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CONVEXITY, TRANSLATION INVARIANCE AND SUBADDITIVITY
FOR g-EXPECTATIONS AND RELATED RISK MEASURES

BY LONG JIANG1

China University of Mining and Technology, Fudan University

Under the continuous assumption on the generator g, Briand et al. [Elec-
tron. Comm. Probab. 5 (2000) 101–117] showed some connections between
g and the conditional g-expectation (Eg[·|Ft ])t∈[0,T ] and Rosazza Gianin
[Insurance: Math. Econ. 39 (2006) 19–34] showed some connections be-
tween g and the corresponding dynamic risk measure (ρ

g
t )t∈[0,T ]. In this

paper we prove that, without the additional continuous assumption on g,
a g-expectation Eg satisfies translation invariance if and only if g is inde-
pendent of y, and Eg satisfies convexity (resp. subadditivity) if and only if g

is independent of y and g is convex (resp. subadditive) with respect to z. By
these conclusions we deduce that the static risk measure ρg induced by a
g-expectation Eg is a convex (resp. coherent) risk measure if and only if g

is independent of y and g is convex (resp. sublinear) with respect to z. Our
results extend the results in Briand et al. [Electron. Comm. Probab. 5 (2000)
101–117] and Rosazza Gianin [Insurance: Math. Econ. 39 (2006) 19–34] on
these subjects.

1. Introduction and preliminaries.

1.1. Introduction. By Pardoux and Peng [16] we know that there exists a
unique adapted and square integrable solution to a backward stochastic differential
equation (BSDE in short) of type

yt = ξ +
∫ T

t
g(s, ys, zs) ds −

∫ T

t
zs · dBs, 0 ≤ t ≤ T ,(1.1)

providing that the function g is Lipschitz in both variables y and z, and ξ and
(g(t,0,0))t∈[0,T ] are square integrable. g is called the generator of the BSDE (1.1)
and (g, T , ξ) are called the parameters of (1.1). We denote the unique solution
of (1.1) by (Yt (g, T , ξ),Zt (g, T , ξ))t∈[0,T ]. When g also satisfies g(·, y,0) ≡ 0
for any y, then Y0(g, T , ξ), denoted by Eg[ξ ], is called the g-expectation of ξ ;
Yt (g, T , ξ), denoted by Eg[ξ |Ft ], is called the conditional g-expectation of ξ ; see
Peng [17].
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g-expectation is a kind of nonlinear expectation. The original motivation for
studying g-expectation comes from the theory of expected utility, which is the
foundation of modern mathematical economics and is challenged by the well-
known Allais paradox. Since the notion of g-expectation was introduced, many
properties of g-expectation have been studied in [3–6, 13–15, 17–19]. Chen and
Epstein [5] gave an application of g-expectation to recursive utility. Coquet et
al. [6] obtained a very interesting result. They proved that if a filtration con-
sistent (nonlinear) expectation E can be dominated by a kind of g-expectation,
then E must be a g-expectation. More recently, Rosazza Gianin [20, 21] first
introduced some examples of risk measures via g-expectations and conditional
g-expectations:

ρg(ξ) := Eg[−ξ ], ρ
g
t (ξ) := Eg[−ξ |Ft ] ∀t ∈ [0, T ].(1.2)

Under an additional continuity assumption (A4) (see Section 1.2), with the help of
Proposition 2.3 of Briand et al. [3], Rosazza Gianin [21] showed us that (ρ

g
t )t∈[0,T ]

is a dynamic convex (resp. coherent) risk measure if and only if g is independent
of y and is convex (resp. sublinear) with respect to z. Barrieu and El Karoui [2]
and Peng [19] also obtained some results on this subject.

The main objective of this paper is to explore some fundamental characteristics
of g-expectations which are related to risk measures. The major contributions of
this paper are:

(a) We establish a general Representation Lemma for generators of BSDEs un-
der the usual assumptions (A1) and (A2), which generalizes Proposition 2.3 of [3]
and helps us to confirm the same necessary and sufficient conditions in [3] and [21]
without the additional continuity assumption (A4). We hope that it turns out to be
useful in other situations, as well.

