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POSITIVE RECURRENCE OF REFLECTING BROWNIAN MOTION
IN THREE DIMENSIONS

BY MAURY BRAMSON,1 J. G. DAI2 AND J. M. HARRISON

University of Minnesota, Georgia Institute of Tecnology and Stanford University

Consider a semimartingale reflecting Brownian motion (SRBM) Z

whose state space is the d-dimensional nonnegative orthant. The data for
such a process are a drift vector θ , a nonsingular d × d covariance matrix �,
and a d × d reflection matrix R that specifies the boundary behavior of Z.
We say that Z is positive recurrent, or stable, if the expected time to hit an
arbitrary open neighborhood of the origin is finite for every starting state.

In dimension d = 2, necessary and sufficient conditions for stability are
known, but fundamentally new phenomena arise in higher dimensions. Build-
ing on prior work by El Kharroubi, Ben Tahar and Yaacoubi [Stochastics Sto-
chastics Rep. 68 (2000) 229–253, Math. Methods Oper. Res. 56 (2002) 243–
258], we provide necessary and sufficient conditions for stability of SRBMs
in three dimensions; to verify or refute these conditions is a simple computa-
tional task. As a byproduct, we find that the fluid-based criterion of Dupuis
and Williams [Ann. Probab. 22 (1994) 680–702] is not only sufficient but
also necessary for stability of SRBMs in three dimensions. That is, an SRBM
in three dimensions is positive recurrent if and only if every path of the as-
sociated fluid model is attracted to the origin. The problem of recurrence
classification for SRBMs in four and higher dimensions remains open.

1. Introduction. This paper is concerned with the class of d-dimensional dif-
fusion processes called semimartingale reflecting Brownian motions (SRBMs),
which arise as approximations for open d-station queueing networks of various
kinds; cf. Harrison and Nguyen (1993) and Williams (1995, 1996). The state space
for a process Z = {Z(t), t ≥ 0} in this class is S = R

d+ (the nonnegative orthant).
The data of the process are a drift vector θ , a nonsingular covariance matrix �, and
a d × d “reflection matrix” R that specifies boundary behavior. In the interior of
the orthant, Z behaves as an ordinary Brownian motion with parameters θ and �,
and roughly speaking, Z is pushed in direction Rj whenever the boundary surface
{z ∈ S : zj = 0} is hit, where Rj is the j th column of R, for j = 1, . . . , d . To make
this description more precise, one represents Z in the form

Z(t) = X(t) + RY(t), t ≥ 0,(1.1)
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where X is an unconstrained Brownian motion with drift vector θ , covariance ma-
trix �, and Z(0) = X(0) ∈ S, and Y is a d-dimensional process with components
Y1 , . . . , Yd such that

Y is continuous and nondecreasing with Y(0) = 0,(1.2)

Yj only increases at times t for which Zj(t) = 0, j = 1, . . . , d, and(1.3)

Z(t) ∈ S, t ≥ 0.(1.4)

The complete definition and essential properties of the diffusion process Z will be
reviewed in Appendix A, where we also discuss the notion of positive recurrence.
As usual in Markov process theory, the complete definition involves a family of
probability measures {Px, x ∈ S} that specify the distribution of Z for different
starting states; informally, one can think of Px(·) as a conditional probability given
that Z(0) = x. Denoting by Ex the expectation operator associated with Px and set-
ting τA = inf{t ≥ 0 :Z(t) ∈ A}, we say that Z is positive recurrent if Ex(τA) < ∞
for any x ∈ S and any open neighborhood A of the origin (see Appendix A for
elaboration). For ease of expression, we use the terms “stable” and “stability” as
synonyms for “positive recurrent” and “positive recurrence,” respectively.

In the foundational theory for SRBMs, the following classes of matrices are of
interest. First, a d × d matrix R is said to be an S -matrix if there exists a d-vector
w ≥ 0 such that Rw > 0 (or equivalently, if there exists w > 0 such that Rw > 0),
and R is said to be completely-S if each of its principal submatrices is an S -matrix.
(For a vector v, we write v > 0 to mean that each component of v is positive, and
we write v ≥ 0 to mean that each component of v is nonnegative.) Second, a square
matrix is said to be a P -matrix if all of its principal minors are positive (that is, each
principal submatrix of R has a positive determinant). P -matrices are a subclass of
completely-S matrices; the still more restrictive class of M-matrices is defined
as in Chapter 6 of Berman and Plemmons (1979). References for the following
key results can be found in the survey paper by Williams (1995): there exists a
diffusion process Z of the form described above if and only if R is a completely S
matrix; and moreover, Z is unique in distribution whenever it exists.

Hereafter we assume that R is completely-S . Its diagonal elements must then
be strictly positive, so we can (and do) assume without loss of generality that

Rii = 1 for all i = 1, . . . , d.(1.5)

This convention is standard in the SRBM literature; in Sections 5 through 7 of this
paper (where our main results are proved) another convenient normalization of
problem data will be used. Appendix B explains the scaling procedures that justify
both (1.5) and the normalized problem format assumed in Sections 5 through 7.

We are concerned in this paper with conditions that assure the stability of Z. An
important condition in that regard is the following:

R is nonsingular and R−1θ < 0.(1.6)
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If R is an M-matrix, then (1.6) is known to be necessary and sufficient for sta-
bility of Z; Harrison and Williams (1987) prove that result and explain how the

M-matrix structure arises naturally in queueing network applications.
El Kharroubi, Tahar and Yaacoubi (2000) further prove the following three re-

sults: first, (1.6) is necessary for stability in general; second, when d = 2, one has
stability if and only if (1.6) holds and R is a P -matrix; and third, (1.6) is not suf-
ficient for stability in three and higher dimensions, even if R is a P -matrix. In
Appendix C of this paper, we provide an alternative proof for the first of these
results, one that is much simpler than the original proof by El Kharroubi, Tahar
and Yaacoubi (2000). Appendix A of Harrison and Hasenbein (2009) contains an
alternative proof of the second result. Section 3 of this paper reviews the inge-
nious example by Bernard and El Kharroubi (1991) that serves to establish the
third result, that an SRBM can be unstable, cycling to infinity even if (1.6) holds;
Theorem 4 in this paper, together with the examples provided in Section 6, shows
that instability can also occur in other ways when (1.6) holds.

A later paper by El Kharroubi, Ben Tahar and Yaacoubi (2002) established suf-
ficient conditions for stability of SRBMs in three dimensions, relying heavily on
the foundational theory developed by Dupuis and Williams (1994). In this paper,
we show that the conditions identified by El Kharroubi, Ben Tahar and Yaacoubi
(2002) are also necessary for stability when d = 3; the relevant conditions are easy
to verify or refute via simple computations. As a complement to this work, an al-
ternative proof of the sufficiency result by El Kharroubi, Ben Tahar and Yaacoubi
(2002) is also being prepared for submission; cf. Dai and Harrison (2009).

The remainder of the paper is structured as follows. First, to allow precise state-
ments of the main results, we introduce in Section 2 the “fluid paths” associated
with an SRBM, and the linear complementarity problem that arises in conjunction
with linear fluid paths. That section, like the paper’s first three appendices, con-
siders a general dimension d , whereas all other sections in the body of the paper
consider d = 3 specifically. Section 3 identifies conditions under which fluid paths
spiral on the boundary of the state space S. Section 4 states our main conclusions,
which are achieved by combining the positive results of El Kharroubi, Ben Tahar
and Yaacoubi (2002) with negative results that are new; Figure 2 in Section 4
summarizes succinctly the necessary and sufficient conditions for stability when
d = 3, and indicates which components of the overall argument are old and which
are new. In Sections 5 through 7, we prove the new “negative results” referred to
above, dealing first with the case where fluid paths spiral on the boundary, and then
with the case where they do not. As stated above, Appendix A reviews the precise
definition of SRBM; Appendix B explains the scaling procedures that give rise to
normalized problem formats and Appendix C contains a relatively simple proof
that (1.6) is necessary for stability. Finally, Appendix D contains several technical
lemmas that are used in the probabilistic arguments of Section 7.
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2. Fluid paths and the linear complementarity problem.

DEFINITION 1. A fluid path associated with the data (θ,R) is a pair of con-
tinuous functions y, z : [0,∞) → R

d that satisfy the following conditions:

z(t) = z(0) + θt + Ry(t) for all t ≥ 0,(2.1)

z(t) ∈ S for all t ≥ 0,(2.2)

y(·) is continuous and nondecreasing with y(0) = 0,(2.3)

yj (·) only increases when zj (·) = 0, i.e.,
(2.4) ∫ ∞

0
zj (t) dyj (t) = 0, (j = 1, . . . , d).

DEFINITION 2. We say that a fluid path (y, z) is attracted to the origin if
z(t) → 0 as t → ∞.

DEFINITION 3. A fluid path (y, z) is said to be divergent if |z(t)| → ∞ as
t → ∞, where, for a vector u = (ui) ∈ R

d , |u| = ∑
i |ui |.

THEOREM 1 [Dupuis and Williams (1994)]. Let Z be a d-dimensional SRBM
with data (θ,�,R). If every fluid path associated with (θ,R) is attracted to the
origin, then Z is positive recurrent.

