
The Annals of Applied Probability
2005, Vol. 15, No. 2, 1339–1366
DOI 10.1214/105051605000000034
© Institute of Mathematical Statistics, 2005

ON THE CONVERGENCE FROM DISCRETE TO CONTINUOUS
TIME IN AN OPTIMAL STOPPING PROBLEM1

BY PAUL DUPUIS AND HUI WANG

Brown University

We consider the problem of optimal stopping for a one-dimensional
diffusion process. Two classes of admissible stopping times are considered.
The first class consists of all nonanticipating stopping times that take values
in [0,∞], while the second class further restricts the set of allowed values
to the discrete grid{nh :n = 0,1,2, . . . ,∞} for some parameterh > 0.
The value functions for the two problems are denoted byV (x) andV h(x),
respectively. We identify the rate of convergence ofV h(x) to V (x) and the
rate of convergence of the stopping regions, and provide simple formulas for
the rate coefficients.

1. Introduction. One of the classical formulations of stochastic optimal
control is that of optimal stopping, where the only decision to be made is when
to stop the process. Upon stopping, a benefit is received (or a cost is paid),
and the objective is to maximize the expected benefit (or minimize the expected
cost). Although the formulation is very simple, this optimization problem has
many practical applications. Examples include the pricing problems in investment
theory, the valuation of American options, the development of natural resources
and so on [1, 2, 4, 5, 8, 11, 12, 19–22].

The formulation of the optimal stopping problem requires the specification
of the class of allowed stopping times. Typically, one assumes these to be
nonanticipative in an appropriate sense, so that the control does not have
knowledge of the future. Another important restriction is with regard to the actual
time values at which one can stop, and here there are two important cases:
continuous time and discrete time. In the first case, the stopping time is allowed to
take values in the interval[0,∞], with ∞ corresponding to the decision to never
stop. In the second case, there is a fixed discrete set of times, and the stopping
time must be selected from this set. Typically, this discrete set is a regular grid, for
example,Dh .= {nh :n ∈ N0 ∪ {∞}}, whereh > 0 is the grid spacing.

In the present paper we focus exclusively on the one-dimensional case.
Although a statement of precise assumptions is deferred to Section 2, a rough
description of the continuous and discrete time problems is as follows.
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Continuous time optimal stopping. We use the stochastic process model

dSt

St

= b(St ) dt + σ(St ) dBt ,

whereb andσ are bounded continuous functions fromR to R, andB is a standard
Brownian motion. Although the results can be extended to cover other diffusion
models as well, we focus on this model because of its wide use in optimal stopping
problems that occur in economics and finance. We consider a payoff defined in
terms of a nondecreasing functionφ :R → [0,∞). The payoff from stopping at
time t is φ(St ), and the decision maker wants to maximize the expected present
value by judiciously choosing the stopping time. This is modeled by the optimal
stopping problem with value function

V (x)
.= sup

τ∈S
E[e−rτ φ(Sτ )|S0 = x],

wherer > 0 is the discount rate andS is the set of all admissible stopping times.
The stopping times are allowed to take values in[0,∞]. Let

LV (x) = 1
2σ 2(x)x2V ′′(x) + b(x)xV ′(x).

Then the dynamic programming equation for this problem is

max[φ(x) − V (x),LV (x) − rV (x)] = 0.

If φ is convex and nondecreasing, it is often optimal to stop when the processSt

first exceeds some fixed thresholdx∗. In this case, the value functionV (x) equals
φ(x) for x ≥ x∗, and it satisfies the ordinary differential equation−rV (x) +
LV (x) = 0 for x < x∗.

Discrete time optimal stopping. The process model is the same as before, but
the set of possible stopping times is restricted to those that take values in the
time grid Dh .= {nh :n ∈ N0 ∪ {∞}}. The optimal strategy is often similar to the
continuous time case: stop the first timeSnh exceeds some fixed thresholdxh∗ .
Let V h(x) denote the value function. The pair(V h(x), xh∗ ) satisfy the dynamic
programming equation [25]

V h(x) =
{

φ(x), x ∈ [xh∗ ,∞),

e−rhE[V h(Sh)|S0 = x], x ∈ (0, xh∗ ).

Closed-form solutions to this dynamic programming equation are not usually
available.

The aim of the present paper is to examine the connection between these two
optimal stopping problems ash → 0. There are two questions of main interest:

• What is the convergence rate of the optimal exercise boundaryxh∗ to x∗, and
what is the rate coefficient?
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• What is the convergence rate of the value functionV h(x) to V (x), and what is
the rate coefficient?

The goal is to use the more readily available solution to the continuous time
problem to approximate the solution in discrete time. As we will see in Section 2,
the optimal exercise boundaries converge with rate

√
h, while the value functions

converge with rateh. In both cases there is a well-defined rate coefficient. The
coefficient in the case of the exercise boundary is defined in terms of the expected
value of a functional of local time of Brownian motion, while the coefficient for
the value function involves both local time and excursions of Brownian motion.

Few existing results are concerned with the rate of convergence of approxima-
tions for this class of problems. Lamberton [17, 18] considers the binomial tree ap-
proximation for pricing American options and its generalizations in order to obtain
upper and lower bounds (though not a rate of convergence) for the value function.
The pricing of American options is equivalent to solving a finite-horizon optimal
stopping problem, and there is no closed form solution. The goal in [17, 18] is, in
fact, opposite that of the present paper, in that the discrete time problem is used to
approximate the continuous time problem.

