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THE DIVERSITY OF A DISTRIBUTED GENOME IN BACTERIAL
POPULATIONS1
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The distributed genome hypothesis states that the set of genes in a popu-
lation of bacteria is distributed over all individuals that belong to the specific
taxon. It implies that certain genes can be gained and lost from generation to
generation. We use the random genealogy given by a Kingman coalescent in
order to superimpose events of gene gain and loss along ancestral lines. Gene
gains occur at a constant rate along ancestral lines. We assume that gained
genes have never been present in the population before. Gene losses occur at
a rate proportional to the number of genes present along the ancestral line.
In this infinitely many genes model we derive moments for several statistics
within a sample: the average number of genes per individual, the average
number of genes differing between individuals, the number of incongruent
pairs of genes, the total number of different genes in the sample and the gene
frequency spectrum. We demonstrate that the model gives a reasonable fit
with gene frequency data from marine cyanobacteria.

1. Introduction. Population genetics is dealing with biological diversity of
species. Concepts developed in this area include models for genetic drift, muta-
tion, selection, recombination and population structure. These models are applied
frequently to eukaryotic species to analyze their evolutionary history. For prokary-
otes these concepts are applied less frequently and Maynard-Smith (1995) even
asked, “Do bacteria have population genetics?”

Usually (by the biological species concept), a species is a reproductively iso-
lated set of individuals. This definition can hardly be applied to prokaryotes, that
is, bacteria and archea. In microbiology, researchers have developed other ap-
proaches, mostly defining a species via genomic similarity. This similarity is either
based on hybridization of DNA, or on DNA sequences of specific molecules such
as ribosomal RNA or suitable housekeeping genes, known to be highly conserved
(and which are identified by genome sequencing or by a technique called multi-
locus sequence typing [Maiden et al. (1998)]). The definition of bacterial species
is complicated by the fact that the similarity of bacteria depends on the consid-
ered genomic region, which can be explained by transfer of genetic material be-
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tween these bacteria [Dykhuizen and Green (1991)]. Even more extreme, individ-
uals from the same species carry different genes. For example, one quarter of the
genome of a pathogenic variant of E. coli was found to be absent in a laboratory
strain [Perna et al. (2001)]. Such findings lead to several new hypotheses: the core
genome hypothesis argues that the set of genes common to all bacteria of a species
is responsible for maintaining species-specific phenotypic properties [e.g., Riley
and Lizotte-Waniewski (2009)]. The distributed genome hypothesis predicts that
no single individual comprises the full set of genes of the bacterial population
[e.g., Ehrlich et al. (2005)].

The distributed genome hypothesis is similar to the idea of bacterial pangen-
omes. Taking the different gene content of individuals of a population into ac-
count, the pangenome consists of all different genes carried by all individuals. The
pangenome can be split into the core genome, that is, the set of genes carried by
every individual of the population, and the dispensable (also: auxiliary or flexible
or contingency) genome [Medini et al. (2005)]. The pangenome was first analyzed
for pathogenic strains of Streptococcus agalactiae [Tettelin et al. (2005)]. It was
shown that around 80% of a single genome (i.e., the genome of a single individ-
ual) forms the core genome. However, each fully sequenced genome carries genes
which do not occur in other strains, suggesting that the core genome represents
only a small fraction of the pangenome. The situation is even more extreme in
Prochlorococcus and Synechococcus, which are marine cyanobacteria, where the
core genome consists of around 60% of the genes found in a single genome [Kettler
et al. (2007), Dufresne et al. (2008)]. In contrast, Medini et al. (2005) show that a
set of four genomes of Bacillus anthracis contain all genes found in the complete
sample of 8 individuals, showing that the core genome is the biggest part of the
pangenome of this species. Recently, the pangenome of all bacteria was consid-
ered, using a dataset of 573 completely sequenced genomes showing that only 250
genes (which are 8% of a bacterial genome on average) were common to almost
all bacterial species [Lapierre and Gogarten (2009), Bentley (2009)].

The bacterial supragenome makes the split into the core and dispensable
genome more precise: each gene present in a population (or in a sample) has a
frequency (for core genes this is 100%) such that the pangenome gives rise to a
gene frequency spectrum. The first analysis of Hogg et al. (2007) on a sample of
13 genomes of Haemophilus influenzae shows that the largest class (19% of the
pangenome) in the dispensable genome are genes only present in a single genome.
In addition, every pair of genomes differs by around 300 genes on average. Similar
findings were obtained for Streptococcus pneumoniae [Hiller et al. (2007)].

The pan- and supragenome suggest that genes can be gained and lost along
lineages of bacteria, leading to diversity of genomes. It is well known that genes
can be gained in bacteria by three different mechanisms: (i) The uptake of genetic
material from the environment is referred to as transformation. (ii) Bacteria can be
infected by lysogenic phages which provide additional genetic material that can be
built in the bacterial genome. This process is known as transduction. (iii) A direct
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link between two bacterial cells of the same species leads to exchange of genetic
material, known as conjugation. These three mechanisms are usually referred to as
horizontal gene flow. Events of gene loss occur by mutations resulting in pseudo-
genization or deletion of genes.

The aim of the present paper is to model the bacterial pangenome. We focus
on two different aspects: the genealogical relationships between individuals and
the mutational mechanism. Using the diffusion limit of a standard neutral model
(with finite offspring variance) leads to a random genealogy, usually referred to as
the Kingman coalescent [Kingman (1982), Wakeley (2008)]. Gene gain and loss
is the basis of our mutational model, as introduced by Huson and Steel (2004) in
the phylogenetics literature. Here, new genes are taken up from the environment
at constant rate along ancestral lines. We assume that all genes taken up are differ-
ent. In addition, present genes can be lost at constant rate. In analogy to standard
population genetic models we refer to this as the infinitely many genes model.

2. Model. The dynamics of our model consist of two parts. Reproduction fol-
lows the (diffusion limit of a) neutral Wright–Fisher model (or some other ex-
changeable population genetic model with finite offspring variance). The muta-
tion model we use is borrowed from the phylogenetics literature [Huson and Steel
(2004)] and describes gene gains and losses along ancestral lines. After introduc-
ing the model in Sections 2.1 and 2.2, we discuss connections to other mutation
models in Section 2.3.

2.1. Reproduction dynamics. We will use the neutral Wright–Fisher model:
a panmictic population of size N reproduces neutrally and clonally, that is, asexu-
ally. In this model, individuals in generation t +1 choose a unique parent from gen-
eration t purely at random and independent of other individuals. It is well known
that the genealogy of a sample of size n taken from the Wright–Fisher model con-
verges for N → ∞ after a time rescaling by N to the Kingman coalescent started
with n lines [e.g., Durrett (2008), Wakeley (2008)]. In this process, starting with n

lines:

• if there are k lines left, draw an exponential time with rate
(k
2

)
(which equals the

number of pairs in the k lines), which is the time to the next coalescence event;
• at the next coalescence event pick two lines at random from the k lines and

merge these into one line.

If there is one line left, the sample has found its most recent common ancestor
which we trace back into the past for an infinite amount of time.

DEFINITION 2.1 (Kingman coalescent). We denote the random tree resulting
from the above mechanism—the Kingman coalescent—by T . We consider T as
a partially ordered metric space with order relation � and metric dT where the
distance of two points in T is given by the sum of the times to their most recent
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common ancestor. We make the convention that s � t for s, t ∈ T if s is an ancestor
of t .

We note that our starting point, the Wright–Fisher model, can be replaced by
other models. For continuous, overlapping generations, the Moran model is the
most canonical choice. Generally, every exchangeable model with genealogy—
under a suitable time rescaling—given by the Kingman coalescent leads to the
same results as those obtained in the present paper; the genealogy of a sequence
of exchangeable models converges to the Kingman coalescent if and only if the
sequence of offspring distributions of a single individual has bounded finite vari-
ance and fulfills a condition regarding their third moments [Möhle and Sagitov
(2001)].

2.2. Mutation dynamics. We model individuals whose genomes consist of sets
of genes. Every individual has a set of genes Gc, gc := |Gc| which are absolutely
necessary to survive and hence are conserved, that is, must be passed from ances-
tor to offspring. The genes Gc constitute the core genome. In addition, we model
an infinite gene pool by a set of genes I = [0,1] with Gc ∩ I = ∅. The genome of
individual i in the sample, 1 ≤ i ≤ N , contains genes Gi ⊆ I which are not nec-
essary for the individuals to survive. This set of genes is called the dispensable
genome of individual i.

During the lifetime of every individual or at every reproduction event, mutations
may happen. In our mutation model, the infinitely many genes model, we assume
the following two mechanisms (in a Wright–Fisher population of size N ) which
changes the dispensable genome from parent to offspring:

• gene gain: before reproduction of individual i, there is a probability μ that a
new gene u ∈ I is taken up from the environment. We assume that gene u has
never been present in any genome of the population;

• gene loss: every gene of the dispensable genome u ∈ Gi of individual i is lost
with probability ν before reproduction of individual i.

We take an extreme point of view here in that the core genes are absolutely neces-
sary for an individual to survive and the genes in the dispensable genome evolve
completely neutral. Using this view, ancestry is not affected by mutations, that is,
all gene gains and losses seen in the population are assumed to be neutral.

Using the same time-scaling as for the genealogies, we assume that μ = μN

and ν = νN are such that θ = limN→∞ 2NμN and ρ = limN→∞ 2NνN . After this
rescaling of the parameters, new genes are gained at rate θ

2 and present genes are
lost at rate ρ

2 .

DEFINITION 2.2 (Tree-indexed Markov chain for gene gain and loss). Let T
be the Kingman coalescent. We either assume that T is rooted at the most re-
cent common ancestor of the sample or that T has a single infinite line. Given T ,
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we define a Markov chain �T = (Gt )t∈T , indexed by T , with state space Nf (I ),
the space of counting measures on I . [The Markov property for the tree-indexed
Markov chain �T states that for all t ∈ T , (Gs)t�s depends on (Gs)s�t only
through Gt .] Denoting by λI the Lebesgue measure on I , �T makes transi-
tions

from g to g + δu at rate
θ

2
λI (du),

(2.1)
from g to g − δu at rate

ρ

2
g(du)

along T . Taking into account that the tree T has n leaves, one for each individual
of the sample, we denote these leaves by 1, . . . , n ∈ T . In this setting, G1, . . . , Gn

describe the genes present in individuals 1, . . . , n.

An illustration of the tree-indexed Markov chain is shown in Figure 1.

REMARK 2.3 (Notation). Note that all gained genes are almost surely dif-
ferent, so Gt does not have double points, that is, Gt ({u}) ∈ {0,1}, for all u ∈ I

FIG. 1. An illustration of the infinitely many genes model along a Kingman coalescent. If a gene
is gained along a line (indicated by the �-sign) it can be lost again (indicated by a �-sign). An
individual of the sample (i.e., a leaf of the coalescent tree) carries the set of genes which were gained
along its ancestral lines and did not get lost again. Here are some examples: the gene u2 is present
in all individuals, u3 is only present in 10 individuals of the left branch due to two gene losses. The
genes u4 and u5 were lost in all ancestral lines and do not occur in any individual. The gene u7 is
missing in the 2 individuals on the left-hand side due to a gene loss and in the right branch as the
gene gain was in the left branch.
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and t ∈ T , almost surely. We will use the following notation, equating counting
measures without double points with their support: consider g ∈ Nf (I ) without
double points. There is m ∈ N and u1, . . . , um with g =∑m

i=1 δui
. We will refer

to u1, . . . , um as the points in g and also write g = {u1, . . . , um}. Moreover, we
define

|g| :=
∫

1dg, gs ∩ gt := gs ∧ gt ,

gs \ gt := (gs − gt )
+

for g,gs, gt ∈ Nf (I ).

