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For independent X and Y in the inequality P(X ≤ Y +μ), we give sharp
lower bounds for unimodal distributions having finite variance, and sharp up-
per bounds assuming symmetric densities bounded by a finite constant. The
lower bounds depend on a result of Dubins about extreme points and the up-
per bounds depend on a symmetric rearrangement theorem of F. Riesz. The
inequality was motivated by medical imaging: find bounds on the area under
the Receiver Operating Characteristic curve (ROC).

1. Introduction. We give sharp upper and lower bounds on

P(X ≤ Y + μ),

where the independent variables X and Y have zero means and satisfy either uni-
modality or symmetry conditions. The lower bounds assume unimodality and use
a theorem of Dubins [5] about extreme points, while the upper bounds assume
symmetry and use a theorem of F. Riesz [13] about symmetric rearrangements. We
emphasize that our basic inequalities in the lower-bound case are known, proved
earlier by various authors starting with Gauss. Our justification for proving the
known theorems is mainly to show that the bounds are sharp and perhaps to indi-
cate another approach.

Both bounds were motivated by a widely used methodology in medical imag-
ing, the ROC (Receiver Operating Characteristic) curve, known to statisticians as
a power function (not necessarily of the most powerful test). A widely used inter-
pretation of the ROC curve is the AUC (Area under the Curve), defined next.

Thus, we are given variables Xi, i = 0,1 having continuous Fi(x) = P(Xi ≤
x). Letting for 0 < α < 1, x(α) = sup{x : 1 − F0(x) ≥ α}, the ROC curve is

α �−→ x(α),

the AUC being

AUC(X0,X1) =
∫ 1

0

(
1 − F1(x(α))

)
dα.(1)
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If the variables Xi are independent, then (1) equals

P(X0 ≤ X1),(2)

an identity first proved by Bamber [1], at least in the medical imaging literature.
This is a role of the AUC. An experimenter wants to compare two medical

imaging modalities to decide which best detects a tumor. For example, one may
compare X-rays against MRI images, although often one compares “filters” for
the same modality [other modalities include positron emission tomography (PET),
single-photon computed emission tomography (SPECT) and ultrasound]. Imag-
ine that a large number of experimenters each test the hypothesis of F0 (no tumor)
against F1 (tumor) and that each chooses a level of significance α according to
a uniform distribution. (The use of a random α reflects the differing levels of sig-
nificance of different experimenters.) For each experimenter, the hypothesis F0 is
rejected in favor of F1 if a scalar observable exceeds a constant x(α). Thus the
AUC gives the average of the power function 1 − F1(x(α)).

The equality of (2) and (1) for continuous distributions leads to a second widely
used method, the 2AFC (Two-Alternative Forced Choice). In this case the experi-
menter is confronted with two choices, perhaps two different imaging modalities,
perhaps a “signal” or “no signal.” The experimenter uses a test statistic, rejecting
the hypothesis of no signal in favor of a signal if the test statistic is large. More pre-
cisely, the experimenter computes the test statistic, applies it to the two data sets,
the signal and the nonsignal (not knowing which is which), and chooses the data
set giving the larger value of the statistic as the signal. In (2), the distribution of X1
is that of the statistic when the signal is present, X0 when the signal is absent.

The ROC was developed during World War II for analyzing the performance of
radar systems. Today ROC analysis is regularly used in the health care industry
and by the Federal Drug Administration to evaluate new imaging systems, diag-
nostic tests, treatments and pharmaceuticals. Often, if not invariably, a Gaussian
assumption is made on a test statistic, typically the log-likelihood ratio. The bounds
obtained here are of course weaker. For example, without assuming a Gaussian
distribution or the equality of modes (but assuming μX = μY , σX = σY = 1), the
unimodality lower bound when μ = 2

√
6 ∼= 4.899 is

P
(
X ≤ Y + 2

√
6
) ≥ 0.5,

while a Gaussian distribution gives a lower bound greater than 0.99966 (since√
12 ∼= 3.4641); claimed differences may be the result of the Gaussian assumption.