As we have noted previously, the motivation for this study is to exploit situations
where the continuous time problem can be more or less solved explicitly (e.g.,
the one-dimensional problems considered in the present work). Our results allow
one to explicitly compute accurate approximations for the discrete time problem,
and thus avoid numerical approximation. Whether or not one can find a precise
rate of convergence and rate coefficients for the analogous question in numerical
approximation (where both time and state are discretized) is an interesting open
question.

The outline of the paper is as follows. In Section 2 we introduce notation and
define the basic optimization problems. Two important universal constants are
introduced in Section 3. In Section 4 we state the main result, give an illustrative
example, and then lay out the main steps in the proof of the approximation
theorem. The proofs of two key approximations which are intimately connected
with the local time and excursions of Brownian motion are given in Section 5. The
paper concludes with an Appendix in which (i) a result on a conditional distribution
of the exit time is proved, and (ii) representations for the universal constants are
derived.

2. Notation, assumptions and background. Consider a probability space
(�,F ,P ;F) with filtration F = (Ft ) satisfying the usual conditions: right-
continuity and completion byP -negligible sets. Thestate process S = (St ,Ft )

is modeled by

dSt

St

= b(St ) dt + σ(St ) dBt , S0 ≡ x.
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HereB = (Bt ,Ft ) is a standard Brownian motion.
Define the continuous time value function

V (x)
.= sup

τ∈S
E[e−rτ φ(Sτ )|S0 = x],

where the supremum is over all stopping times with respect to the filtrationF.
Define the discrete time value function

V h(x)
.= sup

τ∈Sh

E[e−rτ φ(Sτ )|S0 = x],

whereSh is the set of all stopping times that take values inDh.
The following assumptions will be used throughout the paper.

CONDITION 2.1.

1. The coefficientsb :R → R andσ :R → R are bounded and continuous, with
infx∈R σ(x) > 0. Furthermore,xb(x) andxσ(x) are Lipschitz continuous.

2. φ :R → [0,∞) is nondecreasing, and bothφ and its derivativeφ′ are of
polynomial growth. Furthermore,

sup
t≥0

e−rtφ(St ) ∈ L
1, lim

t→∞ e−rtφ(St ) = 0 a.s.

3. The “continuation” region for the continuous-time optimal stopping problem
takes the form{x :V (x) > φ(x)} = (0, x∗).

4. The “continuation” region for the discrete-time optimal stopping problem takes
the form{x :V h(x) > φ(x)} = (0, xh∗ ).

5. The payoff functionφ is twice continuously differentiable in a neighborhood
of x∗.

6. The smooth-fit-principle holds, that is, the value functionV is C1 across the
optimal exercise boundaryx∗.

As noted in the Introduction,V satisfies the dynamic programming equation

max[φ(x) − V (x),LV (x) − rV (x)] = 0.

Note that usuallyV is only once continuously differentiable across the optimal
exercise boundaryx = x∗. Sinceφ(x) = V (x) if x ∈ [x∗,∞) andφ(x) < V (x) if
x ∈ (0, x∗), it follows thatV ′′(x∗−) ≥ φ′′(x∗), where the− denotes limit from the
left. Define

A
.= V ′′(x∗−) − φ′′(x∗)

φ(x∗)
≥ 0.(2.1)

Although one can construct examples whereA = 0, as the next remark shows, the
caseA > 0 is in a certain sense generic. We will assume this condition below, and
note that the rate of convergence of the optimal threshold does not depend onA at
all.
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REMARK 2.1. The change of variablet = − logx can be used to transform the
ordinary differential equation (ODE)Lf (x) − rf (x) = 0 on(0,∞) into the ODE

1
2σ(e−t )W ′′(t) + [1

2σ(e−t ) − b(e−t )
]
W ′(t) − rW(t) = 0

onR. Sinceσ(x) > 0 for x > 0, the classical theory for solutions of ODEs [3] can
be used to show that the general solution toLV (x) − rV (x) = 0 can be written
in the form c1f1(x) + c2f2(x), wheref1(x) is positive and bounded asx ↓ 0
andf2(x) is unbounded asx ↓ 0. Under Condition 2.1, the functionf1 is twice
continuously differentiable on(0,∞). V (x) is then equal toc1f1(x) for x ∈ (0, x∗]
and equal toφ(x) for x ∈ [x∗,∞), wherec1 andx∗ are determined by the principle
of smooth fit, that is,

c1f1(x∗) = φ(x∗) and c1f
′
1(x∗) = φ′(x∗).

REMARK 2.2. If S is a geometric Brownian motion withb(x) ≡ b and
σ(x) ≡ σ , andφ(x) = (x − k)+ for some constantk, then Condition 2.1 holds
when r > b [8]. For r < b, the value function for the optimal stopping problem
is +∞, and there is no optimal stopping time. For the boundary caser = b, the
value functionV (x) ≡ x and there is no optimal stopping time.

REMARK 2.3. It is usually not a priori clear if parts 3 and 4 of Condition 2.1
hold for a general state process. Counterexamples can be found in [6, 10].
Interested readers may also find the results in [7] helpful.

Below we give a sufficient condition that is very easy to verify in the case
φ(x) = (x − k)+. Suppose parts 1 and 2 of Condition 2.1 hold, that derivatives
of b andσ exist and are Hölder continuous for someδ > 0, and, in addition, that

r ≥ sup
x∈(0,∞)

{b(x) + xb′(x)}.

We claim that parts 3 and 4 of Condition 2.1 hold. We will show that part 3 holds
and omit the analogous proof for 4. Now fixx ≥ y. We have [15]

Zt
.= Sx

t − S
y
t =

∫ x

y
Dz

t dz,

whereDz
t = ∂Sz

t /∂z satisfies the SDE

dDz
t

Dz
t

= [b(Sz
t ) + Sz

t b
′(Sz

t )]dt + [σ(Sz
t ) + Sz

t σ
′(Sz

t )]dBt , Dz
0 = 1.

