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HYPOELLIPTICITY IN INFINITE DIMENSIONS AND AN
APPLICATION IN INTEREST RATE THEORY1

BY FABRICE BAUDOIN AND JOSEFTEICHMANN

Vienna University of Technology

We apply methods from Malliavin calculus to prove an infinite-dimen-
sional version of Hörmander’s theorem for stochastic evolution equations
in the spirit of Da Prato–Zabczyk. This result is used to show that
HJM-equations from interest rate theory, which satisfy the Hörmander
condition, have the conceptually undesirable feature that any selection of
yields admits a density as multi-dimensional random variable.

1. Introduction. Given a separable Hilbert spaceH and the generatorA
of a strongly continuous group (sic!), we aim to prove a Hörmander theorem
for stochastic evolution equations of the Da Prato–Zabczyk type (see [4] for all
details)

drt = (
Art + α(rt )

)
dt +

d∑
i=1

σi(rt ) dBi
t ,

(E0)
r0 ∈ H,

under the assumption that iterative Lie brackets of the Stratonovich drift and the
volatility vector fields span the Hilbert space. We therefore apply methods from
Malliavin calculus, which have already been used to solve similar questions in
filtering theory (see, e.g., [12]) in stochastic differential geometry (see, e.g., [1]
and [2]) or in stochastic analysis (see, e.g., [7]).

A particular example, which received some attention recently (see, e.g.,
[3] and [6]) is the Heath–Jarrow–Morton equation of interest rate theory (in the
sequel abbreviated by HJM),

drt =
(

d

dx
rt + αHJM(rt )

)
dt +

d∑
i=1

σi(rt ) dBt ,

whereH is a Hilbert space of real-valued functions on the real line. The HJM drift
term is given by

αHJM(r)(x) :=
d∑

i=1

σ i(r)(x)

∫ x

0
σ i(r)(y) dy
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for x ≥ 0 and r ∈ H . In order to apply Theorem 1 to the HJM-equation, we
introduce the relevant setting in Section 3.

The HJM-equation describes the time-evoultion of forward rates (which contain
the full information of a considered bond market) in the martingale measure. It is of
particular importance in applications to identify relevant, economically reasonable
factors in this evolution. More precisely, how do you find a Markov process
with values in some finite-dimensional state space (the space of economically
reasonable factors), such that the whole evolution becomes a deterministic function
of this Markov process? Conditions in order to guarantee this behavior have been
described in [3] and [6]. Economically reasonable factors are the forward rate itself
at some time to maturityx ≥ 0, or averages drawn from it, so-called Yields. If the
time-evolution of interest rates cannot be described by finitely many stochastic
factors, we can imagine the following generic behavior, which we formulate in a
criterion.

CRITERION 1. We denote by(rt (x))t≥0 a forward rate evolution in the
Musiela parametrization, that is, a mild solution of the HJM equation. Forx > 0,
the associated Yield is denoted by

Yt (x) := 1

x

∫ x

0
rt (y) dy,

we defineYt (0) = Rt = rt (0), the short rate process. The evolution is called
generic if for each selection of times to maturity 0≤ x1 < · · · < xn, theR

n-valued
process(Yt (x1), . . . , Yt (xn)) admits a density with respect to the Lebesgue
measure.

REMARK 1. In financial mathematics generic evolutions do not seem reason-
able, since—loosely speaking—the support of the random variablert , for some
t > 0, becomes too big in the Hilbert space of forward rate curves. In other words,
any “shape” of forward rate curves, which we assume from the beginning to model
the market phenomena, is destroyed with positive probability. Hence, the very re-
strictive phenomenon of finite-dimensional realizations for the HJM-equation also
appears as the only structure where “shape” is not destroyed immediately. Hence,
generic evolutions behave essentially different from affine, finite-dimensional re-
alizations, where we can always find tenorsx1 < · · · < xn, such that the Yield
process does not admit a density.