Our aim is to describe patterns of the dispensable genomes G := (G1, . . . , Gn)

or whole genomes (G1 ∪ Gc, . . . , Gn ∪ Gc). These results can then be compared
to genomic data of a sample of bacteria which gives the genes (or gene families)
carried by individuals in the sample.

2.3. Comparison to other mutation models. In mathematical population ge-
netics, there are several standard mutation models, for example, the infinitely many
alleles model and the infinitely many sites model [see, e.g., Durrett (2008) or Ewens
(2004)]. In the former, every mutation (along some random tree) leads to a new
type, also called a new allele. It is assumed that mutated alleles have never been
present in the population before. The latter is a refinement of the former: the allele
of an individual in the sample is modeled as an infinite stretch on DNA. Every
mutation is assumed to change a single site on this genome (hence leading to a
new allele), and it is assumed that every mutation hits a site that has never been hit
before. The last assumption is relaxed in the finite sites model where sites can be
hit several times changing their state between several possibilities.

The infinitely many genes model as described above is conceptually different
from these standard models: the infinitely many sites model (along some random
tree T ) can be described, when a genome is given as the linear set I as above using
that events, occurring at rate θ

2λ(du) along the tree, changes the state from the
ancestral to a derived state at position u in the genome. However, loss events do not
have a correspondence in the infinitely many sites model. In the finite sites model,
a site can change from the ancestral state to a derived state and back; however,
in the infinitely many genes model, once a gene has changed from the ancestral
state (not present) to the derived state (present) and back (not present) no further
changes of the state are possible.

Although all mutation models are conceptually different, the infinite sites model
can be seen as the infinitely many genes model for ρ = 0. To understand this, con-
sider a random tree with gene gain events (and no losses due to ρ = 0). Reinter-
preting these gene gains as point mutations along a chromosome, each mutation
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hitting a new site, leads to the infinitely many sites model. However, there are
still differences between the infinitely many genes model for ρ = 0 and the infi-
nitely many sites model. On the one hand, ρ = 0 implies that genes cannot get
lost which leads to an infinite genome for all individuals. On the other hand, most
interesting quantities concentrate on mutations segregating (i.e., showing both the
ancestral and the mutated—or derived—state) in the sample. In summary, the in-
finitely many genes model for ρ = 0 and the infinitely many sites model are the
same with respect to properties of segregating genes/sites. However, we will see
in our results below (Theorems 2, 4 and 5) that the infinitely many genes model is
not continuous in ρ = 0 for certain aspects of segregating mutations.

3. Results. In the rest of the paper, we fix a sample of size n ∈ N and θ, ρ > 0.
We describe expectations and variances of several quantities of interest. If we want
to stress the dependence on the model parameters we will use subscripts, for ex-
ample, Eθ,ρ[·], in order to make this clear. Since the core genome is conserved
for all individuals of the population, we focus on the dispensable genome first.
We provide results for the average number of genes in the sample (Section 3.1,
Theorem 1), the average number of pairwise differences (Section 3.2, Theorem 2),
incongruent pairs of genes (Section 3.3, Theorem 3), the size of the dispensable
genome of the sample (Section 3.4, Theorem 4) and the gene frequency spectrum
(Section 3.5, Theorem 5). We then extend these results to the complete pangenome,
that is, the union of the dispensable and core genome (Section 3.6) and describe the
application of our model to a dataset from Prochlorococcus, a marine cyanobac-
terium (Section 3.7). Finally, we discuss biologically realistic extensions of our
model (Section 3.8).

3.1. Average number of genes. The simplest statistics in the infinitely many
genes model is based on counting the number of genes for all individuals in the
sample. The average number of genes (in the dispensable genome) is given by

A := 1

n

n∑
i=1

|Gi |.(3.1)

Our first results provide the first and second moment for A.

THEOREM 1 (Average number of genes). For A as above

E[A] = θ

ρ
,

V[A] = 1

n

θ

1 + ρ
+ θ

ρ(1 + ρ)
.
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REMARK 3.1. Note that the result for E[A] is robust against changes of the
reproduction mechanism or nonequilibrium situations. Consider any model of re-
production which has not gone extinct by time t . As long as the mutation mech-
anism is independent of reproduction, picking an individual at time t from the
population gives a single ancestral line along which genes accumulate by the same
distribution. In particular, the results for E[A] remain unaltered under population
size changes or population subdivision.

The fact that V[A] does not converge to 0 as n → ∞ does not come as a big
surprise: the sets G1, . . . , Gn are dependent through the joint genealogy—given
through the Kingman coalescent—relating the sample.

3.2. Average number of pairwise differences. The average number of pairwise
differences is given by

D := 1

n(n − 1)

∑
1≤i �=j≤n

|Gi \ Gj |.(3.2)

THEOREM 2 (Average number of pairwise differences). For D as above,

E[D] = θ

1 + ρ
,

V[D] = θ

(
(3 + 14ρ + 23ρ2 + 16ρ3 + 4ρ4 + 4θ + 2ρθ)

(1 + ρ)2(2 + ρ)(3 + ρ)(1 + 2ρ)(3 + 2ρ)

+ 6 + 19ρ + 19ρ2 + 12ρ3 + 4ρ4 + 8θ + 4ρθ

(1 + ρ)(2 + ρ)(3 + ρ)(1 + 2ρ)(3 + 2ρ)

1

n

+ 3 + 11ρ + 12ρ2 + 4ρ3 + 10θ + 9ρθ + 2ρ2θ

(1 + ρ)(2 + ρ)(3 + ρ)(1 + 2ρ)(3 + 2ρ)

2

n(n − 1)

)
.

REMARK 3.2. The quantity D is only based on genes segregating in the sam-
ple. Hence, as explained in Section 2.3, the infinitely many genes model for ρ = 0
is equivalent to the infinitely many sites model with respect to D. As the theo-
rem shows, the expected number of differences between individuals i and j is
E[|Gi \ Gj | + |Gj \ Gi |] = 2 θ

1+ρ
. Hence, Eρ[D] is not continuous in ρ = 0 since

the comparable quantity in the infinite sites model, the average number of segre-
gating sites in a sample of size two, is θ . The reason is that for small ρ, every
individual carries a lot of genes, all of which can get lost at the small rate ρ. These
loss events lead to differences between individuals as well as events of gene gain.
A similar argument shows that the variance is not continuous [see, e.g., Wakeley
(2008), (4.15)] for the variance in the infinite sites model.

Note that V[D] does not converge to 0 as n → ∞. Again—the reason is that
the differences (Gi \ Gj )1≤i �=j≤n are dependent through the underlying common
genealogy.
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3.3. Incongruent pairs of genes. Assume the following situation: for a pair
of genes there are four individuals in which all four possible states of pres-
ence/absence of the two genes are observed. This means that the following sit-
uation is found:

gene 1 gene 2

Individual 1 present present
Individual 2 present absent
Individual 3 absent present
Individual 4 absent absent

If genes cannot be lost (ρ = 0) this situation cannot occur in our model. The rea-
son is that gene 1 would indicate that individuals 1 and 2 have a common ancestor
before 1 and 3 have (otherwise individual 3 would also carry gene 1), while gene
2 indicates that individuals 1 and 3 have a common ancestor before 1 and 2 have.
This is the reason why we call pairs of genes for which the above situation appears
incongruent. If ρ > 0, incongruent pairs can arise by gene loss; see Figure 2 for an
example. We will now state how many incongruent pairs we can expect to see in
our sample.

The average number of incongruent pairs of genes (in four genomes) is given
by

P := 1

n(n − 1)(n − 2)(n − 3)

n∑
i,j,k,l=1

Dij,kl · Dik,j l,

where

Dij,kl := |(Gi ∩ Gj ) \ (Gk ∪ Gl)|, 1 ≤ i, j, k, l ≤ n.(3.3)

FIG. 2. If genes can be lost (ρ > 0) it is possible that all four possible configurations of pres-
ence/absence of a pair of genes are seen in a sample of four individuals. We call such pairs incon-
gruent. The figure shows one possible history of the two genes which leads to incongruence.
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THEOREM 3 (Incongruent pairs of genes). For P as above,

E[P ] = θ2ρ

4

(
18 + 117

ρ

2
+ 203

ρ2

4
+ 105

ρ3

8

)

×
((

1 + ρ

2

)2(
1 + 2

ρ

2

)(
1 + 4

ρ

2

)

×
(

3 + 4
ρ

2

)(
3 + 5

ρ

2

)(
6 + 5

ρ

2

)(
6 + 7

ρ

2

))−1

.

REMARK 3.3. In the proof of Theorem 3, we have to consider all possible
genealogies of four individuals. In order to obtain the variance of P , one would
have to take into account all possible genealogies relating eight individuals.

Note that

E[Dij,kl] = 1

6

θ

2

4 · 3

(3 + ρ)(2 + ρ)
= θ

(3 + ρ)(2 + ρ)
(3.4)

by the gene frequency spectrum (Theorem 5). Using this results it can be shown
that COV[Dij,kl,Dik,j l] < 0 in all cases.

For ρ = 0 we find that either Dij,kl = 0 or Dik,j l = 0 implying that P = 0
(hence Eρ=0[P ] = 0), almost surely. The theorem implies that Eρ[Dij,kl ·
Dik,j l] ρ→0−−−→ 0, that is, Eρ[P ] is continuous in ρ = 0. This observation is not
obvious since small ρ implies that all individuals carry many genes. Using this
fact, one could argue that the chance to observe a pair of genes giving rise to
Dij,kl · Dik,j l grows with decreasing ρ. However, although the number of genes
grows for small ρ, pairs of genes giving rise to Dij,kl · Dik,j l are most probably
created by two gene gains and one gene loss, as shown in Figure 2, for small ρ.

As we will discuss in Section 3.8, the possibility of horizontal gene transfer (by
bacterial conjugation) would be a biologically realistic extension of our model.
Under such a mechanism, new genes are not only taken from the environment,
but also from other individuals of the population. As a result, the genealogical
tree would be different for different genes. Hence, the order of coalescence can
be different, and so there is an increased number of incongruent pairs of genes.
Hence, the theorem is valuable for determining the possibility of horizontal gene
transfer in real populations.

3.4. Size of the dispensable genome. Now we come to properties involving the
whole sample (in contrast to pairs and quartets of individuals in the last theorems).
The simplest statistics involving all individuals of the sample is the total number
of genes, that is, the size of the dispensable genome.

The size of the dispensable genome is given by

G :=
∣∣∣∣∣

n⋃
i=1

Gi

∣∣∣∣∣.(3.5)
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We need the following definition in order to give the variance of the number of
genes in the dispensable genome in our next theorem.