Note thatDz andZ are both nonnegative processes. The condition onr implies
{e−rtDz

t } is a supermartingale, and, therefore, so is{e−rtZt }. Observe thatx ≥ y

implies

φ(x) − φ(y) = (x − k)+ − (y − k)+ ≤ x − y.
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Thus, for any stopping timeτ ∈ [0,∞],
Ee−rτ [φ(Sx

τ ) − φ(Sy
τ )] ≤ E[e−rτZτ ] ≤ Z0 = x − y,

where the second inequality follows from the optional sampling theorem. It
follows immediately that, for allx ≥ y,

V (x) − V (y) ≤ x − y.

This implies that

{x :V (x) = φ(x)} = [x∗,∞)

for some real numberx∗. Indeed, ifV (y) = φ(y) = (y − k)+, then sinceV > 0,
we must havey > k. It follows that, for allx ≥ y,

V (x) ≤ V (y) + (x − y) = (y − k) + (x − y) = x − k = φ(x).

But V ≥ φ trivially, whenceV (x) = φ(x) for all x ≥ y. This completes the proof.

REMARK 2.4. If S is a geometric Brownian motion withb(x) ≡ b, and
σ(x) ≡ σ , andφ(x) = (

∑
i Aix

αi − k)+ for some positive constants(Ai, αi) and
k ≥ 0, then one can show thatV (x)−φ(x) is decreasing, which in turn implies that
parts 3 and 4 of Condition 2.1 hold. A similar argument can be found in [11, 14].

REMARK 2.5. We wish to point out that part 6 of Condition 2.1 (i.e., the
principle of smooth fit) is not an ad hoc assumption. Much research has been
done on the validity of this principle under various conditions, especially for the
one-dimensional diffusion case. Interested readers may find the list of references
[6, 11, 14, 24] useful.

3. Two universal constants. In this section we introduce a pair of universal
constants that play an important role in determining the rate coefficients of the
convergence.

Let B be a standard one-dimensional Brownian motion. For a fixed constant
u ∈ [0,1), define the processW = {Wt, t ≥ u} by

Wt
.= Bt − Bu.

In other words,W is a Brownian motion starting at timet = u with initial
condition 0. LetN .= inf{n ∈ N :Wn ≥ 0}. Note thatN is finite with probability
one. Define

H(u)
.= EW2

N and M(u)
.= EWN.(3.1)

In terms of these functions, we define the constants

� =
∫ 1

0
H(u)du and 	 =

∫ 1

0
M(u)du.(3.2)
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Note thatH(u) > M2(u), and, therefore,

� =
∫ 1

0
H(u)du >

∫ 1

0
M2(u) du ≥

(∫ 1

0
M(u)du

)2

= 	2.

Expressions (3.1) and (3.2) for� and	 are useful for purposes of approxima-
tion (e.g., Monte Carlo simulation). However, the next lemma connects them with
the quantities that will actually arise in the approximation of the optimal stopping
problem. The proof of the lemma is given in the Appendix.

LEMMA 3.1. For every fixed u ∈ [0,1),

H(u) = E

∫ N

u
1{Wt≥0} dt and M(u) = ELW

u,N(0),

where LW
u,N(0) is the local time of W on the interval [u,N].

REMARK 3.1. We have employed Monte Carlo simulation to obtain the
approximations� ≈ 0.589 and	 ≈ 0.582.

4. The approximation theorem. Our main result is the following.

THEOREM 4.1. Assume Condition 2.1, and define the constants A, � and
	 by (2.1) and (3.2). Assume that A > 0. The following conclusions hold for all
x ∈ (0, x∗):

1.

V h(x) − V (x)

V (x)
= −1

2
Ax2∗σ 2(x∗)(� − 	2)h + o(h).

2.

xh∗ = x∗ − 	x∗σ(x∗)
√

h + o
(√

h
)
.

EXAMPLE 4.1. Consider the special case whereb(x) ≡ b and σ(x) ≡ σ .
Assumer > b andφ(x) = (x − k)+ for some constantk > 0. It follows that the
value function for the continuous time optimal stopping problem is

V (x) =
{

Bxα, x < x∗,
x − k, x ≥ x∗,

where

α =
(

1

2
− b

σ 2

)
+

√(
1

2
− b

σ 2

)2

+ 2r

σ 2 , B = x∗ − k

xα∗
and

x∗ = α

α − 1
k.
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According to the theorem,

xh∗ = x∗
(
1− 	σ

√
h

) + o
(√

h
) = αk

α − 1

(
1− 	σ

√
h

) + o
(√

h
)

and

A = V ′′(x∗−) − φ′′(x∗)
x∗ − k

= Bα(α − 1)(x∗)α−2

x∗ − k
,

which, after some algebra, yields

V h(x) − V (x)

V (x)
= −1

2
α(α − 1)(� − 	2)σ 2h + o(h).

4.1. Overview of the proof. In this section we outline and prove the main steps
in the proof of Theorem 4.1. The proofs of two key asymptotic expansions are
deferred to the next section.

To simplify the analysis, we first introduce a bounded modification of the
payoff functionφ. This modification will not affect the asymptotics at all; see
Proposition 4.2.

