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We consider in this paper the optimal dividend problem for an insurance
company whose uncontrolled reserve process evolves as a classical Cramér–
Lundberg process. The firm has the option of investing part of the surplus in a
Black–Scholes financial market. The objective is to find a strategy consisting
of both investment and dividend payment policies which maximizes the cu-
mulative expected discounted dividend pay-outs until the time of bankruptcy.
We show that the optimal value function is the smallest viscosity solution
of the associated second-order integro-differential Hamilton–Jacobi–Bellman
equation. We study the regularity of the optimal value function. We show that
the optimal dividend payment strategy has a band structure. We find a method
to construct a candidate solution and obtain a verification result to check op-
timality. Finally, we give an example where the optimal dividend strategy is
not barrier and the optimal value function is not twice continuously differen-
tiable.

1. Introduction. A classical problem in actuarial mathematics is to maximize
the cumulative expected discounted dividend pay-outs. In the Cramér–Lundberg
setting, this optimization problem was introduced by De Finetti (1957); Gerber
(1969) proved the existence of an optimal dividend payment strategy and showed
that it has a band structure. The cumulative expected discounted dividend pay-outs
is a way to value a company as it can be seen, for instance, in the classical paper
by Miller and Modigliani (1961) for the deterministic case and more recently in
Sethi, Derzko and Lehoczky (1984a, 1984b) and Sethi (1996) for the stochastic
case.

In this paper we consider this optimization problem in the classical Cramér–
Lundberg setting, but we allow the management the possibility of controlling the
stream of dividend pay-outs and of investing part of the surplus in a Black and Sc-
holes financial market. We impose a borrowing constraint: short-selling of stocks
or to borrow money to buy stocks is not allowed. Technically, the unconstrained
optimization problem is simpler.

Azcue and Muler (2005) consider the problem of maximizing the cumulative
expected discounted dividend pay-outs of an insurance company when the man-
agement has the possibility of controlling the risk exposure by reinsurance. In this
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case, the optimal value function was characterized as the smallest viscosity solu-
tion of the first-order integro-differential Hamilton–Jacobi–Bellman equation, and
the optimal dividend payment strategy was found.

In this paper, the optimization problem is more complex than the one we treated
before. One difference is that the associated Hamilton–Jacobi–Bellman equation
is a nonlinear degenerate second-order integro-differential equation subject to a
differential constraint. The possibility that the ellipticity of the second-order op-
erator involved in this equation can degenerate at any point together with the fact
that there is an integral term, makes it more difficult to prove the existence and
regularity of solutions. However, when we obtain the solution of this operator in
Section 6, we see that the ellipticity only degenerates at zero and so the degener-
acy is not as serious as it could be (the solution turns out to be twice continuous
differentiable). Another difference is that, since in this case the controlled surplus
involves a Brownian motion, there is not an optimal strategy. Nevertheless, we
prove that the optimal value function can be written explicitly as a limit of value
functions of strategies. So, we introduce the notion of limit dividend strategies and
prove that the optimal limit strategy has a band structure.

In a diffusion setting, which means that the surplus is modeled as a Brownian
motion, different cases were studied; we can mention, for instance, Asmussen and
Taksar (1997) for the problem of dividend optimization and Højgaard and Taksar
(2004) for the case of dividend, reinsurance and portfolio optimization. The main
difference between the two settings is that the HJB equation in the diffusion case
is a differential equation and not an integro-differential one. Other differences are
that in the diffusion setting the optimal strategies are always barrier strategies, that
there is a natural boundary condition at zero for the associated HJB equation and
that this equation has always classical concave solutions; these properties might
not occur in the Cramér–Lundberg setting.

Avram, Palmowski and Pistorius (2007) study the problem of maximizing the
discounted dividend pay-outs when the uncontrolled surplus of the company fol-
lows a general spectrally negative Lévy process in absence of investment. The HJB
equation associated with this optimization problem is also a second-order integro-
differential equation but its ellipticity does not degenerate.

In both, Højgaard and Taksar (2004) and Avram, Palmowski and Pistorius
(2007), the corresponding HJB equations are second-order equations whose el-
lipticity does not degenerate at zero, so to characterize the optimal value function
among the solutions of the HJB equation they use the natural boundary condition
at zero. In this paper, we do not have a natural condition at zero but we do not
need this boundary condition because the ellipticity of the HJB degenerates at this
point. The lack of a boundary condition at zero makes more difficult to obtain a
numerical scheme.

The main results of this paper are the following:
In the first part of the paper, we obtain the optimal value function as the small-

est viscosity solutions of the associated HJB equation, and we prove a verification
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theorem that allows us, since the optimal value function has not a natural bound-
ary condition at zero, to recognize the optimal value function among the many
viscosity solutions of the associated HJB equation.

From Section 6 on, we assume that the claim-size distribution has a bounded
density; this allows us to show that the optimal value function is twice continu-
ously differentiable except possibly for some points. We find the optimal value
function for small surpluses, and we prove that the optimal strategy is stationary,
that is, the decision of what proportion of the surplus is invested in the risky asset,
and how much to pay out as dividends at any time depends only on the current
surplus. We also prove that the optimal dividend payment policy has a band struc-
ture. In particular, the optimal dividend payment policy for large surpluses is to
pay out immediately the surplus exceeding certain level as dividends. We also ob-
tain the best barrier strategy and show both an example where the optimal dividend
payment policy is barrier as well as an example where it is not. The second exam-
ple shows that, even for claim-size distributions with bounded density, the optimal
value function could be neither concave nor twice continuously differentiable.

This paper is organized as follows. In Section 2, we state the optimization prob-
lem and prove some properties about the regularity and growth of the optimal value
function. In Section 3, we state the dynamic programming principle and show that
the optimal value function is a viscosity solution of the HJB equation associated
with the optimization problem. In Section 4, we prove the uniqueness of viscosity
solutions of the HJB equation with a boundary condition at zero. In Section 5, we
prove that the optimal value function is the smallest supersolution of the HJB equa-
tion and give a verification theorem that states that a supersolution which can be
obtained as a limit of value functions of admissible strategies is the optimal value
function. In Section 6, we construct via a fixed-point operator a classical solution
of the second-order integro-differential equation involved in the HJB equation. In
Section 7, we use the solution obtained in Section 6 to obtain the value function
of the optimal barrier strategy. In Section 8, we find the optimal value function
for small surpluses, show that the optimal strategy is stationary and prove that the
optimal dividend payment policy has a band structure. In Section 9, we show some
numerical examples. We have placed some technical lemmas in the Appendix to
improve the readability of the main text.

2. The stochastic control problem. We assume that the surplus of an insur-
ance company in the absence of control of dividends payment and investment fol-
lows the classical Cramér–Lundberg process; that is, the surplus Xt of the company
is described by

Xt = x + pt −
Nt∑
i=1

Ui,(2.1)

where x is the initial surplus, p is the premium rate, Nt is a Poisson process with
claim arrival intensity β > 0 and the claim sizes Ui are i.i.d. random variables
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with distribution F . We assume that the distribution F has finite expectation μ

and satisfies F(0) = 0.
We consider that the financial market is described as a classical Black–Scholes

model where we have a risk-free asset with price process Bt and a risky asset with
price process St satisfying {

dBt = r0Bt dt,

dSt = rSt dt + σSt dWt,

where Wt is a standard Brownian motion independent to the process Xt . We con-
sider for simplicity r0 = 0.

We define � as the set of paths with left and right limits and (�, F ,P ) as
the complete probability space with filtration (Ft )t≥0 generated by the processes
Xt and Wt . A control strategy is a process π = (γt ,Lt ) where γt ∈ [0,1] is the
proportion of the surplus invested in stocks at time t , and Lt is the cumulative
dividends the company has paid out until time t . The control strategy (γt ,Lt )

is admissible if the process γt is predictable and the process Lt is predictable,
nondecreasing and càglàd (left continuous with right limits).

We are considering the case where γt ∈ [0,1] because we are allowing neither
short-selling of stocks nor borrowing money from other sources to buy stocks.

Denote by �x the set of all the admissible control strategies with initial sur-
plus x. For any π ∈ �x , the controlled risk process Xπ

t can be written as

Xπ
t = x + pt + r

∫ t

0
Xπ

s γs ds + σ

∫ t

0
Xπ

s γs dWs −
Nt∑
i=1

Ui − Lt .(2.2)

All the jumps of the process Xπ
t are downward, Xπ

t− − Xπ
t > 0 if there is a

claim at time t and Xπ
t − Xπ

t+ > 0 only at the discontinuities of Lt . We also ask
�Lt := Lt+ − Lt ≤ Xπ

t for any t ≥ 0; this means that the company cannot pay
immediately an amount of dividends exceeding the surplus.

Given an admissible strategy π ∈ �x , let τπ = inf{t ≥ 0 :Xπ
t < 0} be the ruin

time of the company, note that it can only occur at the arrival of a claim. We define
the value function of π by

Vπ(x) = Ex

(∫ τπ

0
e−cs dLs

)
,(2.3)

where c is the discount factor. The integral is interpreted pathwise in a Lebesgue–
Stieltjes sense.

We consider the following optimization problem:

V (x) = sup{Vπ(x) with π ∈ �x} for x ≥ 0.(2.4)

For technical reasons, we define V (x) = 0 for x < 0. We restrict ourselves to the
case c > r > 0; we will see in Remark 2.4 that in the case c < r , the optimal value
function is infinite.
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To show that the optimal value function V is well defined and to describe some
of its basic properties, we first state some results of the related controlled risk
process without claims and without paying dividends.

LEMMA 2.1. Given x ≥ 0 and any admissible investment strategy γt ∈ [0,1]
consider the process,

Yt = x + mt + r

∫ t

0
Ysγs ds + σ

∫ t

0
Ysγs dWs.

(a) If m ≥ 0, then Ex(Yte
−ct ) ≤ e−(c−r)t (x + m(1 − e−rt )/r).

(b) If x > 0 and τ̃ = inf{t :Yt < 0}, then limh→0 P(τ̃ < h) = 0.
(c) If γt ≡ 1, then Ex(Yte

−ct ) = e−(c−r)t (x + m(1 − e−rt )/r) for any m ∈ R.

PROOF. We can write Yt = xUt + Ut

∫ t
0 mU−1

s ds where

Ut = e
∫ t

0 (rγs−σ 2/2γ 2
s ) ds+∫ t

0 σγs dWs .(2.5)

The process e−∫ t
0 rγs dsUt is a martingale [see, for instance, Karatzas and Shreve

(1991)]. Then the results follow using elementary computations for linear diffusion
processes. �

In the next two propositions, we prove that V has linear growth, and we give
bounds on the increments of V using the value functions of some simple admissi-
ble strategies.

PROPOSITION 2.2. The optimal value function V is well defined and satisfies

x + p/(β + c) ≤ V (x) ≤ rx/(c − r) + p/(c − r) for x ≥ 0.

PROOF. Consider an initial surplus x ≥ 0. Given any π = (γs,Ls) ∈ �x , con-
sider the controlled process Xπ

t for t ≥ 0, and define Xπ
t = 0 for t < 0. Then

L̃s = Ls − σ

∫ s

0
Xπ

u γu dWu

≤ x + ps + r

∫ s

0
Xπ

u γu du −
Ns∑
i=1

Ui

≤ x + ps + r

∫ s

0
Xπ

u γu du.

Consider the process Yt defined as in Lemma 2.1 with m = p and the investment
strategy γs corresponding to π . Since Xπ

t ≤ Yt , we obtain from Lemma 2.1(a) that
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Ex(X
π
t e−ct ) ≤ e−(c−r)t (x +p(1−e−rt )/r). Since r < c and e−cs is a positive and

decreasing function, we have that

Vπ(x) = Ex

(∫ τ

0
e−cs dLs

)
= Ex

(∫ τ

0
e−cs dL̃s

)
≤ Ex

(∫ ∞
0

e−cs d

(
x + ps + r

∫ s

0
Xπ

u γu du

))
≤

∫ ∞
0

e−csp ds + r

∫ ∞
0

Ex(e
−csXπ

s ) ds

≤ rx/(c − r) + p/(c − r).

So V (x) = supπ∈�x
Vπ(x) is well defined and satisfies the second inequality.

Let us prove now the first inequality. Given an initial surplus x ≥ 0, consider the
admissible strategy π0 which pays immediately the whole surplus x and then pays
the incoming premium p as dividends until the first claim which in this strategy
means ruin. Define τ1 as the time arrival of the first claim; we have

Vπ0(x) = x + pEx

(∫ τ1

0
e−ct dt

)
= x + p/(β + c),

but by definition V (x) ≥ Vπ0(x), so we get the result. �

PROPOSITION 2.3. If y > x ≥ 0, the function V satisfies:
(a) V (y) − V (x) ≥ y − x;
(b) V (y) − V (x) ≤ (e(c+β)(y−x)/p − 1)V (x).

PROOF. (a) Given ε > 0, consider an admissible strategy π ∈ �x with
Vπ(x) ≥ V (x) − ε. We define a new strategy π ∈ �y in the following way, pay
immediately y − x as dividends and then follow the strategy π ∈ �x ; this new
strategy is admissible. We have that

V (y) ≥ Vπ(y) = Vπ(x) + (y − x) ≥ V (x) − ε + (y − x)

and the result follows.
(b) Given ε > 0, take an admissible strategy π ∈ �y such that Vπ(y) ≥ V (y) −

ε. Let us define the strategy π ∈ �x that starting at x, pay no dividends and invest
all the surplus in bonds if Xπ

t < y and follow strategy π when the current surplus
reaches y. This strategy is admissible. If there is no claim up to time t0 = (y −
x)/p, the surplus Xπ

t0
= y. The probability of reaching y before the first claim is

e−βt0 , so we obtain

V (x) ≥ Vπ(x) ≥ Vπ(y)e−(c+β)t0 ≥ (
V (y) − ε

)
e−(c+β)(y−x)/p

and we get the result. �
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As a direct consequence of the previous proposition we have that V is increas-
ing and locally Lipschitz in [0,+∞), this implies that V is absolutely continuous,
that V ′(x) exists a.e. and that 1 ≤ V ′(x) ≤ V (x)(c + β)/p at the points where
the derivative exists. We will prove later in this paper that V is continuously dif-
ferentiable with bounded derivative and that the linear growth condition given by
Proposition 2.2 can be improved to V (x) ≤ x + p/c for x ≥ 0.