Some sort of compromise is needed.
ROC analysis in medical imaging has an enormous literature. We mention the

book of Swets and Pickett [14] and the papers of Metz [11], Clarkson [3] and Bar-
rett, Abbey and Clarkson [2]. We also mention that researchers in medicine and in
psychophysics—the branch of psychology that studies the relations between phys-
ical stimuli and sensory response—use a functional relation between the AUC and
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the SNR (Signal-to-Noise Ratio), where in medical imaging, the SNR is defined
as the ratio of the mean pixel value to their standard deviation.

In this paper we study the behavior of (2) under unimodality or symmetry as-
sumptions. Lower and upper confidence bounds on a translation parameter μ de-
fined below are clearly available although not discussed here. Because (2) and (1)
are equal for continuous distributions, we state our results in terms of (2). For the
lower bounds in the unimodal case we constrain the variances to equal 1. For the
upper bounds in the symmetric case we constrain the densities to be bounded by
b < ∞. Although the second constraint may appear unfamiliar (if not unnatural),
it is easy to see that neither constraint is relevant to the other case.

2. Dubins’s theorem—lower bounds for P(X ≤ Y + μ). Throughout this
section we assume that X0 has a mode equal to zero. Rather than assuming that X1
has a mode equal to μ > 0, we find it convenient to assume that X1 has a mode
equal to zero and then study X1 + μ.

We begin with sharp upper bounds for symmetric unimodal distributions and
we recall the definition of unimodal distributions (page 155 of Feller [6]): a distri-
bution function F is unimodal at m if F is convex on (−∞,m) and concave on
(m,∞). Note that F may assign positive mass to the point m and that a mode need
not be unique.

Gauss (see Pukelsheim [12]) proved the following inequality for a variable X

having a continuous unimodal distribution, where τ 2 = E[(X − m)2]:

P(|X − m| > s) ≤
{

1 − (
s/

√
3τ

)
, s ≤ 2

√
3τ ,

4τ 2/9s2, s ≥ 2
√

3τ .

Pukelsheim [12] gives a useful survey of the inequalities which followed that
of Gauss. The method of extreme points was used earlier by Dharmadhikari and
Joag-Dev [4].

We need a special case of a theorem of L. Dubins [5].

THEOREM 1 (Dubins). Let A be a compact convex subset of a locally convex
space and let T be a real continuous linear functional on A. Then each extreme
point of A ∩ {x :T (x) = y} is a convex combination of at most two extreme points
of A.

The inequality in the next lemma and its corollary are known, mentioned in
the references above. What is new (we believe) is a sharp one-sided inequality.
Dubins’s theorem leads naturally to the bounds and the distributions achieving the
bounds.

In order to use a compactness argument on the space of distributions, we initially
assume that all distributions are supported on the interval [−N,N]. Since N is
arbitrary, it is easy to verify that all assertions will extend to the case that the
distributions are supported on (−∞,∞).
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LEMMA 2. Fix t > 0 and assume that t ≤ 2N/3. If X has a symmetric uni-
modal distribution supported on [−N,N] and var(X) = 1, then

P(X ≥ t) ≤
{

1/2 − t/
(
2
√

3
)
, 0 < t ≤ 2/

√
3,

2/(9t2), 2/
√

3 < t ≤ 2N/3.

If 0 < t ≤ 2/
√

3, the bound is obtained at the density

f (x) =
{

1/
(
2
√

3
)
, |x| < √

3,
0, |x| ≥ √

3.

If 2/
√

3 < t ≤ 2N/3, the bound is obtained at the distribution

(1 − βt )δ0 + βtft (x),

where βt = 4/(3t2) and

ft (x) =
{

1/(3t), |x| < 3t/2,
0, |x| ≥ 3t/2.

PROOF. We fix N ≥ 2, let F denote the set of symmetric unimodal distribu-
tions on [−N,N], and note that F is a compact convex set in the weak topology.
It is easy to see that the extreme points of F are the Dirac probability δ0 and the
boxcar densities fa(x), where for 0 < a ≤ N,

fa(x) =
{

1/(2a), |x| < a,
0, |x| ≥ a.