Let φ̄ ≤ φ be an increasing function satisfying

φ̄(x) =
{

φ(x), if x ≤ x∗ + a,

k, if x ≥ x∗ + 2a.
(4.1)

Herea andk are two positive constants, whose specific values are not important.
Without loss of generality, we assume thatφ̄ is twice continuously differentiable in
the region[x∗,∞). Supposeh andδ are two positive constants, and letxδ

.= x∗ −δ.
We consider the quantities

W̄δ(x)
.= Ex[

e−rτδ φ̄
(
Sτδ

)]
and Wδ(x) = Ex[

e−rτδφ
(
Sτδ

)]
,

where

τδ
.= inf{t ≥ 0 :St ≥ xδ},

andEx denotes expectation conditioned onS0 = x. Note thatWδ(x) = W̄δ(x) for
all x ≤ xδ . We also define

W̄h
δ (x)

.= Ex[
e−rτh

δ φ̄
(
Sτh

δ

)]
and Wh

δ (x)
.= Ex[

e−rτh
δ φ

(
Sτh

δ

)]
,

where

τh
δ

.= inf{nh ≥ 0 :Snh ≥ xδ}.
These are all cost functions for an a priori fixed (and possibly suboptimal) stopping
region.
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Main idea of the proof. The main idea for proving the rates of convergence is
as follows. Write

Wh
δ (x) − V (x) = [Wh

δ (x) − W̄h
δ (x)] + [W̄h

δ (x) − W̄δ(x)] + [W̄δ(x) − V (x)].
For each term, we will obtain approximations ash andδ tend to zero. It turns out
the leading term for the sum has the following form:

−1
2a1δ

2 + a2δ
√

h + a3h + higher-order term.

Herea1, a2 anda3 are constants with respect toδ andh (though some will depend
on x) and witha1 > 0. Sincexh∗ is the optimal exercise boundary for the discrete
problem, the mappingδ → Wh

δ (x) attains its maximum atδ∗ = x∗ − xh∗ . Hence,
one would expect thatδ∗ would approximately maximize the leading term, or

δ∗ = a2

a1

√
h + o

(√
h

)
.(4.2)

Substituting this back in, one would further expect

V h(x) = Wh
δ∗(x) =

(
−a2

2

a1
+ a3

)
h + o(h).

Thus, we obtain the precise asymptotic behavior of both the stopping regions and
the value functions once the quantitiesa1, a2 anda3 are determined.

This is, in fact, how the argument will proceed. We begin with the estimation
of the first term, which turns out to be negligible for smallh and δ. Define the
quantity

δ,h
.= Wh

δ (x) − W̄h
δ (x) = Ex[

e−rτh
δ
(
φ

(
Sτh

δ

) − φ̄
(
Sτh

δ

))]
.(4.3)

We have the following result.

PROPOSITION4.2. Define δ,h by (4.3). There exist constants L < ∞ and
ε > 0 such that

|δ,h| ≤ Le−ε/h

for all sufficiently small δ and h.

PROOF. The proof is based on the following bound. Leta be as in the
characterization (4.1) of̄φ. Then for anyx ≤ x∗, y ≥ x∗ + a, andh > 0, we have

P(Sh > y|S0 = x) ≤ exp
{
− 1

c2h

[
log

y

x∗
− c1h

]2}
,(4.4)

where the positive constantsc1, c2 depend only on the coefficientsb,σ . The proof
of this inequality is a standard application of exponential martingales [23], and
thus omitted.
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We now complete the proof of the proposition. To ease the exposition, we useτ

in lieu of τh
δ throughout the proof. We have

δ,h =
∞∑

n=1

e−rnhEx[(
φ(Snh) − φ̄(Snh)

)
1{τ=n}

]

≤
∞∑

n=1

e−rnh
∫ ∞
a+x∗

|φ′(y) − φ̄′(y)|P x(Snh > y, τ = n)dy.

Fix ann ∈ N. Define the stopping timeσ .= inf{t ≥ (n − 1)h :St ≥ xδ}. Then

P x(Snh > y|τ = n)

=
∫ h

0
P x(

Snh > y|σ = nh − t, Snh ≥ xδ, S(n−1)h < xδ, . . . , S0 < xδ

)

× P x(
σ ∈ nh − dt |σ ≤ nh,Snh ≥ xδ, S(n−1)h < xδ, . . . , S0 < xδ

)
.

However, the strong Markov property implies, for allt ∈ [0, h], that

P x(
Snh > y|σ = nh − t, Snh ≥ xδ, S(n−1)h < xδ, . . . , S0 < xδ

)
= P(St > y|S0 = xδ, St ≥ xδ)

= P(St > y|S0 = xδ)/P (St ≥ xδ|S0 = xδ).

The denominator in this display is uniformly bounded from below away from zero,
for all t ∈ [0,1]:

P(St ≥ xδ|S0 = xδ) ≥ α > 0.

(See the proof of Lemma 5.5 for the detailed calculations in an analogous setting.)
Using (4.4), for all smallh > 0 andt ∈ (0, h),

P(St > y|S0 = xδ) ≤ exp
{
− 1

c2t

[
log

y

x∗
− c1t

]2}

≤ exp
{
− 1

c2h

[
log

y

x∗
− c1h

]2}
.

Now sinceφ′ is of polynomial growth and̄φ′(x) is zero for largex, it follows
that there are finite constantsR andm such that

|φ′(y) − φ̄′(y)| ≤ Rym−1 for all y > x∗ + a.