REMARK 2.4. The value function V is infinite in the case that c < r . To see
this, let us consider the worst possible case, that is p ≤ βμ. We can assume that
x > x0 := (βμ − p + 1)/r > 0 because, if the initial surplus x is smaller than
x0 there is a positive probability that the surplus surpass the level x0 [take, for
instance, the strategy which pays no dividends and keeps all the surplus in bonds
up to time T = (x0 − x)/p + 1]. Given t0 > 0, consider the following admissible
strategy πt0 ∈ �x : divide the company in two departments, one of them deals only
with the investment and the payment of dividends and the other with the insurance
business. The investment department starts with capital x, invest all the surplus on
risky assets and diverts to the insurance department a constant flow p0 = βμ −
p + 1 up to time t0 ∧ τ̃1 when the whole surplus is paid as dividends. Here τ̃1 is
the first time the surplus of the investment department reaches zero. Let X

(1)
t be

the surplus process of the investment department, we have that X
(1)
t∧t0∧τ̃1

≥ Yt∧t0

where Yt is the process described in Lemma 2.1(c) with m = −p0. The insurance
department starts with no surplus, pays no dividends and receives a constant flow
p0 + p that is larger than βμ up to time t0 ∧ τ̃1 ∧ τ̃2, where τ̃2 is the ruin time of
the insurance department (assuming that the insurance department keeps always
receiving the constant flow p0 + p). The stopping time τ̃2 is independent of both
τ̃1 and the process Yt . Call τ = t0 ∧ τ̃1 ∧ τ̃2, the value function of this admissible
strategy satisfies

Vπt0
(x) ≥ Ex

(
X(1)

τ e−cτχ{τ̃1≥t0,τ̃2≥t0}
) ≥ Ex

(
Yt0e

−ct0χ{τ̃1≥t0,τ̃2≥t0}
)

= Ex

(
Yt0e

−ct0χ{τ̃1≥t0}
)
P({τ̃2 ≥ t0}) ≥ Ex(Yt0e

−ct0)P ({τ̃2 = ∞}),
because Yt0 < 0 for t0 > τ̃1. We can compute the survival probability of the
insurance department [see, for instance, Teugels (2003)] as P({τ̃2 = ∞}) =
1 − βμ/(p0 + p) > 0. So, from Lemma 2.1(c), we conclude that V (x) ≥
limt0→∞ Vπt0

(x) = ∞.

3. The Hamilton–Jacobi–Bellman equation. In this section we associate
a Hamilton–Jacobi–Bellman equation to the optimization problem (2.4) and we
prove that the optimal value function V is a viscosity solution of this equation.

The notion of viscosity solution was introduced by Crandall and Lions (1983)
for first order Hamilton–Jacobi equations and by Lions (1983) for second-order
partial differential equations. Nowadays, it is a standard tool for studying HJB
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equations [see, for instance, Fleming and Soner (1993) and Bardi and Capuzzo-
Dolcetta (1997)].

We first state the dynamic programming principle; the proof is similar to the
one in Azcue and Muler (2005).

PROPOSITION 3.1. For any x ≥ 0 and any stopping time τ , we can write

V (x) = sup
π=(γt ,Lt )∈�x

Ex

(∫ τ∧τπ

0
e−cs dLs + e−c(τ∧τπ )V (Xπ

τ∧τπ )

)
.

The HJB equation associated to the optimization problem (2.4) is the following
fully nonlinear second-order degenerate integro-differential equation with deriva-
tive constraint:

max{1 − u′(x), L∗(u)(x)} = 0,(3.1)

where

L∗(u)(x) = sup
γ∈[0,1]

Lγ (u)(x)(3.2)

and

Lγ (u)(x) = σ 2γ 2x2u′′(x)/2 + (p + rγ x)u′(x)
(3.3)

− (c + β)u(x) + β

∫ x

0
u(x − α)dF(α).

This equation is obtained assuming that the optimal value function V is twice
continuously differentiable. We will show in Section 9 that this is not always the
case, so we consider viscosity solutions of this equation.

DEFINITION 3.2. A continuous function u : [0,∞) → R is a viscosity subso-
lution of (3.1) at x ∈ (0,∞) if any twice continuously differentiable function ψ

defined in (0,∞) with ψ(x) = u(x) such that u − ψ reaches the maximum at x

satisfies max{1−ψ ′(x), L∗(ψ)(x)} ≥ 0, and a continuous function u : [0,∞) → R
is a viscosity supersolution of (3.1) at x ∈ (0,∞) if any twice continuously differ-
entiable function ϕ defined in (0,∞) with ϕ(x) = u(x) such that u − ϕ reaches
the minimum at x satisfies max{1 − ϕ′(x), L∗(ϕ)(x)} ≤ 0.

Finally, a continuous function u : [0,∞) → R is a viscosity solution of (3.1) if
it is both a viscosity subsolution and a viscosity supersolution at any x ∈ (0,∞).

In addition to Definition 3.2, there are two other equivalent formulations of vis-
cosity solutions. The proof of the equivalence of these definitions is standard [see,
for instance, Benth, Karlsen and Reikvam (2002)]. We use the three definitions
indistinctly.
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DEFINITION 3.3. Given a twice continuously differentiable function f and a
continuous function u, let us define the operator,

Lγ (u,f )(x) = σ 2γ 2x2f ′′(x)/2 + (p + rγ x)f ′(x)
(3.4)

− (c + β)u(x) + β

∫ x

0
u(x − α)dF(α).

A continuous function u : [0,∞) → R is a viscosity subsolution of (3.1) at x ∈
(0,∞) if any twice continuously differentiable function ψ defined in (0,∞) such
that u − ψ reaches the maximum at x satisfies max{1 − ψ ′(x), supγ∈[0,1] Lγ (u,
ψ)(x)} ≥ 0, and a twice continuous function u : [0,∞) → R is a viscosity su-
persolution of (3.1) at x ∈ (0,∞) if any twice continuously differentiable func-
tion ϕ defined in (0,∞) such that u − ϕ reaches the minimum at x satisfies
max{1 − ϕ′(x), supγ∈[0,1] Lγ (u,ϕ)(x)} ≤ 0.

DEFINITION 3.4. Given any continuous function u : [0,∞) → R and any
x > 0, the set of second superdifferentials of u at x is defined as

D+u(x) =
{
(d, q) such that lim sup

h→0

u(x + h) − u(x) − hd − h2q/2

h2 ≤ 0
}

and the set of second subdifferentials of u at x is defined as

D−u(x) =
{
(d, q) such that lim inf

h→0

u(x + h) − u(x) − hd − h2q/2

h2 ≥ 0
}
.

Let us call

Lγ (u, d, q)(x) = σ 2γ 2x2q/2 + (p + rγ x)d − (c + β)u(x)
(3.5)

+ β

∫ x

0
u(x − α)dF(α).

A continuous function u : [0,∞) → R is a viscosity subsolution of (3.1) at
x ∈ (0,∞) if max{1 − d, supγ∈[0,1] Lγ (u, d, q)(x)} ≥ 0 for all (d, q) ∈ D+u(x)

and u : [0,∞) → R is a viscosity supersolution of (3.1) at x ∈ (0,∞) if max{1 −
d, supγ∈[0,1] Lγ (u, d, q)(x)} ≤ 0 for all (d, q) ∈ D−u(x).

The next proposition states the semiconcavity of the viscosity solutions of the
HJB equation.

PROPOSITION 3.5. Any absolutely continuous and nondecreasing supersolu-
tion of L∗(u) = 0 in (0,∞) is semiconcave in any interval [x0, x1] ⊂ (0,∞).

PROOF. It is enough to prove that there exists a constant K and a sequence of
semiconcave functions vn in [0, x1] such that v′′

n ≤ K a.e. and vn → u uniformly
in [0, x1].
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Since u is an absolutely continuous function, there exists k0 ≥ 1 such that
|u(x) − u(y)| ≤ k0|x − y| for all x, y ∈ [0, x1]. Let us define, for any x ∈ [0, x1],

vn(x) = inf
y∈[0,x1]

{u(y) + n2(x − y)2/2}.(3.6)

It can be proved, as in Lemma 5.1 of Fleming and Soner (1993), that vn is semi-
concave and the inequality 0 ≤ u(x) − vn(x) ≤ 2k2

0/n2 holds for all x ∈ [0, x1], so
vn → u uniformly. We have that if x + h ≤ x1, then vn(x + h) − vn(x) ≤ k0h for
h ≤ x1 − x. In effect, take y0 ∈ [0, x1] such that vn(x) = u(y0) + n2(x − y0)

2/2,
we have

vn(x + h) − vn(x) ≤ (
u(y0 + h) + n2(x − y0)

2/2
) − (

u(y0) + n2(x − y0)
2/2

)
= u(y0 + h) − u(y0)

≤ k0h.

Since vn is semiconcave, the set

A = {x ∈ [0, x1] :v′
n(x) and v′′

n(x) exist for all n ∈ N and F(x) = F(x−)}
has full measure.

We want to prove that

v′′
n(x) ≤ 8(c + β)u(x1)/(σ

2x2
0) in [x0, x1] ∩ A.(3.7)

Take x ∈ [x0, x1] ∩ A, and consider yn ∈ [0, x1] such that

vn(x) = u(yn) + n2(x − yn)
2/2.(3.8)

It can be proved that

x0/2 ≤ yn ≤ x and x − yn ≤ 2k0/n2.(3.9)

By (3.6), we have

vn(x + h) ≤ u(yn + h) + n2(x − yn)
2/2,

so we obtain from (3.8) that

lim inf
h→0

u(yn + h) − u(yn) − hv′
n(x) − h2v′′

n(x)/2

h2

≥ lim inf
h→0

vn(x + h) − vn(x) − hv′
n(x) − h2v′′

n(x)/2

h2 = 0.

Then we have that (v′
n(x), v′′

n(x)) ∈ D−u(yn).
Since u is a viscosity supersolution of (3.1) at yn, we have from Definition 3.4

that

L1(u, v′
n(x), v′′

n(x))(yn) ≤ 0.(3.10)
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If v′′
n(x) ≤ 0, inequality (3.7) holds, and if v′′

n(x) > 0, from (3.9) and (3.10) we
get that

σ 2x2
0v′′

n(x)/8 ≤ σ 2y2v′′
n(x)/2 ≤ (c + β)u(y) ≤ (c + β)u(x1)

and so we have (3.7). �

The next proposition states that the optimal value function of our control prob-
lem is a viscosity solution of equation (3.1). We will show in the next section that
this result is not enough to characterize univocally the optimal value function.

PROPOSITION 3.6. The optimal value function V is a viscosity solution of
(3.1) in (0,∞).

PROOF. We prove first that V is a viscosity supersolution. Let us call τ1 and
U1 the time and the size of the first claim. For fixed l0 ≥ 0 and γ0 ∈ [0,1], consider
the admissible strategy π0 = (γ0, t l0) ∈ �x .

Assume first that l0 > p. Given any h > 0, consider the process Yt defined in
Lemma 2.1 with m = p − l0 and γt = γ0. Let us consider τ̃ = inf{t :Yt < 0}. Using
Proposition 3.1 with τ = τ1 ∧ h, we obtain that

V (x) ≥ Ex

(∫ τ∧τπ0

0
e−cs l0 ds + e−c(τ∧τπ0 )V (X

π0
τ∧τπ0 )

)
.(3.11)

Note that τ ∧ τπ0 = τ ∧ τ̃ , so we have

Ex

(∫ τ∧τ̃

0
e−cs l0 ds

)
≥ Ex

(
χ{τ≤τ̃ }

∫ τ

0
e−cs l0 ds

)
= Ex

(∫ τ

0
e−cs l0 ds

)
− Ex

(
χ{τ̃<τ }

∫ τ

0
e−cs l0 ds

)
(3.12)

≥ Ex

(∫ τ

0
e−cs l0 ds

)
− hl0P(τ̃ < h)

and

Ex

(
e−c(τ∧τ̃ )V (X

π0
τ∧τ̃ )

)
= Ex

(
χ{τ≤τ̃ }e−cτV (Xπ0

τ )
) + Ex

(
χ{τ̃<τ }e−cτ̃ V (0)

)
= Ex

(
χ{τ1 
=τ≤τ̃ }e−chV (Yh)

) + Ex

(
χ{τ1=τ≤τ̃ }e−cτ1V (Yτ1 − U1)

)
+ Ex

(
χ{τ̃<τ }e−cτ̃ V (0)

)
(3.13)

≥ Ex

(
χ{τ1 
=τ }e−chV (Yh)

) − Ex

(
χ{τ1 
=τ>τ̃ }e−chV (Yh)

)
+ Ex

(
χ{τ1=τ }e−cτ1V (Yτ1 − U1)

)
− Ex

(
χ{τ1=τ>τ̃ }e−cτ1V (Yτ1 − U1)

)
≥ Ex

(
χ{τ1 
=τ }e−chV (Yh)

) + Ex

(
χ{τ1=τ }e−cτ1V (Yτ1 − U1)

)
,
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because V (y) = 0 for y < 0 and Yτ − U1 < Yτ < 0 for τ > τ̃ . Then, from (3.11),
(3.12) and (3.13), we get that

V (x) ≥ l0
(
1 − e−h(c+β))/(c + β) − hl0P(τ̃ < h) + e−(c+β)hEx(V (Yh))

(3.14)

+ β

∫ h

0

(∫ ∞
0

Ex

(
Vx(Ys − α)

)
dF(α)

)
e−(c+β)s ds.

Assume now that l0 ≤ p, we obtain with a simpler argument that

V (x) ≥ l0
(
1 − e−h(c+β))/(c + β) + e−(c+β)hEx(V (Yh))

(3.15)

+ β

∫ h

0

(∫ ∞
0

Ex

(
V (Ys − α)

)
dF(α)

)
e−(c+β)s ds.

Dividing by h, we get from (3.14) and (3.15) that

0 ≥ l0
(
1 − e−h(c+β))/(

(c + β)h
) + e−h(β+c)(Ex(V (Yh)) − V (x)

)
/h

+ (
e−h(c+β) − 1

)
V (x)/h

+ (β/h)

∫ h

0

(∫ ∞
0

Ex

(
V (Ys − α) − V (x)

)
dF(α)

)
e−(c+β)s ds

+ V (x)(β/h)

∫ h

0
e−(c+β)s ds − l0P(τ̃ < h)

and so

0 ≥ (
1 − e−h(c+β))l0/(

(c + β)h
) + e−h(β+c)(Ex

(
V (Yh) − V (x)

))
/h

+ c
(
e−h(c+β) − 1

)
V (x)/

(
(c + β)h

)
(3.16)

+ (β/h)

∫ h

0

(∫ ∞
0

Ex

(
V (Ys − α) − V (x)

)
dF(α)

)
e−(c+β)s ds

− l0P(τ̃ < h).

Let ϕ : (0,∞) → R be a twice continuously differentiable function such that
V − ϕ reaches the minimum in (0,∞) at x with ϕ(x) = V (x). Since x > 0, we
can assume without loss of generality that ϕ is defined in R and that ϕ(y) ≤ 0 for
y < 0. From (3.16) we get

0 ≥ (
1 − e−h(c+β))l0/(

(c + β)h
) + Ex

(
ϕ(Yh) − ϕ(x)

)
e−h(β+c)/h

+ c
(
e−h(c+β) − 1

)
V (x)/

(
(c + β)h

)
(3.17)

+ (β/h)

∫ h

0

(∫ ∞
0

Ex

(
V (Ys − α) − V (x)

)
dF(α)

)
e−(c+β)s ds

− l0P(τ̃ < h).
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But, since ϕ is twice continuously, we get, from Itô’s formula,

ϕ(Yh) − ϕ(x) =
∫ h

0
ϕ′(Ys) dYs + (σ 2γ 2

0 /2)

∫ h

0
ϕ′′(Ys)Y

2
s ds

=
∫ h

0

(
ϕ′(Ys)

(
(p − l0) + rγ0Ys

) + ϕ′′(Ys)Y
2
s σ 2γ 2

0 /2
)
ds(3.18)

+
∫ h

0
ϕ′(Ys)σγ0Ys dWs.