DEFINITION 4. A fluid path (y, z) is said to be linear if it has the form y(t) =
ut and z(t) = vt , t ≥ 0, where u, v ≥ 0.

Linear fluid paths are in one-to-one correspondence with solutions of the follow-
ing linear complementarity problem (LCP): Find vectors u = (ui) and v = (vi) in
R

d such that

u, v ≥ 0,(2.5)

v = θ + Ru,(2.6)

u · v = 0,(2.7)

where u · v = ∑
i uivi is the inner product of u and v. [See Cottle, Pang and Stone

(1992) for a systematic account of the theory associated with the general problem
(2.5)–(2.7).]

DEFINITION 5. A solution (u, v) of the LCP is said to be stable if v = 0
and to be divergent otherwise. It is said to be nondegenerate if u and v together
have exactly d positive components, and to be degenerate otherwise. A stable,
nondegenerate solution of the LCP is called proper.
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LEMMA 1. Suppose that (1.6) holds. Then (u∗,0) is a proper solution of the
LCP, where

u∗ = −R−1θ,(2.8)

and any other solution of the LCP must be divergent.

PROOF. The first statement is obvious. On the other hand, for any stable solu-
tion (u,0) of the LCP, we have from (2.6) that θ +Ru = 0; since (1.6) includes the
requirement that R be nonsingular, u = −R−1θ = u∗. That is, there cannot exist
a stable solution other than (u∗,0), which is equivalent to the second statement of
the lemma. �

3. Fluid paths that spiral on the boundary. Bernard and El Kharroubi
(1991) devised the following ingenious example with d = 3, referred to hereafter
as the B&EK example: let

θ =
⎛
⎝−1

−1
−1

⎞
⎠ and R =

⎛
⎝ 1 3 0

0 1 3
3 0 1

⎞
⎠ .

This reflection matrix R is completely S (moreover, it is a P -matrix), so Z is
a well-defined SRBM. (The covariance matrix � is immaterial to the discus-
sion that follows, provided only that it is nonsingular.) As Bernard and El Khar-
roubi (1991) observed, the unique fluid path with these process data, starting
from z(0) = (0,0, κ) with κ > 0, is the one pictured in Figure 1; it travels in a
counter-clockwise and piecewise linear fashion on the boundary, with the first lin-
ear segment ending at (2κ,0,0), the second one ending at (0,4κ,0), and so forth.
El Kharroubi, Tahar and Yaacoubi (2000) proved that an SRBM with these data is

FIG. 1. Fluid model behavior of the B&EK example.
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not stable, showing that if κ is large then |Z(t) − z(t)| remains forever small (in a
certain sense) with high probability.

To generalize the B&EK example, let C1 be the set of (θ,R) pairs that satisfy
the following system of inequalities [here Rij denotes the (i, j)th element of R, or
equivalently, the ith element of the column vector Rj ]:

θ < 0,(3.1)

θ1 > θ2R12 and θ3 < θ2R32,(3.2)

θ2 > θ3R23 and θ1 < θ3R13,(3.3)

θ3 > θ1R31 and θ2 < θ1R21.(3.4)

[Notation used in this section agrees with that of El Kharroubi, Tahar and Yaacoubi
(2000, 2002) in all essential respects, but is different in a few minor respects.]

To explain the meaning of these inequalities, we consider a fluid path associated
with (θ,R) that starts from z(0) = (0,0, κ), where κ > 0; it is the unique fluid path
starting from that state, but that fact will not be used in our formal results. Over
an initial time interval [0, τ1], the fluid path is linear and adheres to the boundary
{z2 = 0}, as in Figure 1. During that interval one has ẏ(t) = (0,−θ2,0)′ and hence
the fluid path has the constant velocity vector

ż(t) = θ + Rẏ(t) = θ − θ2R
2 =

⎛
⎝

θ1 − θ2R12

0
θ3 − θ2R32

⎞
⎠ .(3.5)

Thus (3.1) and (3.2) together give the following: as in Figure 1, a fluid path
starting from state (0,0, κ) has an initial linear segment in which z3 decreases,
z1 increases and z2 remains at zero; that initial linear segment terminates at the
point z(τ1) on the z1 axis that has

z1(τ1) =
(

θ1 − θ2R12

θ2R32 − θ3

)
κ > 0.

Similarly, from (3.1) and (3.3), the fluid path is linear over an ensuing time
interval [τ1, τ2], with z1 decreasing, z2 increasing and z3 remaining at zero; that
second linear segment terminates at the point z(τ2) on the z2 axis that has

z2(τ2) =
(

θ1 − θ2R12

θ2R32 − θ3

)(
θ2 − θ3R23

θ3R13 − θ1

)
κ > 0.

Finally, from (3.1) and (3.4), the fluid path is linear over a next time interval
[τ2, τ3], with z2 decreasing, z3 increasing and z1 remaining at zero; that third linear
segment terminates at the point z(τ3) on the z3 axis that has z3(τ3) = β1(θ,R)κ ,
where

β1(θ,R) =
(

θ1 − θ2R12

θ2R32 − θ3

)(
θ2 − θ3R23

θ3R13 − θ1

)(
θ3 − θ1R31

θ1R21 − θ2

)
> 0.(3.6)
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Thereafter, the piecewise linear fluid path continues its counter-clockwise spiral
on the boundary in a self-similar fashion, like the path pictured in Figure 1, except
that in the general case defined by (3.1) through (3.4), the spiral may be either
inward or outward, depending on whether β1(θ,R) < 1 or β1(θ,R) > 1.

To repeat, C1 consists of all (θ,R) pairs that satisfy (3.1) through (3.4), and the
single-cycle gain β1(θ,R) for such a pair is defined by (3.6). As we have seen,
fluid paths associated with problem data in C1 spiral counter-clockwise on the
boundary of S. Now let C2 consist of all (θ,R) pairs that satisfy (3.1) and further
satisfy (3.2) through (3.4) with all six of the strict inequalities reversed. It is more
or less obvious that (θ,R) pairs in C2 are those giving rise to clockwise spirals on
the boundary, and the appropriate analog of (3.6) is

β2(θ,R) = 1

β1(θ,R)
(3.7)

=
(

θ3 − θ2R32

θ2R12 − θ1

)(
θ1 − θ3R13

θ3R23 − θ2

)(
θ2 − θ1R21

θ1R31 − θ3

)
> 0.

Hereafter we define C = C1 ∪ C2, β(θ,R) = β1(θ,R) for (θ,R) ∈ C1 and
β(θ,R) = β2(θ,R) for (θ,R) ∈ C2. Thus C consists of all (θ,R) pairs whose
associated fluid paths spiral on the boundary, and β(θ,R) is the single-cycle gain
for such a pair.

4. Summary of results in three dimensions. Theorem 2 below is a slightly
weakened version of Theorem 1 by El Kharroubi, Ben Tahar and Yaacoubi (2002),
which the original authors express in a more elaborate notation; we have deleted
one part of their result that is irrelevant for current purposes. The corollary that
follows is immediate from Theorem 1 above (the Dupuis–Williams fluid stability
criterion) and Theorem 2.

THEOREM 2 [El Kharroubi, Ben Tahar and Yaacoubi (2002)]. Suppose that
(1.6) holds and that either of the following additional hypotheses is satisfied:
(a) (θ,R) ∈ C and β(θ,R) < 1; or (b) (θ,R) /∈ C and the linear complementar-
ity problem (2.5)–(2.7) has a unique solution, which is the proper solution (u∗,0)

defined in (2.8). Then all fluid paths associated (θ,R) are attracted to the origin.

COROLLARY. Suppose that (1.6) holds and, in addition, either (a) or (b)
holds. Then Z is positive recurrent.

The proof of Theorem 2 in El Kharroubi, Ben Tahar and Yaacoubi (2002) is not
entirely rigorous, containing verbal passages that mask significant technical diffi-
culties; an alternative proof that uses a linear Lyapunov function to prove stability
is given in Dai and Harrison (2009).
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FIG. 2. Summary of results in three dimensions.

The new results of this paper are Theorems 3 and 4 below, which will be proved
in Sections 5 through 7. Figure 2 summarizes the logic by which these new re-
sults combine with previously known results to provide necessary and sufficient
conditions for stability (i.e., positive recurrence) of Z.

THEOREM 3. If (θ,R) ∈ C and β(θ,R) ≥ 1, then Z is not positive recurrent.

THEOREM 4. Suppose that (1.6) is satisfied. If there exists a divergent so-
lution for the linear complementarity problem (2.5)–(2.7), then Z is not positive
recurrent.

5. Proof of Theorem 3. Throughout this section and the next, we assume
without loss of generality that our problem data satisfy not only (1.5) but also

θi ∈ {−1,0,1} for i = 1,2,3.(5.1)

Appendix B explains the scaling procedures that yield this normalized form. To
prove Theorem 3 we will assume that (θ,R) ∈ C1 and β1(θ,R) ≥ 1, then show
that Z is not stable; the proof of instability when (θ,R) ∈ C2 and β2(θ,R) ≥ 1
is identical. Given the normalizations (1.5) and (5.1), the conditions (3.1) through
(3.4) that define C1 can be restated as follows:

θ = (−1,−1,−1)′,(5.2)

R12,R23,R31 > 1 and R13,R21,R32 < 1.(5.3)
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Let us now define a 3 × 3 matrix V by setting Vij = Rij − 1 for i, j = 1,2,3.
Then V j (the j th column of V ) is the vector θ − θjR

j for j = 1,2,3. Note that
V 2 was identified in (3.5) as the velocity vector on the face {Z2 = 0} for a fluid
path corresponding to (θ,R).