Define a continuous linear functional T on F by

T (F ) =
∫ N

−N
x2 dF(x)

and let F (1) ⊂ F denote the compact convex set where T (F ) = 1, that is, the
variance equals 1. Dubins’s theorem implies that the extreme points of F (1) are
the distributions of the form

(1 − β)δ0 + βF2,(3)

(1 − β)F1 + βF2,(4)

where the Fi are distribution functions having boxcar densities and 0 < β < 1, and
the variance of (3) and of (4) equals 1. Fix 0 < t ≤ 2N/3 and define the continuous
linear functional on F (1),

Tt (F ) →
∫ N

t
dF (x).

Because the maximum of Tt (F ) on F (1) is obtained at an extreme point, to prove
the theorem it suffices to calculate the values of Tt (F ) on (3) and (4). �
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Now let X have a unimodal distribution function H with mode at the origin,
var(X) = 1, mean μX, and let Xs denote the variable with the symmetric unimodal
distribution function 1/2(H(x) + 1 − H(−x)). Then Xs has variance 1 + μ2

X.

COROLLARY 3. For t > 0,

P
(|X| > t(1 + μ2

X)1/2) = 2P
(
Xs > t(1 + μ2

X)1/2)
≤

{
1 − t/

√
3, t < 2/

√
3,

4/(9t2), t ≥ 2/
√

3.

THEOREM 4. Let X have a unimodal distribution with a mode at the origin,
var(X) = 1, and mean μX . Then for t > 0,

P (X > t) ≤
{

1 − t/
(
2
√

3
)
, 0 < t ≤ 4/

√
3 ∼= 2.3094,

4(1 + μ2
X), (9t2)4/

√
3 < t .

If t ≤ 4/
√

3, then the bound is obtained at the density

f (x) = 1/
(
2
√

3
)
, 0 < x < 2

√
3.(5)

Fix t > 4/
√

3. The bound is obtained at the distribution(
1 − 4

3u2

)
δ0(x) + 8(u2 − 1)1/2

9u4 IA(u)(x),

where

A(u) =
(

0,
3u2

2(u2 − 1)1/2

)
,

μX = 1

(u2 − 1)1/2 ,

and u satisfies: t is the positive root of

t3 − 3u2

2(u2 − 1)1/2 t2 + 1

2

(
u4

u2 − 1

)3/2

= 0.(6)

REMARK 5. Always u ≥ 2/
√

3 and when u = 2/
√

3 the positive root t =
4/

√
3. If t is large so that u is also large, then (6) is approximately the polynomial

in the variable t,

t3 − 3ut2

2
+ 1

2
u3 = 0,

whose unique root t satisfies t = u. Let t be given and let u(t) be such that t is the
root of (6) with u(t) the constant. For example, if t ∼= 3.18198, then u(t) = 3.0,

and if t ∼= 8.063242, then u(t) = 8.0. It is not difficult to verify that t > u(t) and
lim t/t (u) = 1 as u → ∞.
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PROOF OF THEOREM 4. To find the upper bound, we claim that we may as-
sume that unimodal X ≥ 0. For if X has a unimodal distribution with mode at
the origin, var(X) = 1, we may define a unimodal S ≥ 0 with mode at the origin,
var(S) = 1, so that for all t > 0,

P (S > t) ≥ P(X > t).

If X ≤ 0 choose, say, S = −X. Otherwise, take that part of the distribution of X

which is supported on (−∞,0) and put it on {0}; call the new variable Y. Because

E(Y 2) ≤ E(X2),

E(Y ) ≥ E(X),

we have

0 < γ 2 ≡ Var(Y ) ≤ 1.

Then S ≡ Y/γ ≥ 0 is unimodal with mode at the origin, var(S) = 1, and for t > 0,

P (S > t) = P(X > γ t) ≥ P(X > t).

Continuing the proof, from Corollary 3 and Lemma 2,

P(X > t) = 2P(Xs > t) = 2P
(
Xs/(1 + μ2

X)1/2 > t/(1 + μ2
X)1/2)

(7)

≤
{

1 − t/
(√

3(1 + μ2
X)1/2)

, 0 < t < 2(1 + μ2
X)1/2/

√
3,

4(1 + μ2
X)/(9t2), 2(1 + μ2

X)1/2/
√

3 < t .