(b) Under the usual assumptions (A1) and (A3), without any additional assump-
tions on g, we prove that if the static risk measure ρg , which is an operator, is a
convex (resp. coherent) risk measure, then the corresponding dynamic risk mea-
sure (ρ

g
t )t∈[0,T ], which is an operator system, is a dynamic convex (resp. coherent)

risk measure, and the generator g is independent of y and is convex (resp. sublin-
ear) with respect to z.

The remainder of this paper is organized as follows. In Section 1.2, we introduce
some preliminaries. In Section 2, we establish a general Representation Lemma for
generators of BSDEs. In Section 3, under the usual assumptions (A1) and (A3),
we obtain some necessary and sufficient conditions for translation invariance, con-
vexity, subadditivity and positive homogeneity of g-expectations, respectively. In
Section 4, we state our results on static risk measure ρg and dynamic risk measure
(ρ

g
t )t∈[0,T ].

1.2. Preliminaries. Let T > 0 be a fixed time horizon; let (�,F ,P) be a
probability space and (Bt )t≥0 be a d-dimensional standard Brownian motion
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on this space such that B0 = 0; let (Ft )t≥0 be the augmented natural filtra-
tion generated by (Bt )t≥0 and satisfy the usual conditions. Let MF (Rn) de-
note the space of all Rn-valued, (Ft )-progressively measurable processes. We set
H2

F (0, T ;Rn) := {ψ ∈ MF (Rn); ‖ψ‖2
2 := E[∫ T

0 |ψt |2 dt] < ∞}, S2
F (0, T ;R) :=

{ψ ∈ MF (R);ψ is continuous and E[sup0≤t≤T |ψt |2] < ∞}, L2(Ft ) := {ξ ; ξ is
R-valued,Ft -measurable random variable, E[ξ2] < ∞}.

The generator g of a BSDE is a function g : � × [0, T ] × R × Rd 	−→ R such
that (g(t, y, z))t∈[0,T ] is progressively measurable for each (y, z) ∈ R × Rd, and g

also satisfies the following usual assumptions (A1) and (A2):

(A1) There exists a constant K ≥ 0 such that dP × dt-a.s., ∀y1, y2, z1, z2,

|g(t, y1, z1) − g(t, y2, z2)| ≤ K(|y1 − y2| + |z1 − z2|).
(A2) The process (g(t,0,0))t∈[0,T ] ∈ H2

F (0, T ;R).
(A3) dP × dt-a.s., for any y ∈ R, g(·, y,0) ≡ 0.
(A4) P -a.s., for any y ∈ R, z ∈ Rd, t 	→ g(t, y, z) is continuous.

Let (A1) and (A2) hold for g. By [16], for each ξ ∈ L2(FT), (1.1) has a unique
solution in S2

F (0, T ;R) × H2
F (0, T ;Rd), which is denoted by

(Yt (g, T , ξ),Zt (g, T , ξ))t∈[0,T ].
We recall the notions of g-expectation and conditional g-expectation and some

properties given in Peng [17]. In the following Definitions 1.1 and 1.2 and
Lemma 1.1, g is assumed to satisfy (A1) and (A3).

DEFINITION 1.1 ([17]). The g-expectation Eg[·] : L2(FT) 	−→ R is defined by
Eg[ξ ] := Y0(g, T , ξ).

DEFINITION 1.2 ([17]). The conditional g-expectation of ξ with respect to Ft
is defined by Eg[ξ |Ft ] := Yt (g, T , ξ), which is the unique random variable η in
L2(Ft ) such that Eg[ξ1A] = Eg[η1A], for all A ∈ Ft .

LEMMA 1.1 ([17]). (i) For each constant c,Eg[c] = c.

(ii) If X1 ≥ X2, a.s., then Eg[X1] ≥ Eg[X2].
(iii) If X1 ≥ X2, a.s., and P(X1 > X2) > 0, then Eg[X1] > Eg[X2].
(iv) If g is independent of y, that is, g is defined on � × [0, T ] × Rd , then

Eg[X + η|Ft ] = Eg[X|Ft ] + η, ∀X ∈ L2(FT ), η ∈ L2(Ft ).