LEMMA 2. Under the assumption that β1(θ,R) ≥ 1, there exists a vector
u > 0 such that u′V ≥ 0, or equivalently, u′V j ≥ 0 for each j = 1,2,3.

PROOF. From (1.5) and (5.3) we have that

V =
⎛
⎝ 0 a2 −b3

−b1 0 a3
a1 −b2 0

⎞
⎠ ,(5.4)

where ai, bi > 0 for i = 1,2,3. In this notation, the definition (3.6) is as follows:

β1(θ,R) = a1a2a3

b1b2b3
.(5.5)

Setting

u1 = 1, u2 = a1a2

b1b2
and u3 = a2

b2
,

it is easy to verify that u′V 1 = u′V 2 = 0, and u′V 3 = b3(
a1a2a3
b1b2b3

− 1). The defini-

tion (5.5) and our assumption that β1(θ,R) ≥ 1 then give u′V 3 ≥ 0. �

For the remainder of the proof of Theorem 3, let e denote the three-vector of
ones, so (5.2) is equivalently expressed as θ = −e, and we can represent X in (1.1)
as

X(t) = X(0) + B(t) − et, t ≥ 0,(5.6)

where B is a driftless Brownian motion with nonsingular covariance matrix and
B(0) = 0. Also, we choose a starting state x = X(0) = Z(0) that satisfies

Z1(0) ≥ 0, Z2(0) = 0 and Z3(0) > 0.(5.7)

In this section, because the initial state is fixed, we write E(·) rather than Ex(·)
to signify the expectation operator associated with the probability measure Px (see
Appendix A). Also, when we speak of stopping times and martingales, the relevant
filtration is the one specified in Appendix A.

Let u > 0 be chosen to satisfy u′V ≥ 0, as in Lemma 2, and further normalized
so that u′e = 1. It is immediate from the definition of V that u′V = u′R − e′, and
thus one has the following:

u′R ≥ e′.(5.8)
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Now define ξ(t) = u′Z(t), t ≥ 0. From (1.1), (5.6) and (5.8), one has

ξ(t) − ξ(0) = u′B(t) − u′et + u′RY(t)
(5.9)

≥ u′B(t) − t + e′Y(t) for t ≥ 0.

Next, let

τ1 = inf{t > 0 :Z3(t) = 0}, τ2 = inf{t > τ1 :Z1(t) = 0},
τ3 = inf{t > τ2 :Z2(t) = 0}

and so forth. (These stopping times are analogous to the points in time at which
the piecewise linear fluid path in Figure 1 changes direction.) The crucial obser-
vation is the following: Z3(·) > 0 over the interval [0, τ1), Z1(·) > 0 over [τ1, τ2),
Z2(·) > 0 over [τ2, τ3) and so forth. Thus Y3(·) does not increase over [0, τ1), Y1(·)
does not increase over [τ1, τ2), Y2(·) does not increase over [τ2, τ3) and so forth.

From (1.1) and (5.6), we then have the following relationships:

Z2(t) = B2(t) − t + Y2(t)
(5.10)

+ R21Y1(t), 0 ≤ t ≤ τ1,

Z3(t) = [B3(t) − B3(τ1)] − (t − τ1) + [Y3(t) − Y3(τ1)]
(5.11)

+ R32[Y2(t) − Y2(τ1)], τ1 ≤ t ≤ τ2,

Z1(t) = [B1(t) − B1(τ2)] − (t − τ2) + [Y1(t) − Y1(τ1)]
(5.12)

+ R13[Y3(t) − Y3(τ2)], τ2 ≤ t ≤ τ3.

There exist analogous representations for Z2 over the time interval [τ3, τ4], for Z3
over [τ4, τ5], for Z1 over [τ5, τ6], and so on. Now (5.10) gives

Y2(t) = t + Z2(t) − B2(t) − R21Y1(t) for 0 ≤ t ≤ τ1.(5.13)

Because Y3 ≡ 0 on [0, τ1), we can substitute (5.13) into (5.9) to obtain the follow-
ing:

ξ(t) − ξ(0) ≥ u′B(t) − t + Y1(t)
(5.14)

+ [t + Z2(t) − B2(t) − R21Y1(t)] for 0 ≤ t ≤ τ1.

From the definition of V and (5.4), we have 1 − R21 = b1 > 0, so (5.14) can be
rewritten

ξ(t) − ξ(0) ≥ M(t) + A(t) for 0 ≤ t ≤ τ1,(5.15)

where

M(t) = u′B(t) − B2(t) for 0 ≤ t ≤ τ1,(5.16)

A(t) = Z2(t) + b1Y1(t) for 0 ≤ t ≤ τ1.(5.17)
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Defining τ = lim τn, we now extend the definition (5.16) to all t ∈ [0, τ ) as follows:

M(t) = M(τ1) + u′[B(t) − B(τ1)]
(5.18)

− [B3(t) − B3(τ 1)] for τ1 ≤ t ≤ τ2,

M(t) = M(τ2) + u′[B(t) − B(τ2)]
(5.19)

− [B1(t) − B1(τ 2)] for τ2 ≤ t ≤ τ3

and so forth. Finally, on {τ < ∞}, we set M(t) = M(τ) for all t ≥ τ . Then M =
{M(t), t ≥ 0} is a continuous martingale whose quadratic variation 〈M,M〉(·) sat-
isfies

〈M,M〉(t) − 〈M,M〉(s) ≤ γ (t − s) for 0 < s < t < ∞,(5.20)

where 0 < γ < ∞. Also, we extend (5.17) to all t ∈ [0, τ ) via

A(t) = A(τ1) + Z3(t) + b2[Y2(t) − Y2(τ1)] for τ1 ≤ t ≤ τ2,(5.21)

A(t) = A(τ2) + Z1(t) + b3[Y3(t) − Y3(τ2)] for τ2 ≤ t ≤ τ3(5.22)

and so forth. Thus the process A = {A(t),0 ≤ t < τ } is nonnegative and continu-
ous.

LEMMA 3. ξ(t) − ξ(0) ≥ M(t) + A(t) for all t ∈ [0, τ ).

PROOF. It has already been shown in (5.15) that this inequality is valid for
0 ≤ t ≤ τ1. In exactly the same way, but using (5.11) instead of (5.10), one obtains

ξ(t) − ξ(τ1) = [M(t) − M(τ1)] + [A(t) − A(τ1)] for τ1 ≤ t ≤ τ2,(5.23)

so the desired inequality holds for 0 ≤ t ≤ τ2. Continuing in this way, the desired
inequality is established for 0 ≤ t < τ . �

To complete the proof of Theorem 3, let T = inf{t > 0 : ξ(t) = ε} and let
σ = inf{t > 0 : ξ(0) + M(t) = ε}, where 0 < ε < ξ(0). From Lemma 3, the non-
negativity of A(·), and the fact that ξ(τ ) = 0 on {τ < ∞}, we have the following
inequalities: 0 < σ ≤ T ≤ τ . Thus it suffices to prove that E(σ ) = ∞, which can
be shown by essentially the same argument that applies when M is an ordinary
(driftless) Brownian motion. That is, we first let σ(b) = inf{t > 0 : ξ(0) + M(t) =
ε or ξ(0) + M(t) = b}, where b > ξ(0). Because both M and M2 − 〈M,M〉 are
martingales and (5.20) holds, one has 0 < E[σ(b)] < ∞, E[M(σ(b))] = 0 and
E[M2(σ (b))] = E[〈M,M〉(σ (b))]. It follows by the optional sampling theorem
that

E[〈M,M〉(σ (b))] = E[M2(σ (b))]
= (

b − ξ(0)
)2 ξ(0) − ε

b − ε
+ (

ξ(0) − ε
)2 b − ξ(0)

b − ε
(5.24)

= (
b − ξ(0)

)(
ξ(0) − ε

)
.
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The left-hand side of (5.24) is ≤ γE[σ(b)] by (5.20), the right-hand side ↑ ∞ as
b ↑ ∞, and obviously σ ≥ σ(b) for all b > ξ(0). Thus E(σ ) = ∞, and the proof
of Theorem 3 is complete.

6. Categories of divergent LCP solutions. Our goal in the remainder of the
paper is to prove Theorem 4. We continue to assume the canonical problem format
in which R satisfies (1.5) and θ satisfies (5.1). In the following lemma and later,
the term “LCP solution” is used to mean a solution (u, v) of the linear comple-
mentarity problem (2.5)–(2.7).

LEMMA 4. If (1.6) holds, then (a) θ ≥ 0 is not possible, and (b) there exists
no LCP solution (u, v) with v > 0.

