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A GENERAL LOWER BOUND FOR MIXING OF SINGLE-SITE
DYNAMICS ON GRAPHS

BY THOMAS P. HAYES1 AND ALISTAIR SINCLAIR2

Toyota Technological Institute and University of California at Berkeley

We prove that any Markov chain that performs local, reversible updates
on randomly chosen vertices of a bounded-degree graph necessarily has mix-
ing time at least �(n logn), where n is the number of vertices. Our bound
applies to the so-called “Glauber dynamics” that has been used extensively in
algorithms for the Ising model, independent sets, graph colorings and other
structures in computer science and statistical physics, and demonstrates that
many of these algorithms are optimal up to constant factors within their class.
Previously, no superlinear lower bound was known for this class of algo-
rithms. Though widely conjectured, such a bound had been proved previ-
ously only in very restricted circumstances, such as for the empty graph and
the path. We also show that the assumption of bounded degree is necessary
by giving a family of dynamics on graphs of unbounded degree with mixing
time O(n).

1. Introduction. A large fraction of Markov chain Monte Carlo algorithms,
as studied in both theoretical and practical settings, fall into the class of “reversible
single-site dynamics,” or “Glauber dynamics,” on bounded-degree graphs. In this
class of algorithms, one is given a finite undirected graph G = (V ,E) of maximum
degree � and a finite set of values Q, together with a Markov chain whose state
space is � ⊆ QV , a subset of all possible assignments of values to the vertices
of G. (Following the terminology of spin systems in statistical physics, which is
one of the major application areas, we shall refer to vertices as “sites,” values as
“spins” and assignments as “configurations.” Note that we do not assume that all
configurations are allowed, i.e., the spin system may have so-called “hard con-
straints.”) The Markov chain is designed to sample from a given probability dis-
tribution π on �. At each step, it selects a site v ∈ V uniformly at random and
modifies the spin at v according to a randomized update rule; this rule is required
to be local, in the sense that it depends only on the current spins at v and its neigh-
bors in G, and reversible with respect to π . (See Example 5 in Section 2 for precise
definitions.) Under mild additional assumptions, these conditions ensure that the
Markov chain is ergodic and converges to the stationary distribution π . Thus, an
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algorithm which starts from an arbitrary initial configuration and performs suffi-
ciently many random spin updates samples configurations (approximately) from π .

While our framework is rather more general, the most common scenario is when
π is a Markov random field; that is, for any subset of sites U ⊆ V , when the spins
outside U are fixed, the conditional distribution over configurations inside U de-
pends only on the spins on the boundary, ∂U . Markov random fields are ubiqui-
tous in statistical physics (where they describe systems of particles with nearest-
neighbor interactions) and in statistical modeling (where they capture conditional
independence relations among random variables). For Markov random fields there
is a particularly natural update rule called the “heat-bath” rule (or “Gibbs sam-
pler”), in which the spin at v is replaced by a random spin chosen from the correct
distribution conditional on the spins of its neighbors. Many other variants (such as
the “Metropolis rule”—see Section 2) are possible.

Clearly, the efficiency of the Markov chain Monte Carlo algorithm depends on
the rate of convergence to equilibrium, or “mixing time” of the Glauber dynamics.
This is the number of steps required until the distribution of the Markov chain is
close (in total variation distance) to the stationary distribution π . In recent years,
motivated by applications in statistical physics, combinatorics and artificial intel-
ligence, much progress has been made in deriving upper bounds on the mixing
time. In many cases, it has been possible to show that the mixing time is as fast
as O(n logn), where n is the number of sites in G. Celebrated examples include
the two-dimensional Ising model above the critical temperature [14], graph color-
ings with sufficiently many colors [13] and the hard-core model (independent sets)
at sufficiently low densities [17]. An upper bound of O(n logn) arises naturally
from various techniques for bounding the mixing time, such as coupling [2] and
the log-Sobolev constant [7] and, at least among physicists, is generally taken as
the criterion for “rapid mixing” (rather than the weaker notion of being bounded
by a polynomial in n, which is more common in computer science).

The generally accepted “folklore” about these results is that they are optimal, in
the sense that the mixing time of Glauber dynamics can never be o(n logn). The
justification for this folklore is that, by a standard coupon collecting argument,
after substantially less than n lnn steps a significant number of sites have never
been updated from their initial values, so mixing cannot have occurred. However,
converting this intuition into a rigorous proof has turned out to be elusive except
in very restricted cases, namely when G is the empty graph (i.e., all spins are com-
pletely independent) [2, 6, 8], and when G is a path and π the uniform distribution
over proper q-colorings (q ≥ 3) [9]. This is actually a manifestation of a relative
lack of tools for proving lower bounds on the mixing time of Markov chains, in
contrast to the wide range of techniques for upper bounds that is now available.
(The standard tool is to identify a “bottleneck” in the chain, and has been used to
obtain exponential lower bounds on mixing times in specific cases; see, e.g., [5,
10, 12].)
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To get a feel for why this issue is more subtle than it may seem at first glance,
consider the very simple case in which G is the empty graph on n vertices, the
spins are Q = {0,1}, and the update rule replaces the spin at the chosen site by
the outcome of a fair coin toss. Thus in the stationary distribution π all spins are
i.i.d. uniform. By coupon collecting, the number of steps needed to update all the
sites is, with high probability, n lnn (plus lower-order terms). However, it is well
known [2] that only about 1

2n lnn steps suffice to mix in this case, so the coupon
collecting analogy fails. The intuition behind this bound is that after 1

2n lnn+ω(n)

steps only o(n1/2) of the spins will not have been updated, which is of lower order
than the standard deviation of the number of 1-spins in the stationary distribution.
Hence the effect of the untouched spins is statistically undetectable in total varia-
tion. A further twist on this example yields a more surprising outcome. Suppose we
modify the update rule so that the chosen spin is flipped with probability 1 − 1

n+1

and left unchanged with probability 1
n+1 . Remarkably, it turns out [2, 6] that the

mixing time for this modified dynamics is only 1
4n lnn + O(n), after which time

�(n3/4) of the sites have not yet been updated! The reason for this discrepancy,
of course, is that the update distribution is not uniform: by judiciously choosing
the probability of flipping the spin, we have accelerated mixing. In this case the
speedup is only by a constant factor. But, as this simple example indicates, it is
quite plausible that in a more complex setting with nontrivial spin interactions it
may be possible to tune the Glauber dynamics so as to achieve o(n logn) mixing
time.

In this paper we prove, in a very general setting, that this is not possible. Specif-
ically we show that any nontrivial Glauber dynamics on any graph G of bounded
degree must have mixing time �(n logn). (The constant concealed in the � here
depends only on the maximum degree � of G.)

THEOREM 1.1. Let � ≥ 2 be a fixed positive integer, and let G be any graph
on n vertices of maximum degree at most �. Any nonredundant4 Glauber dynamics
on G has mixing time �(n logn), where the constant in the �(·) depends only
on �.

We note that Theorem 1.1 applies, in particular, to the standard heat-bath dy-
namics for all widely studied nearest-neighbor systems in statistical physics, in-

4The nonredundancy condition merely requires that for every site there are at least two distinct
spin values that appear in some feasible configuration; see Section 2.1. Without this condition, we
could simply pad the graph with an arbitrary number of “frozen” sites without increasing the mixing
time per site.
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cluding the Ising model, the hard-core model, and graph colorings, with arbitrary
boundary conditions.