By [6], the existence of finite-dimensional realizations is—among technical
assumptions—equivalent to the fact that the stochastic evolution admits locally
invariant submanifolds (with boundary). This is equivalent to the fact that a certain
Lie algebra of vector fieldsDLA is evaluated to a finite-dimensional subspace of
the Hilbert spaceH at “some” pointsr ∈ H , more precisely, there is a natural
numberM ≥ 1, such that

dimR DLA (r) ≤ M < ∞
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in a dom(A∞)-neighborhood.
In Section 2 we prove the Hörmander-type result for evolution equations where

the drift contains a group generator. We then show in Section 3 that for generic
volatility structures at a pointr0 ∈ H , the HJM-equation leads to a generic
evolution for the initial valuer0.

Conceptually, a generic evolution is not desirable in interest rate theory, since
we expect to exhaust all information by a finite number of Yields. Hence, the result
Theorem 2 can be interpreted as an additional argument for finite-dimensional
realizations. Notice also that this result is invariant under the important equivalent
changes of measure: if we obtain a generic evolution with respect to one fixed
measure, then also with respect to all equivalent measures.

2. Malliavin calculus in Hilbert spaces. In order to set up the methodolog-
ical background, we refer, on the one hand, to the finite-dimensional literature
in Malliavin calculus, such as [11]. On the other hand, we refer to [6] for the
analytical framework, in particular, for questions of differentiability of functions
on infinite-dimensional spaces and for the notion of derivatives of vector fields
V :U ⊂ G → G, whenG is some Fréchet space.

We shall mainly work on Hilbert spaces: then the derivativeDV :U → L(H) is
a linear operator to theBanach space of bounded linear operators, where we can
speak about usual properties as differentiability, boundedness, and so on.

We consider evolution equations of the type

drt = (
Art + α(rt )

)
dt +

d∑
i=1

σi(rt ) dBi
t ,

(E0)
r0 ∈ H,

where A : dom(A) ⊂ H → H is the generator of a strongly continuous group
(Tt )t≥0 on a separable Hilbert spaceH . We apply, furthermore, the following
notation:

dom(Ak) := {h ∈ H | h ∈ dom(Ak−1) andAk−1h ∈ dom(A)},

‖h‖2
dom(Ak)

:=
k∑

i=0

‖Aih‖2,

dom(A∞) = ⋂
k≥0

dom(Ak).

The mapsα,σ1, . . . , σd :H → dom(A∞) are smooth vector fields with the
property thatα,σ1, . . . , σd : dom(Ak) → dom(Ak) are C∞-bounded. As usual
(see, e.g., [11]), a vector fieldV is calledC∞-bounded if each higher derivative
DlV : dom(Ak) → Ll(dom(Ak)) is a bounded function forl ≥ 1. In this caseV
grows at most linearly on dom(Ak).
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Notice that due to the regularity assumptions, we can interpret the equation (E0)
also on the Hilbert space dom(Ak), with the same regularity conditions on
C∞-boundedness,

drt = (
Art + α(rt )

)
dt +

d∑
i=1

σi(rt ) dBi
t ,

(Ek)
r0 ∈ dom(Ak).

A global, mild, continuous solution of equation (Ek) with initial value
r0 ∈ dom(Ak) is an adaped stochastic process with continuous paths(rt )t≥0 such
that

rt = Ttr0 +
∫ t

0
Tt−sα(rs) ds +

d∑
i=1

∫ t

0
Tt−sσi(rs) dBi

s

for t ≥ 0, whereT is the group generated byA. Clearly, every strong, continuous
solution is a mild, continuous solution by variation of constants (see [4]). We shall
often use the vector fieldµ, referred to as Stratonovich drift,

µ(r) := Ar + α(r) − 1
2

d∑
i=1

Dσi(r) · σi(r)

for r ∈ dom(A). Notice that the Stratonovich drift is only well defined on a
dense subspace dom(Ak+1) of dom(Ak) for k ≥ 0, if we wantµ to take values
in dom(Ak). Furthermore,µ is not even continuous. We, nevertheless, have the
following regulartiy result:

PROPOSITION 1. Given equation (Ek), for every r0 ∈ dom(Ak), there is a
unique, global mild solution with continuous paths denoted by (rt )t≥0. The natural
injections dom(Ak) → dom(Ak+1) leave solutions invariant, that is, a solution of
equation (Ek) with initial value in dom(Ak+1) is a also a solution of the equation
with index k +1.More precisely, a mild solution with initial value in dom(Ak+1) is
also a mild solution of the equation with index k + 1, and, hence, a strong solution
of equation (Ek).

A mild solution of equation (Ek) with initial value r0 ∈ dom(Ak+1) is a strong
solution of equation (Ek), hence, the solution process is a semi-martingale and the
Stratonovich decomposition makes sense,

drt = µ(rt ) dt +
d∑

i=1

σi(rt ) ◦ dBi
t .

If we assume thatr0 ∈ dom(A∞), then we can construct a solution process
(rt )t≥0 with continuous trajectories in dom(A∞), since the Picard–Lindelöf



HYPOELLIPTICITY IN INFINITE DIMENSIONS 1769

approximation procedure converges in every Hilbert space dom(Ak), and the
topology of dom(A∞) is the projective limit of the ones on dom(Ak).

For equations of the above type, the following regularity assertions hold true for
the first variation process.

PROPOSITION2. The first variation equations, with respect to (Ek) for k ≥ 0,
are well defined on dom(Ak)

dJs→t (r0) · h = (
A

(
Js→t (r0) · h) + Dα(rt ) · Js→t (r0) · h)

dt

+
d∑

i=1

Dσi(rt ) · (
Js→t (r0) · h)

dBi
t ,

Js→s(r0) · h = h,

for h ∈ dom(Ak), r0 ∈ dom(Ak) and k ≥ 0, t ≥ s. The Stratonovich decomposition
on dom(Ak)

dJs→t (r0) · h = Dµ(rt ) · (
Js→t (r0) · h)

dt

(2.1) +
d∑

i=1

Dσi(rt ) · (
Js→t (r0) · h) ◦ dBi

t

is only well defined for h, r0 ∈ dom(Ak+1), since we need to integrate semi-
martingales. The Itô equation has unique global mild solutions and Js→t (r0)

defines a continuous linear operator on dom(Ak), which is invertible if r0 ∈
dom(Ak+1), k ≥ 0. The adjoint of the inverse (Js→t (r0)

−1)∗ admits the Stratono-
vich decomposition

d
(
Js→t (r0)

−1)∗ · h
= −Dµ(rt )

∗ · ((
Js→t (r0)

−1)∗ · h)
dt(2.2)

−
d∑

i=1

Dσi(rt )
∗ · (

Js→t (r0)
−1)∗ · h ◦ dBi

t

for h, r0 ∈ dom(Ak+1) and k ≥ 0, t ≥ s ≥ 0. We have, furthermore,

Js→t (r0) = J0→t (r0)J0→s(r0)
−1

P-almost surely for t ≥ s ≥ 0.

REMARK 2. We define a Hilbert spaceHk([0, T ]) of progressively measur-
able processes(rs)0≤s≤T such that

E

(∫ T

0
‖rs‖2

dom(Ak)

)
< ∞.

Solutions of equations (Ek) can be viewed as mappingsr0 
→ (rt )0≤t≤T . Then
J0→T (r0) ·h is the derivative of this map in the respective locally convex structures.
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REMARK 3. For the proof of Proposition 2, we need the property that
A and −A generate a semi-group, which is equivalent to the assertion thatA

generates a strongly continuous group (see [4] for further references). Under this
assumption, we can solve the equations forJ0→s(r0) · h in the Hilbert spaces
dom(Ak) and obtain invertibility as asserted. IfA does not generate a strongly
continuous group, the first variations will not be invertible in general.