PROOF. Because R is completely S by assumption, its transpose is also com-
pletely S ; cf. Proposition 1.1 of Dai and Williams (1995). Thus there exists a vector
a > 0 such that a′R > 0. Now (1.6) says that θ + Ry = 0 for y > 0. Multiplying
both sides of the equation by a′ and rearranging terms, one has a′θ = −a′Ry < 0,
which implies conclusion (a). Also, if (u, v) is a LCP solution with v > 0, one has
from (2.7) and (2.6) that u = 0 and v = θ , which contradicts conclusion (a). This
implies conclusion (b). �

We now define five nonoverlapping categories of divergent LCP solutions. Im-
mediately after each category is defined, we shall exhibit a pair (R, θ) which ad-
mits a LCP solution (u, v) in that category, or else direct the reader to a proposition
that shows the category to be empty. Readers may verify that the reflection matrix
R appearing in each of our examples is completely S . Also, defining u∗ = −R−1θ

as in (2.8), we shall display the vector u∗ for each example, showing that u∗ > 0
and hence (1.6) is satisfied.

CATEGORY I. Exactly two components of v are positive, and the complemen-
tary component of u is positive. The following is such an example:

R =
⎛
⎝ 1 1/3 1/3

2 1 −1/2
2 −1/2 1

⎞
⎠ , θ =

⎛
⎝−1

−1
−1

⎞
⎠ ,

u∗ =
⎛
⎝ 1/5

6/5
6/5

⎞
⎠ , u =

⎛
⎝ 1

0
0

⎞
⎠ , v =

⎛
⎝ 0

1
1

⎞
⎠ .

CATEGORY II. Exactly one component of v is positive, det(R̂) > 0, and the
two complementary components of u are not both zero, where R̂ is the 2 × 2
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principal submatrix of R corresponding to the two zero components of v. Such an
example is given by

R =
⎛
⎝ 1 1 1/2

−2 1 0
3 0 1

⎞
⎠ , θ =

⎛
⎝−1

1
−1

⎞
⎠ ,

u∗ =
⎛
⎝ 1

1
2

⎞
⎠ , u =

⎛
⎝ 2/3

1/3
0

⎞
⎠ , v =

⎛
⎝ 0

0
1

⎞
⎠ .

Here, the two complementary components of u are both positive. In the follow-
ing example, which also falls in Category II, just one of them is positive:

R =
⎛
⎝ 1 1/2 3

1 1 2
2 1 1

⎞
⎠ , θ =

⎛
⎝−1

−1
−1

⎞
⎠ ,

u∗ =
⎛
⎝ 1/5

2/5
1/5

⎞
⎠ , u =

⎛
⎝ 1

0
0

⎞
⎠ , v =

⎛
⎝ 0

0
1

⎞
⎠ .

CATEGORY III. Exactly one component of v is positive, det(R̂) = 0, and the
two complementary components of u are not both zero. In Lemma 8, it will be
shown that no such LCP solutions exist if (1.6) holds.

CATEGORY IV. Exactly one component of v is positive, det(R̂) < 0, and the
two complementary components of u are both positive. Such an example is given
by

R =
⎛
⎝ 1 11/10 2

2 1 0
0 2 1

⎞
⎠ , θ =

⎛
⎝−1

−1
−1

⎞
⎠ ,

u∗ =
⎛
⎝ 19/68

15/34
2/17

⎞
⎠ , u =

⎛
⎝ 1/12

5/6
0

⎞
⎠ , v =

⎛
⎝ 0

0
2/3

⎞
⎠ .

It will be shown in Lemma 7 that if there exists a LCP solution in Category IV,
under our restrictions on R and θ , there also exists a solution in Category I or
Category II (or both). For the example above, a second LCP solution is (û, v̂),
where û = (0,1,0)′ and v̂ = (1/10,0,1)′; this second solution lies in Category I.

CATEGORY V. Exactly one component of v is positive, det(R̂) < 0, and ex-
actly one of the two complementary components of u is positive. Such an example
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is given by

R =
⎛
⎝ 1 1 −2/5

2 1 −6/5
−2 −1/10 1

⎞
⎠ , θ =

⎛
⎝−1

−1
1

⎞
⎠ ,

u∗ =
⎛
⎝ 9/8

5/14
45/28

⎞
⎠ , u =

⎛
⎝ 0

1
0

⎞
⎠ , v =

⎛
⎝ 0

0
0.9

⎞
⎠ .

LEMMA 5. Suppose that (1.6) holds and that (u, v) is a divergent LCP solu-
tion. Then (u, v) belongs to one of the five categories defined immediately above.

PROOF. Let m and n denote the number of positive components in u and v,
respectively; the complementarity condition (2.7) implies that m+n ≤ 3. Lemma 4
shows that n < 3 (i.e., v > 0 cannot hold); also n > 0, because (u, v) is a divergent
LCP solution by assumption. Thus, either n = 1 or n = 2. Moreover, it is not
possible that m = 0, or equivalently u = 0, because then (2.5) and (2.6) would
imply θ = v ≥ 0, which contradicts Lemma 4. So the only remaining possibilities
are (m,n) = (1,2), (m,n) = (2,1) and (m,n) = (1,1). Category I is precisely the
case where (m,n) = (1,2), and Categories II through V together cover the cases
where (m,n) = (2,1) and (m,n) = (1,1). �

It will be shown in Section 7 that Z cannot be positive recurrent if there exists
a LCP solution in Category I, Category II or Category V. Lemma 7 in this section
will show that the existence of a LCP solution in Category IV implies the existence
of a LCP solution in either Category I or Category II. Lemma 8 at the end of this
section will show that LCP solutions in Category III cannot occur when (1.6) holds.
In combination with Lemma 5 above, these results obviously imply Theorem 4.

We now state and prove Lemma 6, which we need in order to prove Lemma 7.
Our scaling convention (1.5) specifies that R has ones on the diagonal, so we can
write

R =
⎛
⎝ 1 a′ c

a 1 c′
b b′ 1

⎞
⎠(6.1)

for some constants a, a′, b, b′, c and c′.

LEMMA 6. Assume that there does not exist a LCP solution in Category I,
and that there is a divergent LCP solution (u, v) with u1 > 0, u2 > 0, u3 = 0,
v1 = v2 = 0 and v3 > 0. Let R be as in (6.1) and assume that the principal sub-
matrix R̂ corresponding to the zero components of v satisfies det(R̂) < 0. Then
θ = (−1,−1,1)′ and a, a′ > 1.
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PROOF. Because (u, v) is a solution of the LCP (2.5)–(2.7), one has⎛
⎝ 1 a′ c

a 1 c′
b b′ 1

⎞
⎠

⎛
⎝u1

u2
0

⎞
⎠ =

⎛
⎝ −θ1

−θ2
−θ3 + v3

⎞
⎠ .(6.2)

Because v1 = v2 = 0 and v3 > 0,

R̂ =
(

1 a′
a 1

)
.(6.3)

Setting û = (u1, u2)
′ and θ̂ = (θ1, θ2)

′, we have from (6.2) that

R̂û = −θ̂ .(6.4)

Because R̂ is an S -matrix with negative determinant,

a, a′ > 0 and aa′ > 1.(6.5)

Because u1 > 0 and u2 > 0 by hypothesis, it is immediate from (6.4) and (6.5) that
both components of θ̂ are negative, so our canonical rescaling gives θ̂ = (−1,−1)′.
Thus, either θ = (−1,−1,−1)′, (−1,−1,0)′ or (−1,−1,1)′ must hold. From
(6.5), (6.4) and θ̂ = (−1,−1)′, it follows that

a, a′ > 1.(6.6)

We will show that θ = (−1,−1,1)′ by excluding the other two cases. Suppose
first that θ = (−1,−1,−1)′. Then (6.2) becomes⎛

⎝ 1 a′ c

a 1 c′
b b′ 1

⎞
⎠

⎛
⎝u1

u2
0

⎞
⎠ =

⎛
⎝ 1

1
1 + v3

⎞
⎠ .(6.7)

It must be true that b, b′ ≤ 1; otherwise there would be a solution of the LCP that
falls into Category I. For example, if b > 1 one then has a divergent LCP solution
(ū, v̄) with ū = (1,0,0)′, v̄1 = 0, v̄2 = a − 1 > 0 and v̄3 = b − 1 > 0. However,
one cannot have a, a′ ≥ 1, b, b′ ≤ 1 and (6.7) holding simultaneously, which gives
a contradiction.

Next suppose that θ = (−1,−1,0)′. Here, (6.7) holds with v3 in place of 1 + v3
on the right-hand side. We must have b, b′ ≤ 0, for the same reason as before. This
results in a contradiction, and the only remaining possibility under our canonical
rescaling is θ = (−1,−1,1)′. �

LEMMA 7. If there exists a LCP solution in Category IV, then there also exists
a solution in Category I or Category II (or both).

PROOF. Denoting by (u, v) a solution in Category IV, we assume that no solu-
tion in Category I exists. It will then suffice to prove that a solution in Category II
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exists. By permuting the indices, we can assume that u1 > 0, u2 > 0, u3 = 0,
v1 = v2 = 0 and v3 > 0.

We use the notation in (6.1). By Lemma 6, one has a, a′ > 1 and θ =
(−1,−1,1)′. We shall assume that c′ ≥ c, then construct a LCP solution (ũ, ṽ)

that falls into Category II, with ũ1 > 0 , ũ3 > 0, ṽ2 > 0; in exactly the same way,
if c ≥ c′, one can construct a LCP solution (ũ, ṽ) that falls into Category II, with
ṽ1 > 0 , ũ2 > 0 , ũ3 > 0.