Note that the last term of (3.18) is a martingale. Letting h go to 0+ in (3.17), we
obtain from Lemma 2.1(b) and (3.18) that

0 ≥ l0
(
1 − ϕ′(x)

)
+

(
σ 2γ 2

0 x2ϕ′′(x)/2 + (p + rγ0x)ϕ′(x)

− (β + c)V (x) + β

∫ ∞
0

V (x − α)dF (α)

)
.

Since this inequality holds for all l0 ≥ 0, we have that ϕ′(x) ≥ 1, and taking l0 = 0
we get Lγ0(V ,ϕ)(x) ≤ 0, so

max
{
1 − ϕ′(x), sup

γ∈[0,1]
Lγ (V ,ϕ)(x)

}
≤ 0

and we have the result.
The proof that V is a viscosity subsolution at any x > 0 is similar to the one

of Proposition 3.8 of Azcue and Muler (2005), but in this case we should also
consider a martingale that involves the Brownian motion Wt . �

From Propositions 3.5 and 3.6 we get the following corollary.

COROLLARY 3.7. The optimal value function V is semiconcave in any inter-
val [x0, x1] ⊂ (0,∞) and so V ′′ exists a.e.

4. Comparison principle for viscosity solutions. We prove in this section
a comparison principle for viscosity solutions of (3.1), and as a consequence we
obtain the uniqueness with the boundary condition u(0) among all the functions u

which satisfy the following regularity and growth assumptions:
(A.1) u : [0,∞) → R is locally Lipschitz.
(A.2) If 0 ≤ x < y, then u(y) − u(x) ≥ y − x.
(A.3) There exists a constant k > 0 such that u(x) ≤ x + k for all x ∈ [0,∞).

PROPOSITION 4.1. If u is a subsolution and u is a supersolution of (3.1) in
(0,∞) with u(0) ≤ u(0) and they satisfy the conditions (A.1), (A.2) and (A.3),
then u ≤ u in (0,∞).
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PROOF. The first part of this proof is similar to the proof of Proposition 4.2 of
Azcue and Muler (2005) although in this case we should also use the tools provided
by Crandall, Ishii and Lions (1992) to prove comparison principles for second-
order differential equations and adapt them to integro-differential equations.

Assume that u(x0) − u(x0) > 0 for some point x0 > 0. It is straightforward to
show that the functions us(x) = su(x) with s > 1 are also a supersolution and
satisfy us(0) ≥ u(0). If ϕ is a continuously differentiable function such that the
minimum of us − ϕ is attained at x0 then 1 − ϕ′(x0) ≤ 1 − s < 0. Let us take
s0 > 1 with u(x0) − us0(x0) > 0 and define

M = sup
x≥0

(
u(x) − us0(x)

)
.(4.1)

From assumptions (A.2) and (A.3) we obtain, as in Proposition 4.2 of Azcue and
Muler (2005), that

0 < u(x0) − us0(x0) ≤ M = max
x∈[0,b]

(
u(x) − us0(x)

)
,(4.2)

where b = k/(s0 − 1). Call x∗ = arg maxx∈[0,b](u(x) − us0(x)). Since u(x) and
us0(x) satisfy assumption (A.1), there exists a constant m > 0 such that

u(x1) − u(x2)

x1 − x2
≤ m,

us0(x1) − us0(x2)

x1 − x2
≤ m(4.3)

for 0 ≤ x2 ≤ x1 ≤ b.
Let us consider

A = {(x, y) : 0 ≤ y ≤ b,0 ≤ x ≤ y}
and for any λ > 0 the functions

�λ(x, y) = λ(x − y)2/2 + 2m/
(
λ2(y − x) + λ

)
,(4.4)

�λ(x, y) = u(x) − us0(y) − �λ(x, y).(4.5)

Calling Mλ = maxA �λ and (xλ, yλ) = arg maxA �λ, we obtain that Mλ ≥
�λ(x∗, x∗) = M − 2m/λ and so, from (4.2) we get that Mλ > 0 for λ ≥ 4m/M

and

lim inf
λ→∞ Mλ ≥ M.(4.6)

Since (xλ, yλ) ∈ A, we have that

yλ ≥ xλ.(4.7)

As in Proposition 4.2 of Azcue and Muler (2005), we can show that for any
λ ≥ λ0 = max{2m/δ,4m/M} the point (xλ, yλ) /∈ ∂A.

Using Theorem 3.2 of Crandall, Ishii and Lions (1992), it can be proved that for
any δ > 0, there exist real numbers Aδ and Bδ such that

(�λ
x(xλ, yλ),Aδ) ∈ D+u(xλ)(4.8)
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and

(−�λ
y(xλ, yλ),Bδ) ∈ D−us(yλ)(4.9)

with

D2�λ(xλ, yλ) + δ(D2�λ(xλ, yλ))
2 −

(
Aδ 0
0 −Bδ

)
≥

(
0 0
0 0

)
,(4.10)

where D2�λ corresponds to the matrix of second derivatives of �λ, and D+ and
D− are defined in Definition 3.4. The inequality in (4.10) means that the matrix on
the left-hand side is positive-semidefinite. So, we obtain from (4.8) and (4.9) that

max
{
1 − �λ

x(xλ, yλ), sup
γ∈[0,1]

Lγ (u,�λ
x(xλ, yλ),Aδ)(xλ)

}
≥ 0(4.11)

and

max
{
1 + �λ

y(xλ, yλ), sup
γ∈[0,1]

Lγ (us0,−�λ
y(xλ, yλ),Bδ)(yλ)

}
≤ 0.(4.12)

From (4.10), we obtain that

Aδx
2
λ − Bδy

2
λ

≤ ((
λ + (4mλ)/

(
λ(yλ − xλ) + 1

)3)
(4.13)

+ 2δ
(
λ + (4mλ)/

(
λ(yλ − xλ) + 1

)3)2)
(xλ − yλ)

2.

We also have from (4.4) that

�λ
x(xλ, yλ) + �λ

y(xλ, yλ) = 0(4.14)

and

xλ�
λ
x(xλ, yλ) + yλ�

λ
y(xλ, yλ)

(4.15)
= λ(xλ − yλ)

2 + 2m(xλ − yλ)/
(
λ(yλ − xλ) + 1

)2
.

But (−�λ
y(xλ, yλ),Bδ) ∈ D−us(yλ), so we obtain that −�λ

y(xλ, yλ) ≥ s0 > 1, and
so we conclude from (4.11) and (4.14) that

sup
γ∈[0,1]

Lγ (u,�λ
x(xλ, yλ),Aδ)(xλ) ≥ 0.(4.16)

Therefore, taking γλ = arg max Lγ (u,�λ
x(xλ, yλ),Aδ)(xλ) we get from (4.12) and

(4.16) that

0 ≤ Lγλ(u,�λ
x(xλ, yλ),Aδ)(xλ) − Lγλ(u

s0,−�λ
y(xλ, yλ),Bδ)(yλ)
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and so

(c + β)
(
u(xλ) − us0(yλ)

)
≤ σ 2γ 2

λ (Aδx
2
λ − Bδy

2
λ)/2

+ p
(
�λ

x(xλ, yλ) + �λ
y(xλ, yλ)

)
(4.17)

+ rγλ

(
�λ

x(xλ, yλ)xλ + �λ
y(xλ, yλ)yλ

)
+ β

(∫ xλ

0
u(xλ − α)dF (α) −

∫ yλ

0
us0(yλ − α)dF (α)

)
.

Using the inequality

�λ(xλ, xλ) + �λ(yλ, yλ) ≤ 2�λ(xλ, yλ),

we obtain that

λ(xλ − yλ)
2 ≤ u(xλ) − u(yλ) + us0(xλ) − us0(yλ) + 4m(yλ − xλ);

then we have from (4.3) that

λ(xλ − yλ)
2 ≤ 6m|xλ − yλ|.(4.18)

We can find a sequence λn → ∞ such that (xλn, yλn) → (x, y) ∈ A. From (4.18),
we get that |xλn − yλn | ≤ 6m/λn and this gives x = y and so limn→∞ λn(xλn −
yλn)

2 = 0. Taking δ = 1/λ, we get using that yλn ≥ xλn for all n, (4.13), (4.14),
(4.15) and (4.17)

(c + β)
(
u(x) − us0(x)

) ≤ β

∫ C

0

(
u(x − α) − us0(x − α)

)
dF(α),(4.19)

where C can be equal to either x or x−.
From (4.6) and (4.19) we obtain M ≤ βM/(c + β). This is a contradiction be-

cause M > 0 and β/(c + β) < 1. �

From the previous proposition, we conclude the following corollary.

COROLLARY 4.2. For any u0 > 0, there is at most one viscosity solution of
(3.1) in (0,+∞) satisfying assumptions (A.1), (A.2) and (A.3) with the boundary
condition u(0) = u0.

5. Characterization of V as the smallest supersolution and a verification
result. In Sections 2 and 3, we have proved that the optimal value function V

is well defined and that it is a viscosity solution of (3.1). In Section 4, we have
proved that (3.1) has a comparison principle that gives us uniqueness of viscosity
solutions with a given boundary condition. As it can be seen in the next remark
there are infinitely many classical solutions of the HJB equation satisfying (A.1),
(A.2) and (A.3).
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REMARK 5.1. Note that u(x) = k+x is a viscosity solution of (3.1) in [0,∞)

for any k ≥ p/c because u′ = 1 and L∗(u) ≤ 0.

Our main goal in this section is to characterize V among all the viscosity so-
lutions of (3.1). We show that the optimal value function V is the smallest of the
absolutely continuous supersolutions of the HJB equation. We use this result to
prove a verification theorem that states that if a supersolution of the HJB equa-
tion is obtained, either as a value function of an admissible strategy, or as a limit
of value functions of admissible strategies, then this supersolution should be the
optimal value function.

Later in this section, using the Corollary 4.2, we also characterize V as the vis-
cosity solution of the HJB equation with the smallest possible boundary condition
at zero.

To prove Proposition 5.3 we need the following technical lemma.

LEMMA 5.2. Let u be an absolutely continuous nonnegative supersolution
of (3.1) in (0,+∞). Given any pair of real numbers x1 > x0 > 0, we can find a
sequence of nonnegative functions un : R → R such that:

(a) un is twice continuously differentiable,
(b) un converges uniformly to u in [0, x1],
(c) u′

n ≥ 1 in [x0, x1],
(d) lim supn→∞ L∗(un)(x) ≤ βu(0)(F (x) − F(x−)) for x ∈ [x0, x1].

PROOF. Let us consider an even and twice-continuously differentiable func-
tion φ with support included in (−1,1), with integral one, such that φ′ ≥ 0 in
(−1,0) and φ′ ≤ 0 in (0,1). Consider φn(x) = nφ(n(x − 1/n)) and define un as
the left-sided convolution un(x) = (u∗φn)(x). The results (a) and (b) follow using
standard techniques [see, for instance, Wheeden and Zygmund (1977)]; (c) follows
because u′ ≥ 1 a.e.

Let us prove (d). By Proposition 3.5, u is semiconcave and so u′′ exists a.e., and
the possible jumps of u are downward. So, the left-sided convolution un satisfies
u′′

n(x) ≤ (u′′ ∗ φn)(x). The result (d) follows because Lγ (u)(x) ≤ 0 a.e. for any
γ ∈ [0,1], and it can be shown that

lim sup
n→∞

(
Lγ (un)(x) − (

Lγ (u) ∗ φn

)
(x)

) ≤ βu(0)
(
F(x) − F(x−)

)
for all x ∈ [x0, x1]. �

PROPOSITION 5.3. Let u be an absolutely continuous nonnegative supersolu-
tion of (3.1) in (0,+∞), then u ≥ V in [0,+∞).

PROOF. Let us define S as the set of discontinuity points of the claim-size dis-
tribution F . Since F is increasing S is a countable set. Take x > 0, by Lemmas A.1
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and A.2 (included in the Appendix), it is enough to prove that for any pair (x0, x1)

such that 0 < x0 ≤ x ≤ x1, we have

sup
π∈�

[x0,x1]
x ∩�x(S)

Vπ(x) ≤ u(x),

where �
[x0,x1]
x = {π ∈ �x :x0 ≤ Xπ

t ≤ x1, t ≥ 0} and �x(S) is the set of all the
admissible strategies π ∈ �x such that the measure of

{(ω, t) ∈ � × [0,∞) :Xπ
t (ω) ∈ S}

is zero.
Take π = (γt ,Lt ) ∈ �

[x0,x1]
x ∩ �x(S). Consider the functions un defined in

Lemma 5.2; since they are twice continuously differentiable, we can write

un(Xτπ )e−cτπ − un(x)

=
∫ τπ

0
u′

n(Xs)e
−cs dXs − c

∫ τπ

0
un(Xs)e

−cs ds(5.1)

+ (σ 2/2)

∫ τπ

0
u′′

n(Xs)γ
2
s X2

s e
−cs ds

for any t ≥ 0.
Note that, since Lt is nondecreasing and left-continuous, it can be written as

Lt =
∫ t

0
dLc

s + ∑
Xs+ 
=Xs,s<t

(Ls+ − Ls),(5.2)

where Lc
s is a continuous and nondecreasing function. Hence, using expressions

(2.2) and (5.2), we get∫ τπ

0
u′

n(Xs)e
−cs dXs

=
∫ τπ

0
u′

n(Xs)e
−csp ds +

∫ τπ

0
u′

n(Xs)e
−csrXsγs ds

+
∫ τπ

0
u′

n(Xs)e
−csσXsγs dWs

(5.3)

−
∫ τπ

0
u′

n(Xs)e
−cs dLc(s)

+ ∑
Xs− 
=Xs,s≤τπ

(
un(Xs) − un(Xs−)

)
e−cs

+ ∑
Xs+ 
=Xs,s<τπ

(
un(Xs+) − un(Xs)

)
e−cs .
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We have that Xs+ 
= Xs only at the discontinuities of Ls , so Xs+ − Xs = −(Ls+ −
Ls) and ∑

Xs+ 
=Xs,s<τπ

(
un(Xs+) − un(Xs)

)
e−cs

= − ∑
Ls+ 
=Ls,s<τπ

(∫ Ls+−Ls

0
u′

n(Xs − α)dα

)
e−cs .