PROOF OFPROPOSITION2. Under our assumptions, the regularity assertions
are clear, also the calculation of the first variations (see [4] for all details). The
only point left is that we are allowed to pass to the Stratonovich decomposition,
which is correct, since the assertions of Proposition 1 apply and since we integrate
semi-martingales by Itô’s formula on Hilbert spaces (see [4]). Fix nowr0 ∈
dom(Ak+1) andh ∈ dom(Ak+1), then invertibility follows from the fact that the
semi-martingale(〈

Js→t (r0) · h1,
(
Js→t (r0)

−1)∗ · h2
〉
dom(Ak)

)
t≥s≥0

is constant by the respective Stratonovich decomposition, which leads to

〈Js→t (r0)
−1 · Js→t (r0) · h1, h2〉dom(Ak) = 〈h1, h2〉dom(Ak)

for h1, h2 ∈ dom(Ak+1). From this, we obtain left invertibility by continuity.
To prove that the left inverse also is a right inverse, we shall apply the

following reasoning. Given an ortho-normal basis(gi)i≥1 of dom(Ak) which lies
in dom(Ak+1), we can easily compute the semi-martingale decomposition of

N∑
i=1

〈Js→t (r0)
−1 · h1, gi〉dom(Ak)〈gi, Js→t (r0)

∗ · h2〉dom(Ak)

=
N∑

i=1

〈
h1,

(
Js→t (r0)

−1)∗ · gi

〉
dom(Ak)〈Js→t (r0) · gi, h2〉dom(Ak),

for h1, h2 ∈ dom(Ak+1) andN ≥ 1. Now we apply the Stratonovich decomposi-
tion: by adjoining, we can free thegi ’s and pass to the limit, which yields vanishing
finite variation and martingale part. Hence,

〈Js→t (r0)Js→t (r0)
−1 · h1, h2〉dom(Ak)

= lim
N→∞

N∑
i=1

〈Js→t (r0)
−1 · h1, gi〉dom(Ak)〈gi, Js→t (r0)

∗ · h2〉dom(Ak)

= 〈h1, h2〉dom(Ak),

which is the equation for the right inverse.
Finally, the process(J0→t (r0)J0→s(r0)

−1)t≥s satisfies the correct differential
equation and we obtain by uniqueness the desired assertion on the decomposition
of the first variation processJs→t (r0). �
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Crucial for the further analysis is the notion of the Lie bracket of two vector
fieldsV1,V2 : dom(A∞) → dom(A∞) (see [6] for the analytical framework). We
need to leave the category of Hilbert spaces, since the vector fieldµ is only well
defined on dom(A∞) as a smooth vector field. We define

[V1,V2](r) := DV1(r) · V2(r) − DV2(r) · V1(r)

for r ∈ dom(A∞).
Fix r0 ∈ dom(A∞). We then define the distributionD(r0) ⊂ H , which is

generated byσ1(r0), . . . , σd(r0) and their iterative Lie brackets with the vector
fields µ,σ1, . . . , σd , evaluated at the pointr0. Notice that a priori the direction
µ(r0) does not appear in the definition ofD(r0),

D(r0) = 〈σ1(r0), . . . , σd(r0), [σi, σj ](r0), . . . , [µ,σi](r0), . . .〉.
As in the finite-dimensional case, following the original idea of Malliavin [9],

the main theorem is proved by calculation of the (reduced) covariance matrix (see
also [11] for a more recent presentation). We need an additional lemma on Lie
brackets of the type[µ,σi] for i = 1, . . . , d.

LEMMA 1. Given a vector field V : dom(Ak) → dom(A∞), then there is a
smooth extension of the Lie bracket [µ,V ] : dom(Ak+1) → dom(A∞).