2. Representation lemma for generators of BSDEs. For studying a kind of
converse comparison problem, Proposition 2.3 in Briand et al. [3] showed us that
for any (y, z) ∈ R × Rd and t ∈ [0, T [, the equality

g(t, y, z) = L2 − lim
ε→0+

1

ε

[
Yt

(
g, t + ε, y + z · (Bt+ε − Bt)

) − y
]

holds under (A1), (A2), (A4) and E[sup0≤t≤T |g(t,0,0)|2] < ∞. For studying
Jensen’s inequality for g-expectation, [15] got the following Proposition 2.1.
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PROPOSITION 2.1 (Theorem 3.3 in [15]). Let (A1) and (A2) hold for g; let
1 ≤ p ≤ 2. Then for any triplet (t, y, z) ∈ [0, T [×R×Rd , the following two state-
ments are equivalent:

(i) g(t, y, z) = Lp − limε→0+ 1
ε
[Yt (g, t + ε, y + z · (Bt+ε − Bt)) − y].

(ii) g(t, y, z) = Lp − limε→0+ E[1
ε

∫ t+ε
t g(s, y, z) ds|Ft ].

Further studying shows that many problems on BSDEs are related to this kind
of representation problem. In this section, we will establish a general Represen-
tation Lemma for generators of BSDEs under (A1) and (A2), which generalizes
Proposition 2.3 of [3] and will be used frequently.

LEMMA 2.1 (Representation lemma). Let (A1) and (A2) hold for g. Let 1 ≤
p < 2. Then for each (y, z) ∈ R × Rd , the equality

g(t, y, z) = Lp − lim
ε→0+

1

ε

[
Yt

(
g, t + ε, y + z · (Bt+ε − Bt)

) − y
]

holds for almost every t ∈ [0, T [.

In order to prove Lemma 2.1, we introduce the following proposition.

PROPOSITION 2.2. Let q > 1; let 1 ≤ p < q . Set H
q
F (0, T ;R) := {ψ ∈

MF (R);E[∫ T
0 |ψt |q dt] < ∞}. Then for any ψ ∈ H

q
F (0, T ;R), we have

ψt = Lp − lim
ε→0+

1

ε

∫ t+ε

t
ψs ds a.e. t ∈ [0, T [.

PROOF. Since ψ ∈ H
q
F (0, T ;R), the Fubini theorem yields

∫ T
0 E[|ψt |q]dt =

E[∫ T
0 |ψt |q dt] < ∞. Thus E[|ψt |q] < ∞, a.e. t ∈ [0, T ]. By the Lebesgue lemma

(see Lemma 18.4 of [12]), we know that the equality

lim
ε→0+

1

ε

∫ t+ε

t
E[|ψs |q]ds = E[|ψt |q]

holds for almost every t ∈ [0, T [.
Also by ψ ∈ H

q
F (0, T ;R) we understand that | ∫ T

0 ψt dt | < ∞, a.s. Therefore,
by the Lebesgue lemma we have

lim
ε→0+

1

ε

∫ t+ε

t
ψs ds = ψt a.e., a.s.(2.1)

Hence

lim
ε→0+

1

ε

∫ t+ε

t
ψs ds = ψt a.s., a.e.
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Thus there exists a subset S ⊆ [0, T [ such that the Lebesgue measure λ([0, T ] \S)

of [0, T ] \ S equals 0, and for each t ∈ S we have

lim
ε→0+

1

ε

∫ t+ε

t
ψs ds = ψt a.s.,(2.2)

E[|ψt |q] < ∞, lim
ε→0+

1

ε

∫ t+ε

t
E[|ψs |q]ds = E[|ψt |q].(2.3)

For any t ∈ S, by (2.3) we know that there exists a constant δt > 0 such that

1

ε

∫ t+ε

t
E[|ψs |q]ds ≤ E[|ψt |q] + 1 ∀ε ∈]0, δt ].(2.4)

For any t ∈ S, ε ∈]0, δt ], we set Xε
t := |1

ε

∫ t+ε
t ψs ds|. Then for any N > 0, by

Hölder’s inequality, Fubini’s theorem and (2.4) we have
∫
{Xε

t >N}

∣∣∣∣1

ε

∫ t+ε

t
ψs ds

∣∣∣∣
p

dP ≤
∫
{Xε

t >N}
1

Nq−p

∣∣∣∣1

ε

∫ t+ε

t
ψs ds

∣∣∣∣
q

dP

≤
∫
{Xε

t >N}
1

Nq−p

[
1

ε

∫ t+ε

t
|ψs |q ds

]
dP

≤ 1

Nq−p
E

[
1

ε

∫ t+ε

t
|ψs |q ds

]

≤ 1

Nq−p
[E[|ψt |q] + 1].