From Lemma 5.2(c), u′
n ≥ 1, so we obtain

−
∫ τπ

0
u′

n(Xs)e
−cs dLc

s

+ ∑
Xs+ 
=Xs,s<τπ

(
un(Xs+) − un(Xs)

)
e−cs

(5.4)

≤ −
(∫ t∧τπ

0
e−cs dLc

s + ∑
Ls+ 
=Ls,s<τπ

(∫ Ls+−Ls

0
dα

)
e−cs

)

= −
∫ τπ

0
e−cs dLs.

Since Xs 
= Xs− only at the arrival of a claim, the process

M
(1)
t = ∑

Xs− 
=Xs,s≤t

(
un(Xs) − un(Xs−)

)
e−cs

(5.5)

− β

∫ t

0
e−cs

∫ ∞
0

(
un(Xs− − α) − un(Xs−)

)
dF(α)ds

is a martingale with zero-expectation.
From (5.1), (5.3), (5.4) and (5.5), we obtain

un(Xτπ )e−cτπ − un(x)
(5.6)

≤
∫ τπ

0
Lγs (un)(Xs−)e−cs ds −

∫ τπ

0
e−cs dLs + M

(1)
τπ + M

(2)
τπ ,

where

M
(2)
t =

∫ t

0
u′

n(Xs)e
−csσXsγs dWs

is a martingale with zero-expectation.
We have Ex(

∫ τπ

0 e−cs dLs) = Vπ(x), Ex(un(Xτπ )e−cτπ
) ≥ 0 and from Lem-

ma 5.2(d), since π ∈ �x(S), we have that

lim
n→∞Ex

(∫ t∧τπ

0
Lγs (un)(Xs−)e−cs ds

)
≤ 0



1272 P. AZCUE AND N. MULER

for all t . Then, from Lemma 5.2(b), we obtain u(x) = limn→∞ un(x) ≥ Vπ(x).
�

In order to state the verification theorem, we need to extend the concept of
strategies by the following definition.

DEFINITION 5.4. (a) Fix x ≥ 0, let us define the map Vx :�x → [0,∞) as
Vx(π) = Vπ(x). We give to �x the initial topology of Vx and define �̃x as the
completion of �x under this topology [see, for instance, Kelley (1955)]. We say
that the elements of �̃x are limit strategies.

(b) Given π̃ ∈ �̃x , there exists a sequence πk ∈ �x such that limk→∞ πk = π̃ ,
we define Vπ̃ (x) = limk→∞ Vπk(x).

From Proposition 5.3, we get the following verification theorem.

THEOREM 5.5. Let π be a limit strategy such that the corresponding value
function Vπ̃ is an absolutely continuous supersolution of (3.1) in (0,∞), then
Vπ̃ = V .

We conclude from Remark 5.1 and Proposition 5.3 that the optimal value func-
tion V satisfies

V (x) ≤ x + p/c for x ≥ 0,(5.7)

and so it satisfies (A.3). By Propositions 2.2 and 2.3, the optimal value function V

also satisfies (A.1) and (A.2). Therefore, from Corollary 4.2 and Proposition 5.3
we get the following corollary.

COROLLARY 5.6. The function V can be also characterized as the unique
viscosity solution of (3.1) satisfying assumptions (A.1), (A.2) and (A.3) with the
boundary condition,

V (0) = inf{u(0) :u viscosity supersolution of (3.1) satisfying (A.3)}.

6. Solutions of the second-order differential equation. In the previous sec-
tions we have characterized the optimal value function V without assuming any
regularity conditions on the claim-size distribution function F . To find the opti-
mal value function V and the value function of barrier strategies, we need some
technical results about the solutions of

L∗(W) = 0(6.1)

on open sets. In order to have classical solutions of this equation, we assume, from
this section on, that the claim-size distribution function F has a bounded density.
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If we do not assume this, we would have to deal with viscosity solutions of (6.1)
and this adds some technical problems.

Equation (6.1) is similar to the HJB equation that arises in the problem of max-
imizing the survival probability of an insurance company whose uncontrolled re-
serve follows the classical Cramér–Lundberg process and where the management
has the possibility of investing in the financial market. Azcue and Muler (2009)
considered this problem and showed that the optimal survival probability function
δ is a classical solution of L∗(δ) = 0 in (0,∞), but with parameter c equal to zero.

The existence and uniqueness of classical solutions of (6.1) is not straightfor-
ward since the ellipticity of L∗ degenerates at 0 and could degenerate at any posi-
tive point. However, we prove in this section that the optimal γ in (6.1) is not zero
for positive points. On the other hand, the degeneracy of the ellipticity of the oper-
ator at zero gives the uniqueness of twice continuously differentiable solutions of
(6.1) in (0,∞) with only one boundary condition at zero.

In the next proposition we construct, via a fixed-point argument, the unique
twice continuously differentiable solution of (6.1) in (0,∞) with the boundary
condition W(0) = 1.

PROPOSITION 6.1. (a) There exists a unique increasing classical solution
W of (6.1) in (0,∞) with the boundary condition, W(0) = 1 and L∗(W) =
Lγ̃ (W)(W) = 0, where

γ̃ (W)(x) =
⎧⎨⎩−rW ′(x)/(σ 2xW ′′(x)),

if 0 < −rW ′(x)/(σ 2xW ′′(x)) ≤ 1,

1, otherwise.
(6.2)

(b) The function W can be written as W(x) = 1 + ∫ x
0 w(s) ds, where w is the

unique nonnegative fixed point of the operator,

T (w)(x) = inf
�∈G

2
∫ x

0 A�(s)M(W)(s) ds

σ 2x2�(x)2A�(x)
.(6.3)

Here

G = {� : [0,∞) → (0,1]
piecewise continuous with inf(�) > 0},(6.4)

M(W)(x) = (c + β)W(x) − β

∫ x

0
W(x − α)dF (α)

and

A�(x) = e
∫ x

1 2(p+r�(s)s)/(σ 2�(s)2s2) ds/(�(x)2x2).

PROOF. We give here a sketch of the proof and refer to Sections 3 and 4 in
Azcue and Muler (2009) for details since the proof is similar.
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It can be proved that if U is any classical increasing solution of (6.1) with
U(0) = 1, then u = U ′ is a fixed-point of (6.3) and also that there is a unique
continuous nonnegative fixed-point w of (6.3). It can be proved that w is locally
Lipschitz, and so W(x) = 1 + ∫ x

0 w(s) ds is semiconcave in any compact set in-
cluded in (0,∞). The next step consists of proving that W is twice continuously
differentiable and so it is a classical solution of (6.1). To do that, we construct
twice continuously differentiable increasing solutions of the second-order integro-
differential equations, L1(W1) = 0 and supγ∈R Lγ (W2) = 0, and show then that
W coincides locally with one or the other and also that W is obtained by glu-
ing smoothly solutions of these equations. Hipp and Plum (2000) and Schmidli
(2002) studied and found classical solutions of the equation supγ∈R Lγ (W) = 0
with c = 0 for the problem of minimizing the ruin probability of an insurance
company without borrowing constraints.

Finally, since Lγ (W)(x) is a quadratic function on γ and W is increasing, the
maximum is attained at γ = 1 or at the vertex γ = −rW ′(x)/(σ 2xW ′′(x)). It can
be shown that the vertex cannot be zero. �

REMARK 6.2. Given � ∈ G , consider the related problem of finding the sur-
vival probability S(x) of an insurance company with initial surplus x, whose un-
controlled reserve follows the classical Cramér–Lundberg process and where the
management invests a proportion � of the current surplus in the financial market.
The function S can be called the scale function of the surplus process as in Revuz
and Yor (1999), and it is a solution of L�(S) = 0 but with parameter c equal to
zero [see Azcue and Muler (2009)]. So, as in Proposition 6.1, we have

S ′(x) = 2
∫ x

0 A�(s)β(S(s) − ∫ s
0 S(s − α)dF(α)) ds

σ 2x2�(x)2A�(x)
.

PROPOSITION 6.3. (a) The function γ̃ (W) defined in (6.2) can be written as

γ̃ (W)(x) = min
{
1,2

(
M(W)(x) − pW ′(x)

)
/(rxW ′(x))

}
.

(b) There exists ε > 0 such that γ̃ (W)(x) = 1 for x ∈ [0, ε).
(c) W ′(0+) = (c + β)/p and W ′′(0+) = (c + β − r)(c + β)/p2 − F ′(0)β/p.

PROOF. We obtain (a) by replacing the value of W ′′(x) obtained from the
equation Lγ̃ (W)(W) = 0 in the definition (6.2). To prove (b) and (c) consider W1
the unique increasing twice continuously differentiable solution of L1(W1) = 0. It
can be proved using L’Hôpital’s rule that

W ′
1(0

+) = (c + β)/p and W ′′
1 (0+) = (c + β − r)(c + β)/p2 − F ′(0)β/p,

and so

lim
x→0+|rW ′

1(x)/(σ 2xW ′′
1 (x))| = +∞.
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We conclude that there exists ε > 0 such that γ̃ (W1) = 1 in [0, ε). Therefore, using
that L∗(W1) = Lγ̃ (W1)(W1), we obtain that W1 satisfies L∗(W1) = 0 in [0, ε) and
so W(x) = W1(x) for small values of x. �

In an analogous way, given a positive x0 and an increasing continuous function
W0 defined in [0, x0] such that W0 is differentiable at x0, we can construct the
unique twice continuously differentiable solution of

L∗(U,W0)(x) = 0 for x > x0(6.5)

with boundary conditions U(x0) = W0(x0) and U ′(x0) = W ′
0(x0) where

L∗(U,W0) = sup
γ∈[0,1]

Lγ (U,W0),(6.6)

Lγ (U,W0)(x) = σ 2γ 2x2U ′′(x)/2 + (p + rγ x)U ′(x) − M(U,W0)(x)(6.7)

and

M(U,W0)(x) = (c + β)U(x) − β

∫ x−x0

0
U(x − α)dF (α)

(6.8)
− β

∫ x

x−x0

W0(x − α)dF(α).

The next proposition is analogous to Propositions 6.1 and 6.3(a); the proof fol-
lows by using a fixed-point argument similar to the one used in Proposition 6.1.

PROPOSITION 6.4. Assume that W0 is a continuous, positive and increasing
function in [0, x0] and that W0 is differentiable at x0.

(a) There exists a unique twice continuously differentiable solution U of (6.5) in
(x0,∞) with U(x0) = W0(x0) and U ′(x0) = W ′

0(x0).
(b) If we define

γ̃ (U,W0)(x) = min
{
1,2

(
M(U,W0)(x) − pU ′(x)

)
/(rxU ′(x))

}
we have that

L∗(U,W0) = Lγ̃ (U,W0)(U,W0) = 0.

7. Barrier strategies. A dividend payment policy is called barrier with level
y when all excess surplus above y is paid out immediately as dividends, but there is
no dividends payment when surplus is less than y. In this section we would like to
obtain the optimal barrier strategy, that is, the admissible strategy that maximizes
the cumulative expected discounted dividends among all the strategies whose div-
idend policies are barrier. We would also like to prove that the optimal barrier
strategy is stationary, in the sense that the decision on how much dividend to pay
and how to invest at any time depends only on the current surplus. Note that a
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stationary strategy π determines an admissible strategy πx ∈ �x for each initial
surplus x.

In the classical Cramér–Lundberg model without the possibility of investment,
there exists an optimal barrier strategy. Let y∗ be the optimal level. It has been
proved [for instance, in Azcue and Muler (2005)] that the optimal policy for current
surplus y∗ is to pay all the incoming premium as dividends in order to maintain
the surplus at level y∗ until the arrival of the next claim.

In the model with investment, it is possible to define similar barrier strategies for
any level y (if the current surplus is y, pay all the incoming premium as dividends
and keep all the surplus in bonds), but these barrier strategies are never optimal.
In fact there is not a stationary barrier strategy which is optimal, since it is not
possible to determine the dividends payment policy when the current surplus coin-
cides with the threshold. We construct in this section a candidate of optimal barrier
strategy as an explicit limit of stationary admissible barrier strategies and find its
value function. In the next sections we will prove that this strategy is indeed the
optimal barrier strategy, also we will show that the optimal strategy in (2.4) could
be nonbarrier, but this optimal strategy and the optimal barrier strategy coincide
for small surpluses.

First in this section we use the function W , constructed in Section 6, to obtain
the value function of a limit barrier strategy with a given level y and the best
investment policy. Later we find the optimal level of these strategies. In all the
cases, the optimal investment policy is stationary in the sense that the decision on
how to invest depends only on the current surplus.

DEFINITION 7.1. Given a predictable process γt ∈ [0,1] and points 0 < z < y,
we define recursively for initial surplus x ≥ 0, the admissible strategy π

(γt ,z,y)
x ∈

�x as:

1. If x > y, pay immediately the surplus x −y as dividends and follow the strategy
π

(γt ,z,y)
y ∈ �y .

2. If x ≤ y, follow the admissible strategy (γt ,0) up to the exit time τ ∗ =
min{τy, τ

π } where

τy = min
{
t :Xπ

(γt ,z,y)
x

t = y
}

and τπ is the ruin time. When τ ∗ = τy , pay immediately y − z as dividends and

follow the strategy π
(γt ,z,y)
z with initial surplus z.

Let us call �
z,y
x the set of all these strategies, and let us consider for all x ∈ [0, y]

the function

Wz,y(x) = sup
π∈�

z,y
x

Vπ(x).(7.1)
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We define Wz,y(x) = 0 for x < 0. We first state some basic properties of the func-
tion Wz,y . The proof of the next proposition is similar to the proof of Proposi-
tions 2.2 and 2.3.

PROPOSITION 7.2. We have that:
(a) The value function Wz,y is well defined.
(b) If y ≥ x2 > x1, then

Wz,y(x2) − Wz,y(x1) ≤ (
e(c+β)(x2−x1)/p − 1

)
Wz,y(x1).

(c) Wz,y(y) = Wz,y(z) + (y − z).
(d) Wz,y is increasing in [0, y].
(e) Wz,y is absolutely continuous in [0, y].
Let us state now a dynamic programming principle for these value functions.

PROPOSITION 7.3. Given x ∈ [0, y] and any stopping time τ , we have that

Wz,y(x) = sup
(γt ) admissible

Ex

(
e−c(τ∧τ∗)Wz,y

(
X

(γt ,0)
τ∧τ∗

))
,

where τ ∗ is the stopping time defined in Definition 7.1.

In the next proposition, we show that all the functions Wz,y are multiples of
the function W obtained in Proposition 6.1; this allows us to describe the optimal
investment policy for (7.1).

PROPOSITION 7.4. (a) We have that

Wz,y(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
W(x)

(W(y) − W(z))/(y − z)
, if 0 ≤ x < y,

W(y)

(W(y) − W(z))/(y − z)
+ (x − y), if x ≥ y,

where W is the function obtained in Proposition 6.1.
(b) Wz,y(x) is the value function of the admissible stationary strategy πx ∈ �

z,y
x ,

the optimal investment policy depends only on the current surplus Xπ
t− and it is

given by γ t = γ̃ (W)(Xπ
t−) where the function γ̃ (W) is defined in Proposition 6.1.