We first observe that b, b′ ≤ −1. Otherwise, contrary to the assumption imposed
in the first paragraph of the proof, there would exist a LCP solution in Category I.
For example, if b > −1, then there is a divergent LCP solution (ū, v̄) with ū =
(1,0,0)′, v̄1 = 0, v̄2 = a − 1 > 0, and v̄3 = b + 1 > 0.

The 2 × 2 submatrix of R that is relevant to our construction is

R̃ =
(

1 c

b 1

)
.

Because R̃ is an S -matrix and b < 0, we know that bc < 1, hence det(R̃) > 0, and
because b ≤ −1 we also know that c > −1. Letting γ = (γ1, γ2)

′ be the two-vector
satisfying R̃γ = (1,−1)′, one has

γ = 1

1 − bc

(
1 −c

−b 1

)(
1

−1

)
= 1

1 − bc

(
1 + c

−1 − b

)
.

Defining ũ = (γ1,0, γ2)
′ and ṽ = θ + Rũ, it follows that ṽ1 = ṽ3 = 0. Comparing

the first and second rows of R term by term, and noting that the first two compo-
nents of θ are identical, one sees that

ṽ2 − ṽ1 = 1

1 − bc
[(a − 1)(1 + c) − (c′ − c)(1 + b)].(6.8)

Because of the inequalities a > 1, c > −1, c′ ≥ c and b ≤ −1, the quantity inside
the square brackets in (6.8) is positive. Thus ṽ2 > 0, and hence (ũ, ṽ) is a LCP
solution in Category II. �

LEMMA 8. If (1.6) holds, then there cannot exist a LCP solution in Cate-
gory III.

PROOF. Arguing as in the proof of Lemma 7, we assume the existence of a
LCP solution (u, v) in Category III. By permuting the indices, we can assume that
u1 > 0, u2 ≥ 0, u3 = 0, v1 = v2 = 0 and v3 > 0. We use the notation (6.1) and
define R̂ by (6.3). A minor variation of the first paragraph in the proof of Lemma 6
shows for the current case that both θ1 and θ2 are negative, and so θ1 = θ2 = −1
with our scaling convention. One then has a = a′ = 1 in (6.1), because det(R̂) = 0
by assumption. By (1.6), θ + Ru∗ = 0 for some u∗ > 0, from which it follows that
c = c′ in (6.1). That is, the first two rows of R are identical, whereas (1.6) includes
the requirement that R be nonsingular. �
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7. Proof of Theorem 4. As we explained immediately after the proof of
Lemma 5 in Section 6, the proofs of Lemmas 9, 10 and 12 in this section will
complete the proof of Theorem 4. In Lemmas 9 and 10, we actually prove that
Z is transient, which is stronger than we require for Theorem 4. The SRBM Z is
said to be transient if there exists an open ball C centered at the origin such that
P{τC = ∞} > 0 for some initial state Z(0) = x ∈ R

3+ that is outside of the ball,
where τC = inf{t ≥ 0 :Z(t) ∈ C}. Clearly, when Z is transient, it is not positive
recurrent. In this section, we continue to assume the canonical problem format in
which R satisfies (1.5) and θ satisfies (5.1).

LEMMA 9. If there is a LCP solution (u, v) in Category I, then Z is transient.

PROOF. Without loss of generality, we assume that

u1 > 0, u2 = 0, u3 = 0, v1 = 0, v2 > 0, v3 > 0.(7.1)

Because v = θ +Ru, with R as in (6.1), θ1 < 0, and so, by our scaling convention,
θ1 = −1. It follows from this that

u1 = 1, v2 = θ2 + a > 0 and v3 = θ3 + b > 0.(7.2)

One can write (1.1) as

Z1(t) = Z1(0) + θ1t + B1(t) + Y1(t) + a′Y2(t) + cY3(t),(7.3)

Z2(t) = Z2(0) + θ2t + B2(t) + aY1(t) + Y2(t) + c′Y3(t),(7.4)

Z3(t) = Z3(0) + θ3t + B3(t) + bY1(t) + b′Y2(t) + Y3(t)(7.5)

for t ≥ 0, where B = {B(t), t ≥ 0} is the three-dimensional driftless Brownian
motion with covariance matrix �. Assume Z(0) = (0,N,N)′ for some constant
N > 1 and set τ = inf{t ≥ 0 :Z2(t) = 1 or Z3(t) = 1}. We will show that P{τ =
∞} > 0 for sufficiently large N , and thus Z is transient. Because θ1 = −1 and
Y2(t) = Y3(t) = 0 for t ∈ [0, τ ), one has, for t < τ ,

Z1(t) = −t + B1(t) + Y1(t),

Z2(t) = N + θ2t + B2(t) + aY1(t),

Z3(t) = N + θ3t + B3(t) + bY1(t).

For t ≥ 0, let Ŷ1(t) = sup0≤s≤t (−s + B1(s))
−, and set

Ẑ1(t) = −t + B1(t) + Ŷ1(t),(7.6)

Ẑ2(t) = N + θ2t + B2(t) + aŶ1(t),(7.7)

Ẑ3(t) = N + θ3t + B3(t) + bŶ1(t)(7.8)

for t ≥ 0. Clearly, Z(t) = Ẑ(t) for t ∈ [0, τ ]. In particular, τ = τ̂ , where τ̂ =
inf{t ≥ 0 : Ẑ2(t) = 1 or Ẑ3(t) = 1}. To show Z is transient, it suffices to prove that,
for sufficiently large N , P{τ̂ = ∞} > 0.
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By the functional strong law of large numbers (FSLLN) for a driftless Brownian
motion, one has

lim
t→∞

1

t
sup

0≤s≤1
|B(ts)| = 0 almost surely.

This implies that

lim
t→∞ t−1Ŷ1(t) = lim

t→∞ t−1 sup
0≤s≤t

(−s + B1(s)
)−

= lim
t→∞ sup

0≤s≤1

(−s + t−1B1(ts)
)−

= sup
0≤s≤1

(−s)− = 1 almost surely.

Therefore, by (7.2), (7.7) and (7.8), one has limt→∞ t−1Ẑ2(t) = v2 > 0 and
limt→∞ t−1Ẑ3(t) = v3 > 0 almost surely. Consequently, there exists a constant
T > 0 such that P(A) ≥ 3/4 for all N ≥ 1, where

A = {Ẑ2(t) > 1 and Ẑ3(t) > 1 for all t ≥ T }.(7.9)

One can choose N large enough so that P(B) ≥ 3/4, where

B = {Ẑ2(t) > 1 and Ẑ3(t) > 1 for all t ∈ [0, T ]}.(7.10)

Because A ∩ B ⊂ {τ̂ = ∞}, P{τ̂ = ∞} ≥ 1/2 > 0, as desired. �

LEMMA 10. If there is an LCP solution (u, v) in Category II, then Z is tran-
sient.

PROOF. Without loss of generality, we assume that

u1 > 0, u2 ≥ 0, u3 = 0, v1 = 0, v2 = 0, v3 > 0.(7.11)

Assume R is given by (6.1), and let R̂ be the 2 × 2 principal submatrix of R given
by (6.3). By assumption, det(R̂) > 0. One can check that conditions (2.5)–(2.7)
and (7.11) imply that

R̂−1
(

θ1
θ2

)
≤ 0,(7.12)

v3 = θ3 − (b, b′)R̂−1
(

θ1
θ2

)
> 0.(7.13)

Let Z(0) = (0,0,N)′ for some constant N > 1 and set τ = inf{t ≥ 0 :Z3(t) =
1}. We will show that for sufficiently large N , P{τ = ∞} > 0, and thus Z is tran-
sient.
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On {t < τ }, one has Z3(t) > 0 and thus Y3(t) = 0. Because the SRBM Z satis-
fies Equation (1.1), on {t < τ },

Z(t) = Z(0) + θt + B(t) + R

⎛
⎝Y1(t)

Y2(t)

0

⎞
⎠

(7.14)

= Z(0) + θt + B(t) + R̃

⎛
⎝Y1(t)

Y2(t)

Y3(t)

⎞
⎠ ,

where

R̃ =
⎛
⎝ 1 a′ 0

a 1 0
b b′ 1

⎞
⎠ .