Thus {|1
ε

∫ t+ε
t ψs ds|p; ε ∈]0, δt ]} are uniformly integrable. Combining this con-

clusion with (2.2), we conclude that for each t ∈ S, we have

ψt = Lp − lim
ε→0+

1

ε

∫ t+ε

t
ψs ds.(2.5)

The proof of Proposition 2.2 is complete. �

PROOF OF LEMMA 2.1. Since (g(t,0,0))t∈[0,T ] ∈ H2
F (0, T ;R) and g

satisfies (A1), we know that for each (y, z) ∈ R × Rd , (g(t, y, z))t∈[0,T ] ∈
H2

F (0, T ;R). Then for any 1 ≤ p < 2 and any (y, z) ∈ R × Rd , Proposition 2.2
and Jensen’s inequality yield

g(t, y, z) = Lp − lim
ε→0+ E

[
1

ε

∫ t+ε

t
g(s, y, z) ds

∣∣∣Ft

]
a.e. t ∈ [0, T [.(2.6)

Thus Lemma 2.1 follows from (2.6) and Proposition 2.1 immediately. �

REMARK 2.1. Consider a financial market where derivatives pricing is con-
strained by BSDEs with generator g; Lemma 2.1 may help us to find the pricing
mechanism, that is, the function g.
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3. Translation invariance, convexity, subadditivity and positive homo-
geneity for g-expectations. In this section, we study some properties of
g-expectations such as translation invariance, convexity, subadditivity and positive
homogeneity. All these properties are related to risk measures via g-expectations.
We obtain some necessary and sufficient conditions on these problems, respec-
tively. The main differences between our results and other known results on these
problems such as those results in Briand et al. [3] and Rosazza Gianin [21] are:

(a) We can use the g-expectation Eg[·], which is an operator, to describe the
character of the generator g; on the other hand, [3] and [21] always used the con-
ditional g-expectation (Eg[·|Ft ])t∈[0,T ], which is an operator system, to describe
the character of g.

(b) Our results are obtained under the usual assumptions (A1) and (A3); on
the other hand, the necessary and sufficient conditions given in [3] and [21] are
always obtained under the assumptions (A1), (A3) and the additional continuity
assumption (A4).

From now on, for any pair (y, z) ∈ R × Rd , we set

Sz
y(g) :=

{
t ∈ [0, T [

∣∣∣

g(t, y, z) = L1 − lim
ε→0+

1

ε

[
Yt

(
g, t + ε, y + z · (Bt+ε − Bt)

) − y
]}

.

If g is independent of y, then for any z ∈ Rd , we set

Sz(g) :=
{
t ∈ [0, T [

∣∣∣g(t, z) = L1 − lim
ε→0+

1

ε
Yt

(
g, t + ε, z · (Bt+ε − Bt)

)}
.

3.1. Translation invariance for g-expectation. If g is independent of y, then
by Lemma 1.1(iv) we know that the g-expectation Eg satisfies translation invari-
ance. We now investigate the inverse problem. We have the following theorem.

THEOREM 3.1 (Translation invariance for g-expectation). Let (A1) and (A3)
hold for g. Then the following three statements are equivalent:

(i) Eg[ξ + c] = Eg[ξ ] + c,∀ξ ∈ L2(FT ), c ∈ R. (Translation invariance.)
(ii) For ∀ξ ∈ L2(FT ), c ∈ R,∀t ∈ [0, T ],

Eg[ξ + c|Ft ] = Eg[ξ |Ft ] + c, P -a.s.

(iii) g is independent of y.

PROOF. (iii) ⇒ (ii) follows from Lemma 1.1. (ii) ⇒ (i) is trivial. Now let us
prove that (i) ⇒ (iii). Suppose that (i) holds.

For any c ∈ R, we define a new generator

gc(t, y, z) := g(t, y − c, z) ∀t ∈ [0, T ], y ∈ R, z ∈ Rd .
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Then gc satisfies (A1), (A2) and (A3).
For any X ∈ L2(FT ), by the uniqueness of solution of BSDE we can verify

easily that
(
Yt (g

c, T ,X+c),Zt(g
c, T ,X+c)

)
t∈[0,T ] = (

Yt (g, T ,X)+c,Zt(g, T ,X)
)
t∈[0,T ].