Our lower bound actually holds in somewhat greater generality. In particular, it
applies to so-called “block dynamics,” a variant of Glauber dynamics in which at
each step a randomly chosen constant-size block of sites (rather than just a single
site) is updated, again via a local, reversible rule; moreover, the assumption that
the site to be updated is chosen uniformly can be relaxed to the requirement that
no site is chosen with probability greater than O(1/n) (no lower bound on the site
selection probabilities is needed). On the other hand, the assumption of bounded
degree is essential: we complement Theorem 1.1 by exhibiting a Glauber dynamics
on a family of n-vertex graphs of unbounded degree for which the mixing time is
only O(n). In fact, we prove the following trade-off between maximum degree and
the mixing time:

THEOREM 1.2. For each n, let �(n) be any natural number satisfying 2 ≤
�(n) < n. Then there exists a family of graphs G = G(n), where G(n) has n

vertices and maximum degree �(n), and an associated Glauber dynamics on G(n)

with mixing time O(n logn/ log�(n)).

The two main ingredients in the proof of Theorem 1.1 are “disagreement perco-
lation,” which bounds the rate at which information can flow between sites in the
Glauber dynamics as a function of their distance, and “complete monotonicity,”
which implies that, for a given site, under suitable initial conditions, the prob-
ability of the site having its initial spin decreases monotonically with time. We
use these tools, together with a two-stage coupling argument, to identify initial
conditions for the dynamics which have a statistically observable effect that per-
sists for �(n logn) steps. A similar overall strategy was used by Dyer, Goldberg
and Jerrum in their study of the Glauber dynamics for colorings of a path [9].
However, in their case the simplicity of the graph and the restriction to colorings
made it possible to do the calculations explicitly, whereas in our general setting
we have to replace those calculations with general arguments based on percolation
and monotonicity in arbitrary graphs with arbitrary spin systems.

The remainder of the paper is organized as follows. In the next section we
introduce some basic terminology and background, including a translation from
discrete- to continuous-time Glauber dynamics which allows us to use the latter
for convenience in the rest of the paper. In Section 3 we develop our principal
tools: disagreement percolation and complete monotonicity; and in Section 4 we
use them to prove our main theorem, a lower bound of �(n logn) for the Glauber
dynamics on any bounded-degree graph. Finally, in Section 5 we discuss various
extensions of our main result, and give examples which show that the assumptions
of bounded degree and of (moderately) uniform random site selection are neces-
sary.
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2. Preliminaries.

2.1. Glauber dynamics. Let G = (V ,E) be an n-vertex undirected graph of
maximum degree at most � ≥ 2, and let Q = {1, . . . , q} be a finite set of spins. We
refer to the vertices of G as sites, and we identify (induced) subgraphs of G with
their sets of sites. A configuration on G is an assignment σ :V → Q of spins to
sites. We specify an arbitrary set � ⊆ QV of configurations, which we call feasible.
If not all configurations are feasible, we say that the associated spin system has
“hard constraints.”

We will use the term “Glauber dynamics” to refer to any ergodic Markov chain
on � that, at each step, picks a site v ∈ V uniformly at random and applies a local,
reversible update to the spin at v. More precisely, in (feasible) configuration σ ∈ �

it does the following:

1. pick v ∈ V uniformly at random (u.a.r.);
2. replace the spin σ(v) = s by a new spin s′ chosen with probability κσ,v(s, s

′),
resulting in a new feasible configuration σ ′.

The update distributions κσ,v(s, ·) are required to be local, that is, to depend only
on the values of σ at v and its neighbors, and reversible with respect to some
probability distribution π that assigns nonzero weight to every σ ∈ �, that is, to
satisfy the detailed balance conditions

π(σ)κσ,v(s, s
′) = π(σ ′)κσ ′,v(s

′, s).

The most common scenario in applications is when the distribution π is a
“Markov random field” (MRF) on G. This means that, for all subsets U ⊆ V ,
when the configuration outside U is fixed, then the conditional distribution on the
configuration inside U depends only on the spins on the boundary of U , that is,
on ∂U = {v ∈ V \ U :∃u ∈ U with {u, v} ∈ E}. Thus in particular the conditional
distribution πσ,v(·) of the spin at v depends only on the spins σ(u) at the neigh-
bors u of v. This admits the following two very natural local update rules that are
reversible with respect to π :

1. Heat-bath dynamics (or Gibbs sampler). Set κσ,v(s, s
′) = πσ,v(s

′), that is,
the new spin at v is chosen from the conditional distribution given the spins at the
neighbors of v.

2. Metropolis dynamics. Set κσ,v(s, s
′) = 1

|Q| min{πσ,v(s
′)

πσ,v(s)
,1} for s �= s′, and

κσ,v(s, s) = 1 − ∑
s′ �=s κσ,v(s, s

′). That is, choose s′ ∈ Q u.a.r., and “accept” this
choice with probability that depends on the ratio πσ,v(s

′)/πσ,v(s), otherwise leave
σ(v) unchanged.

Note, however, that our class of dynamics includes examples that are not MRF’s
(see Example 5 in Section 2.2).
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We always assume that the Glauber dynamics is irreducible, that is, for any
two feasible configurations σ, τ , we have P t(σ, τ ) > 0 for some finite t , and ape-
riodic, that is, for all feasible σ, τ , we have gcd{t :P t(σ, τ ) > 0} = 1. (Note that
aperiodicity is essentially a trivial requirement, and can be enforced by introducing
a uniform self-loop probability everywhere.) These two conditions, together with
reversibility, ensure that the Glauber dynamics (Xt)

∞
t=0 converges to the stationary

distribution π as t → ∞, for any feasible initial configuration X0. We measure the
rate of convergence by the mixing time,

τmix := max
X0

min
{
t :‖Xt − π‖ ≤ 1

2e

}
,(1)

where ‖ · ‖ denotes total variation distance5 and (with some abuse of notation) we
identify the random variable Xt with its distribution. The constant 1

2e
is chosen for

algebraic convenience only; this choice ensures (see [2]) that ‖Xt − π‖ ≤ ε for all
t ≥ �ln ε−1�τmix. In particular, we have

‖Xkτmix − π‖ ≤ e−k(2)

for all natural numbers k.
Finally, we will always assume that the Glauber dynamics satisfies the following

nonredundancy condition: for every site there are at least two distinct spin values
that appear in some feasible configuration. Without such a condition, the system
could be artificially padded with an arbitrary number n′ of additional “frozen”
sites while increasing the mixing time by a factor of only (n+n′)/n. Equivalently,
the mixing time of the continuous-time dynamics (see Section 2.3) would be un-
changed.

2.2. Examples. We now present a few well-known examples that fit into the
above framework. The first four are Markov random fields, so the heat-bath or
Metropolis dynamics applies to them (and both are completely specified by the
distribution π ). The final example shows that the framework also includes systems
that are not MRFs.