One can check that because R is completely S , so is R̃. It therefore follows from
Taylor and Williams (1993) that there exists a SRBM Z̃ associated with the data
(R3+, θ,�, R̃) that starts from Z(0). Following Definition 6 in Appendix A, the
three-dimensional process Z̃, together with the corresponding processes B̃ and Ỹ ,
is defined on some filtered probability space (�̃, {F̃t }, P̃); B̃ , Ỹ and Z̃ are adapted
to {F̃t }, and P̃-almost surely satisfy (1.1)–(1.4); B̃ is a driftless Brownian motion
with covariance matrix �, and B̃ is an {F̃t }-martingale. Furthermore, from Taylor
and Williams (1993), the distribution of Z̃ is unique. Because of (7.14), B , Y and
Z also satisfy (1.1)–(1.4) on {t < τ }, with the same data (R3+, θ,�, R̃), and so
τ = τ̃ in distribution, where

τ̃ = inf{t ≥ 0 : Z̃3(t) = 1}.
We now show that for sufficiently large N ,

P̃{τ̃ = ∞} > 0,(7.15)

which implies that P{τ = ∞} > 0. We note that (Z̃1, Z̃2) is a two-dimensional
SRBM with data (R2+, θ̂ , �̂, R̂), where θ̂ = (θ1, θ2)

′ and �̃ is the 2 × 2 princi-
pal submatrix of � obtained by deleting the 3rd row and the 3rd column of �.
Lemma 14 in Appendix D will show that when R̂ is a P -matrix and the condition
(7.12) is satisfied, the two-dimensional SRBM Z̃ is “rate stable” in the sense that

lim
t→∞

1

t
Z̃i(t) = 0 almost surely, i = 1,2.(7.16)

Solving for Ỹ1 and Ỹ2 in the first two components of (1.1) and plugging them
into the third component yields

Z̃3(t) = N + θ3t + B̃3(t)
(7.17)

+ (b, b′)R̃−1
[(

Z̃1(t)

Z̃2(t)

)
−

(
θ1
θ2

)
t −

(
B̃1(t)

B̃2(t)

)]
Ỹ3(t), t ≥ 0.
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Equations (7.13), (7.16) and (7.17), together the SLLN for Brownian motion, im-
ply that

lim inf
t→∞

1

t
Z̃3(t) ≥ v3 almost surely.

Because v3 > 0, one can argue as in (7.9) and (7.10) that for N large enough,
P

{
Z̃3(t) > 1 for all t ≥ 0

}
> 0. This proves (7.15). �

Before stating and proving Lemma 12 for a LCP solution in Category V, we
state the following lemma, which is needed in the proof of Lemma 12 and will be
proved at the end of this section.

LEMMA 11. Let B = (B1,B2,B3) be a three-dimensional Brownian motion
with zero drift and covariance matrix �, starting from 0. Set

Z1(t) = −t + B1(t) + Y1(t),(7.18)

Z2(t) = 2 + B2(t) − B1(t) + Z1(t),(7.19)

Z3(t) = 4N + 3μt + B3(t) + aB1(t) − aZ1(t)(7.20)

for t ≥ 0, and given constants a, μ > 0 and N ≥ 1, where

Y1(t) = sup
0≤s≤t

(−s + B1(s)
)−

.

Then for sufficiently large N , one has E(σ ) = ∞, where σ = inf{t ≥ 0 :Z2(t) = 1
or Z3(t) = 1}.

LEMMA 12. If there is a LCP solution (u, v) in Category V, then Z is not
positive recurrent.

PROOF. Without loss of generality, we assume that

u1 > 0, u2 = 0, u3 = 0, v1 = 0, v2 = 0, v3 > 0.(7.21)

Then a minor variation of the first paragraph in the proof of Lemma 6 establishes
that both θ1 and θ2 are negative, so θ1 = θ2 = −1 with our scaling convention.
Assuming R is as in (6.1), it follows as in (6.2) that u1 = 1, a = 1 and v3 =
b + θ3 > 0.

Let Z(0) = (0,2,N)′ for some constant N > 1 and let

τi = inf{t ≥ 0 :Zi(t) = 1}, i = 2,3,

with τ = min(τ2, τ3). We will show that Ex(τ ) = ∞ for sufficiently large N , which
implies that Z is not positive recurrent.
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The SRBM Z satisfies equations (7.3)–(7.5). Since Z2(t) > 0 and Z3(t) > 0 for
t < τ , one has Y2(t) = Y3(t) = 0 for t < τ . Because a = 1, (7.3)–(7.5) reduce to

Z1(t) = −t + B1(t) + Y1(t),(7.22)

Z2(t) = 2 − t + B2(t) + Y1(t),(7.23)

Z3(t) = N + θ3t + B3(t) + bY1(t)(7.24)

on t < τ . By (7.22), one has Y1(t) = Z1(t)+ t −B1(t) for t < τ . Substituting Y1(t)

into (7.23) and (7.24), one has

Z2(t) = 2 + B2(t) − B1(t) + Z1(t),

Z3(t) = N + v3t + B3(t) − bB1(t) + bZ1(t)

on t < τ .
For each t ≥ 0, let Ŷ1(t) = sup0≤s≤t (−s + B1(s))

−, and set

Ẑ1(t) = −t + B1(t) + Ŷ1(t),

Ẑ2(t) = 2 + B2(t) − B1(t) + Ẑ1(t),

Ẑ3(t) = N + v3t + B3(t) − bB1(t) + bẐ1(t)

for t ≥ 0. Let τ̂ = inf{t ≥ 0 : Ẑ2(t) = 1 or Ẑ3(t) = 1}; clearly, τ = τ̂ on every
sample path. It follows from Lemma 11 that E(τ̂ ) = ∞ for sufficiently large N .
Therefore, Ex(τ ) = ∞, and so Z is not positive recurrent. �

PROOF OF LEMMA 11. We first prove the case when a > 0. When a ≤ 0, the
proof is actually significantly simpler; an outline for this case will be presented at
the end of this proof.

Let X2(t) = 1 + B2(t) − B1(t) and X3(t) = B3(t) + aB2(t) for t ≥ 0. Then X2
is a Brownian motion starting from 1, X3 is a Brownian motion starting from 0,
and (7.19)–(7.20) become

Z2(t) = 1 + X2(t) + Z1(t) ≥ 1 + X2(t),(7.25)

Z3(t) = (N + a) + (
N + μt + X3(t)

)
(7.26)

+ (
2N + 2μt − aX2(t) − aZ1(t)

)
for t ≥ 0. Define

τ1 = inf{t ≥ 0 :X2(t) ≤ 0},
τ2 = inf{t ≥ 0 :aX2(t) ≥ 2N + 2μt − aZ1(t) or aX2(t) ≥ N + μt},
τ3 = inf{t ≥ 0 :X3(t) ≤ −(N + μt)},
τ = τ1 ∧ τ2 ∧ τ3.
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Assuming N + a > 1, it follows from the definition of τ and (7.25)–(7.26) that
for each t < τ , Z2(t) > 1 and Z3(t) > 1, and so τ ≤ σ . To prove the lemma, it
therefore suffices to show that

E(τ ) = ∞.(7.27)

Since X2 is a driftless Brownian motion, E(τ1) = ∞. When N is large, it is
intuitively clear that τ1 > τ2 ∧ τ3 with only negligible probability, which leads to
E(τ ) = ∞. To make the argument rigorous, first note that, because Z1 is adapted
to B1, each τi is a stopping time with respect to the filtration generated by the
Brownian motion B , and hence τ is a stopping time as well. Because X2(0) = 1
and X2 is a martingale with respect to the filtration generated by B , by the optional
sampling theorem,

E
(
X2(τ ∧ t)

) = 1

for each t ≥ 0. We will show that, for sufficiently large N ,

E
(
X2(τ )1{τ<∞}

) ≤ 1
2 .(7.28)

It follows that

1 = E
(
X2(τ ∧ t)

)
= E

(
X2(τ )1{τ<t}

) + E
(
X2(t)1{τ≥t}

)
≤ E

(
X2(τ )1{τ<∞}

) + E
((

(N + μt)/a
)
1{τ≥t}

)
= 1

2 + (
(N + μt)/a

)
P{τ ≥ t},

where we have used X2(t) ≤ (N + μt)/a on t ≤ τ2 for the inequality. Conse-
quently,

P{τ ≥ t} ≥ a

2(N + μt)
(7.29)

for each t ≥ 0, from which E(τ ) = ∞ follows.
It remains to prove (7.28). Because X2(τ1) = 0 when τ1 is finite,

E
(
X2(τ )1{τ<∞}

) = E
(
X2(τ2 ∧ τ3)1{τ2∧τ3<τ1}

)
≤ E

(((
N + μ(τ2 ∧ τ3)

)
/a

)
1{τ2∧τ3<∞}

)
(7.30)

≤
∞∑

n=0

((
N + μ(n + 1)

)
/a

)
P{n < τ2 ∧ τ3 ≤ n + 1}.

To bound the probability P{n < τ2 ∧ τ3 ≤ n + 1} for each n ∈ Z+, we use

{n < τ2 ∧ τ3 ≤ n + 1} ⊂ {n < τ2 ≤ n + 1} ∪ {n < τ3 ≤ n + 1}.
For {n < τ3 ≤ n+ 1}, X3(t) ≤ −(N +μn) first occurs on (n,n+ 1]. By the strong
Markov property for Brownian motion and the reflection principle, the probability
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of the latter event is at most 2P{X3(n + 1) < −(N + μn)}. For {n < τ2 ≤ n + 1},
either aX2(t) ≥ N + μn first occurs on (n,n + 1], or aZ1(t) ≥ N + μn occurs
on (n,n + 1]. One can also apply the strong Markov property and the reflection
principle to the first event. One therefore obtains

P{n < τ2 ∧ τ3 ≤ n + 1} ≤ P{n < τ2 ≤ n + 1} + P{n < τ3 ≤ n + 1}
≤ 2P{X3(n + 1) < −(N + μn)}

(7.31)
+ 2P{aX2(n + 1) > N + μn}
+ P

{
sup

n<s≤n+1
aZ1(s) > N + μn

}
.