Hence, for all smallδ > 0, the change of variablex = log(y/x∗) − c1h gives

δ,h ≤ R

α

∞∑
n=1

e−rnhP x(τ = n)

∫ ∞
a+x∗

ym−1 exp
{
− 1

c2h

[
log

y

x∗
− c1h

]2}
dy

= R

α
(x∗)memc1h

∞∑
n=1

e−rnhP x(τ = n)

∫ ∞
log(1+a/x∗)−c1h

emx−x2/(c2h) dx.
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Let � be the cumulative distribution function for the standard normal distribution.
Forh small enough, there exists positive numbersā, C̄, c̄ such that

δ,h ≤ C̄

∞∑
n=1

e−rnhP x(τ = n)

∫ ∞
log(1+ā/x∗)

e−x2/(c̄h) dx

= C̄
√

2πc̄ · �
[
− 1√

c̄h
log

(
1+ ā

x∗

)]
· √h

∞∑
n=1

e−rnhP x(τ = n)

≤ C̄
√

2πc̄ · �
[
− 1√

c̄h
log

(
1+ ā

x∗

)]
· √h.

We complete the proof of the proposition by using the asymptotic relation

�(−x) ∼ 1√
2πx

e−x2/2

asx → ∞. �

The bound just proved shows that[Wh
δ (x) − W̄h

δ (x)] is exponentially small as
h → 0, uniformly for all smallδ > 0. We now consider the terms[W̄h

δ (x)−W̄δ(x)]
and[W̄δ(x) − V (x)]. When considering the asymptotic behavior of these terms, it
is often convenient to scaleδ with h ash → 0 in the manner suggested by (4.2).
For the remainder of this proof, unless explicitly stated otherwise, we will assume
that

δ = c
√

h + o
(√

h
)

ash → 0(4.5)

for a nonnegative parameterc. With an abuse of notation, the quantitiesW̄h
δ (x)

andW̄δ(x) will be denoted byW̄h
c (x) andW̄c(x) when the relation (4.5) holds.

We next estimate[W̄c(x) − V (x)] ash → 0.

PROPOSITION4.3. Assume Condition 2.1and define A by (2.1).Assume also
that A > 0. Then

W̄c(x) − V (x) = [−1
2Ac2h + o(h)

]
V (x).

PROOF. Recall thatV (x) can be characterized, forx ≤ x∗, as a multiple of
the bounded (in a neighborhood of zero) solutionf1 to Lf (x) − rf (x) = 0; see
Remark 2.1.W̄c(x) can be likewise characterized, with the constant determined by
the boundary condition̄Wc(xδ) = φ̄(xδ). Thus,

W̄c(x) = φ̄(xδ)

V (xδ)
V (x) for all x ∈ (0, xδ].

We now apply Taylor’s theorem for smallδ ≥ 0, and usexδ
.= x∗ − δ,V (x∗) =

φ̄(x∗),V ′(x∗) = φ̄′(x∗), and the definition ofA to obtain

W̄c(x) − V (x)

V (x)
= −1

2
Aδ2 + o(δ2).
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The proof is completed by using (4.5).�

In the next proposition we state the expansion for[W̄h
δ (x) − W̄δ(x)]. This

estimate deals with the critical comparison between the discrete and continuous
time problems. The proof of this expansion is detailed, and therefore deferred to
the next section.

PROPOSITION 4.4. Assume Condition 2.1 and define A, � and 	 by
(2.1)and (3.2).Assume also that A > 0. Then

W̄h
c (x) − W̄c(x) = [

	x∗σ(x∗)Ach − 1
2A�x2∗σ 2(x∗)h + o(h)

]
V (x).

PROOF OF THEOREM 4.1. Recall thatxh∗ is the optimal boundary for the
stopping problem with value functionV h. On the stopping region, we always have
V h(x) = φ(x). Also, sinceV h(x) is defined by supremizing over a subset of the
stopping times allowed in the definition ofV (x), it follows thatV h(x) ≤ V (x).
SinceV (x) ≥ φ(x) for all x, it follows thatxh∗ ≤ x∗.

According to Propositions 4.2, 4.3 and 4.4, for each fixedc ∈ [0,∞),

Wh
c (x) − V (x)

V (x)
=

[
−1

2
Ac2h + 	x∗σ(x∗)Ach − 1

2
A�x2∗σ 2(x∗)h + o(h)

]
.

This suggests that the choicec∗ .= 	x∗σ(x∗) should define the maximizer and also
(at least approximately) the boundary of the optimal stopping region. Inserting this
into the last display gives

Wh
c∗(x) − V (x)

V (x)
=

[
1

2
A(	2 − �)x2∗σ(x∗)2h + o(h)

]
,

and sinceV h(x) ≥ Wh
c∗(x), it follows that

lim inf
h↓0

V h(x) − V (x)

V (x)h
≥ 1

2
A(	2 − �)x2∗σ(x∗)2.(4.6)

Now definech by xh∗ = x∗ − ch
√

h. Sincexh∗ ≤ x∗, we know thatch ∈ [0,∞).
By taking a convergent subsequence, we can assume thatch → c̄ ∈ [0,∞]. Using
an elementary weak convergence argument, one can show thatxh∗ → x∗. First
assume that̄c ∈ (0,∞). If c̄ �= 	x∗σ(x∗), then by Propositions 4.2, 4.3 and 4.4,
we have

lim sup
h↓0

V h(x) − V (x)

V (x)h
<

1

2
A(	2 − �)x2∗σ(x∗)2,

which contradicts (4.6). If̄c = ∞, then Propositions 4.2 and 4.4 and an argument
analogous to the one used in Proposition 4.3 shows that

V h(x) − V (x)

V (x)
= −A(ch)2h[1+ o(1)].
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Since (ch)2 → +∞, this again contradicts (4.6), and, thus,c̄ = 	x∗σ(x∗). We
extend to the original sequence by the standard argument by contradiction, and
Theorem 4.1 follows. �

5. Approximations and expansions in terms of local time and excursions
of Brownian motion. In this section we prove Proposition 4.4, which is
the expansionW̄h

δ (x) − W̄δ(x) for small h > 0. Throughout this section we
assume (4.5), which we repeat here for convenience:δ = c

√
h+ o(

√
h) ash → 0.