1. The Ising model. Here Q = {±1}, and the distribution over configurations is
given by

π(σ) ∝ exp

{
β

( ∑
{u,v}∈E

σ(u)σ (v) + h
∑
u∈U

σ(u)

)}
,

where β is the inverse temperature and h is the external field. There are no hard
constraints. This distribution assigns large weight to configurations in which many

5The total variation distance between two probability distributions µ,η on a finite set � is defined

by ‖µ − η‖ := 1
2

∑
z∈� |µ(z) − η(z)|.
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neighboring spins are aligned, and many spins have the same sign as h. The amount
by which such configurations are favored is determined by β . Plainly this is an
MRF as the conditional probability of a configuration on any subset U depends
only on the spins on the neighbors of U 6. We note also that this (and the other
models we consider) can be extended to the case of arbitrary boundary conditions,
that is, fixed spins on certain sites of G. More precisely, to do this we remove the
sites with fixed spins (which are redundant) and incorporate the effects of these
spins into the potentials on the neighboring sites.

2. The hard-core model (independent sets). Here Q = {0,1}, and we call sites
with spins 0 and 1 “unoccupied” and “occupied” respectively. The feasible config-
urations σ are those in which no two adjacent sites are occupied, that is, they are
just the independent sets in G; thus there are hard constraints. A feasible configu-
ration with k occupied sites is assigned probability proportional to λk , where the
parameter λ > 0 controls the density of occupation.

3. Graph colorings (the zero-temperature antiferromagnetic Potts model). Here
Q = {1, . . . , q} is thought of as a set of colors, and configurations as vertex color-
ings of G. The feasible configurations are proper colorings, that is, those in which
no two adjacent vertices receive the same color. The distribution π is uniform
over proper colorings. Note that the heat-bath (or Metropolis) dynamics may not
be irreducible in this case; for instance, there may exist proper colorings that are
“frozen,” in the sense that no single site can have its color changed (even though
other proper colorings do exist). However, it is easy to check that if there are suf-
ficiently many colors, specifically if q ≥ � + 2 where � is the maximum degree
of G, then the dynamics is ergodic over all proper colorings.

4. Constraint satisfaction problems. Let {x1, . . . , xm} be a set of Boolean vari-
ables, and let C1, . . . ,Cr be a set of constraints; that is, each Ci specifies, for some
subset of the variables, a set of allowed combinations of truth values for those vari-
ables. (A canonical example is the Satisfiability problem k-SAT, in which each con-
straint is of the form zi1 ∨ zi2 ∨· · ·∨ zik , where each zij denotes either a variable or
its negation.) An associated MRF is defined as follows. The graph G has one site
for each variable, and an edge between a pair of variables iff they appear together
in some constraint. The spin values are Q = {True,False}, and feasible configu-
rations are truth assignments that satisfy all the constraints. The distribution π is
uniform over feasible configurations. In this example the Glauber dynamics may
again fail to be irreducible; this is frequently overcome by considering a “soft”

6Note that this MRF is completely specified by “potentials” on the sites and edges of G, that is,
it is a “Gibbs distribution” familiar from statistical physics. [Here the site potentials are φv(σ (v)) =
−hβσ(v) for all v ∈ V , and the edge potentials are φuv(σ (u), σ (v)) = −βσ(u)σ (v) for all
{u,v} ∈ E.] The Hammersley–Clifford theorem (see, e.g., [4]) ensures that such a representation—
generalized to include a potential function φC for each clique C of G—is in fact always possible for
an MRF with no hard constraints. If the potentials are allowed to approach infinity, the same holds
for MRF’s with hard constraints under additional assumptions; see [15].
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version in which all configurations are feasible but are penalized according to the
number of violated constraints they contain.

5. A non-Markovian example. It is not hard to construct instances of Glauber
dynamics in which the stationary distribution π is not an MRF. For a simple ex-
ample, let G be the cycle on n vertices, and Q = {0,1}. Feasible configurations are
those in which the set of spin-0 sites form a contiguous block of size 1 ≤ � ≤ n−1.
The update rule for the spin at any site v is the following: if the spins at the two
neighbors of v differ, then flip the spin at v, else leave it unchanged. It is easy
to check that this dynamics is ergodic and reversible with respect to the uniform
distribution on feasible configurations. However, this distribution is clearly not a
MRF.

2.3. Continuous-time dynamics. It will be convenient in our proofs to work
with a continuous-time version of the Glauber dynamics, which we now describe.
Given the discrete-time dynamics (XD

t )∞t=0, the continuous-time version (XC
t )t≥0

is defined as follows:

• there is an independent, rate-1 Poisson clock associated with each site;
• when the clock at v rings, the spin at v is updated as in the discrete-time dynam-

ics.

This process can be viewed equivalently as follows, where n = |V |:
• there is a single, rate-n Poisson clock associated with G;
• when the clock rings, a site v is chosen u.a.r. and an update is performed at v.

It is easy to verify that in distribution XC
t is equal to XD

N(nt), where N(nt) is the
number of rings of a rate-n Poisson clock in time interval t . In other words, for
every t ≥ 0,

XC
t

d=
∞∑

s=0

e−nt (nt)s

s! XD
s .(3)

The mixing time for the continuous dynamics is defined by analogy with (1) as

τC
mix := max

X0
inf

{
t :‖XC

t − π‖ ≤ 1

2e

}
.(4)

The following observation guarantees that lower bounds on the mixing time trans-
late from the continuous-time to the discrete-time setting. Hence we may work in
continuous time without loss of generality.

PROPOSITION 2.1. For every t ≥ 0, ‖XD
t − π‖ ≥ ‖XC

2t/n − π‖ − 2e−t .

PROOF. Note first that by (3) and the triangle inequality we may write

‖XC
2t/n − π‖ ≤

∞∑
s=0

Pr
(
N(2t) = s

)‖XD
s − π‖.
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Splitting the range of summation at t , and using the fact that ‖XD
s − π‖ is a de-

creasing function of s, we find

‖XC
2t/n − π‖ ≤ Pr

(
N(2t) < t

) + ‖XD
t − π‖.

The desired result follows because, for every t ≥ 0, Pr(N(2t) ≤ t) ≤ 2e−t , an
elementary property of the Poisson distribution. �

COROLLARY 2.2. The mixing times for the discrete- and continuous-time dy-
namics satisfy

τmix ≥ nτC
mix

6
.

PROOF. Set X0 to achieve the maximum in (4). Recall from (2) that

‖XD
3τmix

− π‖ ≤ 1

e3 .

Hence, by Proposition 2.1 applied with t = 3τmix, and since τmix ≥ 1,

‖XC
6τmix/n − π‖ ≤ 1

e3 + 2e−3τmix ≤ 3

e3 <
1

2e

which implies τC
mix ≤ 6τmix/n. �

Corollary 2.2 says that any lower bound on the mixing time of the continuous-
time dynamics translates immediately to discrete time, with the loss of only a small
constant factor. The translation involves a uniform scaling factor of n, arising from
the differing clock speeds: while the discrete-time dynamics hits any given site
only about once in n steps, the continuous-time version updates the sites at a con-
stant rate.

3. Basic ingredients. In this section we introduce two basic tools that will
play important roles in our proof. The first bounds the rate at which informa-
tion can percolate in the Glauber dynamics, and the second expresses a useful
monotonicity property of the probability of being in a certain set of configura-
tions. Neither of these is new per se, but our application requires some refinements
of them (notably, Lemmas 3.4 and 3.5). We work throughout in continuous time;
Section 2.3 shows how to adapt our results to the discrete-time setting.

3.1. Disagreement percolation. Suppose (Xt) and (Yt ) are two copies of the
Glauber dynamics which agree at time 0 except on some subset A of the sites. Let
A′ be another subset of sites at distance d from A (so that, in particular, X0 and
Y0 agree on A′). If t is not too large, then we would expect the distributions of
the spin configurations on A′ in Xt and Yt not to differ too much. The extent to
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which they differ as a function of t is a measure of the rate of information flow in
the dynamics, since any difference must be caused by a disagreement percolating
from A to A′.