PROOF. A vector fieldV : dom(Ak) → dom(A∞) is well defined and smooth
on dom(A∞) ⊂ dom(Ak). There we define the Lie bracket withµ and obtain a
well-defined vector field[µ,V ] : dom(A∞) → dom(A∞). Takeµ(r) = Ar +β(r),
whereβ : dom(Ak) → dom(A∞). Then

[µ,V ](r) := AV (r) + Dβ(r) · V (r) − DV (r) · Ar − DV (r) · β(r).

Since DV (r) : dom(Ak) → dom(A∞), we obtain a smooth extension
on dom(Ak+1). For details and further references on the analysis, see [6].�

THEOREM 1. Fix r0 ∈ dom(A∞) and assume that D(r0) is dense in H . Given
k linearly independent functionals � := (l1, . . . , lk) :H → R, the law of the process
(� ◦ rt )t≥0 admits a density with respect to Lebesgue measure on R

k for t > 0.

PROOF. Take t > 0. We have to form the Malliavin covariance matrixγt ,
which is done by well-known formulas on the first variation (see [11]). The
covariance matrix can be decomposed into

γt = (
� ◦ J0→t (r0)

)
Ct

(
� ◦ J0→t (r0)

)T
,

where the random, symmetric Hilbert–Schmidt-operatorCt , the reduced covari-
ance operator, is defined via

〈y,Cty〉 =
d∑

p=1

∫ t

0
〈y, J0→s(r0)

−1 · σp(rs)〉2 ds.
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We first show thatCt is a positive operator. We denote the kernel ofCt

by Kt ⊂ H and get a decreasing sequence of closed random subspaces ofH .
V = ⋃

t>0 Kt is a deterministic subspace by the Blumenthal zero–one law, that
is, there exists a null setN such thatV is deterministic onNc. We shall do the
following calculus onNc.

We fix y ∈ V , then we consider the stopping time

θ := inf{s, qs > 0},
with respect to the continuous semi-martingale

qs =
d∑

p=1

〈y, J0→s(r0)
−1 · σp(rs)〉2.

Thenθ > 0 almost surely andqs∧θ = 0 for s ≥ 0.
Now, a continuousL2-semi-martingale with values inR

ss − s0 =
d∑

k=1

∫ s

0
αk(u) dBk

u +
∫ s

0
β(u)du

for s ≥ 0, which vanishes up to the stopping timeθ , satisfies—due to the Doob–
Meyer decomposition—

αk(s ∧ θ) = 0

for k = 1, . . . , d.
We shall apply this consideration for the continuous semi-martingalesms :=

〈y, J0→s(r0)
−1 ·σp(rs)〉 on [0, t] for p = 1, . . . , d. Therefore, we need to calculate

the Doob–Meyer decomposition of(ms)0≤s≤t . This can be done simply by
applying equation (2.2) for the adjoint ofJ0→s(r0)

−1,

dms = 〈
d
(
J0→s(r0)

−1)∗ · y,σp(rs)
〉

= −〈
Dµ(rs)

∗ · (
J0→s(r0)

−1)∗ · y,σp(rs)
〉
ds

−
d∑

i=1

〈
Dσi(rs)

∗ · (
J0→s(r0)

−1)∗ · y,σp(rs)
〉 ◦ dBi

s

+ 〈(
J0→s(r0)

−1)∗ · y,Dσp(rs) · µ(rs)
〉
ds

+
d∑

i=1

〈(
J0→s(r0)

−1)∗ · y,Dσp(rs) · σi(rs)
〉 ◦ dBi

s

= 〈(
J0→s(r0)

−1)∗ · y, [σp,µ](rs)〉ds

+
d∑

i=1

〈(
J0→s(r0)

−1)∗ · y, [σp,σi](rs)〉 ◦ dBi
s .
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From the Doob–Meyer decomposition this leads to

〈y, J0→s(r0)
−1 · [σp,σi](rs)〉 = 0,

〈y, J0→s(r0)
−1 · [σp,µ](rs)〉 = 0

for i = 1, . . . , d, p = 1, . . . , d and 0≤ s ≤ θ . Notice that all the appearing Lie
brackets have a smooth extension to some dom(Ak) for k ≥ 0 due to Lemma 1,
where we can repeat the argument recursively.