PROOF. We extend the definition of W as W(x) = 0 for x < 0. Let us take any
admissible strategy π = (γt ,Lt ) ∈ �

z,y
x and consider the stopping times τy and τ ∗

defined in Definition 7.1. Up to time τ ∗, the dividend payment policy Lt is zero,
so the strategy π only depends on the investment policy γ = (γt ). To simplify
notation, we denote X

γ
t the corresponding controlled risk process starting at x.

This process satisfies up to τ ∗ the following stochastic differential equation:

dXγ
s = (p + rXγ

s γs) ds + σXγ
s γs dWs − d

(
Ns∑
i=1

Ui

)
.(7.2)



1278 P. AZCUE AND N. MULER

Since the function W(x) is twice continuously differentiable, using the expres-
sions (7.2) and the Itô’s formula for semimartingales [see Protter (1992)], it can be
shown with arguments similar to the proof of Proposition 5.3 that

W(X
γ
τ∗)e−cτ∗ − W(x) =

∫ τ∗

0
Lγs (W)(X

γ

s−)e−cs ds + M
(1)
τ∗ + M

(2)
τ∗ ,(7.3)

where

M
(1)
t = ∑

Xs− 
=X,s≤t

(
W(Xγ

s ) − W(X
γ

s−)
)
e−cs

(7.4)

− β

∫ t

0
e−cs

∫ ∞
0

(
W(X

γ

s− − α) − W(X
γ

s−)
)
dF(α)ds

and

M
(2)
t =

∫ t

0
W ′(Xγ

s )e−csσXγ
s γs dWs(7.5)

are martingales with zero-expectation.
Note that we have

Ex(W(X
γ
τ∗)e−cτ∗

) = Ex

(
W(X

γ
τ∗)e−cτ∗

χ{τ∗=τy}
) = Ex

(
W(y)e−cτ∗

χ{τ∗=τy}
)
.

From (7.4), (7.5) and (7.3), by Proposition 6.1, we get that

sup
γ admissible

Ex(W(X
γ
τ∗)e−cτ∗

) = Ex(W(X
γ
τ∗)e−cτ∗

) = W(x)

and so supγ admissible Ex(e
−cτ∗

χ{τ∗=τy}) = W(x)/W(y). The supremum is reached
at the process γ = (γ t ). On the other hand, from Proposition 7.3, we obtain that

sup
γ admissible

E
(
e−cτ∗

χ{τ∗=τy}
) = Wz,y(x)/Wz,y(y),

and the result follows from Wz,y(y) = Wz,y(z) + (y − z). �

Note that the optimal investment policy of all the strategies defined above does
not depend on the value of z. The corresponding controlled risk process with initial
surplus x ≤ y never exceeds the threshold y. In the next definition we define the
limit dividend barrier strategies π̃

y
x for any x ∈ [0, y).

DEFINITION 7.5. Given a sequence zn ↗ y and any current surplus x ∈ [0, y),
take π

(γ t ,zn,y)
x ∈ �

z,y
x . We define π̃

y
x = limn→∞ π

(γ t ,zn,y)
x .

In the next proposition we obtain the expression for the limit value function; the
proof follows immediately from Proposition 7.4.
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PROPOSITION 7.6. We have that

Vπ̃
y
x
(x) = lim

n→∞Wzn,y(x) =
{

W(x)/W ′(y), if 0 ≤ x < y,
W(y)/W ′(y) + (x − y), if x ≥ y.

Note that the function Vπ̃
y
x

is twice continuously differentiable in (0, y)∪(y,∞)

and differentiable at y. We show now that W ′ reaches the minimum.

PROPOSITION 7.7. Consider the function W defined in Proposition 6.1, then

w1 = infW ′ = W ′(x) > 0

for some x ≥ 0. Call x∗ = min{x ≥ 0 :W ′(x) = w1}.

PROOF. Define for u ≥ 0, the function G(u) = infx∈[0,u] W ′(x). Since W ′ is a
continuous positive function, then G is continuous, nonincreasing and positive. We
want to prove that there exists u0 such that G(u) is constant for u ≥ u0. Suppose
that this is not the case, then there exists u2 > u1 > p/(c − r) such that G(u2) <

G(u1) < G(p/(c − r)). Consider

x1 = min{x :W ′(x) = G(u1)}, x2 = min{x :W ′(x) = G(u2)}.
Note that x2 > u1 ≥ x1 > p/(c − r). Let us consider the value functions of the
limit barrier strategies,

Uxi
(x) =

{
W(x)/W ′(xi), if x < xi ,
W(xi)/W ′(xi) + (x − xi), if x ≥ xi ,

for i = 1,2.
We prove now that Uxi

is a supersolution of (3.1) in x > 0. Since W is a solution
of (6.1), W ′(xi) ≤ W ′(x) for x ∈ (0, xi] and U ′

xi
= 1 in (xi,∞) we only need to

show that Uxi
is a supersolution of (6.1) in [xi,∞). Let us show first that Uxi

is a
supersolution at x > xi , take any γ ∈ [0,1], since Uxi

is increasing and Uxi
≥ xi ,

we have that Lγ (Uxi
) < 0. Let us show now that Uxi

is a supersolution at xi . We
have that U ′

xi
(xi) = 1, take q such that

q/2 ≤ lim inf
h→0

(Uxi
(xi + h) − Uxi

(xi))/h − 1

h

≤ lim
h→0+

(Uxi
(xi + h) − Uxi

(xi))/h − 1

h
= 0.

Since Uxi
is a supersolution for x > xi and supγ∈[0,1] Lγ (Uxi

,1, q)(x) is continu-
ous for x ≥ xi we have that supγ∈[0,1] Lγ (Uxi

,1, q)(x) ≤ 0.
Since Uxi

is the value function of a limit strategy we have that Uxi
≤ V , and

since Uxi
is a supersolution of (3.1), we have that Uxi

≥ V . Then Uxi
= V for

i = 1,2, and this is a contradiction since Ux1 
= Ux2 . �
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In the next proposition we see that the value x∗ defined in Proposition 7.7 is
the optimal threshold of the dividend barrier strategies given in Definition 7.5. We
also give a test to see whether the value function of the limit barrier strategy π̃

x∗
x is

the optimal value function V at x. The proof follows directly from Proposition 7.7
and Theorem 5.5.

PROPOSITION 7.8. Define V1(x) as the value function of the limit barrier
strategy obtained in Proposition 7.6 with barrier x∗ := arg minW ′. Then:

(a) V1(x) = maxy≥0 Vπ̃
y
x
(x) for all x ≥ 0 and the function V1 is twice continu-

ously differentiable.
(b) If V1 is a viscosity supersolution of (3.1), then V1 coincides with the optimal

value function V .

In Remark 8.7 of the next section, we will see that the limit stationary barrier
strategy π̃ x∗ defined as π̃

x∗
x ∈ �x for any initial surplus x ≥ 0 is the optimal barrier

strategy. Note that the investment policy corresponding to this strategy is stationary
and it is given by

γ ∗(u) = min
{
1,2

(
M(W)(u) − pW ′(u)

)
/(ruW ′(u))

}
for any current surplus u ∈ [0, x∗]. Also note that, by Proposition 6.3(b), γ ∗ = 1
for small surpluses. This means that the whole surplus should be invested in stocks.
In the unconstrained case where it is allowed to borrow money to buy risky assets,
it can be seen that optimal investment policy tends to infinite as the surplus goes to
zero, that is, for small surpluses the company should always borrow money to buy
stocks.

8. Band structure of the optimal dividend strategy. We will show in Sec-
tion 9 that the optimal value function V is not always the value function of a limit
barrier strategy. Nevertheless, we prove in this section that the optimal dividend
payment policy has a band structure. As in the case of the optimal barrier strategy,
V is not the value function of a stationary admissible strategy, but it can be written
explicitly as a limit of value functions of admissible stationary strategies.

We have shown in Section 3 that V is a viscosity solution of equation (3.1). In
this section we see that V can be obtained by gluing, in a smooth way, classical
solutions of L∗(V ) = 0 on an open set C0 with solutions of V ′ = 1 on a set B0.
The set B0 is a disjoint union of left-open, right-closed intervals. These sets will
be defined in Proposition 8.4.

When the current surplus x is in the set B0, the optimal dividend payment policy
should be to pay out immediately a positive sum of dividends, and when the current
surplus x is in the set C0, the optimal strategy should be to pay no dividends and to
follow the investment policy γ (x) = arg maxγ∈[0,1] Lγ (V )(x) which depends only
on the current surplus x. In the simplest case, when the optimal value function V is
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the solution of L∗(V ) = 0 in C0 = (0, y∗) and V ′ = 1 in B0 = (y∗,∞), the optimal
dividend payment policy is barrier.

We see that V is continuously differentiable; it is twice continuously differen-
tiable in B0 and C0, but at some points outside B0 ∪ C0, the second derivative could
not exist. So we still need the notion of viscosity solutions to characterize V as a
solution of the associated HJB equation.

We also prove in this section that, for small surpluses, the optimal strategy co-
incides with the optimal barrier obtained in Section 7, and for large surpluses, the
optimal strategy is to pay out as dividends the surplus exceeding some level.

In the next proposition, we give conditions under which the optimal value func-
tion V is the supremum of the value functions corresponding to admissible strate-
gies with surplus not exceeding x̂.

PROPOSITION 8.1. Assume there exists x̂ > 0 with V ′(x̂) = 1; then

V (x) = sup
π∈�x̂

x

Vπ(x) for all x ≤ x̂.

PROOF. Given any ε > 0, let us consider the twice continuously differen-
tiable solution g of the equation L∗(g) = 0 for the special case β = 0. From
Proposition 7.7, we get that infx≥0 g′(x) = g′(x∗) > 0 for some x∗ ≥ 0. So
limx→∞ g(x) = ∞ and we can find a number D such that g(D) ≥ 2g(x̂)V (x̂)/ε.
Consider xn = x̂ − D/n, and define hn = (V (xn) − V (x̂))/(xn − x̂) − 1. Since
V ′(x̂) = 1, we have that hn goes to 0 as n goes to infinity, and so we can find an
integer n0 large enough such that hn0 < ε/(8D).

We can find points 0 = y0 < y1 < · · · < yM = x̂ such that V (yj+1) − V (yj ) ≤
ε/(16n0) and admissible strategies πyj

∈ �yj
such that V (yj ) − Vπyj

(yj ) ≤
ε/(16n0). Consider, for any x ∈ [0, x̂], the point y(x) = max{yj :yj ≤ x} and the
strategy πx ∈ �x which pays out immediately x − y(x) as dividends and then fol-
lows the strategy πy(x) ∈ �y(x). We obtain that V (x) − Vπx (x) ≤ ε/(8n0) for any
x ∈ [0, x̂].

For any x ∈ [0, x̂], we define recursively strategies πk
x ∈ �x as follows. For

k = 0, take π0 = πx . For k > 0 and for the initial surplus x ≤ xn0 , follow the
strategy πx while Xπ

t < x̂, when the surplus Xπ
t reaches x̂, pay out immediately

the difference x̂ − xn0 as dividend and then follow the strategy πk−1
xn0

∈ �xn0
. For

k > 0 and for the initial surplus x ∈ (xn0, x̂], pay out immediately the difference
x − xn0 as dividend and then follow the strategy πk−1

xn0
∈ �xn0

.
With arguments similar to Lemma A.5 in Azcue and Muler (2005) it can be seen

that, for any x ∈ [0, x̂] and k ≥ 0 the strategy πk
x ∈ �x is admissible and

V (x) − V
π

n0
x

(x) < ε/2 for all x ∈ [0, x̂].(8.1)

Let us prove now that, for any x ∈ [0, x̂], there exists an admissible strategy
π̃ ∈ �x̂

x such that

V
π

n0
x

(x) − Vπ̃ (x) < ε/2 for all x ∈ [0, x̂].(8.2)
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Let us define τ̂ = inf{t > 0 :Xπ
n0
x

t > x̂}. Consider the process Y
π

n0
x

t defined in

Lemma 2.1, as the process corresponding to X
π

n0
x

t without claims and without

paying dividends, but starting at Y
π

n0
x

0 = x. Since the process X
π

n0
x

t should pass at
least n0 times through the interval [xn0, x̂] before surpassing x̂, we obtain that

τ̂ ≥ τY
n0

:= inf{t > 0 :Yπ
n0
x

t > xn0 + n0(x̂ − xn0)}.(8.3)

To prove this, consider X
π̃

n0
x

t the corresponding process without the dividends pay-
ment x̂ − xn0 in each step, then

inf
{
t > 0 :Xπ

n0
x

t > x̂ = xn0

(
1 + x̂ − xn0

xn0

)}

= inf
{
t > 0 :Xπ̃

n0
x

t > xn0

(
x̂

xn0

)n0}
,

and since xn0(x̂/xn0)
n0 ≥ xn0 + n0(x̂ − xn0) and Y

π
n0
x

t ≥ X
π̃

n0
x

t , we obtain that τ̂ ≥
τY
n0

.
Since L∗(g) = 0 and Yπ

τY
n0

= xn0 + n0(x̂ − xn0) we have, using Itô’s formula,

that

g
(
xn0 + n0(x̂ − xn0)

)
E(e

−cτY
n0 ) ≤ g(x).

So, we have from the fact that g is increasing and (8.3) that

E(e−cτ̂ ) ≤ E(e
−cτY

n0 ) ≤ g(x)

g(xn0 + n0(x̂ − xn0))
(8.4)

≤ g(x̂)

g(D)
≤ ε

2V (x̂)
.

Again, with arguments similar to Lemma A.5 in Azcue and Muler (2005), we
obtain

Vπn0
(x) − Vπ̃ (x) ≤ E(e−cτ̂ )

(
V (x̂) − x̂

)
.

So using (8.4), we conclude (8.2). From (8.1) and (8.2) we get the result. �

We have to introduce some auxiliary sets to define precisely the sets B0 and C0
mentioned above.

DEFINITION 8.2. Let us define the continuous function

�(x) = (p + rx) − M(V )(x),(8.5)
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where the operator M is defined in (6.4), and the sets:

• A = {x ∈ [0,∞) such that V ′(x+) = 1 and �(x) = 0},
• B = {x ∈ (0,∞) such that V ′(x) = 1 and �(x) < 0},
• C = [0,∞) − (A ∪ B).

LEMMA 8.3. The following situations are not possible:

1. V ′(x+) = 1 and �(x) > 0.
2. 1 = V ′(x+) < V ′(x−) and �(x) = 0.

So, we conclude that

A = {x ∈ [0,∞) such that V ′(x) = 1 and �(x) = 0},
B = {x ∈ (0,∞) such that V ′(x) = 1 and �(x) < 0},

C = {x ∈ (0,∞) such that V ′(x+) > 1}
∪ {x ∈ (0,∞) such that V ′(x−) > V ′(x+) = 1 and �(x) < 0}.