We can bound this effect by coupling the evolutions of Xt and Yt . Specifically,
we will use a greedy coupling: we make the two processes use the same Poisson
clocks and, whenever the clock at site v rings, we update it to the same value in
both processes with the largest possible probability. Thus in particular, if at the
time the clock rings Xt and Yt agree on v and all its neighbors, then this will also
hold with probability 1 after the update.

The following lemma bounds the probability that a disagreement percolates
from A to A′ under this coupling. For each S ⊂ V , recall that ∂S := {w ∈
V \S :∃u ∈ S with {u,w} ∈ E} denotes the boundary of S, and define the “internal
boundary” of S by δS := ∂(V \ S). (Note that δS ⊆ S.)

LEMMA 3.1. Let (Xt) and (Yt ) be continuous-time Glauber dynamics on a
graph G = (V ,E) of maximum degree at most �. Suppose X0 = Y0 at all sites
in V \ A. Let A′ ⊂ V be a set of sites at distance d > 0 from A. Then the greedy
coupling of (Xt) and (Yt ) satisfies

Pr(Xt = Yt on A′) ≥ 1 − min{|δA|, |δA′|}
(

et�

d

)d

.(5)

Moreover, the same conclusion holds even if the spin update probabilities of (Xt)

and (Yt ) differ at sites in A.

We will often apply Lemma 3.1 in the situation where A′ = Br(v) (the ball
of radius r in G centered at v), and A = V \ BR−1(v) for R > r [so that the
evolutions of (Xt) and (Yt ) in the ball BR−1(v) are the same except for possible
effects originating from the boundary SR(v) := ∂BR−1(v)]. In this case, the bound
in (5) implies

Pr(Xt = Yt on A′) ≥ 1 −
(

et

R − r

)R−r

�R.(6)

The proof of Lemma 3.1 relies on the following simple fact.

OBSERVATION 3.2. Let t ≥ 0 and r ≥ 1. Consider r fully independent Poisson
clocks of rate 1. Then the probability, p, that there is an increasing sequence of
times 0 < t1 < · · · < tr < t such that clock i rings at time ti satisfies

p <

(
et

r

)r

.

PROOF. Since the waiting times between each successive pair of rings of a
single clock are independent exponential random variables with mean 1, the event
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in the lemma has the same probability as the event that a single rate-1 Poisson
clock has at least r rings by time t . The probability of this event is thus

p = e−t

(
t r

r! + t r+1

(r + 1)! + · · ·
)

<
tr

r! <

(
et

r

)r

.

The second inequality here follows because r! > (r
e
)r for r ≥ 1. �

PROOF OF LEMMA 3.1. By the initial conditions and the properties of the
greedy coupling, Xt and Yt can differ at a site in A′ only if there exists a “path
of disagreement” from A to A′. This is a path v1, . . . , vr in G from a site v1 ∈ δA

to a site vr ∈ δA′, together with a sequence of times t1 < · · · < tr < t such that an
update is performed at vi at time ti . Since all such paths have length at least d ,
we may restrict attention to their initial segments of length d . For any such initial
segment, by Observation 3.2 the probability that the corresponding updates are
performed is bounded above by ( et

d
)d . The number of such segments is clearly at

most |δA|�d . We may also replace δA by δA′ by considering the paths in reverse
order. A union bound now completes the proof. Finally, note that the argument did
not rely on any properties of the update probabilities for sites in A. �

We now derive two further lemmas which use similar ideas but which apply
only to dynamics with hard constraints. Call a site frozen in a given configuration
if its current spin is the only feasible value given the spins on its neighbors. These
lemmas bound the rate at which a set of frozen spins can become unfrozen, or vice
versa.

LEMMA 3.3. Let (Xt) be continuous-time Glauber dynamics on a graph G =
(V ,E) of maximum degree at most �. Suppose X0 is frozen except at sites in
A ⊂ V . If A′ ⊂ V is a set of sites at distance d > 0 from A, then

Pr(Xt = X0 on A′) ≥ 1 − min{|δA|, |δA′|}
(

et�

d

)d

.

PROOF. Same as the proof of Lemma 3.1. �

LEMMA 3.4. Let (Xt) be continuous-time Glauber dynamics on a graph G =
(V ,E) of maximum degree at most �. Suppose A,A′ ⊂ V are sets of sites at
distance d > 0 from each other. Then

Pr
(
(Xt is frozen on V \ A) and not (Xt = X0 on A′)

)
≤ min{|δA|, |δA′|}

(
et�

d

)d

.
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PROOF. Label each site with the last time in the interval [0, t] that its spin
actually changed. If Xt is frozen on V \A, then for any changed site there must be
an increasing sequence of such times along a path from that site to A. Thus if in
addition Xt is not identical to X0 on A′, there must be such an increasing sequence
of times along a path from A′ to A. The result now follows in the same way as in
the proof of Lemma 3.1. �

3.2. Monotonicity properties. In this section, we will prove the following
monotonicity result for Glauber dynamics, which essentially says that, under suit-
able initial conditions, the probability of a particular site retaining its initial spin
after t steps decays slowly as a function of t . For this property, we will relax our
usual assumptions and require only that the Glauber dynamics is reversible, not
necessarily ergodic. This will be the second key ingredient in the proof of Theo-
rem 1.1 in the next section.

LEMMA 3.5. Let G = (V ,E) be a graph, let v ∈ V , and let Qv ⊆ Q. Consider
any continuous-time Glauber dynamics on G with spin space Q, reversible with
respect to a distribution π over � ⊆ QV . Let µ be the probability, under π , that
the spin at v is in Qv , and suppose 0 < µ < 1. Sample the initial configuration X0

according to π , conditioned on the event that X0(v) ∈ Qv . Then, for every t ≥ 0,

Pr
(
Xt(v) ∈ Qv

) ≥ µ + (1 − µ) exp
(−t/(1 − µ)

)
.

Lemma 3.5 can be derived from a more general monotonicity property of re-
versible Markov chains. Following Aldous and Fill ([3], Chapter 3, Section 4), call
a function f completely monotone decreasing (CMD) if it can be written in the
form

f (t) =
m∑

i=1

αi exp(−λit),(7)

where all the coefficients αi, λi are nonnegative.

LEMMA 3.6. Let (Xt) be a continuous-time Markov chain on finite state
space �, and let (Xt) be reversible with respect to a distribution π . Let � ⊂ �.
If the distribution of X0 is supported on � , and proportional to π on � , then
Pr(Xt ∈ �) is CMD. Indeed,

Pr(Xt ∈ �) =
|�|∑
i=1

αi exp(−λit),

where
∑

i αi = 1, α1 = π(�), λ1 = 0 and all αi, λi ≥ 0.
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As mentioned earlier, this (and indeed more general) monotonicity properties
for both continuous- and discrete-time Markov chains are well known (see, e.g.,
[3], Chapter 3, Section 4). We include a proof for completeness.