DEFINITION 3.4 (The functions hk and gk). For k ≥ 0 we define

hk := 2
k−1∑
i=0

1

ρ + i
.(3.6)

Moreover, for k = (k1, k2, k3) with k1, k2, k3 ≥ 0, we set

k′
1 = (k1 − 1, k2, k3), k′

2 = (k1, k2 − 1, k3),

k′
3 = (k1, k2, k3 − 1), k′

4 = (k1 + 1, k2 − 1, k3 − 1),

k′
5 = (k1 − 1, k2 + 1, k3), k′

6 = (k1 − 1, k2, k3 + 1),

λ1 =
(

k1
2

)
, λ2 =

(
k2
2

)
+ k1k2 + ρ

2
k2,

λ3 =
(

k3
2

)
+ k1k3 + ρ

2
k3, λ4 = k2k3, λ5 = λ6 = ρ

2
k1

and λ =∑6
i=1 λi . We define recursively

gk =

⎧⎪⎪⎨⎪⎪⎩
2

ρ
hk1+k2, if k1 + k3 = 1,

2

ρ
hk1+k3, if k1 + k2 = 1,

(3.7)

and

gk = (k1 + k2)(k1 + k3)
2

λ2
(3.8)

+
6∑

i=1

λi

λ

(
1

λ

(
(k1 + k2)hk′

1+k′
3
+ (k1 + k3)hk′

1+k′
2

)+ gk′
i

)
(3.9)

in all other cases.

THEOREM 4 (Size of the dispensable genome). For G as above,

E[G] = θ

n−1∑
i=0

1

ρ + i
.(3.10)

In addition, with g(k1,k2,k3) given in Definition 3.4,

V[G] = θ

n−1∑
i=0

1

ρ + i
− θ2

(
n−1∑
i=0

1

ρ + i

)2

+ θ2

4
g(n,0,0).(3.11)
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REMARK 3.5. An estimate for the size of the pangenome (dispensable plus
core genome) in real bacterial populations has attained much interest [e.g., Tettelin
et al. (2005), Lapierre and Gogarten (2009)]. Most interestingly, some species like
Bacillus anthracis seem to have a closed genome, that is, only a limited number of
genes in the pangenome, since no new gene was found after sequencing the fourth
out of eight strains [Tettelin et al. (2005)]. Other species like Prochlorococcus
and Synechococcus, have an open genome since estimates based on 22 different
strains show that every newly sequenced genome exhibits 277 new genes on aver-
age (Baumdicker, unpublished observation). For open genomes, a model based on
some linguistic insights, Heap’s law, has been considered [Tettelin et al. (2008)].
As a result, a power law for the total number of genes is found and it is estimated
that a total of n0.43±0.02 genes are found in a sample of n individuals from Bacillus
cereus. This finding is in stark contrast to our theorem, which implies that the num-
ber of genes grows only logarithmically in n. However, in order to decide which is
the correct asymptotics certainly requires a lot more data, since n = 14 strains are
not enough to specify asymptotic behavior.

We conjecture that V[G] grows like E[G] for n → ∞. (The corresponding state-
ment is true in the infinite sites model [see Wakeley (2008), (4.8)].) The reason is
that for given T , G is Poisson distributed with a parameter increasing with the tree
length. In addition, for large n the length of the Kingman coalescent is largest near
the leaves and the coalescent almost becomes deterministic near the leaves. For
example, it has been shown that the sum of external branch lengths (i.e., branches
connecting a leaf to the next node in the tree) converges to 2 in L2 [Fu (1995)].

We give an example for the computation of gk in the case k = (2,0,0). For the
calculation, we observe that λ1 = 1, λ2 = λ3 = λ4 = 0, λ5 = λ6 = ρ, λ = 1 + 2ρ

and, from (3.6) and (3.7),

h1 = 2

ρ
, h2 = 2

ρ
+ 2

1 + ρ
= 2(1 + 2ρ)

ρ(1 + ρ)
,

g(1,0,0) = 4

ρ2 , g(1,1,0) = g(1,0,1) = 4

ρ

(
1

ρ
+ 1

ρ + 1

)
= 4(1 + 2ρ)

ρ2(1 + ρ)
.

The recursion (3.8) then gives

g(2,0,0) = 8

(1 + 2ρ)2 + 1

1 + 2ρ

(
4h1

1 + 2ρ
+ g(1,0,0)

)

+ 2ρ

1 + 2ρ

(
1

1 + 2ρ
(2h1 + 2h2) + g(1,0,1)

)

= 4
(

2

(1 + 2ρ)2 + 2

ρ(1 + 2ρ)2 + 1

ρ2(1 + 2ρ)
+ 2

(1 + 2ρ)2

+ 2

(1 + 2ρ)(1 + ρ)
+ 2

ρ(1 + ρ)

)
(3.12)
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= 4
(

1

ρ2 + 2

ρ(1 + ρ)
+ 2

(1 + 2ρ)(1 + ρ)

)

= 4
(

1

ρ
+ 1

(1 + ρ)

)2

+ 4

(1 + ρ)2(1 + 2ρ)
.

Using (3.11) this then gives for n = 2

Vn=2[G] = θ
1 + 2ρ

ρ(1 + ρ)
+ θ2 1

(1 + ρ)2(1 + 2ρ)
.

For n = 3, the computation is more involved2 and leads to

Vn=3[G] = θ

ρ
+ θ

1 + ρ
+ θ

2 + ρ
+ θ2 90 + 249ρ + 275ρ2 + 145ρ3 + 30ρ4

(1 + ρ)2(2 + ρ)2(1 + 2ρ)(3 + 2ρ)(6 + 5ρ)
.

3.5. Gene frequency spectrum.3 By definition, core genes are present in all
individuals of the sample. In contrast, genes from the dispensable genome can
be present at any frequency. These possibilities give rise to the gene frequency
spectrum.

The gene frequency spectrum (of the dispensable genome) is given by G1, . . . ,

Gn, where

G
(n)
k := Gk := |{u ∈ I :u ∈ Gi for exactly k different i}|.(3.13)

THEOREM 5 (Gene frequency spectrum). For G1, . . . ,Gn as above,

E[Gk] = θ

k

n · · · (n − k + 1)

(n − 1 + ρ) · · · (n − k + ρ)
, k = 1, . . . , n.

REMARK 3.6. In the case ρ = 0, genes cannot get lost and consequently
Gn = ∞. However, the classes k = 1, . . . , n − 1 consist of genes segregating in
the sample (since both states—presence and absence of the gene—are observed).
Hence, as discussed in Section 2.3, these classes follow predictions for the infi-
nite sites model. In this model, it is implicit in results already obtained by Wright
(1938) [and later were refined by Kimura (1964), Griffiths (2003), Evans, Shvets
and Slatkin (2007)] that

Eρ=0[Gk] = θ

k
.

2Several computations in the paper are most easily done using a program like MATHEMATICA.
Therefore, a MATHEMATICA-notebook with all relevant computations can be downloaded from the
homepage of the corresponding author.

3The term gene frequency spectrum was used by Kimura (1964) to denote the frequency of alleles
in the infinite sites model. Later, the term changed to site frequency spectrum since single sites on
the chromosome could be sequenced [e.g., Durrett (2008)]. Here, we reintroduce the term for gene
frequencies in the infinitely many genes model.
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On the other hand, by the theorem,

Eρ[Gk] ρ↓0−−−→ θn

k(n − k)

such that the gene frequency spectrum is not continuous at ρ = 0.
The model for the bacterial supragenome, introduced in Tettelin et al. (2005)

takes population frequencies of genes into account, that is, the gene frequency
spectrum. While the supragenome model assumes several different frequency
classes to begin with, we derive the gene frequency spectrum from first principles,
that is, from gene gain and loss events along the genealogy.

3.6. Union of core and dispensable genome. Until now we only derived re-
sults for the dispensable genome. In data obtained from bacterial species, the union
of the core and dispensable genome is of primary interest. It is straightforward to
extend our results to this union:

If we replace Gi by Gi ∪ Gc, 1 ≤ i ≤ n, in (3.1)–(3.3), (3.5) and (3.13), recall
gc := |Gc|, and denote the resulting quantities by Ã, D̃, P̃ , D̃ij,kl , G̃, G̃k , we obtain

Ã = A + gc, D̃ = D, D̃ij,kl = Dij,kl, P̃ = P, G̃ = G + gc

and

G̃k =
{

Gk, k = 1, . . . , n − 1,
Gk + gc, k = n.

Hence, properties of Ã, D̃, P̃ , G̃, G̃k follow immediately from Theorems 1–5.

3.7. Application: A dataset from Prochlorococcus. Data from complete gen-
omes of a population sample of bacteria have been available only for a few years.
Because the infinitely many genes model we propose is new in the population
genetic context, we show some data in order to see if the model as studied above
could be realistic.

Here we chose a set of n = 9 strains of Prochlorococcus which appear to
be closely related. Prochlorococcus is a marine picocyanobacterium (length ∼
0.6 μm, genome size ∼ 2 Mbp) living in the ocean at depth up to 200 m. Their
population size can be as large as 106 individuals (i.e., cells) per ml. In total, 22
complete genome sequences of these cyanobacteria are available in GenBank at
the moment [Kettler et al. (2007), Dufresne et al. (2008)]. The n = 9 chosen
Prochlorococcus genomes are similar to each other in terms of GC-content and
share a similar physiology.

We estimate the model parameters θ, ρ and gc based on the gene frequency
spectrum G̃1, . . . , G̃9 which we compare with our results from Theorem 5. The
number of genes present in all individuals is 1282, forming the largest class in the
observed gene frequency spectrum (see Figure 3). Genes occurring in only a single
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FIG. 3. The fit of observed data from nine closely related strains of Prochlorococcus with the
expectations for the gene frequency spectrum. Estimates were as given in (3.14).

individual were the second largest class with 1034 genes. By a least squares fit of
G̃k and E[G̃k] for k = 1, . . . , n we obtain the estimates

θ̂ = 1142.17, ρ̂ = 2.03, ĝc = 1270.(3.14)

Note that the estimate for gc means that we expect that 14 genes which are carried
by all individuals belong to the dispensable genome. As shown in Figure 3, these
estimates produce a reasonably good fit with the data. Of course, a statistical test
which is able to reject our model for gene content in general, and the assumption
that all genes in the dispensable genome evolve neutrally in particular, would be
desirable.

3.8. Outlook. We introduce the infinitely many genes model on a Kingman
coalescent as a simple null-model of genome evolution in bacterial species. How-
ever, both the reproduction and the mutation dynamics can be extended to become
biologically more realistic. For the reproduction dynamics, several extensions have
been considered in the literature, for example, structured populations and popula-
tions of varying size [see, e.g., Durrett (2008)].

The mutation dynamics can be extended as well. Our strongest assumption is
that genes taken from the environment are completely new. In particular, the model
does not allow for genes being transferred between individuals directly. Such a
physical exchange of genes between bacteria is known as horizontal gene transfer.
The underlying mechanism is bacterial conjugation. The donor cell produces a
pilus that attaches to the recipient cell and a single strand of DNA is transported
from the donor to the recipient. After replication of the DNA, both cells carry the
transferred genetic material. The duration of conjugation is long enough in order to
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transfer several genes. Hence, by events of horizontal gene transfer, the transferred
genes do not share the genealogy of the cell line. Thus, building such a mechanism
into the above model requires the use of different genealogical trees for different
genes. Such a mechanism was already considered in the phylogenetics literature
by Kunin and Ouzounis (2003).