PROOF. Let us prove first that given x ≥ 0, if V ′(x+) = 1 then �(x) ≤ 0.
Assume that �(x) > 0, then we can find δ > 0 such that �(y) > 0 for all y ∈
[x, x + δ). Let us define D as the set of points in (x, x + δ) where V ′ and V ′′
exist, since V is semiconcave the set D has full measure. The function V is a
supersolution of (3.1), then for any y ∈ D we have

0 ≥ L∗(V )(y) ≥ σ 2y2V ′′(y)/2 + �(y)

and so V ′′(y) ≤ −2�(y)/(σ 2y2) < 0. Then, since V is semiconcave, we have that
for any y ∈ D

V ′(y) − 1 = V ′(y) − V ′(x+) ≤
∫ y

x
V ′′(s) ds < 0

and this is a contradiction because V ′(y) ≥ 1.
Let us prove now that if x ∈ A and x > 0, then V is differentiable at x and

V ′(x) = 1. If we have that 1 = V ′(x+) < V ′(x−), take any d ∈ (V ′(x+),V ′(x−)),
then

lim sup
h→0

(V (x + h) − V (x))/h − d

h
= −∞

and so, for any q , we have that

max
{
1 − d, max

γ∈[0,1]
(
σ 2x2γ 2q/2 + (p + rxγ )d − M(V )(x)

)} ≥ 0

and then, since d > 1, so

max
γ∈[0,1]

(
σ 2x2γ 2q/2 + (p + rxγ )d − M(V )(x)

) ≥ 0.
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Since this holds for any q , taking a sequence qn → −∞, we obtain that pd −
M(V )(x) ≥ 0 for any d ∈ (1,V ′(x−)). This implies that p − M(V )(x) ≥ 0 and so
�(x) > 0, which is a contradiction. �

DEFINITION 8.4. We define the sets A0, B0 and C0 as:

• B0 = B ∪ {a ∈ A : (a − ϑ,a) ⊂ A ∪ B for some ϑ > 0},
• C0 = C ∪ {a ∈ A : (a − ϑ,a) ∪ (a, a + ϑ) ⊂ C for some ϑ > 0},
• A0 = [0,∞) − (C0 ∪ B0).

PROPOSITION 8.5. The sets introduced in Definition 8.4 satisfy the following
properties:

(a) B0 is a disjoint union of intervals that are left-open and right-closed.
(b) If (x0, x̂] ⊂ B0 and x0 /∈ B0, then x0 ∈ A0.
(c) There exists x∗ ≥ 0 such that (x∗,∞) ⊂ B0.
(d) C0 is an open set in [0,∞), that is, if 0 ∈ C0, there exists δ > 0 such that

[0, δ) ⊂ C0 and if a positive x ∈ C0 there exists δ > 0 such that (x − δ, x + δ) ⊂ C0.
(e) Both A0 and B0 are nonempty.

PROOF. The proof follows immediately from Definition 8.4 and Lemmas A.5
and A.6 included in the Appendix. �

From the previous proposition we can conclude that the upper boundary of any
connected component of C0 belongs to A0 and also that the the lower boundary of
any connected component of B0 belongs to A0.

The next proposition describes the optimal value function V for small initial
surpluses.

PROPOSITION 8.6. Consider the function W defined in Proposition 6.1 and
the values w1 and x∗ defined in Proposition 7.7, then the optimal value function
V (x) coincides with W(x)/w1 for all x ∈ [0, x∗]. In particular, V is twice contin-
uously differentiable in [0, x∗].

PROOF. By Lemma A.6(b) included in the Appendix, A is left closed, so there
exists m = min A. Note that, by Proposition 7.7, w1 and x∗ are well defined. Con-
sider V1 the value function of the limit strategy π̃x∗

x obtained in Proposition 7.6.
From (2.4), we have that V1(x) ≤ V (x).

If m > x∗, we have from Proposition 5.3 that V (x) ≤ W(x)/W ′(x∗) in [0,∞)

because W(x)/W ′(x∗) is a supersolution of (3.1). So V (x) = W(x)/W ′(x∗) =
V1(x) in [0, x∗]. Then V ′(x∗) = 1 and this implies that x∗ ∈ A ∪ B; this is a con-
tradiction since in both cases there would exist a point in A smaller that m. In
particular, if x∗ = 0, then m = 0.

If 0 < m < x∗, since V ′
1 ≥ 1 and L∗(V1) = 0 in (0,m), we have that V1

is a supersolution of (3.1) in (0,m) and since V ′(m) = 1, by Proposition 8.1,
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W(x)/W ′(x∗) = V (x) in [0,m], but then 1 = V ′(m) = W ′(m)/W ′(x∗) and this
is a again a contradiction because by definition of x∗, W ′(m)/W ′(x∗) > 1.

Finally, in the case that m = 0, since 0 ∈ A we have from (8.5) that V (0) =
(c + β)/p, but from Proposition 6.3(c) we have that W ′(0) = (c + β)/p, and so
we get V (0) = W(0)/W ′(0). This implies that x∗ = 0 because if x∗ were positive,
we would obtain

V (0) = W(0)/W ′(0) < W(0)/W ′(x∗) ≤ V (0).

Therefore, m = x∗ and V = V1 in [0, x∗]. �

The previous proposition allows us to obtain V for small surpluses using only
the function W . In the case that x∗ = 0, we only obtain from this proposition the
value at zero, V (0) = (c+β)/p. Hence, using Corollary 4.2, we can conclude that
V is the unique viscosity solution of (3.1) with the boundary condition V (0) =
W(0)/w1.

REMARK 8.7. The limit stationary strategy π̃ x∗ defined in Section 7 is the
optimal barrier strategy. In effect, the optimal barrier strategy is the one with max-
imum value function al 0 and, by Proposition 8.6, the value function of this limit
stationary strategy is V1(0) = W(0)/w1 = V (0).

Let us show now that V is a classical solution of L∗(V ) = 0 in C0.

PROPOSITION 8.8. (a) Let (x1, x2) with x1 > 0 be a connected component
of C0. Consider U the unique classical solution of

L∗(U,V )(x) = 0(8.6)

in (x1,∞) with U(x1) = V (x1) and U ′(x1) = V ′(x1) = 1. Then V = U in [x1, x2].
(b) The optimal value function V is a classical solution of L∗(V ) = 0 in the

open set C0.

PROOF. Using Lemma A.8 included in the Appendix, it only remains to prove
that V is twice continuously differentiable at the points a ∈ A such that, there
exists δ > 0 with (a − δ, a) ∪ (a, a + δ) ⊂ C . The number

γ ∗(a) = min
{
1,2

(
M(V )(a) − pV ′(a)

)
/(raV ′(a))

}
is positive because M(V )(a) − pV ′(a) > �(a) = 0 and V ′(a) = 1. Take any se-
quence un → a with un ∈ C; we have from Propositions 6.1 and 6.4 that

V ′′(un) = 2
(
(p + runγn)V

′(un) − M(V )(un)
)
/(σ 2u2

nγ
2
n ),

where

γn = min
{
1,2

(
M(V )(un) − pV ′(un)

)
/(runV

′(un))
}
.
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Since V is semiconcave we get that

lim
n→∞V ′′(un) = 2

((
p + raγ ∗(a)

)
V ′(a) − M(V )(a)

)
/(σ 2a2γ ∗(a)2),

so V is twice continuously differentiable at a. �

REMARK 8.9. The optimal value function V is continuously differentiable at
(0,∞) because it is continuously differentiable both in C0 and in the interior of
B0. At any other point x we have that V ′ is continuously differentiable since

lim
y∈B0,y→x

V ′(y) = lim
y∈C0,y→x

V ′(y) = 1 = V ′(x).

We prove now that V can be written as a limit of value functions of admissible
stationary strategies. All of these admissible strategies coincide on B0 and C0. If
the current surplus is in B0, the optimal strategy is to pay out as dividends the
amount exceeding the lower boundary of the connected component of B0. If the
current surplus is x ∈ C0, the optimal strategy is to pay no dividends and to invest
γ (x) = arg maxγ∈[0,1] Lγ (V )(x). Finally, if the current surplus is in A0, we need
to consider a limit of admissible strategies similar to the one we used to obtain
barrier strategies in Section 7.

We define admissible stationary strategies π based upon the sets A0, B0 and C0
introduced in Definition 8.4. Since these strategies are stationary, for any x ≥ 0 we
can denote π(x) ∈ �x the corresponding strategy with initial surplus x.

DEFINITION 8.10. Given a finite subset A′ ⊂ A0 and a number u > 0 satis-
fying the following conditions:

1. if min A0 = 0 then 0 ∈ A′,
2. ca = a/eu ∈ C0 for all positive a ∈ A′,

we define recursively the admissible stationary strategy π in the following way:

• If the current surplus x ∈ C0, pay no dividends and take

γ ∗(x) = min
{
1,2

(
M(V )(x) − pV ′(x)

)
/(rxV ′(x))

}
up to the exit time τ of C0. Then follow the strategy π(x1) ∈ �x1 where x1 =
X

π(x)
τ ∈ A0 ∪ B0.

• If the current surplus x ∈ B0, by Proposition 8.5(a) and (b), there exists a ∈ A0
such that (a, x] ⊂ B0. In this case pay out immediately x − a as dividends, and
follow the strategy π(a) ∈ �a described below.

• If the current surplus x ∈ A0 \ A′, pay out immediately x −a as dividends where
a is the maximum element of A′ smaller than x, and then follow the strategy
π(a) ∈ �a .

• If the current surplus is a ∈ A′, pay out immediately a − ca as dividends and
then follow the strategy π(ca) ∈ �ca .
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• In the case that the current surplus is 0 ∈ A′, pay out all the incoming premium
as dividends up to the ruin time.

In the case that A0 is finite, V can be written as the limit (with u going to zero)
of the value functions of the admissible strategies defined above taking A′ = A0;
but in the case that A0 is infinite, we have to consider finite subsets A′ ⊂ A0. This
result is proved in the next theorem.

THEOREM 8.11. Given ε > 0, we can find a finite set A′ ⊂ A0 and a number
u > 0 such that the admissible stationary strategy introduced in Definition 8.10
satisfies V (x) − Vπ(x)(x) < ε for all x ≥ 0. In the case that A0 is finite, we can
take A′ = A0.

PROOF. We assume that min A0 > 0, in the case min A0 = 0 the proof is simi-
lar. Let us consider x̂ = max A0 and the twice continuously differentiable solution
g of the equation L∗(g) = 0 for the special case β = 0. From Proposition 7.7, we
get that infx≥0 g′(x) = g′(x∗) > 0 for some x∗ ≥ 0. Since limx→∞ g(x) = ∞, we
can find a number M such that g(1)/g(eM) ≤ ε/(4V (x̂)).

We can find δ > 0 such that, if h ≤ δ then

0 ≤ (
V (a + h) − V (a)

)
/h − 1 ≤ ε/(4x̂).(8.7)

In effect, V ′ is absolutely continuous in [0, x̂], V ′(a) = 1 for all a ∈ A0 ∪ B0, and
from Proposition 8.5(b) and (c) we have that [x̂,∞) ⊆ A0 ∪ B0.

Given δ, take the finite set Aδ and the number ς > 0 given by Lemma A.9
included in the Appendix, and take u > 0 such that

u ≤ δ/(2x̂), a − ς < a/eu(8.8)

and

0 ≤ V (a) − V (a/eu)

a − a/eu
− 1 ≤ ε/

(
8(M + 2)x̂

)
(8.9)

for all a ∈ Aδ . Take N = #Aδ ,

k0 = [M/u + N ] + 1(8.10)

and admissible strategies π(a) ∈ �a with a ∈ Aδ such that

V (a) − Vπ(a)(a) ≤ ε/
(
4(2k0 + 3)

)
for all a ∈ Aδ.(8.11)

Let us define ca = a/eu for all a ∈ Aδ , then, by (8.8), ca ∈ C0. Take the admis-
sible stationary strategy π associated with u > 0 and the finite set Aδ given by
Definition 8.10.

We define recursively a family of admissible strategies πk(x) ∈ �x for all x ≥ 0
and k ≥ 0, in the following way:
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• Take π0(a) as the admissible strategy π(a) defined in (8.11) for all a ∈ Aδ .
• If the surplus x ∈ C0, pay no dividends and take

γ ∗(x) = min
{
1,2

(
M(V )(x) − pV ′(x)

)
/(rxV ′(x))

}
up to the exit time τ0 of C0. Then follow the strategy πk(x1) ∈ �x1 starting at
x1 where x1 = X

πk(x)
τ0 ∈ A0 ∪ B0.

• If the surplus x ∈ B0, by Proposition 8.5(a) and (b), there exists a ∈ A0 such that
(a, x] ⊂ B0. In this case, pay out immediately x − a as dividends and follow the
strategy πk(a) ∈ �a described below.

• If the surplus x ∈ A0 \ Aδ , pay out immediately x − a as dividends where a

is the maximum element of Aδ smaller than x, and then follow the strategy
πk(a) ∈ �a .

• If the surplus is a ∈ Aδ with a > 0, pay out immediately a − ca as dividends
and then follow the strategy πk−1(ca) ∈ �ca .

To simplify notation we write Vπk
(x) instead of Vπk(x)(x). Let us prove first

that

max
x≥0

(
V (x) − Vπk

(x)
) ≤ 3ε/4.(8.12)

Given any initial surplus x ≥ 0, note that all the processes X
πk
t with k ≥ 0 coincide

for t ≤ τ ∧ τ̂ where τ is the time of arriving to Aδ and τ̂ the ruin time. So, using
the dynamic programing principle, we have that

|Vπk0
(x) − Vπ0(x)|
= ∣∣Ex

(
e−c(τ∧τ̂ )(Vπk0

(X
πk0
τ∧τ̂ ) − Vπ0(X

πk0
τ∧τ̂ )

))∣∣
(8.13)

≤ Ex

(∣∣e−c(τ∧τ̂ )(Vπk0
(X

πk0
τ∧τ̂ ) − Vπ0(X

πk0
τ∧τ̂ )

)
χ{τ<τ̂ }

∣∣)
≤ max

a∈Aδ

|Vπk0
(a) − Vπ0(a)|.

Consider a ∈ Aδ , the processes X
πk
t starting at a and τ̂ the ruin time, we define as

usual X
πk
t = X

πk
τ̂ for t ≥ τ̂ . Let τk be the kth time that X

πk0+1
t reaches Aδ and let

K = {k ≥ 0 such that τk+1 < τ̂ and X
πk0
τk = X

πk0
τk+1}.