PROOF OF LEMMA 3.6. As stipulated in the lemma, we let (Xt) have the ini-
tial distribution µ0(i) = π(i)/π(�) for i ∈ � (and 0 elsewhere). Writing Pt(i, j)

for the time-t transition probability from i to j , our main goal is to show that the
quantity

Pr(Xt ∈ �) = ∑
i∈�

∑
j∈�

µ0(i)Pt (i, j) = π(�)−1
∑
i∈�

∑
j∈�

π(i)Pt (i, j)(8)

is CMD.
By the standard spectral representation for reversible Markov chains, we may

write

Pt(i, j) =
√

π(j)

π(i)

|�|∑
k=1

exp(−λkt)uikujk,

where 0 = λ1 ≤ λ2 ≤ · · · ≤ λ|�| are the eigenvalues of the transition kernel, and

(uij )
|�|
i,j=1 is an orthonormal matrix. Moreover, we may take ui1 = √

π(i), since π

is a stationary vector for the Markov chain. Substitution into (8) gives

Pr(Xt ∈ �) = π(�)−1
∑
k

exp(−λkt)
∑
i∈�

∑
j∈�

√
π(i)π(j)uikujk

= π(�)−1
∑
k

exp(−λkt)

(∑
i∈�

√
π(i) uik

)2

.(9)

This is clearly of the form (7), so the function is CMD. Moreover, α1 satisfies

α1 = π(�)−1

(∑
i∈�

π(i)

)2

= π(�),

and by (9) the sum of all coefficients is

|�|∑
k=1

αk = π(�)−1
∑
k

(∑
i∈�

√
π(i)uik

)2

= Pr(X0 ∈ �) = 1.
�

We now prove the main result of this section.

PROOF OF LEMMA 3.5. Let (Xt) be as described in the lemma, and define
f (t) := Pr(Xt(v) ∈ Qv). By Lemma 3.6, we may write

f (t) =
|�|∑
i=1

αi exp(−λit),
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where
∑|�|

i=1 αi = 1, α1 = µ, λ1 = 0 and all αi, λi ≥ 0.
Now, let us sample J from 1, . . . , |�| according to the distribution (αj ). Note

that, in this case,

f (t) = E(exp(−λJ t)) = µ + (1 − µ)E
(
exp(−λJ t) | J ≥ 2

)
.

Since the function exp(−x) is convex, we may apply Jensen’s inequality to the
conditional probability on the right-hand side to obtain

f (t) ≥ µ + (1 − µ) exp
(−tE(λJ | J ≥ 2)

)
.

Observe that

E(λJ | J ≥ 2) = 1

1 − µ

|�|∑
j=2

αjλj = −f ′(0)

1 − µ
.

Moreover, for every s ≥ 0,

f (s) ≥ Pr(clock at v does not ring by time s) = e−s,

and hence f ′(0) ≥ −1, which completes the proof. �

4. Main result. We are now ready to state and prove the continuous-time ver-
sion of our main result.

THEOREM 4.1. Let � ≥ 2 be a fixed positive integer, and let G be any graph
on n vertices with maximum degree at most �. Any continuous-time Glauber dy-
namics on G has mixing time �(logn), where the constant in the �(·) depends
only on �.

By Corollary 2.2, Theorem 4.1 immediately implies that the discrete-time
Glauber dynamics has mixing time at least �(n logn), thus proving our main result
(Theorem 1.1) claimed in the Introduction.

We prove Theorem 4.1 in two steps. First, in Section 4.1, we consider the con-
ceptually simpler case in which there are no hard constraints. Then, in Section 4.2,
we show how to extend the proof to handle hard constraints.

4.1. Proof for the case of no hard constraints. Let T = lnn
8e� ln�

. We will show
that, for a suitable initial distribution X0, the variation distance between XT and
the stationary distribution is large and hence τC

mix ≥ T . In the remainder of the
proof, we will assume that � ≥ 2 is fixed and n is sufficiently large.

Let R = � lnn
4 ln�

�. Choose a set of � n
�2R � sites C ⊂ V whose pairwise distances

are all at least 2R. (Such a set C can always be found by repeatedly picking a
site, adding it to C, and removing it from V , together with all sites at distance
≤ 2R − 1.) We call the elements of C centers, since we will shortly be considering
a restriction of the dynamics to balls of radius R − 1 centered at elements of C.
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For each site v ∈ C, let Qv be a nonempty proper subset of the spins. (For
instance, they could all be the singleton {1}.) For every configuration X, let f (X)

denote the fraction of centers v such that X(v) ∈ Qv . We will specify a distribution
for X0 and a threshold µ̂, such that∣∣∣∣Pr

(
f (XT ) ≥ µ̂

) − Pr
X∼π

(
f (X) ≥ µ̂

)∣∣∣∣ >
1

2e
,

where π is the stationary distribution. This implies that the mixing time is greater
than T .

Let U denote the set of sites at distance ≥ R from C, and let σU be an arbitrary
assignment of spins to all sites in U . The distribution of X0 will be concentrated on
configurations which agree with σU , and satisfy either (∀v ∈ C)(X0(v) ∈ Qv), or
(∀v ∈ C)(X0(v) /∈ Qv) (we will specify which in the next paragraph). Among con-
figurations satisfying these constraints, the distribution of X0 will be proportional
to π .

Let µ denote the conditional expectation of f (Y ) when Y is drawn from the
stationary distribution π , conditioned on agreeing with σU . Let ε = 1/(4 exp(2T )),
and define µ̂ ∈ [0,1] by

µ̂ =


µ − ε, if µ > 1/2,
1/2, if µ = 1/2,
µ + ε, if µ < 1/2.

(10)

Let X ∼ π . If Pr(f (X) ≥ µ̂) ≤ 1/2, then we require that (∀v ∈ C)(X0(v) ∈ Qv).
Otherwise, we require that (∀v ∈ C)(X0(v) /∈ Qv). Replacing Qv by its comple-
ment if necessary, we may assume without loss of generality that Pr(f (X) ≥ µ̂) ≤
1/2 and (∀v ∈ C)(X0(v) ∈ Qv).

With this definition of X0, it suffices to show that

Pr
(
f (XT ) < µ̂

)
<

1

2
− 1

2e
.(11)

To this end, we introduce a second chain, Y0, . . . , YT , which evolves according to
the Glauber dynamics except that only the spins on the balls

⋃
v∈C BR−1(v) are

updated. (The sites outside these balls retain their initial configurations and ignore
their clocks.) Note that this chain decomposes into fully independent processes on
each of the balls BR−1(v). For the initial distribution, we take Y0 = X0.

We will first show that, under the greedy coupling of (Xt) with (Yt ), the ex-
pected number of centers v ∈ C at which XT and YT differ is small, and hence
that

Pr
(
f (XT ) ≤ f (YT ) − ε/2

) ≤ 1/4.(12)

Then we will take advantage of the independence of the spins YT (v), v ∈ C, to
show that f (YT ) is concentrated around its expectation and hence also that

Pr
(
f (YT ) < µ̂ + ε/2

)
< 1/4 − 1/(2e).(13)
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Combining inequalities (12) and (13) yields (11) and thus will complete the proof.
Fix v ∈ C. Since X0 = Y0, and the update rules for the two chains are the same

on BR−1(v), it follows from Lemma 3.1 and equation (6) (with r = 0) that, under
the greedy coupling,

Pr
(
XT (v) �= YT (v)

) ≤
(

eT �

R

)R

≤ ε/8.