It follows that

Egc[X + c] = Y0(g
c, T ,X + c) = Y0(g, T ,X) + c = Eg[X] + c.

Combining the above equality with (i) we have

Egc[X + c] = Eg[X + c] ∀X ∈ L2(FT ).

Hence for any given c ∈ R, we have

Egc[ξ ] = Eg[ξ ] ∀ξ ∈ L2(FT ).(3.1)

It follows from (3.1) and Proposition 3.4 of [13] that for any ξ ∈ L2(FT ), we have

P -a.s.,∀t ∈ [0, T ] Egc [ξ |Ft ] = Eg[ξ |Ft ].(3.2)

Then for any (y, z) ∈ R × Rd and for any t ∈ Sz
y(g

c) ∩ Sz
y(g), (3.2) yields

P -a.s., gc(t, y, z) = g(t, y, z).(3.3)

By the representation lemma we understand that

λ
([0, T ] \ (

Sz
y(g

c) ∩ Sz
y(g)

)) = 0,(3.4)

where λ denotes the Lebesgue measure. It follows from (3.3) and (3.4) that

dP × dt-a.s., gc(t, y, z) = g(t, y, z).(3.5)

Since g and gc are both Lipschitz with respect to (y, z), it follows that

dP × dt-a.s., ∀y ∈ R, z ∈ Rd gc(t, y, z) = g(t, y, z);(3.6)

that is, for any given c ∈ R, we have gc = g. Thus for any y ∈ R, we have

dP × dt-a.s., ∀z ∈ Rd g(t, y, z) = g(t,0, z).(3.7)

Therefore (iii) follows from (3.7) and the Lipschitz assumption (A1). �

REMARK 3.1. Under (A1), (A3) and (A4), Briand et al. [3] proved that (ii) is
equivalent to (iii) in Theorem 3.1; see Lemmas 4.2 and 4.3 in [3].
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3.2. Convexity, subadditivity and positive homogeneity for g-expectations.
For studying a control problem, El Karoui, Peng and Quenez [8] studied concave
BSDEs. For studying dynamic risk measures, Rosazza Gianin [20, 21] studied the
convexity, subadditivity and positive homogeneity of conditional g-expectations.
The reader can see some results of [21] in Remark 3.2. Now let us introduce our
results.

THEOREM 3.2 (Convexity for g-expectation). Let (A1) and (A3) hold for g.
Then the following three statements are equivalent:

(i) Eg[·] is convex. (Convexity.)
(ii) For any t ∈ [0, T ], Eg[·|Ft ] is convex, that is, ∀ξ, η ∈ L2(FT ), α ∈ [0,1],

Eg[αξ + (1 − α)η|Ft ] ≤ αEg[ξ |Ft ] + (1 − α)Eg[η|Ft ], P -a.s.

(iii) g is independent of y and g is convex with respect to z, that is, for any
z1, z2 ∈ Rd, α ∈ [0,1],

g
(
t, αz1 + (1 − α)z2

) ≤ αg(t, z1) + (1 − α)g(t, z2), dP × dt-a.s.

PROOF. (iii) ⇒ (ii) follows from the well-known comparison theorem; the
argument is analogous to the argument of Proposition 3.5 in El Karoui, Peng and
Quenez [8] when those authors studied concave BSDEs. (ii) ⇒ (i) is trivial. Now
let us prove that (i) ⇒ (iii).

Suppose that (i) holds. First, let us prove that the convexity of g-expectation
implies the translation invariance. Indeed, for any ξ ∈ L2(FT ), c ∈ R, α ∈ [0,1],
by (i) and Lemma 1.1 we have

Eg[αξ + (1 − α)c] ≤ αEg[ξ ] + (1 − α)Eg[c] = αEg[ξ ] + (1 − α)c.(3.8)

Thus for any ξ ∈ L2(FT ), c ∈ R and any positive integer n, we have

Eg

[(
1 − 1

n

)
ξ + c

]
= Eg

[(
1 − 1

n

)
ξ + 1

n
(nc)

]

≤
(

1 − 1

n

)
Eg[ξ ] + c.

Since the operator Eg[·] is continuous in L2 sense, we have

Eg[ξ + c] = lim
n→∞Eg

[(
1 − 1

n

)
ξ + c

]

≤ lim
n→∞

(
1 − 1

n

)
Eg[ξ ] + c

= Eg[ξ ] + c.

