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HYPOELLIPTICITY IN INFINITE DIMENSIONS AND AN
APPLICATION IN INTEREST RATE THEORY?

By FABRICE BAUDOIN AND JOSEFTEICHMANN
Vienna University of Technology

We apply methods from Malliavin calculus to prove an infinite-dimen-
sional version of Hormander's theorem for stochastic evolution equations
in the spirit of Da Prato—Zabczyk. This result is used to show that
HJM-equations from interest rate theory, which satisfy the Hérmander
condition, have the conceptually undesirable feature that any selection of
yields admits a density as multi-dimensional random variable.

1. Introduction. Given a separable Hilbert spadé and the generatoA
of a strongly continuous group (sic!), we aim to prove a Hormander theorem
for stochastic evolution equations of the Da Prato—Zabczyk type (see [4] for all
details)
d .
dry = (Ars +a(ry)) dt + Zo,-(r,)dB;,
i=1
(Eo) ro € H,
under the assumption that iterative Lie brackets of the Stratonovich drift and the
volatility vector fields span the Hilbert space. We therefore apply methods from
Malliavin calculus, which have already been used to solve similar questions in
filtering theory (see, e.g., [12]) in stochastic differential geometry (see, e.g., [1]
and [2]) or in stochastic analysis (see, e.g., [7]).
A particular example, which received some attention recently (see, e.g.,
[3] and [6]) is the Heath—Jarrow—Morton equation of interest rate theory (in the
sequel abbreviated by HIM),

d d
dr, = <d_” + aHaM(m) di + oi(ry) dB;.
* i=1
whereH is a Hilbert space of real-valued functions on the real line. The HIM drift
term is given by

d x
anm() () i= Yo @) [ o ) dy

i=1
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1766 F. BAUDOIN AND J. TEICHMANN

for x > 0 andr € H. In order to apply Theorem 1 to the HIM-equation, we
introduce the relevant setting in Section 3.

The HIM-equation describes the time-evoultion of forward rates (which contain
the full information of a considered bond market) in the martingale measure. Itis of
particular importance in applications to identify relevant, economically reasonable
factors in this evolution. More precisely, how do you find a Markov process
with values in some finite-dimensional state space (the space of economically
reasonable factors), such that the whole evolution becomes a deterministic function
of this Markov process? Conditions in order to guarantee this behavior have been
described in [3] and [6]. Economically reasonable factors are the forward rate itself
at some time to maturity > 0, or averages drawn from it, so-called Yields. If the
time-evolution of interest rates cannot be described by finitely many stochastic
factors, we can imagine the following generic behavior, which we formulate in a
criterion.

CRITERION 1. We denote by(r;(x));>0 a forward rate evolution in the
Musiela parametrization, that is, a mild solution of the HIM equationxFeI0,
the associated Yield is denoted by

1 X
Yt<x>:=;/o r(y)dy.

we defineY;(0) = R; = r;(0), the short rate process. The evolution is called
generic if for each selection of times to maturity0x; < - -- < x,,, theR"-valued
process(Y;(x1), ..., Y:(x,)) admits a density with respect to the Lebesgue
measure.

REMARK 1. Infinancial mathematics generic evolutions do not seem reason-
able, since—loosely speaking—the support of the random variapfer some
t > 0, becomes too big in the Hilbert space of forward rate curves. In other words,
any “shape” of forward rate curves, which we assume from the beginning to model
the market phenomena, is destroyed with positive probability. Hence, the very re-
strictive phenomenon of finite-dimensional realizations for the HIM-equation also
appears as the only structure where “shape” is not destroyed immediately. Hence,
generic evolutions behave essentially different from affine, finite-dimensional re-
alizations, where we can always find tenats< - -- < x,, such that the Yield
process does not admit a density.

By [6], the existence of finite-dimensional realizations is—among technical
assumptions—equivalent to the fact that the stochastic evolution admits locally
invariant submanifolds (with boundary). This is equivalent to the fact that a certain
Lie algebra of vector field®D, 5 is evaluated to a finite-dimensional subspace of
the Hilbert spaceH at “some” pointsr € H, more precisely, there is a natural
numberM > 1, such that

dimg Dia(r) <M < o0
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in a dom A®°)-neighborhood.