The second inequality here follows by plugging in the values for T , R and ε. By
linearity of expectation, it follows that

E
(|{v ∈ C :XT (v) �= YT (v)}|) ≤ |C|ε/8,

for all sufficiently large n. Applying Markov’s inequality to the random variable
|{v ∈ C:XT (v) �= YT (v)}| now yields our first desired inequality (12).

Again fix v ∈ C, and let us restrict our attention to the ball BR−1(v). Let πσU

denote the stationary distribution π on BR−1(v), conditioned on agreeing with σU .
Let µv = Pr(Y (v) ∈ Qv), where Y is sampled from πσU

. Note that the dynamics
(Yt ) is reversible with respect to this distribution (although it need not be ergodic,
because of the fixed boundary). Note also that the initial distribution Y0 is πσU

con-
ditioned on Y0(v) ∈ Qv . Hence by Lemma 3.5 applied to (Yt ) on the ball BR−1(v),
we have

Pr
(
YT (v) ∈ Qv

) ≥ µv + (1 − µv) exp
(−T/(1 − µv)

)
.

There is a subtle technical point in the preceding argument: since we are working
in continuous time, and because the boundary of BR−1(v) is fixed, the projection
of (Yt ) onto BR−1(v) is indeed a Glauber dynamics and so Lemma 3.5 applies.

By linearity of expectation, µ = 1
|C|

∑
v∈C µv . Also by linearity of expectation,

we have

E(f (YT )) = 1

|C|
∑
v∈C

Pr
(
YT (v) ∈ Qv

)
≥ µ + 1

|C|
∑
v∈C

(1 − µv) exp
(−T/(1 − µv)

)
.

Since the function x exp(−t/x) is convex on (0,1) as a function of x, for fixed
t > 0, it follows by Jensen’s inequality that

E(f (YT )) ≥ µ + (1 − µ) exp
(−T/(1 − µ)

)
.(14)

We now claim that the right-hand side of (14) is at least µ̂ + ε. To see this, note
by the definition of µ̂ that, when µ > 1/2, we have µ = µ̂ + ε. On the other
hand, when µ ≤ 1/2, we have (1 − µ) exp(−T/(1 − µ)) ≥ 1/(2 exp(2T )) = 2ε

and µ ≥ µ̂ − ε. We conclude from (14) that E(f (YT )) ≥ µ̂ + ε.
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Since f (YT ) is the average of |C| independent random variables taking values
in {0,1}, Chernoff’s bound yields

Pr
(
f (YT ) < µ̂ + ε/2

) ≤ Pr
(
f (YT ) < E(f (YT )) − ε/2

)
≤ exp(−|C|ε2/8).

Writing |C| and ε explicitly in terms of n shows that the right-hand side is asymp-
totically 0 as n → ∞, establishing (13).

4.2. Proof for the general case. The proof of the general version of Theo-
rem 4.1 will rely on the following fact about spin systems with hard constraints.

LEMMA 4.2. Let v ∈ V and let R ≥ 4 be an integer. Let (Xt) and (Yt ) be
continuous-time Glauber dynamics such that the initial configuration X0 ∈ � is
frozen at all sites in BR(v), and the initial configuration Y0 differs from X0 at v.
If T ≤ R/(5e2� ln�), then the distributions of XT and YT are at total variation
distance at least

1 − 2 exp
(−R/(3 ln�)

)
.

PROOF. Let 0 < r < R be another positive integer. By Lemma 3.3 applied
to (Xt) [setting A = V \ BR(v) and A′ = Br(v)], the probability that XT agrees
with X0 on Br(v) is at least 1 − |δA′|(eT �/(R − r + 1))R−r+1 ≥ 1 − �(� −
1)r−1(eT �/(R − r + 1))R−r+1. On the other hand, by applying Lemma 3.4 to
(Yt ) [setting A = V \ Br(v) and A′ = {v}], the probability that YT agrees with X0
on Br(v) is at most (eT �/(r + 1))r+1. By the triangle inequality, the distributions
of XT and YT must have total variation distance at least

1 − �r(eT �/(R − r + 1)
)R−r+1 − (

eT �/(r + 1)
)r+1

.

Letting r = �R/3 ln(�)� < R/2, the result follows by basic algebra. �

We are now ready to present the proof of Theorem 4.1 in the presence of hard
constraints. The broad outline of the proof follows that of the previous one where
there were no hard constraints; we will focus on the points where differences occur.
In particular, the selection of the set of centers C, the spin sets Qv , and the initial
assignment σU to the sites at distance > R from C, become slightly trickier.

Let R = � lnn
4 ln�

� as in the previous proof.
Case 1. Suppose there exists a set C ⊂ V of size at least �n/�3R� = �(n1/4)

at pairwise distance at least 2R, together with an initial assignment σU to all the
sites U at distance ≥ R from C, such that, conditioned on the configuration agree-
ing with σU , every v ∈ C has at least two feasible spins available.

In this case, for each v ∈ C, define Qv to be a proper nonempty subset of the
feasible spins for v, conditioned on agreeing with σU . Then the rest of the proof
goes through as in the previous subsection, but with slightly worse constants.
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Case 2. No sufficiently large set C as above exists.
In this case, let C and σU be as above, with |C| < n/�3R and C maximal. The

upper bound on |C| implies that there must exist at least one site v at distance
≥ 3R from C. So, in particular, every site in BR(v) is at distance ≥ 2R from C. It
follows that all of BR(v) must be frozen under σU ; otherwise, we could add any
one of its nonfrozen sites to C, contradicting maximality.

To complete the proof, we argue differently from the previous case: we exhibit
two initial configurations X0 and Y0 such that when both evolve according to the
Glauber dynamics for time T ≤ γ logn (for sufficiently small γ > 0), XT and
YT are still at large variation distance. Hence the mixing time must be at least T .
Let X0 be any configuration extending σU , and let Y0 be any configuration which
disagrees with X0 at v. (Such a Y0 must exist by our nonredundancy condition.)
By Lemma 4.2, the mixing time is �(R/(� log�)) = �(logn/(� log2 �)).

This completes the proof of Theorem 4.1 in the general case.

REMARK 4.3. In both cases in the above proof, the dependence of our lower
bound on � is �(1/�polylog�). In the next section, we will prove an upper
bound whose dependence on � is O(1/ log�). It would be interesting to close
this gap and establish a tight dependence on �.

5. Unbounded degrees and other variations. In this final section we discuss
various extensions of our main theorem, and also show that certain other extensions
(notably, removing the assumption of bounded degree) are not possible.

5.1. Graphs with unbounded degree. We have shown a lower bound of
�(n logn) on the mixing time of Glauber dynamics on any family of graphs
of bounded degree. More precisely, for any fixed �, we have shown that the
Glauber dynamics on graphs of maximum degree at most � has mixing time at
least C�n lnn for some positive constant C�. Is the restriction to bounded-degree
graphs necessary?