Hence we have

Eg[ξ + c] ≤ Eg[ξ ] + c ∀ξ ∈ L2(FT ), c ∈ R.(3.9)
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Therefore

Eg[ξ ] = Eg[ξ + c − c] ≤ Eg[ξ + c] − c ∀ξ ∈ L2(FT ), c ∈ R.(3.10)

It follows from the above two inequalities that

Eg[ξ + c] = Eg[ξ ] + c ∀ξ ∈ L2(FT ), c ∈ R.(3.11)

Thus the g-expectation Eg satisfies the translation invariance. Then by Theo-
rem 3.1 we conclude that g is independent of y.

Second, let us prove that for each ξ, η ∈ L2(FT ), α ∈ [0,1],P -a.s.,

Eg[αξ + (1 − α)η|Ft ] ≤ αEg[ξ |Ft ] + (1 − α)Eg[η|Ft ] ∀t ∈ [0, T ].(3.12)

We set

A := {Eg[αξ + (1 − α)η|Ft ] > αEg[ξ |Ft ] + (1 − α)Eg[η|Ft ]}.
Then A ∈ Ft . Suppose by contradiction that P(A) > 0. Then

1AEg[αξ + (1 − α)η|Ft ] − 1A

(
αEg[ξ |Ft ] + (1 − α)Eg[η|Ft ]) ≥ 0,

and

P
({

1AEg[αξ + (1 − α)η|Ft ] − 1A

(
αEg[ξ |Ft ] + (1 − α)Eg[η|Ft ]) > 0

})
> 0.

Since g(t,0) ≡ 0 and A ∈ Ft , it is obvious that

Eg[1AX|Ft ] = 1AEg[X|Ft ] ∀X ∈ L2(FT ).(3.13)

Since g is independent of y and A ∈ Ft , by Definition 1.2, Lemma 1.1(iv), equal-
ity (3.13) and Lemma 1.1(iii) we infer

Eg

[
1A

(
αξ + (1 − α)η

) − 1A

(
αEg[ξ |Ft ] + (1 − α)Eg[η|Ft ])]

= Eg

{
Eg

[
1A

(
αξ + (1 − α)η

)
− 1A

(
αEg[ξ |Ft ] + (1 − α)Eg[η|Ft ])|Ft

]}
= Eg

{
Eg

[
1A

(
αξ + (1 − α)η

)|Ft

]
(3.14)

− 1A

(
αEg[ξ |Ft ] + (1 − α)Eg[η|Ft ])}

= Eg

{
1AEg

[(
αξ + (1 − α)η

)|Ft

]
− 1A

(
αEg[ξ |Ft ] + (1 − α)Eg[η|Ft ])} > 0.

On the other hand, since Eg is convex and g is independent of y, in view of Defin-
ition 1.2, Lemma 1.1(iv) and equality (3.13), we deduce that

Eg

[
1A

(
αξ + (1 − α)η

) − 1A

(
αEg(ξ |Ft ) + (1 − α)Eg(η|Ft )

)]
= Eg

[
α

(
1Aξ − 1AEg(ξ |Ft )

) + (1 − α)
(
1Aη − 1AEg(η|Ft )

)]
≤ αEg[1Aξ − 1AEg(ξ |Ft )] + (1 − α)Eg[1Aη − 1AEg(η|Ft )](3.15)
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= αEg{Eg[1Aξ − 1AEg(ξ |Ft )|Ft ]}
+ (1 − α)Eg{Eg[1Aη − 1AEg(η|Ft )|Ft ]}

= αEg{Eg[1Aξ |Ft ] − 1AEg(ξ |Ft )}
+ (1 − α)Eg{Eg[1Aη|Ft ] − 1AEg(η|Ft )}

= αEg{1AEg[ξ |Ft ] − 1AEg(ξ |Ft )}
+ (1 − α)Eg{1AEg[η|Ft ] − 1AEg(η|Ft )}

= 0 + 0 = 0.

Clearly (3.15) is a contradiction to (3.14). Therefore P(A) = 0. Thus (3.12) does
hold.

For any z1, z2 ∈ Rd, α ∈ [0,1], if t ∈ Sαz1+(1−α)z2(g) ∩ Sz1(g) ∩ Sz2(g),
by (3.12) we deduce that

P -a.s., g
(
t, αz1 + (1 − α)z2

) ≤ αg(t, z1) + (1 − α)g(t, z2).