Recall also that subscripts ofc and δ may be used interchangeably under this
condition. Define the error term

ε(x) = Ex[e−rhW̄δ(Sh) − W̄δ(x)] ∀x < xδ.

Observe thatW̄δ has the representation

W̄δ(x) =
{

φ̄(x), for x ≥ xδ,

−ε(x) + e−rhE[W̄δ(Sh)|S0 = x], for x < xδ.

It follows from the generalized Itô formula that

e−rhW̄δ(Sh) − W̄δ(x)

=
∫ h

0
e−rt [−rφ̄(St ) + Lφ̄(St )]1{St≥xδ} dt(5.1)

+ W̄ ′
δ(xδ)

∫ h

0
e−rt dLS

t (xδ) +
∫ h

0
e−rt W̄ ′

δ(St )Stσ (St ) dWt .

HereLS is the local time for the processS, and

W̄ ′
δ(xδ)

.= W̄ ′
δ(xδ+) − W̄ ′

δ(xδ−).

It is straightforward to prove that the stochastic integral has expectation zero, and
we arrive at the following result.

LEMMA 5.1. For every x ∈ (0, xδ),

ε(x) = Ex
∫ h

0
e−rt [−rφ̄(St ) + Lφ̄(St )]1{St≥xδ} dt

+ ExW̄ ′
δ(xδ)

∫ h

0
e−rt dLS

t (xδ).

Let τh
δ

.= inf{nh :Snh ≥ xδ}. Then the discounting and the lemma just stated
imply the formula

W̄δ(x) = −Ex

τh
δ /h−1∑
n=0

e−rnhε(Snh) + Exe−rτh
δ φ̄

(
Sτh

δ

)
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= −Ex
∫ τh

δ

0
e−rt [−rφ̄(St ) + Lφ̄(St )]1{St≥xδ} dt

− W̄ ′
δ(xδ)E

x
∫ τh

δ

0
e−rt dLS

t (xδ) + Exe−rτh
δ φ̄

(
Sτh

δ

)
for all x < xδ . Observe that the last term is preciselȳWh

δ (x) by definition. It
follows that

W̄h
δ (x) − W̄δ(x) = Ex

∫ τh
δ

0
e−rt [−rφ̄(St ) + Lφ̄(St )]1{St≥xδ} dt

+ W̄ ′
δ(xδ)E

x
∫ τh

δ

0
e−rt dLS

t (xδ).

The proof of Proposition 4.4 is thereby reduced to proving the following two
results.

PROPOSITION 5.2. Assume Condition 2.1 and define A and � by (2.1)
and (3.2).Assume also that A > 0. Then

Ex
∫ τh

δ

0
e−rt [−rφ̄(St ) + Lφ̄(St )]1{St≥xδ} dt = [−1

2A�x2∗σ 2(x∗)h + o(h)
]
V (x).

PROPOSITION 5.3. Assume Condition 2.1 and define A and 	 by (2.1)
and (3.2).Assume also that A > 0. Then

W̄ ′
δ(xδ)E

x
∫ τh

δ

0
e−rt dLS

t (xδ) = [	x∗σ(x∗)Ach + o(h)]V (x).(5.2)

The proofs of Propositions 5.2 and 5.3 use estimates on the excursions and local
time of Brownian motion, respectively, and are given in Sections 5.1 and 5.2.

5.1. Proof of Proposition 5.2. We recall Lemma 3.1, which states that

H(u)
.= EW2

N = E

∫ N

u
1{Wt≥0} dt,

for arbitraryu ∈ [0,1). HereW = (Bt − Bu, t ≥ u) is a Brownian motion starting
at timet = u with initial conditionWu = 0, andN

.= inf{n ∈ N :Wn ≥ 0}.

LEMMA 5.4. H(u) is continuous and bounded on the interval [0,1).

PROOF. Define

Zu
.=

∫ N

u
1{Wt≥0} dt.
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We first show that the family{Zu,u ∈ [0,1)} is uniformly integrable [and, in
particular, thatH(u) is bounded]. Indeed, define

c0
.=

∫ 1

u
1{Wt≥0} dt, cj

.=
∫ j+1

j
1{Wt≥0} dt, j ∈ N.

The key observation is that ifcj > 0, thenW must spend some time during the
interval [j, j + 1] to the right of zero, therefore, the probability thatWj+1 > 0 is
at least half. Thus, for allj ∈ N0,

P(N = j + 1|N > j, cj > 0) ≥ 1
2.

Let Xu
.= ∑N−1

j=0 1{cj>0}. Clearly, Xu dominatesZu. Furthermore, the strong
Markov property implies that

P(Xu ≥ j + 1|Xu ≥ j) ≤ 1− 1
2 = 1

2.

This, in turn, implies thatP(Xu ≥ n + 1) ≤ 2−n, and, thus,

E(Z2
u) ≤ E(X2

u) =
∞∑

n=1

2nP (Xu ≥ n) ≤
∞∑

n=1

n

2n−2 < ∞.

Therefore,{Zu,u ∈ [0,1)} is uniformly integrable.
As for the continuity, we write

H(u) = E

∫ N

u
1{Bt−Bu≥0} dt = EZu.