In order to add even more biological realism, at least three aspects can be con-
sidered:

1. As Lefébure and Stanhope (2007) show there is frequent recombination even
within the core genome. Such recombination can also be explained by conju-
gation and has attained much interest [e.g., Fraser, Hanage and Spratt (2007)]
since the amount of recombination is known to be related to sequence similarity
[e.g., Vulic et al. (1997)], suggesting that bacterial species can be distinguished
by the extent of recombination between strains [Dykhuizen and Green (1991),
Maynard-Smith (1995)].

2. As seen in genomic data, several genes are clustered in gene families. This is
best explained by events of gene duplication with a potential subfunctional-
ization of these genes along ancestral lines [e.g., Durrett (2008), Durrett and
Popovic (2009)].

3. There are certainly selective constraints on the number of genes in the dis-
pensable genome. If these genes are evolving neutrally and are not necessarily
needed for a bacterium to function properly, selection should act in order to
minimize the dispensable genome.

Specifying the set of genes of an individual requires that the whole genome of
the individual is sequenced. Finding the different genes in a dataset like the one
used in the last section means that open reading frames (ORFs), that is, regions
in the genome between start codons and stop codons of all individuals are found.
In the dataset we say that two individuals carry the same gene if we find a pair of
ORFs in both individuals that are highly similar. However, the DNA sequence of
this pair of ORFs is usually not identical. Refined mutation models should extend
our approach and describe the genomic diversity of the different genes as well as
the variation of DNA sequences within the genes.

4. The one-line-equilibrium and proof of Theorem 1. Consider a sample
of size n and recall the sets of genes G1, . . . , Gn from Section 2.2. All results we
provide with Theorems 1–5 are dealing with the joint distribution of G1, . . . , Gn.
We start with properties of one- and two-dimensional marginals of the total masses
of this joint distribution. First, we have to obtain a key result for the gene content
along a single ancestral line in Section 4.1. The first two moments of the one- and
two-dimensional marginals are obtained in Section 4.2 which then lead to a proof
of Theorem 1 in Section 4.3.
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4.1. The one-line equilibrium. We start with some arguments that will appear
frequently in the next sections. For n = 1, the random tree T is only a single
infinite line. We consider the gene content along a single ancestral line T = R−.
In this setting, recall the process �R− = (Gt )t∈R− from Definition 2.2. Note that,
almost surely, Gt does not have double points for all t ∈ R−. Recall our notation
from Remark 2.3.

DEFINITION 4.1 (Poisson random measure and thinning). We denote by
P O I(α) the distribution of a Poisson random measure with intensity measure α.
We will also write P O I(α) for the Poisson distribution with parameter α if
α ∈ R+.

For g ∈ Nf (I ), we denote by T H I N (g,p) the distribution of the random mea-
sure arising by keeping any point in g with probability p.

PROPOSITION 4.2 (Distribution of �R− ). Let s < t .
Given Gs = g ∈ Nf (I ), the two random measures Gt ∩ Gs and Gt \ Gs are inde-

pendent. Their distribution is given by

Gt ∩ Gs ∼ T H I N
(
g, e−ρ/2(t−s)),

Gt \ Gs ∼ P O I
(

θ

ρ

(
1 − e−ρ/2(t−s)) · λI

)
.

The distribution P O I( θ
ρ
λI ) is the unique equilibrium for �R− and it is re-

versible. In equilibrium, Gt ∩ Gs, Gt \ Gs and Gs \ Gt are independent and their
distributions are given by

Gt ∩ Gs ∼ P O I
(

θ

ρ
e−ρ/2(t−s) · λI

)
,

Gs \ Gt
d= Gt \ Gs ∼ P O I

(
θ

ρ

(
1 − e−ρ/2(t−s)) · λI

)
.

REMARK 4.3. Recall from Remark 2.3 that we identify Gs, Gt with the set
of genes carried at times s and t . Note that Gs ∩ Gt = Gs ∧ Gt represents the
genes present both at time s and at time t . Moreover, Gs \ Gt = (Gs − Gt )

+ are
the genes present at time s but absent at time t , that is, genes lost during time
(s, t]. The genes in Gt \ Gs = (Gt − Gs)

+ are genes gained during time (s, t]. As
the proposition shows, all three quantities are independent in equilibrium.

PROOF OF PROPOSITION 4.2. First, recall that all new points in Gs′, s < s′ ≤ t

are pairwise different and different from points in Gs , almost surely. During
(s, t] several points of Gs′ are lost. A point in Gs′ is not lost with probabil-
ity e−ρ/2(t−s′). Since all points are lost independently, we find that Gs ∩ Gt ∼
T H I N (g, e−ρ/2(t−s)). Additionally, several new points in G arise during (s, t].
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Hence, we find that Gt \ Gs is independent of both, Gs and Gs ∩ Gt . To obtain the
distribution of Gt \ Gs , note that a point in Gs′ \ Gs′− is lost at rate ρ

2 and hence

is present in Gt with probability e−ρ/2(t−s′). Since new points arise at rate θ
2 dur-

ing (s, t] and are lost independently, we find that the number of points in Gt \ Gs

is Poisson distributed with parameter θ
2

∫ t−s
0 e−ρ/2(t−s′) ds′ = θ

ρ
(1 − e−ρ/2(t−s)).

Since these points must be uniformly distributed on I , we have that Gt \ Gs ∼
P O I( θ

ρ
(1 − e−ρ/2(t−s)) · λI ). So we have shown the first assertion.

To see that P O I( θ
ρ

· λI ) is the unique equilibrium of �R, note that there
can be at most one equilibrium since the Markov process �R− is Harris recur-
rent. Moreover, if Gs ∼ P O I( θ

ρ
· λI ), then T H I N (Gs, e

−ρ/2(t−s)) = P O I( θ
ρ

×
e−ρ/2(t−s) · λI ) and so

Gt ∼ P O I
(

θ

ρ
e−ρ/2(t−s) · λI

)
∗ P O I

(
θ

ρ

(
1 − e−ρ/2(t−s)) · λI

)
= P O I

(
θ

ρ
· λI

)
(where ∗ denotes convolution). For reversibility, we write Gs = (Gs ∩ Gt ) � (Gs \
Gt ), Gt = (Gs ∩ Gt )� (Gt \ Gs) where Gs ∩ Gt , Gs \ Gt , Gt \ Gs are independent, such
that �R− is in equilibrium at times s and t and

Gs ∩ Gt ∼ P O I
(

θ

ρ
e−ρ/2(t−s) · λI

)
,

Gs \ Gt
d= Gt \ Gs ∼ P O I

(
θ

ρ

(
1 − e−ρ/2(t−s)) · λI

)
.

By this representation, given some continuous functions f1, f2 : I → R, writing
〈fi, x〉 := ∫ fi dx, i = 1,2,

E
[
e−〈f1,Gs〉 · e−〈f2,Gt 〉]= E

[
e−〈f1+f2,Gs∩Gt 〉] · E

[
e−〈f1,Gs\Gt 〉] · E

[
e−〈f2,Gt\Gs〉]

= E
[
e−〈f1+f2,Gs∩Gt 〉] · E

[
e−〈f1,Gt\Gs〉] · E

[
e−〈f2,Gs\Gt 〉]

= E
[
e−〈f2,Gs〉 · e−〈f1,Gt 〉].

Hence, since the joint Laplace transforms E[e−〈f1,Gs〉 · e−〈f2,Gt 〉] determine the

joint distribution of (Gs, Gt ) uniquely, we find that (Gs, Gt )
d= (Gt , Gs) and re-

versibility is shown. �

4.2. Gene content in individuals and pairs. Next we obtain the first two mo-
ments of the two-dimensional distribution of (|G1|, . . . , |Gn|).

PROPOSITION 4.4 [Distribution of (Gi , Gj )]. For i = 1, . . . , n,

Gi ∼ P O I
(

θ

ρ
· λI

)
.
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In particular,

E[|Gi |] = V[|Gi |] = θ

ρ
.

For 1 ≤ i �= j ≤ n,

COV[|Gi |, |Gj |] = θ

ρ(1 + ρ)
.

REMARK 4.5. In the proof of 2. we use the well-known fact that for random
variables X,Y,T

COV[X,Y ] = COV[E[X|T ],E[Y |T ]] + E[COV[X,Y |T ]]
with

COV[X,Y |T ] := E[(X − E[X|T ])(Y − E[Y |T ])|T ].

PROOF OF PROPOSITION 4.4. Consider the ancestral line of individual i. The
process (Gt )t�i follows the same dynamics as the process �R− studied in Sec-
tion 4.1. The first claim follows from Proposition 4.2(2), which shows that the
unique reversible equilibrium for this dynamics is P O I( θ

ρ
λI ).

We denote the random coalescence time of individuals i and j by T . As above,
Gi and Gj denote (the finite measures describing) the genes present in both indi-
viduals. Recall that we have shown in Proposition 4.2(2) that the equilibrium of
the Markov chain �R− = (Gt )t∈R− of Section 4.1 is reversible. Hence, given T ,
we have that (Gi , Gj ) and (G−2T , G0) have the same distribution. So we find that
Gi ∩ Gj , Gi \ Gj and Gj \ Gi are independent and, by Proposition 4.2,

Gi ∩ Gj ∼ P O I
(

θ

ρ
e−ρT ·λI

)
, Gi \ Gj

d= Gi \ Gj ∼ P O I
(

θ

ρ
(1−e−ρT ) ·λI

)
.

Moreover, both sets of genes, Gi and Gj , are independent of T . We obtain

COV[|Gi |, |Gj |]
= COV[E[|Gi ||T ],E[|Gj ||T ]] + E[COV[|Gi |, |Gj ||T ]]

= COV

[
θ

ρ
,
θ

ρ

]
+ E
[
COV[|Gi ∩ Gj | + |Gi \ Gj |, |Gi ∩ Gj | + |Gj \ Gi ||T ]]

= E[V[|Gi ∩ Gj ||T ]] = E

[
θ

ρ
e−ρT

]
= θ

ρ(1 + ρ)

as T ∼ Exp(1). �
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4.3. Proof of Theorem 1. Theorem 1 now follows from Proposition 4.4 and

E[A] = 1

n

n∑
i=1

E[|Gi |] = θ

ρ
,

V[A] = 1

n2

(
n∑

i=1

V[|Gi |] +
n∑

i,j=1
i �=j

COV[|Gi |, |Gj |]
)

= 1

n

θ

ρ
+
(

1 − 1

n

)
θ

ρ(1 + ρ)
= 1

n

θ

1 + ρ
+ θ

ρ(1 + ρ)
.

5. Extension of Proposition 4.2 and proof of Theorem 2. The one-line equi-
librium considered in Proposition 4.2 provides the right setting for computing the
one- and two-dimensional marginals of G1, . . . , Gn as shown in the proof of Propo-
sition 4.4. In Section 5.1 we provide a method to compute higher order marginals.
We will use this method for second (Section 5.2), third (Section 5.3) and fourth
(Section 5.4) order which finally leads to a proof of Theorem 2 in Section 5.5.