We first give a simple example to show that it is. Let G = Kn, and consider the
hard-core model on G, that is, the spin space is Q = {0,1}, and the feasible con-
figurations are those in which at most one vertex has spin 1 (corresponding to the
independent sets of G). The distribution π assigns probability 1

2 to the all-0 con-
figuration, and 1

2n
to each other configuration. (Thus the activity parameter in the

hard-core model is λ = 1
n

.) Consider the following Metropolis Glauber dynamics,
which at each step picks a vertex v u.a.r. If v has spin 1, then its spin is flipped
to 0 with probability 1

2 , while if v and all other vertices have spin 0, then the spin
of v is flipped to 1 with probability 1

2n
. Plainly the mixing time of this Glauber

dynamics (in discrete time) is O(n).
The following more interesting example demonstrates a trade-off between max-

imum degree and mixing time. Let G0 = (V ,E0) be any graph of maximum degree
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d ≤ √
�. Let G = (V ,E), where E consists of all pairs of vertices whose distance

in G0 is 1 or 2 (note that the maximum degree of G is at most d2 ≤ �). We will
construct a Glauber dynamics on G which mimics any reversible random walk
on G0. To this end, for every edge {u, v} ∈ E0 we let A(u, v) > 0 be the transition
probability from u to v in such a random walk, A(v, v) ≥ 0 be the probability of
a self-loop at v, and π0 be the stationary distribution. For convenience, in what
follows we augment E0 to include the self-loop {v, v} whenever A(v, v) > 0.

Our Glauber dynamics will have spins Q = {0,1,2}. The feasible configura-
tions σ :V → Q will all satisfy

∑
v∈V σ(v) ∈ {1,2}. Moreover, when this sum is 2

the vertices with nonzero spin will be the endpoints of an edge {u, v} (possibly a
self-loop) in E0. Thus we may identify feasible configurations with the set V ∪E0.

We now describe the update rule for the Glauber dynamics. Let σ be the current
configuration, and let v be the site selected for updating. The new configuration σ ′
is determined as follows (where ∼ denotes adjacency in G0):

1. Case 1: σ(v) = 0.

(i) If there exists w ∼ v, σ(w) = 1, and for all z ∼ w, σ(z) = 0, then: with
probability A(w,v), set σ ′(v) = 1.

(ii) Otherwise, set σ ′(v) = 0.

2. Case 2: σ(v) = 1.

(i) If there exists w ∼ v, σ(w) = 1, then set σ ′(v) ∈ {0,1} according to the
result of a fair coin toss.

(ii) Otherwise, with probability A(v, v), set σ ′(v) = 2.

3. Case 3: σ(v) = 2. Set σ ′(v) = 1.

Since the update rule only examines vertices at distance ≤ 2 from v in G0, this is
a local dynamics on the graph G.

Informally, the Glauber dynamics may be described as follows. As indicated
above, we may think of the configurations of the dynamics as either vertex states,
σv for some v ∈ V , or edge states, σvw for some {v,w} ∈ E0. Call a transition of
the Glauber dynamics successful if it causes a change in the configuration. Each
successful transition causes a change from a vertex state to an edge state, or vice
versa. Starting from a vertex state σv , the first successful transition moves to an
edge σvw (where w = v is possible); the next successful transition undoes this
move with probability 1

2 , and otherwise moves to the vertex state σw , thus com-
pleting the simulation of a single move of the original random walk.

It is easy to check that the stationary distribution of the dynamics is π = 1
2(πV +

πE), where πV is concentrated on vertex states and satisfies πV (σv) = π0(v)

for all v ∈ V , and πE is concentrated on edge states and satisfies πE(σvw) =
π0(v)A(v,w) + π0(w)A(w,v) = 2π0(v)A(v,w) for {v,w} ∈ E0 with v �= w,
πE(σvv) = π0(v)A(v, v) for self-loops. Since A is reversible this dynamics is also
reversible. Thus we have a valid Glauber dynamics.
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LEMMA 5.1. The above Glauber dynamics has mixing time O(nτA), where
τA is the mixing time of the underlying random walk defined by A and n = |V |.

PROOF (Sketch). Let (Xt0,Xt1, . . . ,Xtk , . . .) denote the Glauber dynamics
observed after each successful transition, with t0 = 0 and Xt0 assumed to be a ver-
tex state. Then, from the informal description given earlier, (Xt2k

) is a (reversible)
Markov chain on the vertex states, with transition matrix 1

2(I + A), where I is
the n × n identity matrix. Thus, denoting the distribution of Xtk by νk , if we take
k ≥ CτA for a sufficiently large constant C, then if k is even we have νk = πV + εk

where ‖εk‖1 ≤ ε for any desired positive constant ε. From the definition of the dy-
namics, this then easily implies νk = πE + εk for k ≥ CτA, k odd, as well, with
‖εk‖1 bounded similarly.

Now let (X0,X1, . . . ,Xt , . . .) denote the full Glauber dynamics, and let µt de-
note the distribution of Xt . Then µt satisfies µt = ∑

k p
(t)
k νk , where p

(t)
k is the

probability that exactly k successful transitions occur within the first t steps of the
dynamics. Note that the probability of any given transition being successful is ex-
actly 1

n
. Thus if we take t = C′nτA for a suitable constant C′, we may ensure that∑

k<CτA
p

(t)
k ≤ ε and |∑k≥CτA, k even p

(t)
k − 1

2 | ≤ ε. This in turn implies

µt = ∑
k<CτA

p
(t)
k νk + ∑

k≥CτA

p
(t)
k νk = 1

2(πV + πE) + γt ,

where ‖γt‖1 ≤ 3ε. �

Our motivation for the general construction above is the following special case,
which illustrates a trade-off between maximum degree and mixing time. This is
the result we claimed in Theorem 1.2, which we restate here for convenience.

THEOREM 5.2. For each n, let �(n) be any natural number satisfying 2 ≤
�(n) < n. Then there exists a family of graphs G = G(n), where G(n) has n

vertices and maximum degree �(n), and an associated Glauber dynamics on G(n)

with mixing time O(n logn/ log�(n)).

PROOF. Let � = �(n) and set d = �√��. Without loss of generality we may
assume d ≥ 3, as there are many examples of Glauber dynamics with mixing time
O(n logn) on arbitrary graphs. Let G0 be a complete (d − 1)-ary tree with n ver-
tices; note that the height of G0 is h = �(logn/ logd). Let A be the biased random
walk on G0 which has, at each step, probability 2/3 of moving to a parent (except
at the root), and 1/3 of moving to a random child (except at a leaf). It is easily
seen (by projecting onto a one-dimensional process that walks between the levels
of G0) that the mixing time of this random walk is �(h) = �(logn/ logd). There-
fore, by Lemma 5.1, the Glauber dynamics constructed as above from this random
walk has mixing time O(n logn/ logd) = O(n logn/ log�) and degree d2 ≤ �,
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as required. (The maximum degree can always be increased to exactly � by adding
edges as necessary.) �

REMARK. It is in fact possible, with a little more work, to massage the above
tree example into one in which the Glauber dynamics is based on a Markov random
field.

5.2. Nonuniform update probabilities. In our main theorem, we assumed that
the site to be updated was chosen uniformly at random (or equivalently, in contin-
uous time, all sites are updated at rate 1). How essential is this assumption?

First, it is not hard to check that our proof still goes through more or less un-
changed under the weaker assumption that no site has a probability larger than
O(1/n) of being chosen. On the other hand, if we allow arbitrary site selec-
tion probabilities, the theorem no longer holds. To see this, consider again the
tree example from Section 5.1, with, for example, d = 3, but now suppose that
vertex v is chosen with probability proportional to (d − 1)k/2, where k is the
height of v in G0. Thus the probability of choosing v is c(d − 1)k/2−h, where
c = (1 − (d − 1)−1/2)/(1 − (d − 1)−(h+1)/2) > 1/4. The updating rule for v is as
before. Now by an analysis similar to that of Section 5.1, the expected time to reach
the root from a leaf is approximately proportional to the sum of the waiting times to
hit vertices along a leaf-root path, which is at most

∑h
k=0 c−1(d −1)h−k/2 = O(n).