In Section 2 we prove the Hérmander-type result for evolution equations where
the drift contains a group generator. We then show in Section 3 that for generic
volatility structures at a pointg € H, the HIM-equation leads to a generic
evolution for the initial valuer.

Conceptually, a generic evolution is not desirable in interest rate theory, since
we expect to exhaust all information by a finite number of Yields. Hence, the result
Theorem 2 can be interpreted as an additional argument for finite-dimensional
realizations. Notice also that this result is invariant under the important equivalent
changes of measure: if we obtain a generic evolution with respect to one fixed
measure, then also with respect to all equivalent measures.

2. Malliavin calculusin Hilbert spaces. In order to set up the methodolog-
ical background, we refer, on the one hand, to the finite-dimensional literature
in Malliavin calculus, such as [11]. On the other hand, we refer to [6] for the
analytical framework, in particular, for questions of differentiability of functions
on infinite-dimensional spaces and for the notion of derivatives of vector fields
V:U C G — G, whenG is some Fréchet space.

We shall mainly work on Hilbert spaces: then the derivaldMé: U — L(H) is
a linear operator to thBanach space of bounded linear operators, where we can
speak about usual properties as differentiability, boundedness, and so on.

We consider evolution equations of the type

d

dry = (Ary + a(r)) dt + Y 0i(r;) dB],
i=1

E

(Eo) ro € H,

where A:dom(A) C H — H is the generator of a strongly continuous group

(Tt):>0 On a separable Hilbert spadé. We apply, furthermore, the following

notation:

dom(AF) := {h € H | h e dom(A*~1) andA*1h € dom(A)},

2 oty = Z 1R,

dom(A™) = (") dom(A¥).
k>0
The mapsa, o1, ...,04: H — dom(A*°) are smooth vector fields with the
property thata, o1, ..., o4 :dom(A¥) — dom(A¥) are C*°-bounded. As usual
(see, e.qg., [11]), a vector field is calledC°°-bounded if each higher derivative
D'V : dom(A¥) — L!(dom(A%)) is a bounded function far> 1. In this caseV
grows at most linearly on dogd*).
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Notice that due to the regularity assumptions, we can interpret the equatpn (
also on the Hilbert space dam’), with the same regularity conditions on
C®-boundedness,

d
dry = (Ar, + a(r))dt + Y _0i(r;) dBj,
i=1
(Ex) L
ro € dom(A¥).

A global, mild, continuous solution of equationEy) with initial value
ro € dom(A%) is an adaped stochastic process with continuous gathso such
that

t d ¢ }
re=Toro+ /O T a(ry)ds+ Y /0 T,_,0i(ry) dB
i=1

for t > 0, whereT is the group generated by. Clearly, every strong, continuous
solution is a mild, continuous solution by variation of constants (see [4]). We shalll
often use the vector field, referred to as Stratonovich drift,

d
u(r)=Ar+a@r)— 3> Doi(r) - oi(r)
i=1
for r € dom(A). Notice that the Stratonovich drift is only well defined on a
dense subspace dgaft) of dom(A*) for k > 0, if we wantyu to take values
in dom(AX). Furthermoreu is not even continuous. We, nevertheless, have the
following regulartiy result:

PROPOSITION1. Given equation (Ey), for every ro € dom(A%), there is a
unique, global mild solution with continuous paths denoted by (r;);>0. The natural
injections dom(A%) — dom(A¥*1) |eave solutions invariant, that is, a solution of
equation (Ey) with initial value in dom(A**1) isa also a solution of the equation
with index k + 1. More precisely, a mild solution with initial valuein dom(A*+1) is
also a mild solution of the equation with index k£ 4+ 1, and, hence, a strong solution
of equation (Ek).