5.1. Extending the one-line equilibrium to a genealogical tree. Before we in-
troduce the general method, how to obtain all marginals of G1, . . . , Gn, we have
to set the scene. Consider the genealogical tree T relating all n individuals and
the tree-indexed Markov chain �T = (Gt )t∈T . In equilibrium, we have seen above
that Gt ∼ P O I( θ

ρ
· λI ) for all t ∈ T . Hence, we now consider the case that T is

a rooted tree with root r and Gr ∼ P O I( θ
ρ

· λI ). We need some notation to deal
with the genealogical tree T .

DEFINITION 5.1 (Survival function). Let T be a binary tree with one distin-
guished point r ∈ T , referred to as the root of T , a finite set of leaves L ⊆ T and
internal vertices V . For s, t ∈ T we denote by (s, t] the set of points which must be
visited on any path between s and t . Moreover, dT (s, t) is the length of the path be-
tween s and t . Define a partial order � on T by saying that s � t iff s ∈ (r, t] (such
that r is the minimal element). For s, t ∈ T the point s ∧ t is given as the maximal
element in {q :q � s and q � t}. For an internal node (i.e., a branch point) t ∈ T
we denote by t1 and t2 the two directions in T leading to bigger (with respect to
�) elements.

We define the survival function pT : T → [0,1] by

pT (t) = 1 for t ∈ L,

∂pT (t)

∂t
= ρ

2
pT (t) for t ∈ T \ (L ∪ V),(5.1)

pT (t) = 1 − (1 − pT (t1)
)(

1 − pT (t2)
)

for t ∈ V,
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where for f : T \ (L ∪ V) → R

∂f (t)

∂t
:= lim

ε→0

1

ε

(
f (t + ε) − f (t)

)
and t + ε is any point in T with dT (t, t + ε) = ε and t � t + ε, if the limit exists.

PROPOSITION 5.2 (Probability of no loss along T ). Let T be a binary tree,
rooted at r , pT as in Definition 5.1 and �T = (Gt )t∈T be the tree-indexed Markov
chain from Definition 2.2 with Gr ∼ P O I( θ

ρ
λI ). Then for u ∈ I and t ∈ T

P

[
u ∈ ⋃

t�s

s∈L

Gs

∣∣∣u ∈ Gt

]
= pT (t).

PROOF. Denote the probability on the left-hand side by q(t). First note that
q(t) = 1 if t ∈ L since {s ∈ L : t � s} = {t}. Moreover, the probability on the left-
hand side decreases exponentially at rate ρ

2 along branches of T due to loss events
of u. Last, consider the case t ∈ V . Then, u must not be lost to either t1 or t2.
This occurs with probability q(t) = 1 − (1 − q(t1))(1 − q(t2)). In other words, the
function q fulfills all defining properties of pT from (5.1) and we are done. �

We need some more notation for subsets of a finite binary rooted tree T .

DEFINITION 5.3 (Length and subtrees of T ). We use the notation of Defini-
tion 5.1.

For the binary tree T we denote by �(T ) its total length, that is, the sum of
lengths of all its branches.

Let L′, M′ ⊆ L be sets of leaves with L′ ∩ M′ = ∅. We set r0 := ∧t∈L′ t
and denote by T 0(L′) the minimal connected, binary tree spanning the leaves L′,
rooted at r0. The set (T 0(L′ ∪ M′)) \ T 0(L′) consists of k ≤ |M′| different con-
nected subtrees, connected with T 0(L′) at vertices r1, . . . , rk . We denote the result-
ing binary trees by T 1(L′, M′), . . . , T k(L′, M′), rooted at r1, . . . , rk , respectively.

REMARK 5.4. For an illustration of the objects introduced in Definition 5.3,
see Figure 4.

If |L′| = 1, it is important to note that T 0(L′) only consists of a single point.
Consequently, �(T 0(L′)) = 0 in this case.

PROPOSITION 5.5 (Distribution of
⋂Gs \⋃Gt ). Let T be a finite binary tree,

rooted at r ∈ T , L its finite set of leaves and L′, M′ ⊆ L with L′ ∩ M′ = ∅.
Moreover, let T 0(L′), T 1(L′, M′), . . . , T k(L′, M′) be as in Definition 5.3. Let
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FIG. 4. Illustration of concepts given in Definition 5.3(2). The subtree T 0(L′) is spanned by leaves
in L′. Considering T \ T 0(L′), the tree falls in three parts. Two of them, which lead to a leaf in M′,
are denoted T k(L′, M′), k = 1,2. Roots of the trees are r0, r1, r2.

�T = (Gt )t∈T be the tree-indexed Markov chain from Definition 2.2 with Gr ∼
P O I( θ

ρ
). Then,

⋂
t∈L′

Gt

∖ ⋃
t∈M′

Gt ∼ P O I
(

θ

ρ
e−ρ/2�(T 0(L′))

k∏
i=1

(
1 − pT i (L′,M′)(ri)

) · λI

)
.

In addition, if L′′, M′′ ⊆ L with L′′ ∩ M′′ = ∅, then⋂
t∈L′

Gt

∖ ⋃
t∈M′

Gt and
⋂

t∈L′′
Gt

∖ ⋃
t∈M′′

Gt

are independent if L′ ∩ M′′ �= ∅ or L′′ ∩ M′ �= ∅.

REMARK 5.6. The pairwise independence in the proposition can be extended
to independence of any number of random measures

⋂
t∈Li

Gt \ ⋃t∈Mi
Gt , i =

1, . . . , n, provided Li ∩ Mj �= ∅ or Lj ∩ Mi �= ∅ holds for any pair i �= j .

PROOF OF PROPOSITION 5.5. Given T , rooted at r ∈ T , we have assumed
that Gr = P O I( θ

ρ
· λI ), that is, the tree-indexed Markov chain is in equilibrium.

Consequently, Gr0 ∼ Gr . Every gene in
⋂

t∈L′ Gt \⋃t∈M′ Gt must have been present
in Gr0 . In addition, every gene in Gr0 has the same chance p to be present in⋂

t∈L′ Gt \⋃t∈M′ Gt . This already shows that
⋂

t∈L′ Gt \⋃t∈M′ Gt is a thinning
of a Poisson measure and hence is Poisson with intensity θ

ρ
p. It is important to

note that a gene present in
⋂

t∈L′ Gt \⋃t∈M′ Gt must not be lost on the whole sub-
tree T 0(L′), which occurs with probability e−ρ/2�(T 0(L′)) and must be lost on any
subtree leading to a leaf in M′. However, the chance that a gene is lost along one
such subtree is given through the survival function. In the subtree i, we have a root
ri connecting the subtree to the tree spanned by L′ and so 1 −pT i (L′,M′)(ri) is the
probability that the gene is lost in all leaves in M′.
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For the independence property assume that L′ ∩ M′′ �= ∅ or L′′ ∩ M′ �= ∅.
Observe that (

⋂
t∈L′ Gt \⋃t∈M′ Gt ) ∩ (

⋂
t∈L′′ Gt \⋃t∈M′′ Gt ) = 0 in this case, that

is,
⋂

t∈L′ Gt \⋃t∈M′ Gt and
⋂

t∈L′′ Gt \⋃t∈M′′ Gt arise by different Poisson events
along T . The independence follows. �

COROLLARY 5.7. For the same situation as in Proposition 5.5, if L′ ∩ M′ =
L′′ ∩ M′′ = ∅,

COV

[∣∣∣∣⋂
t∈L′

Gt

∖ ⋃
t∈M′

Gt

∣∣∣∣, ∣∣∣∣ ⋂
t∈L′′

Gt

∖ ⋃
t∈M′′

Gt

∣∣∣∣∣∣∣T
]

= V

[∣∣∣∣ ⋂
t∈L′∪L′′

Gt

∖ ⋃
t∈M′∪M′′

Gt

∣∣∣∣∣∣∣T
]
.

PROOF. We write⋂
t∈L′

Gt

∖ ⋃
t∈M′

Gt =
(⋂

t∈L′
Gt

∖ ⋃
t∈M′∪M′′∪L′′

Gt

)
�
( ⋂

t∈L′∪L′′
Gt

∖ ⋃
t∈M′∪M′′

Gt

)

�
( ⋂

t∈L′∪L′′∪M′′
Gt

∖ ⋂
t∈M′

Gt

)
,

⋂
t∈L′′

Gt

∖ ⋃
t∈M′′

Gt =
( ⋂

t∈L′′
Gt

∖ ⋃
t∈M′∪M′′∪L′

Gt

)
�
( ⋂

t∈L′∪L′′
Gt

∖ ⋃
t∈M′∪M′′

Gt

)

�
( ⋂

t∈L′∪L′′∪M′
Gt

∖ ⋃
t∈M′′

Gt

)
.

By the independence statement in Proposition 5.5, only the covariances of the two
second terms in both equalities do not vanish. The result follows. �

5.2. Gene content for two individuals. The simplest case in Proposition 5.5
arises if T has only two leaves. This case was already studied in the proof of
Proposition 4.4. We extend our analysis by the next result.

PROPOSITION 5.8 (Gene content for two individuals). For 1 ≤ i �= j ≤ n,

E[|Gi \ Gj |] = θ

1 + ρ
,

V[|Gi \ Gj |] = θ2

(1 + ρ)2(1 + 2ρ)
+ θ

1 + ρ
,

COV[|Gi \ Gj |, |Gj \ Gi |] = θ2

(1 + ρ)2(1 + 2ρ)
.
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PROOF. We use Proposition 5.5. It suffices to assume that T is a tree connect-
ing individuals i and j , that is, L = {i, j}. First we assume that the coalescence
time T of the two individuals is given. Under this assumption, Proposition 5.5
tells us that

Gi \ Gj ∼ P O I
(

θ

ρ
(1 − e−ρT ) · λI

)
and, using the fact that expectation and variance are equal for a Poisson distributed
random variable,

E[|Gi \ Gj ||T ] = V[|Gi \ Gj ||T ] = θ

ρ
(1 − e−ρT ),

such that we obtain

E[|Gi \ Gj |] = E
[
E[|Gi \ Gj ||T ]]= E

[
θ

ρ
(1 − e−ρT )

]
= θ

ρ

ρ

1 + ρ
= θ

1 + ρ
,

V[|Gi \ Gj |] = V
[
E[|Gi \ Gj ||T ]]+ E

[
V[|Gi \ Gj ||T ]]

= V

[
θ

ρ
(1 − e−ρT )

]
+ E

[
θ

ρ
(1 − e−ρT )

]

= θ2

ρ2

(
1

1 + 2ρ
− 1

(1 + ρ)2

)
+ θ

ρ

(
1 − 1

1 + ρ

)

= θ2

(1 + ρ)2(1 + 2ρ)
+ θ

1 + ρ
.

In addition, given T , Gi \ Gj and Gj \ Gi are independent by Corollary 5.7. Hence,

COV[|Gi \ Gj |, |Gj \ Gi |] = COV
[
E[|Gi \ Gj ||T ],E[|Gj \ Gi ||T ]]

= V

[
θ

ρ
(1 − e−ρT )

]
= θ2

(1 + ρ)2(1 + 2ρ)
. �

5.3. Gene content for three individuals. Similar to Proposition 5.8, we use the
general setting of Proposition 5.5 in order to prove results about the joint distribu-
tion of gene content in three individuals.