Fix any u ∈ [0,1) and let{un} be an arbitrary sequence in[0,1) with un → u.
Since for P(Bn − Bu = 0) = 0 for every fixedn, we haveZun → Zu with
probability one. Since theZun are uniformly integrable,H(un) → H(u). This
completes the proof.�

Now for anyu ∈ [0,1) andh > 0, define the function

F(h;u)
.= 1

h
E

∫ Nhh

uh
e−r(t−uh)[−rφ̄(St ) + Lφ̄(St )]1{St≥xδ} dt,

where
dSt

St

= b(St ) dt + σ(St ) dBt , Suh = xδ

and

Nh .= inf{n ∈ N :Snh ≥ xδ}.
Let �a� denote the integer part ofa. It follows from strong Markov property that

Ex
∫ τh

δ

0
e−rt [−rφ̄(St ) + Lφ̄(St )]1{St≥xδ} dt

(5.3)

= hEx

[
e−rτδF

(
h; τδ

h
−

⌊
τδ

h

⌋)]
.
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Consider the change of variablet �→ th and the transformation

Y
(h)
t

.= Sth − xδ√
h

.

We can rewrite

F(h;u) = E

∫ Nh

u
e−r(t−u)h[−rφ̄ + Lφ̄](√hY

(h)
t + xδ

)
1{Y (h)

t ≥0} dt,

whereY (h) follows the dynamics

dY
(h)
t = (√

hY
(h)
t + xδ

)[√
hb

(√
hY

(h)
t + xδ

)
dt + σ

(√
hY

(h)
t + xδ

)
dBt

]
with initial conditionY

(h)
u = 0.

We have the following result regardingF(h;u). Although part of the proof is
similar to that of Lemma 5.4, we provide the details for completeness.

LEMMA 5.5. 1.F(h;u) is uniformly bounded for small h and u ∈ [0,1).

2.

lim
h→0

F(h;u) = [−rφ̄ + Lφ̄](x∗)H(u),

and the convergence is uniform on any compact subset of [0,1).

PROOF. Consider the family of random variables{Zh,u :u ∈ [0,1), h ∈
(0,1)}, where

Zh,u
.=

∫ Nh

u
e−r(t−u)h[−rφ̄ + Lφ̄](√hY

(h)
t + xδ

)
1{Y (h)

t ≥0} dt.

We first show this family is uniformly integrable. Since(−rφ̄ + Lφ̄) is bounded,
it is sufficient to show that

Xh,u
.=

∫ Nh

u
1{Y (h)

t ≥0} dt(5.4)

are uniformly integrable. Define

c
(h)
0

.=
∫ 1

u
1{Y (h)

t ≥0} dt, c
(h)
j

.=
∫ j+1

j
1{Y (h)

t ≥0} dt, j ∈ N.

As in the proof of Lemma 5.4, ifc(h)
j > 0, thenY

(h)
t spends some time to the right

of zero in the interval[j, j + 1]. We claim that the probability ofY (h)
j+1 ≥ 0 is

bounded from below by a positive constant:

P
(
Nh = j + 1|Nh > j, c

(h)
j > 0

) ≥ α > 0 ∀u ∈ [0,1), h ∈ (0,1).
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To this end, it suffices to show that, for someα > 0,

pt,h
.= P

(
Y

(h)
t ≥ 0|Y (h)

0 ≥ 0
) ≥ α > 0 ∀ t ∈ [0,1].

However, it is easy to see that

pt,h = P(Sth ≥ xδ|S0 ≥ xδ)

≥ P

(
exp

{∫ th

0

[
b(Su) − 1

2σ 2(Su)
]
du +

∫ th

0
σ(Su) dBu

}
≥ 1

)

≥ P

(∫ th

0
σ(Su) dBu ≥ c1th

)
,

where c1
.= ‖b‖∞ + ‖σ 2‖∞/2. We can view the stochastic integralQt

.=∫ t
0 σ(Su) dBu a time-changed Brownian motion. Indeed, there exists a Brownian

motionW such that [13]

Qt = W〈Q〉t .

Let

σ
.= inf

x
σ (x), σ̄

.= sup
x

σ (x).

Then

σ 2h ≤ 〈Q〉t ≤ σ̄ 2h.

It follows that

pt,h ≥ P

(
min

σ2th≤s≤σ̄2th
Ws ≥ c1th

)
= P

(
min

σ2≤s≤σ̄2
Ws ≥ c1

√
th

)
,

where the last equality follows since{Wths/
√

th, s ≥ 0} is still a standard
Brownian motion. Forh ∈ (0,1) andt ∈ [0,1], we can choose

α = P

(
min

σ2≤s≤σ̄2
Ws ≥ c1

)
> 0,

which will serve as a lower bound.
Now define

Mh,u
.=

Nh−1∑
j=0

1{c(h)
j >0},

which clearly dominatesXh,u. By the strong Markov property,

P(Mh,u > j + 1|Mh,u > j) ≤ 1− α,

and, thus,

P(Mh,u ≥ j) ≤ (1− α)j−1.
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This implies that

E(M2
h,u) =

∞∑
j=0

2jP (Mh,u ≥ j) ≤
∞∑

j=0

2j (1− α)j−1 < ∞,

which implies the uniform integrability of{Zh,u, u ∈ [0,1), h ∈ (0,1)}. In
particular,F(h;u) is uniformly bounded foru ∈ [0,1) andh ∈ (0,1).

For the uniform convergence, it suffices to show that, for anyu ∈ [0,1) and any
sequenceuh ∈ [0,1) converging tou,

F(h;uh) = EZh,uh → [−rφ̄ + Lφ̄](x∗)H(u).