For any z1, z2 ∈ Rd, α ∈ [0,1], by the Representation Lemma we know that

λ
([0, T ] \ (

Sαz1+(1−α)z2(g) ∩ Sz1(g) ∩ Sz2(g)
)) = 0.

Thus for any z1, z2 ∈ Rd, α ∈ [0,1], we have

dP × dt-a.s., g
(
t, αz1 + (1 − α)z2

) ≤ αg(t, z1) + (1 − α)g(t, z2).(3.16)

Thus (iii) does hold. �

Analogously to the argument of convexity for g-expectations, we have:

THEOREM 3.3 (Subadditivity for g-expectation). Let (A1) and (A3) hold
for g. Then the following three statements are equivalent:

(i) Eg[·] is subadditive. (Subadditivity.)
(ii) For any t ∈ [0, T ], Eg[·|Ft ] is subadditive, that is, ∀ξ, η ∈ L2(FT ),

Eg[ξ + η|Ft ] ≤ Eg[ξ |Ft ] + Eg[η|Ft ], P -a.s.

(iii) g is independent of y and g is subadditive with respect to z, that is, for any
z1, z2 ∈ Rd,

g(t, z1 + z2) ≤ g(t, z2) + g(t, z2), dP × dt-a.s.

For the positive homogeneity of g-expectations, we have the following theorem.

THEOREM 3.4 (Positive homogeneity for g-expectation). Let (A1) and (A3)
hold for g. Then the following three statements are equivalent:
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(i) Eg[·] is positively homogeneous.
(ii) For any t ∈ [0, T ], Eg[·|Ft ] is positively homogeneous, that is, ∀ξ ∈

L2(FT ), α ≥ 0,

Eg[αξ |Ft ] = αEg[ξ |Ft ], P -a.s.

(iii) g is positively homogeneous with respect to (y, z), that is, for any (y, z) ∈
R × Rd, α ≥ 0,

g(t, αy,αz) = αg(t, y, z), dP × dt-a.s.

PROOF. (iii) ⇒ (ii) is just Proposition 9 of [21]. (ii) ⇒ (i) is trivial. Now let
us prove that (i) ⇒ (iii). Suppose that (i) holds for Eg . For any α > 0, we define a
new function

g̃α(t, y, z) := αg

(
t,

y

α
,
z

α

)
∀(t, y, z) ∈ [0, T ] × R × Rd .

It is clear that g̃α satisfies (A1), (A2) and (A3).
For any ξ ∈ L2(FT ), we deduce that

(Yt (g̃
α, T ,αξ),Zt(g̃

α, T ,αξ))t∈[0,T ] = α(Yt (g, T , ξ),Zt(g, T , ξ))t∈[0,T ].

Thus for any given α > 0, we have

Eg̃α [αξ ] = αEg[ξ ] ∀ξ ∈ L2(FT ).

Combining (i) with the above equality we have

Eg̃α [ξ ] = Eg[ξ ] ∀ξ ∈ L2(FT ).(3.17)

Thus for any α > 0, using the same argument as in (3.1)–(3.6) we conclude that
g̃α = g, that is,

dP × dt-a.s., ∀(y, z) ∈ R × Rd, g(t, y, z) = αg

(
t,

y

α
,
z

α

)
.(3.18)

Hence (iii) follows from (A1) and (3.18). �

REMARK 3.2. Under (A1), (A3) and (A4), [21] proved that (ii) is equivalent
to (iii) in Theorems 3.2–3.4; see Propositions 8–11 in [21].

4. Risk measures via g-expectations. Recently, many papers have been de-
voted to the problem of quantifying the risk of a financial position. Such a position,
as in Artzner et al. [1] and Föllmer and Schied [10], will be described by the corre-
sponding payoff profile, that is, by a real-valued function X on some set � of pos-
sible scenarios, where X(ω) is the discounted net worth of the position at the end of
the trading period if the scenario ω ∈ � is realized. Coherent risk measures were
introduced by Artzner et al. [1]; then, convex risk measures were introduced by
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Föllmer and Schied [9], and independently, by Frittelli and Rosazza Gianin [11].
Among others, we are especially interested in [1, 2, 7, 9–11, 19–21]. For the conve-
nience of the reader, we recall some definitions of risk measures. The definition of
convex measure of risk we use in this paper was given by Föllmer and Schied [10],
slightly different from the one given by Frittelli and Rosazza Gianin [11].