PROPOSITION 5.9 (Gene content for three individuals). For i, j, k ∈ {1, . . . ,

n} pairwise different,

COV[|Gi \ Gj |, |Gi \ Gk|] = θ2

(1 + ρ)2(1 + 2ρ)(3 + 2ρ)
+ θ

2 + ρ
,(5.2)

COV[|Gi \ Gj |, |Gk \ Gi |] = θ2

(1 + ρ)2(1 + 2ρ)(3 + 2ρ)
,(5.3)
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FIG. 5. The 3 cases for a genealogical tree connecting three individuals i, j, k.

COV[|Gi \ Gj |, |Gj \ Gk|] = θ2

(1 + ρ)2(1 + 2ρ)(3 + 2ρ)
,(5.4)

COV[|Gi \ Gj |, |Gk \ Gj |] = θ2

(1 + ρ)2(1 + 2ρ)(3 + 2ρ)
(5.5)

+ θ

(1 + ρ)(2 + ρ)
.

PROOF. We use Proposition 5.5 again. Let T be the tree connecting three
individuals i, j and k, that is, L = {i, j, k}. Assume the random times T2, T3 during
which the coalescent has 2, 3 lines, respectively, and one of the three possible tree
topologies, illustrated in Figure 5, are given. We use

COV[|Gi \ Gj |, |Gi \ Gk|]
= COV

[
E[|Gi \ Gj ||T ],E[|Gi \ Gk||T ]](5.6)

+ E
[
COV[|Gi \ Gj |, |Gi \ Gk||T ]]

and similar equalities for the other cases. We compute both parts of the right-hand
side separately. For the first part we need to calculate E[|Gi \ Gj ||T ] depending
on T :

1. T ∈ {(A)}:

E[|Gi \ Gj ||T ] =
∫ 2T3

0

θ

2
e−ρ/2t dt = θ

ρ
(1 − e−ρT3);

2. T ∈ {(B), (C)}:

E[|Gi \ Gj ||T ] =
∫ 2T2+2T3

0

θ

2
e−ρ/2t dt = θ

ρ

(
1 − e−ρ(T2+T3)

)
.

Replacing the pair ij in the last to expressions by ik, jk, ki or kj leads to the same
possibilities arising in the genealogies (A), (B), (C). We collect all possibilities in
Table 1.
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TABLE 1
The three different tree topologies from Figure 5 give rise to

two different terms for the conditional expectation of a pair of
leaves, depending on the labeling of the pair

(A) (B) (C)

ij 1. 2. 2.
ji 1. 2. 2.
ik 2. 1. 2.
jk 2. 2. 1.
ki 2. 1. 2.
kj 2. 2. 1.

In Proposition 5.8 we have seen that E[E[|Gi \ Gj ||T ] = E[|Gi \ Gj |] = θ
1+ρ

and
therefore,

COV
[
E[|Gi \ Gj ||T ],E[|Gi \ Gk||T ]]

= 2

3

θ2

ρ2 E
[(

1 − e−ρ(T2+T3)
)
(1 − e−ρT3)

]
+ 1

3

θ2

ρ2 E
[(

1 − e−ρ(T2+T3)
)2]− θ2

(1 + ρ)2

= θ2

3ρ2

(
2ρ

3 + ρ
− 6

(1 + ρ)(3 + ρ)
+ 6

(1 + ρ)(3 + 2ρ)

+ 1 − 6

(1 + ρ)(3 + ρ)
+ 1

(1 + 2ρ)(3 + 2ρ)

)
− θ2

(1 + ρ)2

= θ2

(1 + ρ)2(1 + 2ρ)(3 + 2ρ)
.

Note that this equation also holds for the other three cases in Proposition 5.9, that
is, we have computed the first term in (5.6) for all combinations of i, j, k arising
in the proposition.

Let us now consider the second part of (5.6). From Corollary 5.7 we see that

E
[
COV[|Gi \ Gj |, |Gk \ Gi ||T ]]= E

[
COV[|Gi \ Gj |, |Gj \ Gk||T ]]= 0,

which already gives assertions (5.3) and (5.4). Moreover, Corollary 5.7 gives

E
[
COV[|Gi \ Gj |, |Gi \ Gk||T ]]= E

[
V[|Gi \ (Gj ∪ Gk)||T ]],

E
[
COV[|Gi \ Gj |, |Gk \ Gj ||T ]]= E

[
V[|Gi ∩ Gk \ Gj ||T ]].

From Proposition 5.5 we know that for given T , |Gi \ (Gj ∪ Gk)| and |Gi ∩ Gk \ Gj |
are Poisson distributed. Note that |Gi \ (Gj ∪ Gk)| is the number of genes present
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in i, but not in j and k. Recalling that G
(n)
k denotes the number of genes present in

k out of n individuals, it is clear that E[|Gi \ (Gj ∪ Gk)|] = 1
3E[G(3)

1 ], and so using
Theorem 5

E
[
V[|Gi \ (Gj ∪ Gk)||T ]]= E

[
E[|Gi \ (Gj ∪ Gk)||T ]]

= E[|Gi \ (Gj ∪ Gk)|] = θ

2 + ρ
.

Equivalently, with E[|Gi ∩ Gk \ Gj |] = 1
3E[G(3)

2 ],

E
[
V[|Gi ∩ Gk \ Gj ||T ]]= E[|Gi ∩ Gk \ Gj |] = θ

(2 + ρ)(1 + ρ)
. �

5.4. Gene content for pairs of two individuals.

PROPOSITION 5.10 (Gene content for pairs of two individuals). For i, j, k, l ∈
{1, . . . , n} pairwise different

COV[|Gi \ Gj |, |Gk \ Gl|]

= θ

(3 + ρ)(2 + ρ)
+ 2θ2

(1 + ρ)2(3 + ρ)(1 + 2ρ)(3 + 2ρ)
.

PROOF. The proof is similar to the proof of Proposition 5.9. Analogously to
(5.6) we use

COV[|Gi \ Gj |, |Gk \ Gl|] = COV
[
E[|Gi \ Gj ||T ],E[|Gk \ Gl||T ]]

(5.7)
+ E
[
COV[|Gi \ Gj |, |Gk \ Gl||T ]].

As E[E[|Gi \ Gj ||T ]] = E[|Gi \ Gj |] = θ
1+ρ

we get that

COV
[
E[|Gi \ Gj ||T ],E[|Gk \ Gl||T ]]

= E
[
E[|Gi \ Gj ||T ] · E[|Gk \ Gl||T ]]− θ2

(1 + ρ)2 .

Therefore, four different cases occur depending on the topology of the tree seen in
Figure 6:

1. T ∈ {(C), (D), (E), (F ), (G), (H), (I ), (J )}:
ρ2

θ2 E[|Gi \ Gj ||T ] · E[|Gk \ Gl||T ] = (1 − e−ρ(T3+T4)
)(

1 − e−ρ(T2+T3+T4)
);

2. T ∈ {(A), (B), (K), (L)}:
ρ2

θ2 E[|Gi \ Gj ||T ] · E[|Gk \ Gl||T ] = (1 − e−ρT4)
(
1 − eρ(T2+T3+T4)

);
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FIG. 6. The 18 equally probable topologies for a genealogical tree connecting four individuals
i, j, k, l.

3. T ∈ {(M), (R)}:
ρ2

θ2 E[|Gi \ Gj ||T ] · E[|Gk \ Gl||T ] = (1 − e−ρT4)
(
1 − e−ρ(T3+T4)

);
4. T ∈ {(N), (O), (P ), (Q)}:

ρ2

θ2 E[|Gi \ Gj ||T ] · E[|Gk \ Gl||T ] = (1 − e−ρ(T2+T3+T4)
)2

.

Hence, with a little help from MATHEMATICA,

COV
[
E[|Gi \ Gj ||T ],E[|Gk \ Gl||T ]]

= θ2

ρ2

(
8

18

(
1 − 18

(3 + ρ)(6 + ρ)
− 18

(1 + ρ)(3 + ρ)(6 + ρ)

+ 18

(1 + ρ)(3 + 2ρ)(6 + 2ρ)

)

+ 4

18

(
1 − 6

6 + ρ
− 18

(1 + ρ)(3 + ρ)(6 + ρ)

+ 18

(1 + ρ)(3 + ρ)(6 + 2ρ)

)

+ 2

18

(
1 − 6

6 + ρ
− 18

(3 + ρ)(6 + ρ)
+ 18

(3 + ρ)(6 + 2ρ)

)
(5.8)
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+ 4

18

(
1 − 36

(1 + ρ)(3 + ρ)(6 + ρ)

+ 18

(1 + 2ρ)(3 + 2ρ)(6 + 2ρ)

))
− θ2

(1 + ρ)2

= 2θ2

(1 + ρ)2(3 + ρ)(1 + 2ρ)(3 + 2ρ)
.

For the second term, Corollary 5.7 gives

E
[
COV[|Gi \ Gk|, |Gj \ Gl||T ]]= E[V[Dij,kl|T ]]

with Dij,kl as in (3.3). Given T , Dij,kl is Poisson distributed, hence we obtain
from (3.4)

E[V[Dij,kl|T ]] = E[E[Dij,kl|T ]] = θ

(3 + ρ)(2 + ρ)
.(5.9)

Combining (5.7) with (5.8) and (5.9) gives the result. �

5.5. Proof of Theorem 2. Using Propositions 5.8, 5.9 and 5.10, it is now easy
to prove Theorem 2. We obtain

n2(n − 1)2
V[D]

=∑
i �=j

(V[|Gi \ Gj |] + COV[|Gi \ Gj |, |Gj \ Gi |])

+ ∑
i,j,k pwd

(COV[|Gi \ Gj |, |Gi \ Gk|] + COV[|Gi \ Gj |, |Gj \ Gk|]

+ COV[|Gi \ Gj |, |Gk \ Gi |] + COV[|Gi \ Gj |, |Gk \ Gj |])
+ ∑

i,j,k,l pwd

COV[|Gi \ Gj |, |Gk \ Gl|]

= n(n − 1)(V[|G1 \ G2|] + COV[|G1 \ G2|, |G2 \ G1|])
+ n(n − 1)(n − 2)(COV[|G1 \ G2|, |G1 \ G3|]

+ COV[|G1 \ G2|, |G2 \ G3|]
+ COV[|G1 \ G2|, |G3 \ G1|]
+ COV[|G1 \ G2|, |G3 \ G2|])

+ n(n − 1)(n − 2)(n − 3)COV[|G1 \ G2|, |G3 \ G4|],
and the result follows by some application of MATHEMATICA.
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6. Proof of Theorem 3. We denote by T the genealogy connecting the indi-
viduals i, j, k, l. As above, we note that T is uniquely given by the random times
T2, T3, T4 during which the coalescent has 2,3,4 lines, respectively, and the tree
topology, distinguished by 18 equally probably cases, illustrated in Figure 6. We
use

E[Dij,kl · Dik,j l] = E[COV[Dij,kl,Dik,j l|T ]]
(6.1)

+ E
[
E[Dij,kl|T ] · E[Dik,j l|T ]]

and note that

COV[Dij,kl,Dik,j l|T ] = 0

by Corollary 5.7. So, we are left with computing the second term in (6.1). The
terms E[Dij,kl|T ] can take six different values, depending on T . We use Proposi-
tion 5.5:

1. T ∈ {(A), (B)}:
ρ

θ
E[Dij,kl|T ]

= e(−ρ/2)2T4
(
1 − e−ρ/2T3 + e−ρ/2T3

(
1 − e−ρ/2(T3+T4)

