—/l =) 8s(S)dS)-

og3e) 2

LEMMA 4.6. For any t < oo there exists g = £o(t) > 0 such that for 0 < ¢ <
go and any 6 > 0,
lim sup P[ sup (N_2C1/,(s) — ge(5)) > 8] < P(M < &' + %3,

N—o00 selg;

0 0 0 _ A7—2 40 . .
PROOF. CWA//(I) =AW vy H': ¢, =N AW"/f(.’) is the fraction of area cov-
ered by generation O balloons at time 1 (¢), generation 1 centers are born at rate
N 2_“¢3_1 O Let ¢! denotes the fraction of area covered by centers of generations

<1 at time 1 (¢), then using an argument similar to the one for Lemma 4.4 gives

lim P(sup d)sl —g1(s) > n) =0

N—o0 sely,

for any n > 0. Continuing by induction, let d)f be the fraction of area covered by
centers of generations 0 < j < k. Since (4.17) and (4.14) are the same except for
the letter they use, then by an argument identical to the one for Lemma 4.5,

(4.18) lim P( sup [pX — g (s)| > n) —0

N—oo selg;
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for any 1 > 0. Now using an argument similar to the one for (4.16)

(1 —log(3e))*
(4.19) sup |gk(s) — ge($)| = ———
seles ’ (3k)!
Next we bound the difference between C "jv’w o and Cy ). Let T = § (€%/3), where
S(-) is as in (1.8). Using the coupling between C; and A;,

k k
Cyt) = Cw oy = Av) — Aw gy

Using the fact that EA,; — EAf,s +; 1s nondecreasing in s, the definitions of
W and T, Markov’s inequality, and Lemma 4.2, we have for 7" =T + (t —
log(3e))N*/>,

SN2
k
P( sup (Cys) = Cw,y(s)) > T)

Selg,t

SN?
SP(W>T)+P<AT/_AT,T’>T)

<PM l/3)+iE(A — A1)

= <e SN2 T’ T.T'

12623 22 (1 — log(3¢))’

s .Z j! :
Jj=k+1

Choose K = K (&, t) large enough so that Z?OZKH (t —log(3s))/ /j! < 8/12. If we
let

<PM <&+

Fi =] sup (Cy o) = Cf ) = G/4N?,

sele;
then
P(FS) < P(M <¢&'/3) 423,
By the choice of K and (4.19), SUPger, |gx (s) — g:(s)| < 8/2. Combining the last

two inequalities and using the fact that N _ZC{;’ o) = ¢SK =N _2A{§,’ v (s)®

P(sup N72Cys) — go(s) > 8) < P(FR) + P( sup [¢X — gk (5)] > 8/4).

SGI&[ SEIS,I

So using (4.18) we have the desired result. [
Our next goal is:

PROOF OF LEMMA 1.1. We prove the result in two steps. To begin we con-
sider a function &, (-) satisfying h. (1) = €' /3 for t < log(3¢).

logB3e) (¢ — 5)2 & o (t—s)?
4.20) he(t)=1- exp(—/ —ds —/ hg(s)ds)
—00 2 3 log(3¢e) 2
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for t > log(3¢), and prove that /. (-) converges to some £ (-) with the desired prop-
erties.

LEMMA 4.7. Forfixed t, ho(t) in (4.20) is monotone decreasing in €.

PROOF. If we change variables s =t — u and integrate by parts, or remember
the first two moments of the exponential with mean 1, then

t o0
/ (t—s)esds=/ ue' “du=ée,
—00 0

t f— )2 00 7,2 00
/ (¢ =) esds=f M—e’_”du=e’/ ue "du=-ée".
o0 2 0o 2 0

Using (t —5)%/2 = (t —r)?/2+ (t —r)(r —s) + (r —s)?/2 now gives the following
identity

r )2 N2
4.22) [ 57 eSds=er[“ 52 +(t—r)+1].

4.21)

Using (4.20), the inequality 1 —e™ < x, (4.21), and changing variables s =t — u,

)
hg(t)—%etfft @ 2S) (hs(s)—%es)ds

log(3¢)

t—log(3¢) 1 u2
= he(t —u) — = f‘“)—d :
A <g( u) 36 > u

Applying Lemma 3.3 with A =1 and B(-) =0 to h.(- + log(3¢e)) — exp(- +
log(3¢))/3,

he(t) — %et <0 for any ¢ > log(3e).