A mild solution of equation £}) with initial value rg € dom(A**+1) is a strong
solution of equationk}), hence, the solution process is a semi-martingale and the
Stratonovich decomposition makes sense,

d

dry = p(r)dt + Y _ 0i(ry) odB}.
i=1

If we assume thaty € dom(A°°), then we can construct a solution process
(r1);>0 With continuous trajectories in dam™), since the Picard—Lindelof
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approximation procedure converges in every Hilbert space(dém and the
topology of doniA*) is the projective limit of the ones on dau®).

For equations of the above type, the following regularity assertions hold true for
the first variation process.

PrRoPOSITION2. Thefirst variation equations, with respect to (Ey) for k > 0,
are well defined on dom(A*)

dJs—(ro) - h = (A(Js—(ro) - h) + Da(ry) - Js—(ro) - h) dt

d
+ > Doi(ry) - (Jy—¢(ro) - h) d By,
i=1

Js—s(ro) -h=h,
for h € dom(AX), ro € dom(A¥) and k > 0, ¢ > s. The Stratonovich decomposition
on dom(A¥)
dJs—i(ro) -h=Du(ry) - (Js—>t(r0) : h) dt

2.1 : '
( ) + Z Dao;(r) - (-]s—>t(r0) : h) ° dBtl

i=1

is only well defined for h,rg € dom(A"*%, since we need to integrate semi-
martingales. The It6 equation has unique global mild solutions and J;_.;(ro)
defines a continuous linear operator on dom(AX), which is invertible if rg €
dom(A*+1), k > 0. The adjoint of the inverse (J;_,; (ro) ~1)* admits the Sratono-
vich decomposition

d(-]x—n(rO)_l)* -h
(2.2) = —Du(r)* - (Jy—i(ro) ™Y - h)dt

d
— Y " Doi(r)* - (Jsi(r0) ™) - h o dB!
i=1

for h,rg € dom(Ak+1) and k > 0, ¢ > s > 0. We have, furthermore,
Jy—1(ro) = Joos 1 (ro) Joos (r0) ™2
P-almost surely for r > s > 0.

REMARK 2. We define a Hilbert spac#} ([0, T]) of progressively measur-
able processes;)o<s<r such that

T
2
2( [ ||rs||domk)> <.

Solutions of equationsH) can be viewed as mappings — (r;)o</<r. Then
Jo_. 7 (ro) - h is the derivative of this map in the respective locally convex structures.
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REMARK 3. For the proof of Proposition 2, we need the property that
A and —A generate a semi-group, which is equivalent to the assertionAhat
generates a strongly continuous group (see [4] for further references). Under this
assumption, we can solve the equations fer.;(rp) - 2 in the Hilbert spaces
dom(A%) and obtain invertibility as asserted. A does not generate a strongly
continuous group, the first variations will not be invertible in general.

PROOF OFPROPOSITION2. Under our assumptions, the regularity assertions
are clear, also the calculation of the first variations (see [4] for all details). The
only point left is that we are allowed to pass to the Stratonovich decomposition,
which is correct, since the assertions of Proposition 1 apply and since we integrate
semi-martingales by It6’s formula on Hilbert spaces (see [4]). Fix mpv
dom(A%+1) andh € dom(A¥*+1), then invertibility follows from the fact that the
semi-martingale

(<Js—>t(r0) ~ha, (Js—>t(r0)_1)>’< : h2>d0m(Ak))t2szO
is constant by the respective Stratonovich decompaosition, which leads to

(Js—n(ro)_l- Js—1(ro) - ha, h2>dom(Ak) = (ha, h2>dom(Ak)

for h1, hy € dom(AK*1). From this, we obtain left invertibility by continuity.