This linear mixing time is significantly less than our �(n logn) lower bound for
(near-)uniform site selection probabilities.

5.3. Block dynamics. An alternative to Glauber dynamics frequently encoun-
tered in the literature is so-called “block dynamics,” which, at each step, updates
all the spins in a randomly chosen “block” of sites. (For instance, a block might be
the ball of radius 1 around a randomly chosen site.) In many cases it is easier to
establish rapid mixing for block dynamics (even with quite small blocks) than for
single-site dynamics (see, e.g., [1, 11, 16]). As with the Glauber dynamics, we re-
quire that the block dynamics be irreducible and aperiodic, reversible with respect
to π , and local in the sense that the updates inside the block depend only on the
current spins on the sites in the block and their neighbors.

Provided again that G has bounded degree, the blocks are connected and of
bounded size, and no site is updated at a rate greater than O(1) (in continuous
time), our proof of Theorem 4.1 can easily be seen to apply in this context as well,
giving a lower bound of �(n logn) on the mixing time of block dynamics.

Acknowledgments. We thank Laci Babai, Mark Jerrum and Yuval Peres for
enlightening discussions, and Mark Jerrum for sharing a preliminary version of [9].
We would also like to thank Jaikumar Radhakrishnan, as well as the anonymous
referees, for helpful suggestions.

An extended abstract of this paper appeared in Proceedings of the 46th An-
nual IEEE Symposium on Foundations of Computer Science (FOCS 2005), pages
511–520.



952 T. P. HAYES AND A. SINCLAIR

REFERENCES

[1] ACHLIOPTAS, D., MOLLOY, M., MOORE, C. and VAN BUSSEL, F. (2004). Sampling grid col-
orings with fewer colors. LATIN 2004: Theoretical Informatics. Lecture Notes in Comput.
Sci. 2976 80–89. Springer, Berlin. MR2095183

[2] ALDOUS, D. (1983). Random walks on finite groups and rapidly mixing Markov chains.
Séminaire de Probabilites XVII. Lecture Notes in Math. 986 243–297. Springer, Berlin.
MR0770418

[3] ALDOUS, D. and FILL, J. (2002). Reversible Markov chains and random walks on graphs. Un-
published manuscript. Available at www.stat.berkeley.edu/users/aldous/RWG/book.html.
(References are to the September 10, 2002 version of Chapter 3.)

[4] BESAG, J. (1974). Spatial interaction and the statistical analysis of lattice systems. J. Roy.
Statist. Soc. Ser. B 36 192–236. MR0373208

[5] BORGS, C., CHAYES, J. T., FRIEZE, A. M., KIM, J. H., TETALI, P., VIGODA, E. and VU,
V. H. (1999). Torpid mixing of some Monte Carlo Markov chain algorithms from sta-
tistical physics. In Proceedings of the 40th Annual IEEE Symposium on Foundations of
Computer Science 218–229. IEEE Computer Soc., Los Alamitos, CA. MR1917562

[6] DIACONIS, P. and SHAHSHAHANI, M. (1981). Generating a random permutation with random
transpositions. Z. Wahrsch. Verw. Gebiete 57 159–179. MR0626813

[7] DIACONIS, P. and SALOFF-COSTE, L. (1996). Logarithmic Sobolev inequalities for finite
Markov chains. Ann. Appl. Probab. 6 695–750. MR1410112

[8] DYER, M., GOLDBERG, L. A., GREENHILL, C., JERRUM, M. and MITZENMACHER, M.
(2001). An extension of path coupling and its application to the Glauber dynamics for
graph colourings. SIAM J. Comput. 30 1962–1975. MR1856564

[9] DYER, M., GOLDBERG, L. A. and JERRUM, M. (2006). Systematic scan for sampling colour-
ings. Ann. Appl. Probab. 16 185–230. MR2209340

[10] DYER, M., FRIEZE, A. M. and JERRUM, M. (2002). On counting independent sets in sparse
graphs. SIAM J. Comput. 31 1527–1541. MR1936657

[11] DYER, M., SINCLAIR, A., VIGODA, E. and WEITZ, D. (2004). Mixing in time and space for
lattice spin systems: A combinatorial view. Random Structures Algorithms 24 461–479.
MR2060631

[12] GALVIN, D. and TETALI, P. (2006). Slow mixing of the Glauber dynamics for the hard-
core model on regular bipartite graphs. Random Structures Algorithms 28 427–443.
MR2225701

[13] JERRUM, M. R. (1995). A very simple algorithm for estimating the number of k-colourings of
a low-degree graph. Random Structures Algorithms 7 157–165. MR1369061

[14] MARTINELLI, F. and OLIVIERI, E. (1994). Approach to equilibrium of Glauber dynam-
ics in the one phase region. I. The attractive case. Comm. Math. Phys. 161 447–486.
MR1269387

[15] MOUSSOURIS, J. (1974). Gibbs and Markov random systems with constraints. J. Statist. Phys.
10 11–33. MR0432132

[16] VIGODA, E. (2000). Improved bounds for sampling colorings. J. Math. Phys. 41 1555–1569.
MR1757969

[17] VIGODA, E. (2001). A note on the Glauber dynamics for sampling independent sets. Electron.
J. Combin. 8. MR1814515

TOYOTA TECHNOLOGICAL INSTITUTE

1427 E. 60TH ST.
CHICAGO, ILLINOIS 60637
USA
E-MAIL: hayest@tti-c.org

COMPUTER SCIENCE DIVISION

UNIVERSITY OF CALIFORNIA BERKELEY

BERKELEY, CALIFORNIA 94720
USA
E-MAIL: sinclair@cs.berkeley.edu

http://www.ams.org/mathscinet-getitem?mr=2095183
http://www.ams.org/mathscinet-getitem?mr=0770418
www.stat.berkeley.edu/users/aldous/RWG/book.html
http://www.ams.org/mathscinet-getitem?mr=0373208
http://www.ams.org/mathscinet-getitem?mr=1917562
http://www.ams.org/mathscinet-getitem?mr=0626813
http://www.ams.org/mathscinet-getitem?mr=1410112
http://www.ams.org/mathscinet-getitem?mr=1856564
http://www.ams.org/mathscinet-getitem?mr=2209340
http://www.ams.org/mathscinet-getitem?mr=1936657
http://www.ams.org/mathscinet-getitem?mr=2060631
http://www.ams.org/mathscinet-getitem?mr=2225701
http://www.ams.org/mathscinet-getitem?mr=1369061
http://www.ams.org/mathscinet-getitem?mr=1269387
http://www.ams.org/mathscinet-getitem?mr=0432132
http://www.ams.org/mathscinet-getitem?mr=1757969
http://www.ams.org/mathscinet-getitem?mr=1814515
mailto:hayest@tti-c.org
mailto:sinclair@cs.berkeley.edu

	Introduction
	Preliminaries
	Glauber dynamics
	Examples
	Continuous-time dynamics

	Basic ingredients
	Disagreement percolation
	Monotonicity properties

	Main result
	Proof for the case of no hard constraints
	Proof for the general case

	Unbounded degrees and other variations
	Graphs with unbounded degree
	Nonuniform update probabilities
	Block dynamics

	Acknowledgments
	References
	Author's Addresses