)
× (1 − e−ρ/2(2T2+T3+T4)

))
= e(−ρ/2)2T4 − e−ρ/2(2T3+3T4) − e−ρ/2(2T2+2T3+3T4)

+ e−ρ/2(2T2+3T3+4T4);
2. T ∈ {(C), (E), (G), (I )}:

ρ

θ
E[Dij,kl|T ] = e−ρ/2(2T3+2T4)(1 − e−ρ/2T4)

(
1 − e−ρ/2(2T2+T3+T4)

)
= e−ρ/2(2T3+2T4) − e−ρ/2(2T3+3T4) − e−ρ/2(2T2+3T3+3T4)

+ e−ρ/2(2T2+3T3+4T4);
3. T ∈ {(D), (F ), (G), (H), (J ), (N), (O), (P ), (Q)}:

ρ

θ
E[Dij,kl|T ] = e−ρ/2(2T2+2T3+2T4)(1 − e−ρ/2T4)

(
1 − e−ρ/2(T3+T4)

)
= e−ρ/2(2T2+2T3+2T4) − e−ρ/2(2T2+2T3+3T4)

− e−ρ/2(2T2+3T3+3T4) + e−ρ/2(2T2+3T3+4T4);
4. T ∈ {(K), (L)}:

ρ

θ
E[Dij,kl|T ] = e−ρ/2(2T2+2T3+2T4)

(
1 − 2e−ρ/2(T3+T4) + e−ρ/2(T3+2T4)

)
= e−ρ/2(2T2+2T3+2T4) − 2e−ρ/2(2T2+3T3+3T4)

+ e−ρ/2(2T2+3T3+4T4);
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TABLE 2
For every tree topology of Figure 6, the two pairs ij, kl as well as ik, j l fall into one of the six cases

for the conditional expectation; see below (6.1)

(A) (B) (C) (D) (E) (F) (G) (H) (I)

ij, kl 1. 1. 2. 3. 2. 3. 2. 3. 2.
ik, j l 2. 3. 1. 1. 3. 2. 2. 3. 4.

(J) (K) (L) (M) (N) (O) (P) (Q) (R)

ij, kl 3. 4. 4. 5. 3. 3. 3. 3. 6.
ik, j l 4. 2. 3. 3. 5. 3. 3. 6. 3.

5. T ∈ {(M)}:
ρ

θ
E[Dij,kl|T ] = e(−ρ/2)2T4

(
1 − 2e−ρ/2(2T2+2T3+T4) + e−ρ/2(2T2+3T3+2T4)

)
= e(−ρ/2)2T4 − 2e−ρ/2(2T2+2T3+3T4) + e−ρ/2(2T2+3T3+4T4);

6. T ∈ {(R)}:
ρ

θ
E[Dij,kl|T ] = e−ρ/2(2T3+2T4)

(
1 − 2e−ρ/2(2T2+T3+T4) + e−ρ/2(2T2+T3+2T4)

)
= e−ρ/2(2T3+2T4) − 2e−ρ/2(2T2+3T3+3T4) + e−ρ/2(2T2+3T3+4T4).

Relabeling i, j, k, l by i, k, j, l changes these cases. Table 2 gives the responsi-
ble terms for E[Dij,kl|T ] and E[Dik,j l|T ] for all 18 possible tree topologies. We
obtain nine cases for which to compute the second term in (6.1). We abbreviate
ẽ := e−ρ/2.

T ∈ {(A), (C)}:
ρ2

θ2 E[Dij,kl|T ] · E[Dik,j l|T ]
= ẽ2T3+4T4 − ẽ2T3+5T4 − ẽ2T2+3T3+5T4 + ẽ2T2+3T3+6T4

− ẽ4T3+5T4 + ẽ4T3+6T4 + ẽ2T2+5T3+6T4 − ẽ2T2+5T3+7T4

− ẽ2T2+4T3+5T4 + ẽ2T2+4T3+6T4 + ẽ4T2+5T3+6T4 − ẽ4T2+5T3+7T4

+ ẽ2T2+5T3+6T4 − ẽ2T2+5T3+7T4 − ẽ4T2+6T3+7T4 + ẽ4T2+6T3+8T4;
T ∈ {(B), (D)}:

ρ2

θ2 [Dij,kl|T ] · E[Dik,j l|T ]
= ẽ2T2+2T3+4T4 − ẽ2T2+2T3+5T4 − ẽ2T2+3T3+5T4 + ẽ2T2+3T3+6T4
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− ẽ2T2+4T3+5T4 + ẽ2T2+4T3+6T4 + ẽ2T2+5T3+6T4 − ẽ2T2+5T3+7T4

− ẽ4T2+4T3+5T4 + ẽ4T2+4T3+6T4 + ẽ4T2+5T3+6T4 − ẽ4T2+5T3+7T4

+ ẽ4T2+5T3+6T4 − ẽ4T2+5T3+7T4 − ẽ4T2+6T3+7T4 + ẽ4T2+6T3+8T4;
T ∈ {(E), (F )}:

ρ2

θ2 [Dij,kl|T ] · E[Dik,j l|T ]
= ẽ2T2+4T3+4T4 − ẽ2T2+4T3+5T4 − ẽ2T2+5T3+5T4 + ẽ2T2+5T3+6T4

− ẽ2T2+4T3+5T4 + ẽ2T2+4T3+6T4 + ẽ2T2+5T3+6T4 − ẽ2T2+5T3+7T4

− ẽ4T2+5T3+5T4 + ẽ4T2+5T3+6T4 + ẽ4T2+6T3+6T4 − ẽ4T2+6T3+7T4

+ ẽ4T2+5T3+6T4 − ẽ4T2+5T3+7T4 − ẽ4T2+6T3+7T4 + ẽ4T2+6T3+8T4;
T ∈ {(G)}:

ρ2

θ2 E[Dij,kl|T ] · E[Dik,j l|T ]
= ẽ4T3+4T4 − ẽ4T3+5T4 − ẽ2T2+5T3+5T4 + ẽ2T2+5T3+6T4

− ẽ4T3+5T4 + ẽ4T3+6T4 + ẽ2T2+5T3+6T4 − ẽ2T2+5T3+7T4

− ẽ2T2+5T3+5T4 + ẽ2T2+5T3+6T4 + ẽ4T2+6T3+6T4 − ẽ4T2+6T3+7T4

+ ẽ2T2+5T3+6T4 − ẽ2T2+5T3+7T4 − ẽ4T2+6T3+7T4 + ẽ4T2+6T3+8T4;
T ∈ {(H), (O), (P )}:

ρ2

θ2 E[Dij,kl|T ] · E[Dik,j l|T ]
= ẽ4T2+4T3+4T4 − ẽ4T2+4T3+5T4 − ẽ4T2+5T3+5T4 + ẽ4T2+5T3+6T4

− ẽ4T2+4T3+5T4 + ẽ4T2+4T3+6T4 + ẽ4T2+5T3+6T4 − ẽ4T2+5T3+7T4

− ẽ4T2+5T3+5T4 + ẽ4T2+5T3+6T4 + ẽ4T2+6T3+6T4 − ẽ4T2+6T3+7T4

+ ẽ4T2+5T3+6T4 − ẽ4T2+5T3+7T4 − ẽ4T2+6T3+7T4 + ẽ4T2+6T3+8T4;
T ∈ {(I ), (K)}:

ρ2

θ2 E[Dij,kl|T ] · E[Dik,j l|T ]
= ẽ2T2+4T3+4T4 − 2ẽ2T2+5T3+5T4 + ẽ2T2+5T3+6T4

− ẽ2T2+4T3+5T4 + 2ẽ2T2+5T3+6T4 − ẽ2T2+5T3+7T4

− ẽ4T2+5T3+5T4 + 2ẽ4T2+6T3+6T4 − ẽ4T2+6T3+7T4

+ ẽ4T2+5T3+6T4 − 2ẽ4T2+6T3+7T4 + ẽ4T2+6T3+8T4;



THE DISTRIBUTED GENOME IN BACTERIAL POPULATIONS 1599

T ∈ {(J ), (L)}:
ρ2

θ2 E[Dij,kl|T ] · E[Dik,j l|T ]
= ẽ4T2+4T3+4T4 − 2ẽ4T2+5T3+5T4 + ẽ4T2+5T3+6T4

− ẽ4T2+4T3+5T4 + 2ẽ4T2+5T3+6T4 − ẽ4T2+5T3+7T4

− ẽ4T2+5T3+5T4 + 2ẽ4T2+6T3+6T4 − ẽ4T2+6T3+7T4

+ ẽ4T2+5T3+6T4 − 2ẽ4T2+6T3+7T4 + ẽ4T2+6T3+8T4;
T ∈ {(M), (N)}:

ρ2

θ2 E[Dij,kl|T ] · E[Dik,j l|T ]
= ẽ2T2+2T3+4T4 − 2ẽ4T2+4T3+5T4 + ẽ4T2+5T3+6T4

− ẽ2T2+2T3+5T4 + 2ẽ4T2+4T3+6T4 − ẽ4T2+5T3+7T4

− ẽ2T2+3T3+5T4 + 2ẽ4T2+5T3+6T4 − ẽ4T2+6T3+7T4

+ ẽ2T2+3T3+6T4 − 2ẽ4T2+5T3+7T4 + ẽ4T2+6T3+8T4;
T ∈ {(Q), (R)}:

ρ2

θ2 E[Dij,kl|T ] · E[Dik,j l|T ]
= ẽ2T2+4T3+4T4 − 2ẽ4T2+5T3+5T4 + ẽ4T2+5T3+6T4

− ẽ2T2+4T3+5T4 + 2ẽ4T2+5T3+6T4 − ẽ4T2+5T3+7T4

− ẽ2T2+5T3+5T4 + 2ẽ4T2+6T3+6T4 − ẽ4T2+6T3+7T4

+ ẽ2T2+5T3+6T4 − 2ẽ4T2+6T3+7T4 + ẽ4T2+6T3+8T4 .

Combining the last equations and using MATHEMATICA, we obtain the desired
result.

7. Proof of Theorems 4 and 5. Theorems 4 and 5 provide expectations for
the size of the dispensable genome and the gene frequency spectrum, respectively.
Recalling that G

(n)
k is the number of genes in frequency k = 1, . . . , n in a sample

of size n, it is clear that

G =
n∑

k=1

G
(n)
k ,
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where G is given by (3.5). In addition, if E[G(i)
1 ], i = 1, . . . , is known from The-

orem 5,

E[G] =
n∑

i=1

1

i
E
[
G

(i)
1

]= n∑
i=1

1

i

θi

i − 1 + ρ
= θ

n−1∑
i=0

1

i + ρ
.

Hence, the result for the expected number of genes in Theorem 4 can easily be
proved once we have established Theorem 5. However, we take an alternative route
and give an independent proof of Theorem 4.

7.1. An independent proof of Theorem 4. Recall the survival function pT from
Definition 5.1. Consider the coalescent, denoted by T , started with n lines, rooted
at r , the most recent common ancestor of the sample. As shown in Proposition 5.2,
pT : T → [0,1] gives the probability that a mutation that arises at t ∈ T is not lost
in at least one leaf. Hence, given T , we find that G ∼ P O I(π(T )) with

π(T ) := θ

2

∫
T

pT (t) dt.