To prove that the left inverse also is a right inverse, we shall apply the
following reasoning. Given an ortho-normal ba&gg); 1 of dom(A¥) which lies
in dom(A**1), we can easily compute the semi-martingale decomposition of

N

Z(Js—n‘(rO)_l - hi, gi)dom(Ak) (gia Js—)t(rO)* : hZ)dom(Ak)
i=1

N
= Z(hl, (Js—>t(r0)_l)* : gi>d0m(Ak)(Js—>t(”0) - 8i> h2>dom(Ak)7
i=1

for hq, ho € dom(A**+1) and N > 1. Now we apply the Stratonovich decomposi-
tion: by adjoining, we can free thg’s and pass to the limit, which yields vanishing
finite variation and martingale part. Hence,

(5=t (r0) Js—1(r0) ™1 - 11, h2) gom k)
N

= lim Z(Js—n(ro)_l ~hy, gi)don‘(Ak)<gi» Js—1(ro)” 'hz)dom(Ak)
Nﬁooizl

= (ha, hz)dom(Ak),
which is the equation for the right inverse.
Finally, the proces$Jo—(ro) Jo—s (ro)_l),zs satisfies the correct differential

equation and we obtain by uniqueness the desired assertion on the decomposition
of the first variation proces#_,,(rg). O
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Crucial for the further analysis is the notion of the Lie bracket of two vector
fields V1, Vo:dom(A®) — dom(A*°) (see [6] for the analytical framework). We
need to leave the category of Hilbert spaces, since the vectonfiedanly well
defined on dorpA*°) as a smooth vector field. We define

[V1, V2l(r) := DV1(r) - Va(r) — DVa(r) - Va(r)

for r e dom(A®).

Fix rg € dom(A®°). We then define the distributiokD (rg) C H, which is
generated by1(ro), ..., 04(r0) and their iterative Lie brackets with the vector
fields u, 01, ..., 04, evaluated at the point. Notice that a priori the direction
wu(ro) does not appear in the definition &f(rg),

D(ro) = {(01(r0), ..., 0a(r0), [0i, 0;1(ro), . .., [, 0i1(r0), - . ).

As in the finite-dimensional case, following the original idea of Malliavin [9],
the main theorem is proved by calculation of the (reduced) covariance matrix (see
also [11] for a more recent presentation). We need an additional lemma on Lie
brackets of the typgu, o;]1fori =1,...,d.

LEMMA 1. Given a vector field V :dom(A¥) — dom(A®), then there is a
smooth extension of the Lie bracket [, V]:dom(A*+1) — dom(A®).

PROOFE A vector fieldV : dom(A¥) — dom(A*®) is well defined and smooth
on domA®) c dom(A¥). There we define the Lie bracket with and obtain a
well-defined vector fieldw, V]:dom(A%°) — dom(A>). Takeu(r) = Ar + B(r),
whereg :dom(A¥) — dom(A>). Then

[w, VI(r) :=AV(#r)+ DB(r) - V(r) — DV (r)- Ar — DV (r) - B(r).
Since DV(r):dom(A¥) — dom(A®), we obtain a smooth extension
on domA¥+1). For details and further references on the analysis, see [6].

THEOREM1. Fixrge dom(A*) and assumethat D (rg) isdensein H. Given
k linearly independent functionals ¢ := (I1, ..., lx) : H — R, thelaw of the process
(¢ o r1)>0 admits a density with respect to Lebesgue measure on R¥ for ¢ > 0.

PrRoOF Taker > 0. We have to form the Malliavin covariance mathix,
which is done by well-known formulas on the first variation (see [11]). The
covariance matrix can be decomposed into

Vi = (€0 Jos 1 (r0))Cy (£ 0 Joos 1 (ro))

where the random, symmetric Hilbert—-Schmidt-operaigrthe reduced covari-
ance operator, is defined via

d ot
0.C =3 [0 doms G0 0, 1))
r=1 0
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We first show thatC, is a positive operator. We denote the kernel (f
by K, ¢ H and get a decreasing sequence of closed random subspaées of
V =U,-0K: is a deterministic subspace by the Blumenthal zero—one law, that
is, there exists a null sé¥ such thatV is deterministic onv¢. We shall do the
following calculus onv°©.

We fix y € V, then we consider the stopping time

0 :=inf{s, g; > 0},

with respect to the continuous semi-martingale
d

qs = Z()’a JO—)S(VO)_l : Up(rs)>2-

p=1

Thend > 0 almost surely ang; g =0 fors > 0.
Now, a continuousLZ—semi—martingale with values R

d N N
Sy — S0 = Z/ ak(u)dB,l: —i—/ Bu)du
=170 0
for s > 0, which vanishes up to the stopping timgsatisfies—due to the Doob—
Meyer decomposition—
ar(s AO)=0

fork=1,...,d.