We proceed to bound each of these three terms and plug these bounds into the
last term in (7.30). Note that

P{X3(n + 1) < −(N + μn)} = P

{
N(0,1) >

N + μn

γ
√

n + 1

}

≤ 1√
2π

γ
√

n + 1

N + μn
exp

(
−1

2

(N + μn)2

γ 2(n + 1)

)
(7.32)

≤ γ√
2πμ

exp
(
− μ

2γ 2 (N + μn)

)

for N ≥ μ, where N(0,1) denotes the standard normal random variable and γ 2 is
the variance of the Brownian motion X3. The first inequality is a standard estimate
and is obtained by integrating by parts. Assume N = N ′μ, with N ′ ∈ Z+. Then,

∞∑
n=0

(
N + μ(n + 1)

)
2P{X3(n + 1) < −(N + μn)}

(7.33)

≤
∞∑

n=N ′

2γ√
2π

(n + 1) exp
(
− μ2

2γ 2 (n + 1)

)
,

which is less than 1/6 for sufficiently large N . For the same reason,

∞∑
n=0

(
N + μ(n + 1)

)
2P{aX2(n + 1) > N + μn} ≤ 1

6
(7.34)

for sufficiently large N . To bound the probability P
{
supn<s≤n+1 aZ1(s) > N +

μn
}
, we apply Lemma 13 in Appendix D. The lemma states that for appropriate

constants c1, c2 > 0,

P

{
sup

n≤s≤n+1
Z1(t) > x

}
≤ c1 exp(−c2x) for x ≥ 0.
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For N = N ′μ,
∞∑

n=0

(
N + μ(n + 1)

)
P

{
sup

n<s≤n+1
aZ1(s) > N + μn

}

(7.35)

≤
∞∑

n=N ′
(n + 1)μc1 exp(−c2μn/a),

which is also less than 1/6 for large N . The bounds obtained for (7.33)–(7.35)
together show that the last term in (7.30) is at most 1/2. This implies (7.28), and
hence the lemma for a > 0.

When a ≤ 0, the proof is analogous to the case a > 0, with the following sim-
plifications. Assume N + a ≥ 1. The equality (7.26) can be replaced by

Z3(t) ≥ (N + a) + (
N + μt + X3(t)

) + (
2N + 2μt − aX2(t)

)
for t ≥ 0, because a ≤ 0. The definition of τ2 can be replaced by the simpler

τ2 = inf{t ≥ 0 :X2(t) ≥ N + μt}.
One can again check that for each t < τ , Z2(t) > 1 and Z3(t) > 1, and so τ ≤ σ .
To prove the lemma for the case a ≤ 0, it remains to show (7.27). For this, we
follow the same procedure as in the case a > 0. First, (7.28) still implies (7.29)
with a in the right side of (7.29) replaced by 1. From (7.29), (7.27) follows. To
demonstrate (7.28), we employ (7.30), with a there replaced by 1. To bound the
probability P{n < τ2 ∧ τ3 ≤ n + 1} for each n ∈ Z+, we replace (7.31) with the
simpler

P{n < τ2 ∧ τ3 ≤ n + 1}
≤ P{n < τ2 ≤ n + 1} + P{n < τ3 ≤ n + 1}
≤ 2P{X3(n + 1) < −(N + μn)} + 2P{X2(n + 1) > N + μn}.

It then follows from bounds (7.32)–(7.34) that (7.28) holds for sufficiently large N .
This implies the lemma for a ≤ 0. �

APPENDIX A: SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS

In this section, we present the standard definition of a semimartingale reflecting
Brownian motion (SRBM) in the d-dimensional orthant S = R

d+, where d is a
positive integer. We also review the standard definition of positive recurrence for
an SRBM, connecting it with the alternative definition used in Section 1.

Recall from Section 1 that θ is a constant vector in R
d , � is a d × d symmetric

and strictly positive definite matrix, and R is a d × d matrix. We shall define an
SRBM associated with the data (S, θ,�,R). For this, a triple (�, F , {Ft}) will be
called a filtered space if � is a set, F is a σ -field of subsets of �, and {Ft } ≡
{Ft , t ≥ 0} is an increasing family of sub-σ -fields of F , that is, a filtration.
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DEFINITION 6 (Semimartingale reflecting Brownian motion). A SRBM as-
sociated with (S, θ,�,R) is a continuous {Ft }-adapted d-dimensional process
Z = {Z(t), t ≥ 0}, together with a family of probability measures {Px, x ∈ S},
defined on some filtered space (�, F , {Ft}) such that, for each x ∈ S, un-
der Px , (1.1) and (1.4) hold, where, writing W(t) = X(t) − θt for t ≥ 0, W is
a d-dimensional Brownian motion with covariance matrix �, an {Ft }-martingale
such that W(0) = x Px-a.s., and Y is an {Ft }-adapted d-dimensional process such
that Px -a.s. (1.2) and (1.3) hold. Here (1.2) is interpreted to hold for each compo-
nent of Y , and (1.3) is defined to be∫ t

0
1{Zi(s)�=0} dYi(s) = 0 for all t ≥ 0.(A.1)

Definition 6 gives the so-called weak formulation of a SRBM. It is a standard
definition adopted in the literature; see, for example, Dupuis and Williams (1994)
and Williams (1995). Note that condition (A.1) is equivalent to the condition that,
for each t > 0, Zj(t) > 0 implies Yj (t − δ) = Yj (t + δ) for some δ > 0. Reiman
and Williams (1988) showed that a necessary condition for a (S, θ,�,R)-SRBM
to exist is that the reflection matrix R is completely S (this term was defined in
Section 1). Taylor and Williams (1993) showed that when R is completely S ,
a (S, θ,�,R)-SRBM Z exists and Z is unique in law under Px for each x ∈ S.
Furthermore, Z, together with the family of probability measures {Px, x ∈ R

d+}, is
a Feller continuous strong Markov process.

Let (θ,�,R) be fixed with � being a positive definite matrix and R being a
completely S matrix. Dupuis and Williams [(1994), Definition 2.5] and Williams
[(1995), Definition 3.1] gave the following definition of positive recurrence.

DEFINITION 7. An SRBM Z is said to be positive recurrent if, for each closed
set A in S having positive Lebesgue measure, we have Ex(τA) < ∞ for all x ∈ S,
where τA = inf{t ≥ 0 :Z(t) ∈ A}.

Because each open neighborhood of the origin contains a closed ball that has
positive volume, Definition 7 appears to be stronger (i.e., more restrictive) than the
definition adopted in Section 1, but one can show that these two notions of positive
recurrence are equivalent for a SRBM. Indeed, the last paragraph on page 698 in
Dupuis and Williams (1994) provides a sketch of that proof.

APPENDIX B: CONVENIENT NORMALIZATIONS OF PROBLEM DATA

Let R be a d × d completely S matrix and (X,Y,Z) a triple of continu-
ous, d-dimensional stochastic processes defined on a common probability space.
The diagonal elements of R are necessarily positive. Let D̃ = diag(R) and R̃ =
RD̃−1 (thus R̃ is a d × d completely-S matrix that has ones on the diagonal),
and define Ỹ (t) = D̃Y (t) for t ≥ 0. If (X, Y , Z) satisfy (1.1)–(1.4) with reflection
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matrix R, then (X, Ỹ , Z) satisfy (1.1)–(1.4) with reflection matrix R̃, and vice
versa. Thus the distribution of Z is not changed if one substitutes R̃ for R, and that
substitution assures the standardized problem format (1.5).

Now let R and (X, Y , Z) be as in the previous paragraph, and further sup-
pose that X is a Brownian motion with drift vector θ and nonsingular covariance
matrix �. Define a d × d diagonal matrix D by setting Dii = 1 if θi = 0 and
Dii = |θi |−1 otherwise. Setting Ẑ = DZ, X̂ = DX and R̂ = DR, one sees that if
(X, Y , Z) satisfy (1.1)–(1.4) with reflection matrix R, then (X̂, Y , Ẑ) satisfy (1.1)–
(1.4) with reflection matrix R̂, and vice versa. Of course, X̂ is a Brownian motion
whose drift vector θ̂ = Dθ satisfies (5.1); the covariance matrix of X̂ is �̂ = D�D.
Thus our linear change of variable gives a transformed problem in which (5.1) is
satisfied. To achieve a problem format where both (1.5) and (5.1) are satisfied, one
can first make the linear change of variable described in this paragraph, and then
make the substitution described in the previous paragraph.

APPENDIX C: PROOF THAT (1.6) IS NECESSARY FOR STABILITY OF Z

We consider a d-dimensional SRBM Z with associated data (S, θ,�,R), de-
fined as in Appendix A, assuming throughout that R is completely S . Let us also
assume until further notice that R is nonsingular. Because R is an S -matrix, there
exist d-vectors w, v > 0 such that Rw = v. That is,

R−1v > 0 where v > 0.(C.1)

Now suppose it is not true that R−1θ < 0. That is, defining γ = R−1θ , suppose
that γi ≥ 0 for some i ∈ {1, . . . , d}. For future reference let u be the ith row of R−1.
Thus (C.1) implies

u · v > 0.(C.2)

Our goal is to show that Z cannot be positive recurrent. Toward this end,
it will be helpful to represent the underlying Brownian motion X in (1.1) as
X(t) = W(t) + θt , where W is a d-dimensional Brownian motion with zero drift
and covariance matrix �. Premultiplying both sides of (1.1) by R−1 then gives
R−1Z(t) = R−1W(t) + γ t + Y(t). The ith component of the vector equation is

ξ(t) ≡ u · Z(t) = u · W(t) + γit + Yi(t), t ≥ 0.(C.3)

Let A = {z ∈ S : |z| ≤ 1} and B = {u · z : z ∈ A}. Then B ⊂ R is a compact interval
containing the origin, and from (C.2) we know that B contains positive values as
well, because A contains αv for sufficiently small constants α > 0. Thus B has the
form

B = [a, b] where a ≤ 0 and b > 0.(C.4)
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As the initial state x = Z(0) = W(0), we take

x = βv where v is chosen as in (C.1) and
(C.5)

β > max
(|v|−1, (u · v)−1b

)
.