Consequently, the above equation leads by iterative application to

〈y, J0→s(r0)
−1 · D(rs)〉 = 0

for s ≤ θ . Evaluation ats = 0 yieldsy = 0, sinceD(r0) is dense inH . Hence,
Ct is a positive definite operator. Therefore, we obtain that there is a null setN ,
such that onNc the matrixCt has an empty kernel. Hence, the law is absolutely
continuous with respect to Lebesgue measure, sinceJ0→t (r0) is invertible and,
therefore,γt has an empty kernel (Theorem 2.1.2 in [11], page 86).�

EXAMPLE 1. For instance, if we consider the equation

drt = Art dt +
d∑

i=1

hi dBi
t ,

whereh1, . . . , hd ∈ dom(A∞), then it is easily seen thatD(r0) is dense inH
as soon as the linear span of the orbit(Anhi)n≥0,1≤i≤d is dense inH , for all
r0 ∈ dom(A∞). As an example, we can considerH = L2(R, λ), whereλ denotes
the Lebesgue measure onR, d = 1, A = d

dx
andh1 = e−x2/2. This result is well

known and can be obtained by simpler methods.

EXAMPLE 2. For non-Gaussian random variables the assertion of The-
orem 1 is already nontrivial. Letσ(r) = φ(r)h be a smooth vector field,
φ :H → R aC∞-bounded function, fixr0 ∈ dom(A∞) such thatφ(r0) �= 0. Then
we can calculate conditions such that the Lie algebra atr0 is dense inH ,

µ(r) = Ar − 1
2

(
φ(r)Dφ(r) · h)

h

= Ar + ψ(r)h,

Dµ(r) · g = Ag + (
Dψ(r) · g)

h,

[µ,σ ](r) = φ(r)Ah + φ(r)
(
Dψ(r) · h)

h − (
Dφ(r) · Ar

)
h − ψ(r)

(
Dφ(r) · h)

h

= φ(r)Ah + ψ2(r)h,

hence, the span ofAnh lies in D(r0) (division by φ aroundr0 is performed).
Consequently, a necessary condition forD(r0) to be dense inH is that the linear
span of the orbit(Anh)n≥0 is dense inH .
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3. Applications to interest rate theory. We shall describe a framework for
the HJM-equation, where Theorem 1 applies. This framework is narrower than the
setting given in [5], but it enables us to conclude without worries the desired result.

• H is a separable Hilbert space of continuous functions on the whole real
line containing the constant functions (constant term structures). The point
evaluations are continuous with respect to the topology of the Hilbert space.
Furthermore, we assume that the long rate is well defined and a continuous
linear functionall∞(r) := r(∞) for r ∈ H .

• The shift semigroup(Tt r)(x) = r(t + x) is a strongly continuous group onH
with generatord

dx
.

• The maph 
→ S(h) with S(h)(x) := h(x)
∫ x
0 h(y) dy for x ≥ 0 (if x < 0 this

relation need not hold true) satisfies

‖S(h)‖ ≤ K‖h‖2

for all h ∈ H with S(h) ∈ H for some real constantK . There is a closed
subspaceH0 ⊂ H such thatS(h) ∈ H if and only if h ∈ H0.

EXAMPLE 3. The first example and seminal treating of consistency problems
in interest rate theory is outlined in [3]. Here the Hilbert spaceH is a space of
entire functions, where all the requirements above are fulfilled. In particular, the
shift group is generated by a bounded operatord

dx
on this Hilbert space.

EXAMPLE 4. Hilbert spaces of the above type can be constructed by methods
similar to [5], pages 75–81, and can be chosen of the type (for the notation, see [5])

Hw :=
{
h ∈ H 1

loc(R) | ‖h‖2
w :=

∫ ∞
−∞

|h′(x)|2w(x)dx + |h(0)|2 < ∞
}
.