This shows that if 0 < & < § < 1, then hs(¢) > h.(t) for t <log(35). To compare
the exponentials for r > log(34), we note that

log(38) (t — )2 1 E t (t — )2
/1 i (hg(s) -3¢ )ds +/1 2 (he(s) — hs(s)) ds

og(3e) 2 0g(36) 2

t—log(38) u2
§0+/ (hg(t—u)—hg(t—u))?ds.
0

Applying Lemma 3.3 with A = 1 and B(-) =0to h.(- +10g(38)) — hs(- +10g(36)),
we see that s, (1) — hs(¢) <0 for r > log(35). U

LEMMA 4.8. h(t) =limg_.oh(t) exists. If h % 0 then h has properties (a)—
(d) in Lemma 1.1.
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PROOF. Lemma 4.7 implies that the limit exists. Since 0 < h.(¢) <e'/3,0 <
h(t) <e'/3 and so lim,_, _o, h(t) = 0. To show that

Lot —s)?
(4.23) hit)=1-— exp(—/ h(s)ds),
—00 2
we need to show that as € — 0
t t — 2 t t — 2
(4.24) / C=5) 5y ds — / =) 5 ds.
log3e) 2 -0 2

Given n > 0, choose § = §(n) > 0 so that

S[1+ (r —10g(38)) + (r — l0g(38))*/2] < n/4.

By bounded convergence theorem, as ¢ — 0,

_ )2 02
/ LU s [
1

h(s)ds.
0g38) 2 log(38) 2

So we can choose g9 = £¢9(n) so that the difference between the two integrals is at
most /2 for any & < gg. Therefore if ¢ < &g, then

t(t—s)? Lot —s)?
v/log(3£) 2 hs(S) ds = /—oo 2 h(S) ds

log(38) (¢ — 2 1
§E+2/ ¢ =) —e* ds.
2 - 2 3

Using the identity in (4.22) we conclude that the second term is

< 28[1 + ( — log(38)) + (1 — log(38))*/2] < g

This shows that (4.24) holds, and with (4.20) and (4.22) proves (4.23).

To prove lim;_, oo A(t) = 1 note that if 4(-) =£ 0, then there is an r with A(r) > 0,
and so forz > r

Y 2 N3
/t @ s) h(s)ds>h(r)/t(t $) ds—h()(t r) — 0

as t — 00. So in view of (4.23), h(t) — 1 ast — oo, if h(-) #£0.

The last detail is to show if 4 (-) # 0, then A (¢) € (0, 1) for all . Suppose, if pos-
sible, h(tg) = 0. Equation (4.23) implies ff’oo h(s)[(t — s)2/2] ds =0, and hence
h(s) =0 for s < ty. Changing variables s — ¢ — r, and using (4.23) again with the
inequality 1 — e™ < x, imply that for any ¢ > 1

2

to(t—s)? 1—lo r
h(t)f/_oo 5 h(s)ds:/0 h(t—r)?dr.
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Applying Lemma 3.3 with A = 1 and 8(-) = 0 to the function k(- + fy), we see that
h(t) <0 for any ¢ > #9. But A(¢) > 0 for any ¢, and hence & = 0, a contradiction.
O

To complete the proof of Lemma 1.1 it suffices to show that | f.(-) — h.(-)| and
|ge () — ho(+)| converge to 0 as ¢ — 0. To do this, note that if

log(3e) (f — §)2 ¢°
ho(t)=1— exp(—/ ( 2S) %ds),
—00

then

N2
he(t) =1 = (1= ho(0) exp( - [— he(s)ds ).

og3e) 2

X

and so using the inequality e —e™ Y| <|x — y|forx,y >0,

(t —s)?
2

t
lhe(t) — 8o ()] < [ho(1) — go(1)] +/1 o) |he(s) — gs(s)ds.
og(3e

Using the inequality 0 < e™* — 1 +x < x2/2 and the identity in (4.22),

(t —log(3e))?7?
]

(r - 10g(38))4}

lho(t) — go(t)] < %[8 +&(r —log(3¢)) + ¢

4
Applying Lemma 3.3 with A = 1 and B(¢) = 1 + t> 4 t*/4 to the function
|he (- +1og(3e)) — g (- +log(3¢))

we have |h, (1) — ge(t)| < (362/2)B * V (t — log(3¢)), where V(-) is as in Lem-
ma 2.2. Using A = 1 in the expression of V() and Lemma 2.1,