DEFINITION 4.1 ([1, 10]). Let G be the set of risks, that is, a set of real-
valued functions on �. A mapping ρ :G → R is called a monetary risk measure
if ρ satisfies the following conditions for all X,Y,∈ G:

(1) Monotonicity: If X ≤ Y, then ρ(Y ) ≥ ρ(X).
(2) Translation invariance: If c ∈ R, then ρ(X + c) = ρ(X) − c.

DEFINITION 4.2 ([1, 10]). A monetary risk measure ρ is called a convex mea-
sure of risk if it satisfies

(3) Convexity: ρ(λX + (1 − λ)Y ) ≤ λρ(YX) + (1 − λ)ρ(Y ), ∀λ ∈ [0,1].
A convex measure of risk ρ is called a coherent measure of risk if it satisfies

(4) Positive homogeneity: If λ ≥ 0, then ρ(λX) = λρ(X).

DEFINITION 4.3 ([21]). Let G be the set of risks and G ⊆ L0(�,FT ,P ).
A map system (ρt )t∈[0,T ] is called a dynamic risk measure if it satisfies the fol-
lowing conditions for all X,Y ∈ G and all t ∈ [0, T ]:

(1◦) ρt :G 	→ L0(�,Ft , P ).
(2◦) ρ0 is a static monetary risk measure.
(3◦) ρT (X) = −X.
(4◦) Dynamic monotonicity: If X ≤ Y, then ρt (Y ) ≥ ρt (X).
(5◦) Dynamic translation invariance: If c ∈ R, then ρt (X + c) = ρt (X) − c.

DEFINITION 4.4 ([21]). A dynamic risk measure (ρt )t∈[0,T ] is called a dy-
namic convex measure of risk if it satisfies

(6◦) Dynamic convexity: For any X,Y ∈ G, λ ∈ [0,1], t ∈ [0, T ],P -a.s.,

ρt

(
λX + (1 − λ)Y

) ≤ λρt (X) + (1 − λ)ρt (Y ).

A dynamic convex measure of risk (ρt )t∈[0,T ] is called a dynamic coherent mea-
sure of risk if it satisfies

(7◦) Dynamic positive homogeneity: For any X ∈ G, λ ≥ 0, t ∈ [0, T ],
P -a.s., ρt (λX) = λρt (X).

By Theorems 3.1–3.4 and Definitions 4.1–4.4, we can obtain the following The-
orems 4.1 and 4.2 immediately.

THEOREM 4.1. Let (A1) and (A3) hold for g. Let the set G of risks be L2(FT ).
Let ρg and (ρ

g
t )t∈[0,T ] be defined as in equality (1.2). Then the following state-

ments are equivalent:



g-EXPECTATIONS AND RELATED RISK MEASURES 257

(i) ρg is a convex measure of risk.
(ii) (ρ

g
t )t∈[0,T ] is a dynamic convex measure of risk.

(iii) Eg is convex.
(iv) g is independent of y and is convex with respect to z.

THEOREM 4.2. Let g, G, ρg and (ρ
g
t )t∈[0,T ] be as in Theorem 4.1. Then the

following statements are equivalent:

(i) ρg is a coherent measure of risk.
(ii) (ρ

g
t )t∈[0,T ] is a dynamic coherent measure of risk.

(iii) Eg is sublinear, that is, Eg is positively homogeneous and subadditive.
(iv) g is independent of y and is sublinear with respect to z.

REMARK 4.1. Rosazza Gianin [21] proved that (ii) is equivalent to (iv) in
Theorems 4.1 and 4.2 under assumptions (A1), (A3) and (A4).

REMARK 4.2. Generally, verifying that a dynamic risk measure (ρt )t∈[0,T ]
is a dynamic convex (resp. coherent) measure may be much more difficult than
verifying that the corresponding static risk measure ρ0 is a static convex (resp.
coherent) measure. But for risk measures (ρ

g
t )t∈[0,T ], by Theorems 4.1 and 4.2 we

know that if ρg is a static convex (resp. coherent) measure of risk, then (ρ
g
t )t∈[0,T ]

must be a dynamic convex (resp. coherent) measure of risk.
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