Notice that, in contrary to [5], we need the forward rate curves to be defined on the
whole real line. The forward curve on the negative real line has no direct financial
interpretation.

We need a further requirement for the volatility vector fields in order that the
functionS is well defined: we define dom(( d

dx
)0) = dom( d

dx
)∩H0 and similar for

all further powers.

• The vector fields are smooth mapsσ i :H → dom(( d
dx

)∞0 ) for i = 1, . . . , d.
• The restriction σ i :U ∩ dom(( d

dx
)k) → dom(( d

dx
)k) are C∞-bounded

for i = 1, . . . , d andk ≥ 0.
• The HJM drift term is defined to be

∑d
i=1 S(σ i)

l∞
(

d∑
i=1

S(σ i)

)
= 0,
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where l∞ denotes the linear functional mapping a term structure to its long
rater(∞). By [8], the long rate of an arbitrage free term structure model is an
increasing process, hence, this condition means that we assume it to be constant.

Under these conditions, we can prove the following lemma, which guarantees
that the hypoellipticity result can be applied.

LEMMA 2. Let the above conditions be in force. Then the Hilbert space
H0 := kerl∞ of term structures vanishing at ∞ is an invariant subspace of the
HJM equation, furthermore,

l∞(rt ) = r∗(∞)

is deterministic for t ≥ 0 for any solution (rt )t≥0 with initial value r∗ of the HJM
equation.

PROOF. We take a mild solution of the HJM equation with initial valuer∗,

rt = Ttr
∗ +

∫ t

0
Tt−sαHJM(rs) ds +

d∑
i=1

∫ t

0
Tt−sσ

i(rs) dBs,

and apply the linear functionalsl∞ to this equation. By continuity, we obtain

l∞(rt ) = l∞(Tt r
∗) +

∫ t

0
l∞

(
Tt−sαHJM(rs)

)
ds +

d∑
i=1

∫ t

0
l∞

(
Tt−sσ

i(rs)
)
dBi

s

= l∞(Tt r
∗),

since l∞(Tt−sαHJM(r)) = 0 and l∞(Tt−sσ
i(r)) = 0 for r ∈ U ⊂ H by our

assumptions. �

With respect to this subspace of codimension 1, we can suppose that the
condition

D(r0) is dense inH0

holds true, since the only deterministic direction of the time evolution, namely,l∞,
is excluded.

THEOREM 2. Take the above conditions and assume that, for some r0 ∈
dom(( d

dx
)∞), the condition

D(r0) is dense in H0

holds true, then for linearly independent linear functionals l1, . . . , ln :H0 → R, the
random variable (l1(rt ), . . . , ln(rt )) has a density.
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PROOF. We have to restrict the reasoning toH0. Take r0 ∈ H and define
r∗ = r0 − r0(∞) ∈ H0 [subtracting the constant term structure at levelr0(∞)].
With the new vector fields,

σ i(r) := σ i(r + r0(∞)
)

for r ∈ H0 and i = 1, . . . , d. The solution of the equation associated to these
vector fields at initial valuer∗ is given through(rt − r0(∞))t≥0, where(rt )t≥0
denotes the solution of the original equation with initial valuer0. Since the
Lie algebraic condition does not change under translation, we can conclude by
Theorem 1 that for the given linearly independentl1, . . . , ln, the random variable
(l1(rt ), . . . , ln(rt )) has a density with respect to Lebesgue measure fort > 0. �

COROLLARY 1. Assume that

D(r0) is dense in H0,

then the evolution of the term structure of interest rates is generic.

PROOF. For x1 < · · · < xn, the linear functionalsYi(r) := ∫ xi

0 r(y) dy for
i = 1, . . . , n are linearly independent as linear functionals on the subspaceH0.

�
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[5] FILIPOVI Ć, D. (2001).Consistency Problems for Heath–Jarrow–Morton Interest Rate Models.
Springer, Berlin.
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