Since the processes X
πk
t and X

πk−1
t coincide until τk−1 ∧ τ̂ , we have using (8.11)

and (8.9) that

|Vπk0
(a) − Vπ0(a)|

≤
k0−1∑
k=0

|Vπk+1(a) − Vπk
(a)|(8.14)

= Ea

(
k0−1∑
k=0

(
e−cτk |Vπ1(X

πk0
τk ) − Vπ0(X

πk0
τk )|)χ{τk<τ̂ }

)
.
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We denote a0 = X
πk0
τk ∈ Aδ . We define τ̃k as the first time that X

πk0
t leaves C0 af-

ter τk , and we denote a2 = X
πk0
τ̃k

. We obtain, using Itô’s formula, Proposition 8.8(b)
and the definition of π0,

|Vπ1(a0) − Vπ0(a0)|
= |Vπ0(ca0) + (a0 − ca0) − Vπ0(a0)|
= ∣∣E((

Vπ0(a2) − V (a2)
)
e−c(τ̃k−τk)|Fτk

)
(8.15)

+ a0 − ca0 − V (a0) + V (ca0) + V (a0) − Vπ0(a0)
∣∣

≤ E
((

V (a2) − Vπ0(a2)
)
e−c(τ̃k−τk)|Fτk

) + (
V (a0) − Vπ0(a0)

)
+ (a0 − ca0)

(
V (a0) − V (ca0)

a0 − ca0

− 1
)
.

From (8.11), (8.8), (8.9) and using that e−u ≥ 1 − u, we obtain that(
V (a0) − Vπ0(a0)

) + (a0 − ca0)

(
V (a0) − V (ca0)

a0 − ca0

− 1
)

≤ ε

4(2k0 + 3)
+ ε

8(M + 2)x̂
(a0 − ca0)(8.16)

≤ ε

4(2k0 + 3)
+ ε

8(M + 2)
u.

If k /∈ K and a2 ≥ 0 denote a1 = X
πk0
τk+1 ∈ Aδ . We obtain that a0 > a1, and by

(8.11),

E
((

V (a2) − Vπ0(a2)
)
e−c(τ̃k−τk)|Fτk

)
= E

((
V (a2) − Vπ0(a2)

)
e−c(τ̃k−τk)χ{τ̃k<τ̂ }|Fτk

)
≤ E

((
V (a2) − Vπ0(a2)

)
χ{τ̃k<τ̂ }|Fτk

)
= E

((
V (a0) − Vπ0(a0)

)
χ{k∈K}|Fτk

)
(8.17)

+ E
((

V (a2) − Vπ0(a2)
)
χ{k /∈K}χ{τ̃k<τ̂ }|Fτk

)
≤ ε

4(2k0 + 3)
+ E

((
V (a2) − V (a1) − (a2 − a1)

+ V (a1) − Vπ0(a1)
)
χ{k /∈K}χ{τ̃k<τ̂ }|Fτk

)
≤ 2ε

4(2k0 + 3)
+ E

((
V (a2) − V (a1) − (a2 − a1)

)
χ{k /∈K}χ{τ̃k<τ̂ }|Fτk

)
.

Note that (a1, a2)∩ Aδ = φ, and so there is no connected component (r1, r2) of C0
included in [a1, a2] with length greater than δ. In effect, if such component exists,
then r2 ∈ A0 \ Aδ , and this contradicts Lemma A.9(b) included in the Appendix.
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Then we can find a1 = x1 ≤ x2 ≤ · · · ≤ xn = a2 such that xi ∈ A0 ∪ B0 and xi+1 −
xi < δ. So we get, by (8.7),

E
((

V (a2) − V (a1) − (a2 − a1)
)
χ{k /∈K}|Fτk

)
= E

((
n∑

i=1

V (xi+1) − V (xi) − (xi+1 − xi)

)
χ{k /∈K}χ{τ̃k<τ̂ }|Fτk

)
(8.18)

≤ ε

4x̂
E

(
n∑

i=1

(xi+1 − xi)χ{k /∈K}χ{τ̃k<τ̂ }|Fτk

)

≤ ε

4x̂
E

(
(X

πk0
τk − X

πk0
τk+1)χ{τ̃k<τ̂ }|Fτk

)
.

From (8.15)–(8.18) and from (8.11), (8.8) and (8.9) we obtain that

|Vπ1(X
πk0
τk ) − Vπ0(X

πk0
τk )|

(8.19)

≤ 3ε

4(2k0 + 3)
+ ε

8(M + 2)
u + ε

4x̂
E

(
(X

πk0
τk − X

πk0
τk+1)χ{τ̃k<τ̂ }|Fτk

)
.

And so from (8.14) and (8.19), we have using (8.10) and Lemma A.9(c) included
in the Appendix, that

|Vπk0
(a) − Vπ0(a)| ≤ Ea

(
k0−1∑
k=0

|Vπ1(X
πk0
τk ) − Vπ0(X

πk0
τk )|

)

≤ k0

(
3ε

4(2k0 + 3)
+ ε

8(M + 2)
u

)
+ ε

4x̂
Ea

(
(X

πk0
τk − X

πk0
τk+1)χ{τ̃k<τ̂ }

)
.

So we have proved (8.12).
Let us prove now that

max
x≥0

|Vπ(x) − Vπk0
(x)| ≤ ε/4.(8.20)

Given any initial surplus x ≥ 0, consider the process X
πk0
t with initial value x.

Since the processes X
πk0
t and Xπ

t coincide up to τk0 ∧ τ̂ ,

max
x≥0

|Vπ(x) − Vπk0
(x)|

≤ Ex

(
e−c(τk0∧τ̂ )|Vπ(Xπ

τk0∧τ̂ ) − Vπ0(X
π
τk0∧τ̂ )|

)
(8.21)

= Ex

(
e−c(τk0∧τ̂ )|Vπ(Xπ

τk0∧τ̂ ) − Vπ0(X
π
τk0∧τ̂ )|χ{τk0<τ̂ }

)
= Ex(e

−cτk0 )V (x̂).



OPTIMAL INVESTMENT POLICY AND DIVIDEND PAYMENT STRATEGY 1291

Consider the process Yπ
t defined in Lemma 2.1, as the process corresponding to

Xπ
t without claims and without paying dividends, but starting at Yπ

0 = 1. When
the process Xπ

t arrives the k0th time to Aδ , it should have already passed k0 − N

times through intervals of the form (ca, a) with a ∈ Aδ . So

τk0 ≥ Tk0−N := min
{
t :Yπ

t ≥ e(k0−N)u}
.

Let γt be the investment policy corresponding to the strategy π . We have using
Itô’s formula that

g
(
e(k0−N)u)

E(e−cTk0−N ) − g(1)

= E

(∫ Tk0−N

0
e−cs(σ 2γ 2

s (Y π
s )2g′′(Y π

s )/2

+ (p + rγsY
π
s )g′(Y π

s ) − cg(Yπ
s )

)
ds

)
≤ 0,

so we get

E(e−cτk0 ) ≤ E(e−cTk0−N ) ≤ g(1)/g
(
e(k0−N)u) ≤ g(1)/g(eM) ≤ ε/(4V (x̂))

and from (8.21) we obtain (8.20).
We get the result combining (8.12) and (8.20). �

REMARK 8.12. From Propositions 8.5 and 8.11, we conclude that the optimal
strategy for large surpluses is to pay out as dividends the amount exceeding a∗ =
max A0.

REMARK 8.13. Propositions 8.6 and 8.8, Remark 8.9, and the fact that the
derivative of the optimal value function should be one in A0 ∪ B0, suggest a method
to construct the optimal value function in the case that the optimal dividend pay-
ment policy has the structure of a finite band: we could construct the value function
of the best one-band strategy, the best two-band strategy, etc. as candidates of the
optimal value function. If any of these candidates is a viscosity solution of (3.1), it
should be V . We use this method to find the optimal value function in the examples
of the next section.

9. Numerical examples and final remarks. In this section we present nu-
merical approximations of the optimal value function V . In order to do this, we
obtain as a first step an approximation of the function W using the fixed-point
operator defined in Proposition 6.1; it is not possible to use an standard approxi-
mation scheme because of the lack of both the ellipticity of the equation (6.1) and
the boundary condition at zero.

We construct two examples of optimal value functions. In one example the op-
timal dividend payment policy is barrier and in the other it is not.



1292 P. AZCUE AND N. MULER

1 2 3 4 5
x3.7

3.75
3.8

3.85
3.9
3.95

4
V x x

FIG. 1. V (x) − x for an exponential distribution.

EXAMPLE 9.1. We consider the exponential distribution F(x) = 1 − e−x and
parameters p = 4, β = 1, c = 0.5, r = 0.3, σ = 2. We first obtain numerically,
using Proposition 6.1, the function W and we get that the derivative reaches the
minimum at y = 4.846. Then, we prove that the value function V1 of the optimal
barrier strategy is a solution of (3.1) and so, by Proposition 7.8, V = V1 and V is
twice continuously differentiable.

We show in Figure 1 the function V (x) − x and in Figure 2 the optimal in-
vestment policy γ ∗(x) for x ∈ [0, y]. Note that, according to Proposition 6.3(b),
γ ∗ = 1 for small surpluses.

EXAMPLE 9.2. We consider the following claim distribution:

F(x) =
⎧⎨⎩

0, if x ∈ [0,7/10],
(10/3)(x − 7/10), if x ∈ (7/10,1],
1, if x > 1,

1 2 3 4 x

0.2

0.4

0.6

0.8

1
x

FIG. 2. γ for an exponential distribution.
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and parameters p = 1.6, β = 1, c = 0.3, r = 0.2, σ = 1.
We prove that the derivative of the function W of Proposition 6.1 reaches the

minimum at zero, so the value function of the optimal barrier strategy is V1(x) =
x + (c + β)/p, but in this case V1 is not a supersolution of (3.1).

We now look for the best two-band strategy. First we obtain numerically, using
Proposition 6.4, the function

Wy(x) =
{

x + (c + β)/p, if x ≤ y,
U1(x), if y > x,

for each y > 0, where U1 is the unique solution of L∗(U1,Wy) = 0 in (y,∞) with
boundary conditions U1(y) = Wy(y) and U ′

1(y) = 1. Take

y1 = min{y : there exists z > y with V ′
y(z) = 1}

and z1 with V ′
y1

(z1) = 1. We get y1 = 0.291, z1 = 2.926 and we can prove that

Vy1(x) =
{

Wy1(x), if x ≤ z1,
Wy1(z1) + (x − z1), if y > z1,

is a viscosity solution of (3.1). Hence V = Vy1 because Vy1 is the value function
of a limit strategy corresponding to the sets A0 = {0, z1}, B0 = (0, y1] ∪ (z1,∞)

and C0 = (y1, z1).
We show in Figure 3 the function V (x) − x, in Figure 4 the derivative of V and

in Figure 5 the optimal investment policy γ ∗(x) for x ∈ (y1, z1). It can be seen in
Figure 4 that V is not twice continuously differentiable at y1.

Let us finally note that in the setting of diffusion approximation [see, for in-
stance, Højgaard and Taksar (2004)], the optimal value function V is always twice
continuously differentiable, concave and comes from an optimal barrier strategy.
We see in the last example that this is not always the case in the Cramér–Lundberg
setting.

1 2 3 4
x

1.25

1.3

1.35

1.4

1.45

1.5

V x x

FIG. 3. V (x) − x for a non-monotone density distribution.
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FIG. 4. V ′ for a non-monotone density distribution.

APPENDIX: TECHNICAL LEMMAS

Lemmas for Proposition 5.3. In the following two lemmas we show that, in
order to define V as a supremum of value function of admissible strategies, we
can discard the strategies where the surplus stays a positive time at the points of a
given countable set, and also that V can be written as a limit of value functions of
strategies whose surpluses are confined in compact subsets of (0,∞).

LEMMA A.1. (a) Given x ≥ 0 and x1 > x, let us define �
x1
x as the set of π ∈

�x such that Xπ
t ≤ x1 for all t ≥ 0 and V x1(x) = sup{Vπ(x) with π ∈ �

x1
x }, then

lim
x1→∞ V x1(x) = V (x).

0.5 1 1.5 2 2.5
x

0.2

0.4

0.6

0.8

1
x

FIG. 5. γ for a non-monotone density distribution.
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(b) Given x0 ≥ x ≥ 0, let us define �
[x0,∞)
x as the set of π ∈ �x such that

Xπ
t ≥ x0 for all t ≥ 0 and Vx0(x) = sup{Vπ(x) with π ∈ �

[x0,∞)
x }, then

lim
x0↘0

Vx0(x) = V (x).

PROOF. (a) Given ε > 0 consider π ∈ �x such that V (x) < Vπ(x) + ε and
consider for any x1 > 0 the admissible strategy πx1 ∈ �

x1
x which coincides with

the strategy π while the surplus is less than x1, and pay out x1 as dividends at the
moment τx1 when the surplus reaches x1. Since

lim
x1→∞Ex

(∫ τx1∧τπ

0
e−cs dLπ

s

)
= Vπ(x),

there exists x1 large enough such that V (x) − Vπx1
(x) < 2ε.

(b) Take x0 ∈ (0, x). We can find an admissible strategy π ∈ �x−x0 such that
V (x − x0) < Vπ(x − x0) + x0. Define the admissible strategy π0 ∈ �x which in-
vests x0 in bonds and then follows the strategy π corresponding to initial surplus
x −x0 up to the time τx0 = inf{t :Xπ0

t < x0}. Then we have that Vx0(x) ≥ Vπ0(x) =
Vπ(x − x0) and the result follows from the continuity of V at x. �

LEMMA A.2. Given x ≥ 0 and a countable set S ⊂ [0,∞), let �x(S) be the
set of all the admissible strategies π ∈ �x such that the set

{(ω, t) ∈ � × [0,∞) :Xπ
t (ω) ∈ S},

has zero measure. Then V (x) = supπ∈�x(S) Vπ(x).

PROOF. Given ε > 0, take π = (γt ,Lt ) ∈ �x such that V (x) − Vπ(x) < ε/2.
Given any a ∈ (0, ε/2), consider the stopping times τa = inf{t :Lt ≥ a} and τ0 =
inf{t :Lt ≥ 0} and the admissible strategy πa = (γ a

t ,La
t ) such that the dividend

policy consists in paying no dividends up to time τa and following the dividend
policy Lt − a afterward, and such that the amount of the surplus invested in stocks
coincides with the amount of the surplus invested in stocks in the original strategy.
We have that X

πa
t coincides with Xπ

t for t ∈ [0, τ0 ∧ τπ ], that X
πa
t − Xπ

t ∈ (0, a)

if t ∈ (τ0, τa ∧ τπ) and that X
πa
t −Xπ

t = a if t ∈ [τa, τ
π ]. We obtain that τπa ≥ τπ

and that Vπ(x)−Vπa(x) ≤ a < ε/2, and so V (x)−Vπa(x) ≤ ε for all a ∈ (0, ε/2).
Note that, fixing xi ∈ S we have that

1 ≥ P

( ⋃
a∈(0,ε/2)

{(ω, t) :Xπ
t = xi − a}

)
≥ P

( ⋃
a∈(0,ε/2)

{(ω, t) :Xπa
t = xi, τa ≤ t}

)
,

and the last union is disjoint. Then the set of a ∈ (0, ε/2) such that

P
({(ω, t) :Xπa

t = xi, τa ≤ t}) > 0
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is countable. So, since S is countable, there exists a0 ∈ (0, ε/2) such that

P
({(ω, t) :Xπa

t ∈ S, τa0 ≤ t}) = 0.