If X has the density (5), then μX = √
3 and X satisfies (7) for 0 < t ≤ 4/

√
3. For

u ≥ 2/
√

3 let X have the distribution(
1 − 4

3u2

)
δ0(x) + 8(u2 − 1)1/2

9u4 I(0,3u2/(2(u2−1)1/2).

Then σX = 1 and since μX = 1/(u2 − 1)1/2,1 + μ2
X = u2/(u2 − 1). For t ≥

(2/
√

3)(u2/(u2 − 1))1/2,

P (Y > t) = 4

3u2

(
1 − 2t (u2 − 1)1/2

3u2

)
.(8)

Now fix t > 4/
√

3. We want a value of u so that (8) equals

= 4u2

9t2(u2 − 1)

(
= 4(1 + μ2

X)

9t2

)
.

This is satisfied by (6). �

Following Ibragimov [8], a unimodal distribution function is strong unimodal
if its composition with any unimodal distribution function is unimodal. Ibragimov
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proved that a distribution function F is strong unimodal if and only if F is contin-
uous unimodal and its density f satisfies

x → ln(f (x))

is a concave function on the interior of the support of F.

Let independent X and Y have unimodal distributions with modes (not nec-
essarily unique) mX and mY , means μX = μY = 0 and standard deviations
σX = σY = 1. We assume that at least one of the unimodal distributions is strong
unimodal and recall from [9] that a mode of (X − Y)/

√
2 satisfies∣∣m

(X−Y )/
√

2

∣∣ ≤ √
3.(9)

COROLLARY 6. Fix μ >
√

6. Then

P(X ≤ Y + μ)
(10)

≥
{(

μ − √
6
)
/
(
2
√

6
)
,

√
6 ≤ μ ≤ √

6 + 4
√

2/3 ∼= 5.7155,

1 − 32
(
3
(
μ − √

6
))−2

,
√

6 + 4
√

2/3 < μ.

REMARK 7. The only case of interest, P(X ≤ Y + μ) ≥ 0.5, requires μ ≥
2
√

6 ∼= 4.899.

PROOF OF COROLLARY 6. If we define

Z = 1√
2
(X − Y − mX−Y ),

then Z is unimodal with a mode at the origin, mean equal to (−mX−Y )/
√

2 and
variance equal to 1. The left-hand side of (10) is

P
(
Z ≤ 1√

2
(μ − mX−Y )

)
.(11)

Thus among all such unimodal variables Z, (11) is minimized with mX−Y /
√

2 =√
3, using (9). To complete the proof it suffices to find a least upper bound for

P
(
Z ≥ 1√

2

(
μ − √

6
))

, μ >
√

6

using Theorem 4. �

3. F. Rieszs theorem—upper bounds for P(X ≤ Y + μ). Recall the defini-
tion of the symmetric rearrangement of the indicator function of a Borel set ([10];
see also [7]). If A ⊂ R is a Borel set of finite Lebesgue measure λ(A), then the
symmetric rearrangement of the set A, denoted by A∗, is the symmetric open in-
terval so that λ(A∗) = λ(A). We let the functions

IA, I ∗
A

denote the indicator functions of A and A∗, respectively. The following is a special
case of Riesz’s theorem [13]. As in the previous section, we study distributions
whose support is [−N,N], arbitrary N.
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THEOREM 8 (F. Riesz). Let A,B and C be Borel sets of finite measure. Then∫ ∞
−∞

∫ ∞
−∞

IA(x)IB(x − y)IC(y) dx dy ≤
∫ ∞
−∞

∫ ∞
−∞

I ∗
A(x)I ∗

B(x − y)I ∗
C(y) dx dy.

Fix b > 0 and N ≥ 1/(2b), and let F (b) denote the class of all symmetric dis-
tributions on [−N,N] whose distribution functions satisfy a Lipschitz condition
with Lipschitz constant b. Clearly F (b) is convex and the Lipschitz condition en-
sures that F (b) is an equicontinuous class; because F (b) is closed (the sup norm
topology), Ascoli’s theorem implies that F (b) is compact. We let distributions
F,G ∈ F (b) and let H ∈ F (b) be the distribution with density

u(x) =
{

b, |x| < 1/(2b),
0, |x| > 1/(2b).