Next, we consider a random coalescent T with additional loss events at rate ρ
2

along the tree. We say that t ∈ T is unlost if there is a leaf in i ∈ T such that the
path [t, i] is not hit by a loss event. Given T , note that

pT (t) = P[t unlost|T ]
by Proposition 5.2.

To prove (3.10), we write immediately, using the above arguments,

E[G] = E

[
θ

2

∫
T

pT (t) dt

]
= E

[
θ

2

∫
T

1(t not lost) dt

]
(7.1)

= θ

2
E[length of unlost lines in T ].

To compute the expected length of unlost lines we note that all lines are unlost
near the leaves. The number of unlost lines decreases either by a coalescence or by
a gene loss event. When there are k unlost lines left, any line is lost at rate ρ

2 and

two lines coalesce at rate
(k
2

)
. Hence, the time until there are k − 1 unlost lines is

exp(
ρ
2 k + (k2)) distributed. Thus,

E[G] = θ

2

n∑
k=1

k(k
2

)+ ρ/2k
= θ

n∑
k=1

1

k − 1 + ρ
= θ

n−1∑
k=0

1

k + ρ
,

and we have proven (3.10).



THE DISTRIBUTED GENOME IN BACTERIAL POPULATIONS 1601

Next we show how to obtain the recursion for V[G] given in (3.11). Using the
fact that, given T , the number of genes G is Poisson distributed with rate π(T ),

V[G] = E[E[G2|T ]] − E[G]2 = E[π(T ) + π(T )2] − E[G]2

= E[G] − E[G]2 + θ2

4
E

[∫ ∫
pT (s)pT (t) ds dt

]
.

Since E[G] is known, it remains to compute the last term in the last display. Con-
sider two independent Poisson processes P1 and P2 along the tree T , each at
rate ρ

2 , describing gene loss. As above, we say that a point s ∈ T is k-unlost if
there is a leaf i ∈ T such that the path [s, i] is not hit by an event in Pk . We denote
by Lk the length of k-unlost points in T , k = 1,2. Using the same reasoning as
in (7.1),

E

[∫ ∫
pT (s)pT (t) ds dt

]
= E[L1L2].

The latter expectation can be derived via the following construction: in the tree T
with the two independent Poisson loss processes P1 and P2, denote by K1(τ ) the
number of lines which are both 1- and 2-unlost some distance τ from the treetop,
by K2(τ ) the number of lines which are 2-lost but 1-unlost and by K3(τ ) the
number of lines which are 1-lost but 2-unlost by time τ . Clearly,

L1 =
∫ ∞

0

(
K1(τ ) + K2(τ )

)
dτ, L2 =

∫ ∞
0

(
K1(τ ) + K3(τ )

)
dτ.

In addition, K = (K(τ))τ≥0 = (K1(τ ),K2(τ ),K3(τ ))τ≥0 is a Markov jump
process with the following rates from (k1, k2, k3) to

New state At rate

k′
1 = (k1 − 1, k2, k3) λ1 = (k1

2

)
k′

2 = (k1, k2 − 1, k3) λ2 = (k2
2

)+ k1k2 + ρ
2 k2

k′
3 = (k1, k2, k3 − 1) λ3 = (k3

2

)+ k1k3 + ρ
2 k3

k′
4 = (k1 + 1, k2 − 1, k3 − 1) λ4 = k2k3

k′
5 = (k1 − 1, k2 + 1, k3) λ5 = ρ

2 k1

k′
6 = (k1 − 1, k2, k3 + 1) λ6 = ρ

2 k1

Note that k′
1, . . . , k

′
6, λ1, . . . , λ6 are as defined in Definition 3.4. In each transi-

tion, 2k1 + k2 + k3 is not increasing and therefore hits 0 after a finite number of
transitions.

To obtain (3.11), define the process K with K(0) = k := (k1, k2, k3) and define

L
k

1 =
∫ ∞

0

(
K1(τ ) + K2(τ )

)
dτ, L

k

2 =
∫ ∞

0

(
K1(τ ) + K3(τ )

)
dτ
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such that Li
d= L

(n,0,0)
i , i = 1,2. We claim that

gk := E[Lk

1L
k

2]
satisfies (3.7) as well as the recursion (3.8).

First, given k1 + k2 = 1 (k1 + k3 = 1), there is only one 1-unlost line (2-unlost
line) in T . In this case, this line can only be lost by an event in P1 (P2), indepen-
dent of all other coalescence events. Hence, in this case, L

k

1 and L
k

2 are indepen-

dent, E[Lk

1] = 2
ρ

(E[Lk

2] = 2
ρ

) and E[Lk

2] = hk1+k3 (E[Lk

1] = hk1+k2 ). Combining
these results gives (3.7).

Second we show that E[Lk

1L
k

2] satisfies (3.8). Since K is a jump process, the
first event occurs after an exponential time T with rate λ, which is independent
of the new state after the first jump. Conditioning on the first event happening at
time T ,

L
k

1L
k

2 =
6∑

i=1

1{new state is k′
i}
(
(k1 + k2)T + L

k′
i

1

)(
(k1 + k3)T + L

k′
i

2

)
.

Taking expectations on both sides shows that E[Lk

1L
k

2] satisfies (3.8). This com-
pletes the proof.

7.2. Proof of Theorem 5. There are several ways to prove Theorem 5. We
present here two approaches, one based on diffusion theory, the other one using an
urn model.

PROOF OF THEOREM 5 BASED ON DIFFUSION THEORY. Assume that a gene
is present at frequency X0 at time 0. Then, (Xt)t≥0 follows the SDE

dX = −ρ

2
X dt +√X(1 − X)dW.

Frequency spectra for such diffusions have been obtained by Kimura (1964). We
follow the arguments given in Durrett (2008), Theorem 7.20. Assume we introduce
new genes at frequency 0 < δ < 1 into the population at rate

θ

2

1

φ(δ)
,

where μ(x) := −ρ
2 x,σ 2(x) := x(1 − x),

ψ(y) := exp
(
−2
∫ y

0

μ(z)

σ 2(z)
dz

)
= exp

(
ρ

∫ y

0

1

1 − z
dz

)
= exp

(−ρ log(1 − y)
)= (1 − y)−ρ,

φ(x) :=
∫ x

0
ψ(y)dy = 1

1 − ρ

(
1 − (1 − x)1−ρ).
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This rate is consistent in δ: the number of genes at level ε > δ is θ
2

1
φ(δ)

φ(δ)
φ(ε)

since
φ(δ)
φ(ε)

is the probability that the gene reaches frequency ε before dying out. More-
over, the Green function for the diffusion—measuring the time until eventual loss
of the gene—is given by 2φ(δ)m(y) for y > δ, where

m(y) = 1

σ 2(y)ψ(y)
= 1

y(1 − y)1−ρ

is the density of the speed measure of the diffusion. Hence, we find that the number
of genes in frequency x is Poisson with mean

g(x) dx := θ
1

x(1 − x)1−ρ
dx.

Now, the theorem follows since

E[Gk] =
(

n

k

)∫ 1

0
g(x)xk(1 − x)n−k dx = θ

(
n

k

)∫ 1

0
xk−1(1 − x)n−k−1+ρ dx

= θ

k

n · · · (n − k + 1)

(n − 1 + ρ) · · · (n − k + ρ)
. �

PROOF OF THEOREM 5 BASED ON AN URN MODEL. Let T be the Kingman
coalescent and �T be the tree-indexed Markov chain from Definition 2.2. First, we
focus on loss events for du ⊆ I along the random tree T . (We use the infinitesimal
symbol du for notational convenience.) Since du is small, we may safely assume
that there is at most one gene in du present in

⋃n
i=1 Gi . Gene loss events in du

occur at constant rate ρ
2 along each branch. Consider the tree T from the leaves

to the root. Lines coalesce with pair coalescence rate 1, and any line hits a loss
event in du at rate ρ

2 . Upon a loss event we kill the line off the tree. The resulting
forest is well known from the family decomposition in the infinite alleles model
[e.g., Durrett (2008), page 14]. Using Hoppe’s urn, we can also generate the forest
forward in time: consider an urn with one colored and one black ball. Choose the
colored ball with probability proportional to 1 and the black one with probability
proportional to ρ. When choosing a colored ball, put the chosen ball plus one
ball of the same color into the urn. When choosing the black ball, put the black
ball back together with a ball of a new color. In the next step, again choose any
colored ball with probability proportional to 1 and the black balls with probability
proportional to ρ. Proceed until there are n colored balls in the urn. Note that,
given there are i colored balls in the urn, the chance that the next chosen ball is

colored is i
i+ρ

= (i+1
2 )

(i+1
2 )+(i+1)ρ/2

, that is, the chance equals the probability that two

among i + 1 lines coalesce and are not killed off the tree by a gene loss event.
To obtain the correct branch lengths in the tree, when there are i colored balls

in the urn, wait an exponential time with rate i
2(i − 1 + ρ) until adding the next

colored ball. This waiting time equals the time the coalescent stays with i lines,
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when pairs coalesce at rate 1 and single lines are killed at rate ρ
2 . Hence, by this

procedure, balls with the same color belong to the same tree in the forest, and the
time the forest spends with i lines is the same as viewing the coalescent backward
in time.

So far, Hoppe’s urn only described gene loss of the single gene u. Let us add
gene gain of a gene in du to the description. During the evolution of Hoppe’s
urn, which comes with its exponential waiting times, mark all colored balls at rate
θ
2 du. When a marked colored ball is chosen, the added ball is again marked. Here,
a mark stands for the presence of the considered gene along the corresponding
ancestral line. Since du is small, there is at most one mark along the forest.

For the forest given by the marked Hoppe’s urn, we distinguish the times
T1, . . . , Tn when there are 1, . . . , n lines present. We say that line l during Ti is
of size k iff the ball belonging to this line produces exactly k − 1 offspring until
the urn finishes. Hence,

E[Gk] =
∫
I
E[du ∈ Gi for exactly k different i]

=
n∑

i=1

i∑
l=1

P[lth line during Ti is of size k]

×
∫

P[mark in du on lth line during Ti]
and

P[mark in du on lth line during Ti] = θ/2du

i/2(i − 1 + ρ)
= θ

i(i − 1 + ρ)
du.

Let us turn to the probability that the lth line during Ti is of size k. The reasoning
below is well known from Pòlya urn models. When starting with i − 1 unmarked
and one marked lines, there are

(n−i
k−1

)
possibilities at what times k − 1 marked

balls are added when n − i balls are added to the urn in total. For any of these
possibilities, the probability is

(k − 1)!(i − 1 + ρ) · · · (n − k − 1 + ρ)

(i + ρ) · · · (n − 1 + ρ)
.

Putting everything together,

E[Gk] =
n∑

i=1

i

(
n − i

k − 1

)
(k − 1)!(i − 1 + ρ) · · · (n − k − 1 + ρ)

(i + ρ) · · · (n − 1 + ρ)

θ

i(i − 1 + ρ)

= θ

k

k!
(n − k + ρ) · · · (n − 1 + ρ)

n∑
i=1

(
n − i

k − 1

)
︸ ︷︷ ︸

=(n
k)

= θ

k

n · · · (n − k + 1)

(n − k + ρ) · · · (n − 1 + ρ)
,
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and we are done. �
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