If t < τa0 , then L
a0
t = 0 and X

πa0
t = X

(γt ,0)
t which does not depend on a0. Define

τ 0 = 0 and call τ i the time of the ith claim, we obtain that

{(ω, t) :X
πa0
t ∈ S, t ≤ τa} =

∞⋃
i=0

{(ω, t) :X
πa0
t ∈ S, t ∈ [τ i ∧ τa0, τ

i+1 ∧ τa0)},

but if t ∈ [τ i ∧ τa0, τ
i+1 ∧ τa0), we have that X

(γt ,0)
t is a linear diffusion [see, for

instance, Borodin and Salminen (2002)], and so

P
({(ω, t) :X

πa0
t ∈ S, t ∈ [τ i ∧ τa0, τ

i+1 ∧ τa0)}
) = 0.

We conclude that P((ω, t) :X
πa0
t ∈ S) = 0. �

Lemmas for Proposition 8.5. We need the following result in order to prove
Lemma A.4.

LEMMA A.3. Assume that V ′(x̂) = 1 for some x̂ > 0 and u is an absolutely
continuous supersolution of (3.1) in (0, x̂), then u ≥ V in [0, x̂].

PROOF. The argument coincides with the one used to prove Proposition 5.3,
but taking admissible strategies π such that the corresponding controlled risk
process Xt satisfies Xt ≤ x̂. �

The following lemma gives conditions under which the optimal value function
V is linear in some interval.

LEMMA A.4. Given any y > 0, we define

Uy(x) =
{

V (x), if x ≤ y,
V (y) − y + x, if x > y.

(A.1)

(a) If Uy is supersolution of (3.1) in (y,∞), then Uy = V in [0,∞).
(b) Assume that V ′(x̂) = 1 for some x̂ > 0 and there exists y < x̂ such that Uy

is supersolution of (3.1) in (y, x̂] then Uy = V in [0, x̂].
PROOF. (a) Let us prove first that Uy is a supersolution of (3.1). We only need

to check it at y. In the case that U ′
y(y

−) = V ′(y−) > 1 = U ′
y(y

+), there is no test
for viscosity supersolution at y and in the case that U ′

y(y) = 1. Take q such that

q/2 ≤ lim inf
h→0

(Uy(y + h) − Uy(y))/h − 1

h

≤ lim
h→0+

(Uy(y + h) − Uy(y))/h − 1

h
= 0.
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Since Uy is a supersolution for x > y and supγ∈[0,1] Lγ (Uy,1, q)(x) is right con-
tinuous for x ≥ y we have that supγ∈[0,1] Lγ (Uy,1, q)(y) ≤ 0.

From Proposition 5.3 we get that Uy ≥ V . Let us prove now that Uy(x) ≤ V (x)

for all x > y. Given any ε > 0, take an admissible strategy π ∈ �y such that
Vπ(y) ≥ V (y)−ε. For any initial surplus x ≥ y, we define a new strategy πx ∈ �x

as follows: pay out immediately the excedent x − y as dividend, and then use the
strategy π . Since π is admissible, πx is also admissible. We get that, for all x > y

and ε > 0,

Uy(x) − ε = x − y + V (y) − ε ≤ x − y + Vπ(y) = Vπx (x) ≤ V (x),

and so we get the result.
The proof of (b) is analogous to the proof of (a) using Lemma A.3. �

LEMMA A.5. If �(x0) < 0, there exists h0 > 0, such that the function Ux0−h0

defined in (A.1) is a supersolution of (3.1) in (x0 − h0, x0 + h0).

PROOF. Since V is locally Lipschitz, for a small h > 0 and x ∈ (x0 −h0, x0 +
h0), there exists K > 1 such that V (x)−V (x0 −h) ≤ K(x −x0 +h). By definition
Ux0−h(x) = V (x0 −h)+ x − x0 +h, and so V (x)− Ux0−h(x) ≤ (K − 1)(x − x0 +
h). Then we obtain that |�(x) − L∗(Ux0−h)(x)| ≤ (c + 2β)(K − 1)(x − x0 + h).
By assumption, �(x0) < 0, since � is continuous for h small enough and x ∈
(x0 −h0, x0 +h0) we have that �(x) < 0. Therefore, there exists h0 small enough
such that L∗(Ux0−h0)(x) < 0 for x ∈ (x0 − h0, x0 + h0), and so we have the result.

�

LEMMA A.6. The sets introduced in Definition 8.2 satisfy the following prop-
erties:

(a) B is a left-open set, that is if x ∈ B there exists δ > 0 such that (x−δ, x] ⊂ B.
(b) A is a left closed set, that is if xn ∈ A and xn ↘ x then x ∈ A.
(c) If (x0, x̂] ⊂ B and x0 /∈ B then x0 ∈ A.
(d) There is a x∗ such that (x∗,∞) ⊂ B.
(e) C is an open set in [0,∞), that is if 0 ∈ C , there exists δ > 0 such that

(0, δ) ⊂ C and if a positive x ∈ C there exists δ > 0 such that (x − δ, x + δ) ⊂ C .
(f) Both A and B are nonempty.

PROOF. (a) Assume that x0 ∈ B. By Lemma A.5, we can find h0 > 0, such that
the function Ux0−h0 defined in (A.1) is a supersolution of (3.1) in (x0 − h0, x0],
and then, by Lemma A.4(b), since V ′(x0) = 1, we have Ux0−h0 = V at [0, x0) and
so (x0 − h0, x0] ⊂ B.

(b) It follows from the right continuity of the function �(x) and V ′(x+).
(c) Since �(x) is continuous and V ′(x+) is right continuous, we have that

V ′(x+
0 ) = 1 and �(x0) ≤ 0. But x0 /∈ B, so either �(x0) = 0 and V ′(x+

0 ) = 1
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or V ′(x−
0 ) > V ′(x+

0 ) = 1 and �(x0) < 0. In the first case x0 ∈ A, let us see that
the second case is not possible. Since �(x0) < 0, by Lemma A.5, we can find
h0 > 0, such that the function Ux0−h0 defined in (A.1) is a supersolution of (3.1) in
(x0 − h0, x0 + h0) and x0 + h0 ∈ B. Since V ′(x0 + h0) = 1, we have from Lemma
A.4(b) that Ux0−h0 = V at [0, x0 + h0) and so x0 ∈ (x0 − h0, x0 + h0] ⊂ B; this is
a contradiction.

(d) For each y > 0 let us consider the functions Uy defined in (A.1). We will
show that, if y ≥ p/(c − r), then Uy is a viscosity supersolution of (3.1) for all
x ∈ (y,∞), and the result follows from Lemma A.4(a). Since U ′

y = 1 in (y,∞)

we only need to show that L∗(Uy) ≤ 0 in (y,∞). Take any γ ∈ [0,1], since Uy is
increasing, we have that Lγ (Uy)(x) ≤ p + (r − c)y. Hence, the result follows with
x∗ = p/(c − r).

(e) Take x ∈ C , if there is no δ > 0 such that [x, x + δ) ⊂ C , then we can find a
sequence xn ∈ A ∪ B such than xn ↘ x. If there is a subsequence xnk

∈ A, then by
(b) we get that x ∈ A, and if a subsequence xnk

∈ B, by (c) we can find a sequence
yk ∈ A with x < yk < xnk

; then again by (b) we get that x ∈ A. Take a positive
x ∈ C . If there is no δ > 0 such that [x − δ, x) ⊂ C , then we can find a sequence
xn ∈ A ∪ B such than xn ↗ x. Then, V ′(x−) = 1 and then V ′(x) = 1. Then, since
x ∈ C , �(x) > 0 but since � is continuous �(x) = limn→∞ �(xn) ≤ 0, and this is
a contradiction.

(f) It follows from (c) and (d). �

Lemmas for Proposition 8.8.

LEMMA A.7. The optimal value function V is a viscosity solution of L∗(V ) =
0 on the open set C .

PROOF. It follows from (3.1) that V is a viscosity supersolution of L∗(V ) = 0.
Let us prove that it is a viscosity subsolution of L∗(V ) = 0 in C . First consider
x ∈ C with 1 ≤ V ′(x+) < V ′(x−). Take any d ∈ (V ′(x+),V ′(x−)); we have that

lim sup
h→0

(V (x + h) − V (x))/h − d

h
= −∞

and then, for any q ,

max
{
1 − d, max

γ∈[0,1]
(
σ 2x2γ 2q/2 + (p + rxγ )d − M(V )(x)

)} ≥ 0,

so, since d > 1, we have that

max
γ∈[0,1]

(
σ 2x2γ 2q/2 + (p + rxγ )d − M(V )(x)

) ≥ 0.(A.2)

Since this holds for any q , taking a sequence qn → −∞,

pd − M(V )(x) ≥ 0 for any d ∈ (V ′(x+),V ′(x−))
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that implies pV ′(x+) − M(V )(x) ≥ 0, and so (A.2) holds for any d ∈ [V ′(x+),
V ′(x−)] and any q . So V is a viscosity subsolution of L∗(V ) = 0 at x.

Next consider x ∈ C such that V is differentiable with 1 < V ′(x). We have
d = V ′(x) > 1, and then

max
{
1 − d, max

γ∈[0,1]
(
σ 2x2γ 2q/2 + (p + rxγ )d − M(V )(x)

)} ≥ 0

implies that

max
γ∈[0,1]

(
σ 2x2γ 2q/2 + (p + rxγ )d − M(V )(x)

) ≥ 0

and so V is a viscosity subsolution of L∗(V ) = 0 at x.
Finally, the case in which 1 = V ′(x) and �(x) > 0 cannot happen by Lem-

ma 8.3. �

LEMMA A.8. (a) Given x1 > 0, there exists a unique absolutely continuous,
increasing viscosity solution of

L∗(U,V ) = 0(A.3)

in (x1,∞) that is differentiable at x1, with boundary conditions U(x1) = V (x1)

and U ′(x1) = V ′(x1) = 1.
(b) Let (x1, x2) with x1 > 0 be a connected component of C , the function U

defined in (a) coincides with V in [x1, x2].
(c) The optimal value function V is a classical solution of L∗(V ) = 0 on the

open set C .

PROOF. (a) The existence of U follows from Proposition 6.4. Let us prove
the uniqueness. Given an interval (x1, y), with arguments similar to the ones used
in the proof of Proposition 4.1, it can be proved that, if a supersolution of (8.6) is
greater than a subsolution of (8.6) in the boundaries of the interval, it is also greater
in the interior. From this result we conclude that, if u and u are supersolution and
subsolution of (8.6) with u(x1) = u(x1), then

max
x∈[x1,y]{u(x) − u(x)} ≤ max{0, u(y) − u(y)}.

Let us take w and w supersolution and subsolution of (8.6), respectively, with
w(x1) = w(x1) = V (x1) and w′(x1) = w′(x1) = V ′(x1), and define wε(x) =
w(x)+ε(e(c+β)/p(x−x1) −1). Since Lγ (e(c+β)/p(x−x1) −1) ≥ 0, we obtain that wε

is also a subsolution with wε(x1) = V (x1) and w′
ε(x1) = V ′(x1) + ε(c + β)/p >

V ′(x1). Then, since wε(x) − u(x) is positive for x ∈ (x1, x1 + δ) for some posi-
tive δ, we have

max
x∈[x1,y]{wε(x) − u(x)} ≤ max{0,wε(y) − u(y)} = wε(y) − u(y),



1300 P. AZCUE AND N. MULER

so we obtain that maxx∈[x1,y]{wε(x)−u(x)} = wε(y)−u(y), and so wε(x)−w(x)

is increasing and positive for all x > x1 and ε > 0. Then w(x) ≥ w(x) for all
x > x1.

[(b) and (c)] We showed in Lemma A.7 that V is a viscosity solution of L∗(V ) =
0 on the open set C , so let us show now that V is twice continuously differentiable.
In the case x1 = 0, the result follows from Proposition 8.6, and in the case x1 > 0,
we have that V ′(x1) = 1, and the result follows from Proposition 6.4(a) and (b).

�

Lemma for Theorem 8.11.

LEMMA A.9. Given δ > 0, we can find a finite set Aδ ⊂ A0 and a number
ς > 0 satisfying:

(a) (a − ς, a) ⊂ C0 for all a ∈ Aδ .
(b) {a ∈ A0 :a − max(A0 ∩ [0, a)) ≥ δ} ⊂ Aδ .
(c) #Aδ ≤ 2x̂/δ.

PROOF. Consider Â = {a ∈ A0 : there exists ca < a with (ca, a) ⊂ C0} and

D = {a ∈ A : (a − ϑ,a) ⊂ A ∪ B for some ϑ > 0} ⊂ B0.

Let us prove first that if (x0, x1)∩ A0 
= φ, then (x0, x1)∩ Â 
= φ. In the case that
(x0, x1) ∩ C0 = φ, then (x0, x1) ⊂ B0 and this is is a contradiction. In the case that
(x0, x1) ∩ C0 
= φ, since C0 is open, there exists c ∈ (r1, r2) ⊂ C0 with r1, r2 /∈ C0;
if r1 ≤ x0 < x1 ≤ r2, we have a contradiction because (x0, x1) ⊂ C0; if r2 < x1 and
r2 ∈ A0, we have that r2 ∈ Â; and if x0 < r1 < x1 ≤ r2, the interval (x0, r1) cannot
be included in B0 because we would have that (x0, x1) ⊂ C0 ∪ B0, so there exists
c ∈ C0 ∩ (x0, r1), take a = sup(C0 ∩ (x0, r1)) then a ∈ (x0, x1) ∩ Â.

Let us prove now that (A0 ∪ D) ⊂ (
⋃

a∈Â(ca, a + δ)) ∪ (
⋃

d∈D(d − δ, d + δ)).
In effect, given a0 ∈ A0 \ Â, we have that (a0 − δ, a0) is not included in C0. Then
(a0 − δ, a0) ∩ A0 
= φ, because if (a0 − δ, a0) ⊂ B0 then a0 ∈ B0 and if c ∈ C0 ∩
(a0 − δ, a0) 
= φ, the right boundary of the connected component of C0 containing
c belongs to A0. Hence, (a0 − δ, a0) ∩ A0 
= φ, and then (a0 − δ, a0) ∩ Â 
= φ.
Take a ∈ (a0 − δ, a0) ∩ Â, and we have that a0 ∈ (ca, a + δ).

Since A0 ∪ D is a compact set, we can find finite sets A′
δ ⊂ A0 and Bδ ⊂ D such

that (A0 ∪ D) ⊂ (
⋃

a∈A′
δ
(ca, a + δ))∪ (

⋃
d∈Bδ

(d − δ, d + δ)). Finally consider the
set Aδ obtained from A′

δ removing some points in such a way that the distance
between two consecutive points is larger than δ/2 and adding the set {a ∈ A0 :a −
max(A0 ∩ [0, a)) ≥ δ}. Take ς = mina∈Aδ (a − ca). �
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