(12)

With these distributions we associate independent variables

X ∼ F, Y ∼ G; U0,U1 ∼ H.(13)

THEOREM 9. Fix μ > 0. If bμ < 1, then

P(X ≤ Y + μ) ≤ P(U0 ≤ U1 + μ) = bμ + 1
2

(
1 − (bμ)2)

.

The inequalities are strict unless f = u a.e. If bμ ≥ 1, then

P(X ≤ Y + μ) ≤ P(U0 ≤ U1 + μ) = 1.

The proof of the theorem rests on the following lemmas. We thank the referee
for observing that the argument of the next lemma extends to an arbitrary proba-
bility space without symmetry conditions.

LEMMA 10. Assume that N ≥ 1/(2b). The extreme points of F (b) are the
distributions with the densities (up to a set of measure zero)

bIB(x) =
{

b, x ∈ B,
0, x /∈ B,

(14)

where symmetric B ⊂ [−N,N] and the Lebesgue measure λ(B) = 1/b.

PROOF. Given G, let g be the density of G. Suppose that g does not satisfy
(14) up to a set of measure zero: for an ε > 0 there is a symmetric set A

A = {x : ε < g(x) < b − ε}
so that λ(A) > 0. Choose disjoint symmetric subsets of A0,A1 ⊂ A, λ(Ai) > 0,

and constants δ0, δ1 > 0 so that

δ0λ(A0) = δ1λ(A1),
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and so that for x ∈ A0 ∪ A1, i = 0,1(mod 2),

g(x) − δi ≥ 0, g(x) + δi+1 ≤ b.

Define for i = 0,1(mod 2),

gi(x) =
⎧⎨
⎩

g(x), x ∈ (A0 ∪ A1)
c,

g(x) + (−1)i+1δ0, x ∈ A0,
g(x) + (−1)iδ1, x ∈ A1.

Then G is not extremal: letting Gi be the distribution functions of the gi , we have
distinct Gi ∈ F (b) and G = 1

2G1 + 1
2G2. �

Fix μ > 0 and define the continuous bilinear functional on the convex compact
F (b) × F (b),

T (F,G) =
∫ N

−N
dF(x)

(∫ N

(x−μ)∨(−N)
dG(y)

)

= P(X ≤ Y + μ).

LEMMA 11. max{T (F,G) :G,H ∈ F (b)} is obtained at extreme points.

PROOF. Recall that a continuous linear functional on a compact convex set
obtains its maximum at an extreme point. Letting (Fn,Gn) satisfy T (Fn,Fn) ↑
sup{T (F,G)}, one uses a compactness argument on subsequences to verify the
lemma. �

The proof of the next lemma follows from Lemma 10 and the definition of
symmetric rearrangement.

LEMMA 12. If F ∈ F (b) is an extreme point with density f, then the symmet-
ric rearrangement f ∗ = u [see (12)].

LEMMA 13. Fix μ > 0. Let Y0, Y1 have densities f0, f1 whose distributions
are extreme points of F (b). Then

P(|Y0 − Y1| < μ) ≤ P(|U0 − U1| < μ).

PROOF. Note that I(−μ,μ) = I ∗
(−μ,μ). Using the theorem of Riesz, the symme-

try, and the preceding lemma,

P(|Y0 − Y1| < μ) =
∫
R

∫
R

I(−μ,μ)(x)f0(x − y)f1(y) dy dx

≤
∫
R

∫
R

I(−μ,μ)(x)f ∗
0 (x − y)f ∗

1 (y) dy dx

=
∫
R

∫
R

I(−μ,μ)(x)u(x − y)u(y) dy dx

= P(|U0 − U1| < μ). �
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PROOF OF THEOREM 9. This follows from the lemmas and the symmetry
assumption used in

P(Y0 ≤ Y1 + μ) = 1
2

(
1 + P(|Y1 − Y0| < μ)

)
. �
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