We shall apply this consideration for the continuous semi-martingales=
(y, Jo_>s(ro)_1 -op(rs))on[0,t]for p=1,...,d. Therefore, we need to calculate
the Doob—Meyer decomposition afng)o<s<;. This can be done simply by
applying equation (2.2) for the adjoint d§_ ; (ro) 2,

dmg = <d(-]0—>s(r0)_1)* Y, Gp(rs)>
—(Du(re)* - (Joss(ro) ™ 1)* - y, 0 (rs))ds

d
— Y (Doi(r)* - (Joms(ro) ™)+ y, 0, (rs)) 0 d B}
i=1
+{(Joos(r0) 1) - y, Doy (rs) - u(ry)) ds
d
Z Joos(ro)™1)" -y, Do (ry) - i (ry)) 0 d B}

= <(JO—>S(FO)_ ) -y, [Upa M](’"s))ds

d
+ Y ((Jos (0 ™) v, [0, 071(r)) 0 d By,
i=1
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From the Doob—Meyer decomposition this leads to
(v, Joos (r0) ™ - [0, 071(ry)) =,

(¥, Jos (r)) 1+ [0, pl(rs)) =0

fori=1....,d,p=1,...,d and 0< s < 6. Notice that all the appearing Lie
brackets have a smooth extension to some @dmfor k > 0 due to Lemma 1,
where we can repeat the argument recursively.

Consequently, the above equation leads by iterative application to

(v, Joss(r) ™t - D(ry)) =0

for s < 6. Evaluation ats = 0 yieldsy = 0, sinceD(rg) is dense inH. Hence,

C; is a positive definite operator. Therefore, we obtain that there is a nuN set
such that onrW¢ the matrixC; has an empty kernel. Hence, the law is absolutely
continuous with respect to Lebesgue measure, sigcg (o) is invertible and,
therefore; has an empty kernel (Theorem 2.1.2 in [11], page 86).

ExaMPLE 1. Forinstance, if we consider the equation
d .
dr,=Ar;dt +)_h;idBj,
i=1
wherehy, ..., hy € dom(A®), then it is easily seen thab(rp) is dense inH
as soon as the linear span of the orpit’4;),>0,1<i<¢ IS dense inH, for all
ro € dom(A®). As an example, we can considdr= L2(R, 1), wherei denotes

the Lebesgue measure 81d =1, A = % andhy = ¢=*°/2_ This result is well
known and can be obtained by simpler methods.

ExAMPLE 2. For non-Gaussian random variables the assertion of The-
orem 1 is already nontrivial. Let(r) = ¢(r)h be a smooth vector field,
¢ H— R aC*-bounded function, fixg € dom(A°°) such thatp (rg) # 0. Then
we can calculate conditions such that the Lie algebra st dense inH,

u(r) = Ar = 3((r)D$(r) - h)h
= Ar + ¥ (r)h,
Du(r)-g=Ag+ (Dy(r)-g)h,
[w, 01(r) = ¢(r)Ah + () (DY (r) - h)h — (Dp(r) - Ar)h — y (r)(D(r) - h)h
— ¢ (r)Ah + Ya(r)h,

hence, the span oA lies in D(rg) (division by ¢ aroundrg is performed).
Consequently, a necessary condition §&(rg) to be dense irH is that the linear
span of the orbitA" 1), is dense inA.
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3. Applications to interest rate theory. We shall describe a framework for
the HIM-equation, where Theorem 1 applies. This framework is narrower than the
setting given in [5], but it enables us to conclude without worries the desired result.

e H is a separable Hilbert space of continuous functions on the whole real
line containing the constant functions (constant term structures). The point
evaluations are continuous with respect to the topology of the Hilbert space.
Furthermore, we assume that the long rate is well defined and a continuous
linear functional, (r) :=r(oc0) forr € H.

e The shift semigroufd7;r)(x) = r(¢t + x) is a strongly continuous group o
with generatorL .

e The maph — $(h) with 8(h)(x) := h(x) [y h(y)dy for x > 0 (if x <O this
relation need not hold true) satisfies

I8l < K |h|)?

for all h € H with 8(h) € H for some real constank. There is a closed
subspaceédy C H such that§(h) € H if and only if & € Hy.