3
< 582[1 +(r— 10g(38))2 +

’

t
BxV(t)=p) +/0 Bt —s)V'(s)ds

o 3k £3k+2 ;3k+4 t
= 2 6 <
,;[(Sk)! * (3k +2)! * (3k +4)!] -

S0 |he (1) — ge(1)| < (3¢%/2) - 6exp(t — log(3¢)), and so
sup |hs(s) — ge(s)| < 6ge’ /2.

selg;
Repeating the argument for f.(-), and noting that |ho(¢) — fo(¢)| = |ho(t) —
g +&"/°,

3 1
sup |he(s) — fe(s)] < <6§€2 + 87/6) exp(t — log(3¢)) = <§€l/6 + 38)e’.

selg;
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This completes the second step and we have proved Lemma 1.1. [
Now we have all the ingredients to prove Theorem 3.

PROOF OF THEOREM 3. Let i(-) be as in Lemma 1.1. Choose ¢ € (0, §/6)
small enough so that

sup |ge(s) — h(s)| <8/2, sup | fe(s) —h(s)| <8/2.

se€lg se€lg;

Let D={M < 38N2_2"‘/3}. On the event D, W = ¢ (log(3¢)) > 0. So
P(sup}N_sz(s) —h(s)| > 8)
st

< P(D°) + P(N2Cw + h(log(3¢)) > 9)

(4.25)
+P( sup (N 2Cy o) — h(s) > 8)
+ P( inf (N~ 2Cys) — h(9)) < —9).

To estimate the second term in (4.25) note that 2 (log(3¢)) < (1/3) exp(log(3¢)) <
8/2 and

P(N2Cy > 8/2) < P(Aw > (8/2)N?) = 0

as N — oo by Lemma 3.2. To estimate the third term in (4.25) we use Lemma 4.6
to get

lim sup P( sup (N 2Cys) — h(s)) > 8)

N—o0 selg

<tlimsup P sup (N"2Cy(5) — 8:(9)) > §/2)

N—o0 sele
<P(M < 81/3) + &3,
For the fourth term in (4.25) use Lemma 4.5 to get

lim sup P( inf (N 2Cys) — h(s)) < 6)

N—o0 sele
< limsup P( inf (N~ CW(S) — fe(s)) < 8/2)
N—oo sele,

<P(M <e&'PP)+'/12,
Letting ¢ — 0, we see that for any 6 > 0,

(4.26) lim P(sup|N C,/,(S)—h(s)}>8>:0

N—oo SGIg[
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It remains to show that 4 (-) # 0. Let ¢, y be such that

el/3
PIM<(1+y)e'31+11— <1.
y

Fix any n > 0 and let fo =log(3¢(1 + y) + 37n). Using Lemmas 3.2 and 3.5
limsup P(N2Cy ) < €)

N—o00

= limsup P(t(e) > ¥ (10))

N—oo

<limsup P[t(e) > o(e(1 + y))] + limsup Po (e(1 + y)) > ¥ (t0)]

N—o0 N—o0

<limsup P[t(e) > o (e(1 +y))]

N—o00

+ lim sup P(IN_ZAwg(H},H,? —e(l+y)—nl>n)

N—o00

1/3
1/3 £
<PM<{A4+yp)e’"]+11— < 1.
Y

But if £ (#p) = 0, we get a contradiction to (4.26). This proves h(-) 0. U
5. Asymptotics for the cover time.

PROOF OF THEOREM 4. Theorem 3 gives a lower bound on the area covered
whcih implies that if § > 0 and N is large, then with high probability the number
of centers in Cy, (o) dominates a Poisson random variable with mean A(§) N 2=(2a/3),
where

0
A () :/ (h(s) —8) " ds.
—0o0

If 8o is small enough, Lo = A(§p) > 0. Dividing the torus into disjoint squares
of size k N%/3,/Tog N, where « is a large constant, the probability that a given
square is vacant is exp(—iox>log N). If k/Tog N > 1, the number of squares is
< N2=@2/3) 8o if Aok? > 2, then with high probability none of our squares is
vacant. Thus even if no more births of new centers occur then the entire square
will be covered by a time ¥ (0) + O(N*/3\/logN). O
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