From (C.1), (C.2), (C.4) and (C.5), we have that

x ∈ S, |x| > 1 and u · x > b.(C.6)

Thus, defining τA = inf{t ≥ 0 :Z(t) ∈ A} and σ = inf{t ≥ 0 : ξ(t) ∈ B}, it follows
from the definitions of A, B and ξ , plus (C.4) and (C.6), that

τA ≥ σ, Px -a.s.(C.7)

From (C.3), we see that ξ is bounded below by a one-dimensional Brownian mo-
tion with nonnegative drift, and ξ(0) > b Px-a.s. Thus Ex(σ ) = ∞, implying that
Ex(τA) = ∞ as well by (C.7). This establishes that Z is not positive recurrent
when R is nonsingular.

We still need to show that Z cannot be positive recurrent when R is singular.
In this case, there exists a nontrivial vector u ∈ R

d such that u′R = 0, and we can
assume that u · θ ≥ 0 as well (because −u can be exchanged for u if necessary).
Premultiplying both sides of (1.1) by u′ gives the following analog of (C.3):

u · Z(t) = u · W(t) + (u · θ)t.

Because R is an S -matrix, for this given u there exist w,v ∈ S such that

u + Rw = v.(C.8)

After premultiplying both sides of (C.8) by u′, one obtains

u · v = |u|2 > 0.

We choose the initial state x = Z(0) = W(0) exactly as in (C.5), and define the
set A as before. The proof that Ex(τA) = ∞, and hence that Z is not positive
recurrent, then proceeds exactly as in the case treated above, except that now the
process ξ = u · Z is itself a Brownian motion with nonnegative drift, whereas in
the case treated earlier ξ was bounded below by such a Brownian motion.

APPENDIX D: TWO LEMMAS

In this appendix, we demonstrate two lemmas that are used in Section 7.
Lemma 13 is employed in the proof of Lemma 11.

LEMMA 13. Let X be a one-dimensional Brownian motion with drift θ < 0,
variance σ 2, starting from 0. Let Z be the corresponding one-dimensional SRBM,

Z(t) = X(t) − min
0≤s≤t

X(s) for t ≥ 0.
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There exist constants c1 > 0 and c2 > 0 such that

P

{
sup

n−1≤s≤n

Z(s) > x
}

≤ c1 exp(−c2x)(D.1)

for all n ∈ Z+ and x > 0.

PROOF. One could employ the Lipschitz continuity property of the one-
dimensional Skorohod map and the estimate (4.9) of Atar, Budhiraja and Dupuis
(2001) to prove the lemma. Here, we provide a direct proof. Since X has negative
drift, it is well known [see, e.g., Section 1.9 of Harrison (1985)] that, for each t > 0
and x > 0,

P{Z(t) > x} = P

{
max

0≤s≤t

(
X(t) − X(t − s)

)
> x

}

= P

{
max

0≤s≤t
X(s) > x

}
(D.2)

≤ P

{
sup

0≤s<∞
X(s) > x

}
= exp(−2|θ |x/σ 2).

Therefore, for n ∈ Z+,

P

{
max

n−1<s≤n
Z(s) > x

}

≤ P{Z(n) > x/2} + P

{
Z(n) ≤ x/2, max

n−1<s≤n
Z(s) > x

}

≤ exp(−|θ |x/σ 2) + P{n − 1 < τ < n,X(n) − X(τ) < −x/2},
where τ = inf{s ≥ n − 1 :Z(s) > x}.

Note that τ is a stopping time with respect to the filtration generated by Z, which
is the filtration generated by the Brownian motion B , where B(t) = X(t) − θt for
t ≥ 0. By the strong Markov property of B ,

P{n − 1 < τ < n,X(n) − X(τ) < −x/2}
≤ P{n − 1 < τ < n,B(n) − B(τ) < −x/2 + |θ |}
≤ �

(
(−x/2 + |θ |)/σ )

for x > 2|θ |, where � is the standard normal distribution function. Thus,

P

{
max

n−1<s≤n
Z(s) > x

}
≤ exp(−|θ |x/σ 2) + �

(
(−x/2 + 1)/σ

)

for x > 2|θ |, from which (D.1) follows. �

The following lemma is used in the proof of Lemma 10. Let

R =
(

1 b

a 1

)
and θ =

(
θ1
θ2

)
,
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and assume that det(R) > 0. Then R is a P -matrix and hence is completely S .
For any given 2 × 2 positive definite matrix �, it therefore follows from Taylor
and Williams (1993) that, starting from any fixed state x ∈ R

2+, there is a two-
dimensional SRBM Z with data (θ,�,R), as defined in Definition 6, that is well
defined and is unique in law.

LEMMA 14. Suppose that R−1θ ≤ 0. Then each fluid path (y, z) starting from
z(0) = 0 remains at 0; that is, z(t) = 0 for t ≥ 0. Consequently,

lim
t→∞

Z(t)

t
= 0 almost surely.(D.3)

PROOF. It follows from

R−1 = 1

1 − ab

(
1 −b

−a 1

)
,

det(R) = 1 − ab > 0 and R−1θ ≤ 0 that

θ1 − bθ2 ≤ 0, θ2 − aθ1 ≤ 0.

Observe that R−1 is a P -matrix because R is a P -matrix. Therefore, R−1

is an S -matrix. Consequently, there exists (d1, d2) > 0 such that (c1, c2) ≡
(d1, d2)R

−1 > 0. By assumption R−1θ ≤ 0, and so one has

c1θ1 + c2θ2 = (d1, d2)R
−1θ ≤ 0.

Let (y, z) be a fluid path with z(0) = 0. By the oscillation inequality [see, e.g.,
Lemma 4.3 of Dai and Williams (1995)], (y, z) is Lipschitz continuous. Setting
g(t) = c1z1(t)+c2z2(t), we will show that g(t) = 0 for t ≥ 0. From this, it follows
that z(t) = 0 for t ≥ 0, which is the first claim in the lemma. It suffices to prove
that

ġ(t) ≤ 0 at each t where g(t) > 0 and (y, z) is differentiable.

We consider several cases, depending on whether z1(t) and z2(t) are strictly
positive. When z1(t) > 0 and z2(t) > 0, (2.1)–(2.4) imply that ż1(t) = θ1 and
ż2(t) = θ2, and hence ġ(t) = c1ż1(t)+ c2ż2(t) ≤ 0. When z1(t) = 0 and z2(t) > 0,
ż1(t) = 0 and ẏ2(t) = 0, from which one has ẏ1(t) = −θ1 and ż2(t) = θ2 −aθ1 ≤ 0.
Because in this case ż1(t) = 0 and ż2(t) ≤ 0, ġ(t) ≤ 0 follows. When z2(t) = 0 and
z1(t) > 0, one can similarly argue that ġ(t) ≤ 0. This shows that g(t) = 0 for t ≥ 0,
as desired.

We next demonstrate (D.3). Let Z be a two-dimensional SRBM with data
(θ,�,R) having a given initial point Z(0) = x ∈ R

2+. By Definition 6, Z, together
with the associated pair (X,Y ), satisfies (1.1)–(1.4). For each r > 0 and each t ≥ 0,
set

X̄r(t) = 1

r
X(rt), Ȳ r (t) = 1

r
Y (rt), Z̄r (t) = 1

r
Z(rt).
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By the functional strong law of large numbers (FSLLN) for Brownian motion,
almost surely,

lim
r→∞ sup

0≤s≤t

|X̄r (s) − x(s)| = 0 for each t > 0,(D.4)

where x(s) = (θ1s, θ2s)
′ for s ≥ 0. Fix a sample path that satisfies (D.4) and let

{rn} ⊂ R+ be a sequence with rn → ∞. The FSLLN (D.4) implies that {X̄rn} is
relatively compact in C(R+,R), the space of continuous functions on R+ endowed
with the topology of uniform convergence on compact sets. By the oscillation in-
equality, {(Ȳ rn, Z̄rn)} is also relatively compact.

Let (y, z) be a limit point of {(Ȳ rn, Z̄rn)}. It is not difficult to show that (y, z) is
a fluid path associated with the data (θ,R) that satisfies z(0) = 0. It follows from
the first part of the proof that z(t) = 0 for t ≥ 0. This is the unique limit point with
z(0) = 0. Therefore, almost surely,

lim
r→∞

1

r
Z(r) = lim

r→∞ Z̄r (1) = 0,

which proves (D.3). �
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