ExAMPLE 3. The first example and seminal treating of consistency problems
in interest rate theory is outlined in [3]. Here the Hilbert sp#tes a space of
entire functions, where all the requirements above are fulfilled. In particular, the
shift group is generated by a bounded operg’;oon this Hilbert space.

ExAMPLE 4. Hilbert spaces of the above type can be constructed by methods
similar to [5], pages 75-81, and can be chosen of the type (for the notation, see [5])

o 2
Hy, = {h € HY.(R) | |12 :=/ |h (x)|“w(x) dx + |h(0)? < oo}.
—00
Notice that, in contrary to [5], we need the forward rate curves to be defined on the
whole real line. The forward curve on the negative real line has no direct financial
interpretation.

We need a further requirement for the volatility vector fields in order that the
function 4 is well defined: we define doft )o) = dom(:4) N Ho and similar for
all further powers.

e The vector fields are smooth maps: H — dom((%)go) fori=1,...,d.

e The restriction o:U N dom((:b)*) — dom((L)¥) are C*-bounded
fori=1,...,d andk > 0.

e The HIM drift term is defined to bE?_; $(c")

d
zoo<25(of)> =0,
i=1
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wherel,, denotes the linear functional mapping a term structure to its long
rater(co). By [8], the long rate of an arbitrage free term structure model is an
increasing process, hence, this condition means that we assume it to be constant.

Under these conditions, we can prove the following lemma, which guarantees
that the hypoellipticity result can be applied.

LEMMA 2. Let the above conditions be in force. Then the Hilbert space
Hp := Kerl, of term structures vanishing at oo is an invariant subspace of the
HJIM equation, furthermore,

loo (1) = r*(0)

is deterministic for > 0 for any solution (), With initial value r* of the HIM
equation.

PROOF We take a mild solution of the HIM equation with initial valtie

t d ¢ )
ry = Ttr* +/0 T, _sapam(rs) ds + Z/O Tt—sal(rs)st»
i=1

and apply the linear functionals, to this equation. By continuity, we obtain

loo (1) = Ioo(Tyr )+/ (Ty—sarm(rs) ds+Z/ (Ty—s0' (ry)) d B

= loo(T;1™),
since loo (T)—sanam(r)) = 0 and loo(T;,—so'(r)) = 0 for r € U C H by our
assumptions. [J

With respect to this subspace of codimension 1, we can suppose that the
condition

D(rg) is dense inHy

holds true, since the only deterministic direction of the time evolution, namgly,
is excluded.

THEOREM 2. Take the above conditions and assume that, for some rg €
dom((:£)>), the condition

D(ro) isdensein Hy

holdstrue, then for linearly independent linear functionals!, ..., I, : H) — R, the
randomvariable (I1(r;), ..., 1,(r;)) hasadensity.
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PROOE We have to restrict the reasoning Hy. Takerg € H and define
r* =ro — ro(oc0) € Hp [subtracting the constant term structure at lexgbo)].
With the new vector fields,

ol(r) =o' (r +ro(c0))

for r e Hp andi = 1,...,d. The solution of the equation associated to these
vector fields at initial value™* is given through(r; — ro(c0)),>0, Where (r;),>o
denotes the solution of the original equation with initial valie Since the

Lie algebraic condition does not change under translation, we can conclude by
Theorem 1 that for the given linearly independént . ., /,,, the random variable
(I1(ry), ..., I, (r;)) has a density with respect to Lebesgue measure$0d. [

COROLLARY 1. Assume that
D(ro) isdensein Hy,

then the evolution of the term structure of interest ratesis generic.

PROOF For x1 < --- < x,, the linear functionals; (r) := f(’f" r(y)dy for
i =1 ...,n are linearly independent as linear functionals on the subsfgce
O
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