Let Y (h) be the process withY (h)

uh = 0. As h → 0, we have thatY (h) converges
weakly toY , whereY is defined as

Yt = x∗σ(x∗)(Bt − Bu).

By the Skorohod representation, we can assumeY (h) → Y with probability one.
Using the uniform integrability, it suffices to show that

Zh,uh → Z
.= [−rφ̄ + Lφ̄](x∗)

∫ N

u
1{Yt≥0} dt

with probability one. Note thatN is almost surely finite, and thatNh → N with
probability one. The almost sure convergence ofZh,uh to Z then follows from the
dominated convergence theorem, which completes the proof.�

Returning to the proof of Proposition 5.2, we claim that

lim
h→0

Ex

[
e−rτδF

(
h; τδ

h
−

⌊
τδ

h

⌋)]
= �[−rφ̄ + Lφ̄](x∗)Ex[e−rτ∗].(5.5)

To ease notation, let

Uh
.= τδ

h
−

⌊
τδ

h

⌋
.

It suffices to show that

lim
h→0

Ex[e−rτδF (h;Uh)] = �[−rφ̄ + Lφ̄](x∗)Ex[e−rτ∗].
In Proposition A.3 in the Appendix we show the following (not very surprising)
result. Ash andδ tend to zero,(τδ,Uh) converges in distribution to(τ∗,U), where
U is uniformly distributed and independent ofτ∗. More precisely, we have

Ex[e−rτδH(Uh)] → Ex[e−rτ∗]
∫ 1

0
H(u)du = �Ex[e−rτ∗].

Therefore, to prove (5.5), we must show that

 .= Ex[e−rτδF (h;Uh)] − [−rφ̄ + Lφ̄](x∗)Ex[e−rτδH(Uh)] → 0.
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Due to the uniform boundedness ofF andH , there existsR ∈ (0,∞) such that

|F(h,u)| + |[−rφ̄ + Lφ̄](x∗)H(u)| ≤ R ∀u ∈ [0,1),

whenh is small enough. SinceUh ⇒ U , for h small enough,

P(Uh > 1− ε) ≤ 2ε.

Also, by Lemma 5.5 forh small enough,

sup
u∈[0,1−ε]

|F(h,u) − [−rφ̄ + Lφ̄](x∗)H(u)| ≤ ε.

It follows that, forh small enough,

 ≤ εP (Uh ≤ 1− ε) + RP(Uh > 1− ε) ≤ (2R + 1)ε,

which completes the proof of (5.5).
It follows directly from the definitions ofV (x) andτ∗ that

Ex[e−rτ∗] = V (x)/φ̄(x∗).(5.6)

Also, the definition ofA in (2.1) and the fact that(−rV + LV )(x∗−) = 0 imply
that

(−rφ̄ + Lφ̄)(x∗)
= (−rV + LV )(x∗−) + 1

2σ 2(x∗)x2∗[φ̄′′(x∗) − V ′′(x∗−)]
= 1

2σ 2(x∗)x2∗[φ̄′′(x∗) − V ′′(x∗−)]
= 1

2σ 2(x∗)x2∗Aφ̄(x∗).
Proposition 5.2 follows by combining the last display with (5.3), (5.5) and (5.6).

5.2. Proof of Proposition 5.3. We recall the notationxδ = x∗ − δ, where
δ = c

√
h + o(

√
h). It follows from the definition (2.1) ofA and Taylor’s theorem

that

W̄ ′
δ(xδ) = φ̄′(xδ) − φ̄(xδ)

V (xδ)
V ′(xδ)

= [V ′′(x∗−) − φ̄′′(x∗)]δ + o(δ)

= cAφ(x∗)
√

h + o
(√

h
)
.

As a consequence, the main difficulty in proving (5.2) lies with the term

Ex
∫ τh

δ

0
e−rt dLS

t (xδ).

As in Section 5.1, we consider the transformation

Y
(h)
t

.= Sth − xδ√
h

.
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ThenY (h) satisfies the SDE

dY
(h)
t = (√

hY
(h)
t + xδ

)[√
hb

(√
hY

(h)
t + xδ

)
dt + σ

(√
hY

(h)
t + xδ

)
dBt

]
.

We have the following lemma, whose proof is trivial from the definition of the
local time and thus omitted.

LEMMA 5.6. Suppose X is a semimartingale, and Yt
.= aXbt + v, where

a > 0, b > 0, v are constants. Let LY and LX denote the local times for Y and X,
respectively. Then, for all t ≥ 0,

LY
t (ax + v) = aLX

bt (x).

It follows from the lemma that

Ex
∫ τh

δ

0
e−rt dLS

t (xδ) = √
hEx

∫ Nh

0
e−rth dLY (h)

t (0).

For anyu ∈ [0,1), define the process

Y ∗
t = x∗σ(x∗)Bt , Y ∗

u = 0.

Also define

Q(u)
.= ELY ∗

u,N(0) whereN
.= inf{n ∈ N :Y ∗

n ≥ 0}.
We have the following result.

PROPOSITION5.7.

lim
h→0

Ex
∫ Nh

0
e−rth dLY (h)

t (0) = Ex[e−rτ∗]
∫ 1

0
Q(u)du.

Before giving the proof, we show how the desired Proposition 5.3 will follow
from Proposition 5.7. We haveExe−rτ∗ = V (x)/φ̄(x∗), and the definitions of
Q and M , and Lemma 3.1 imply

∫ 1
0 Q(u)du = x∗σ(x∗)

∫ 1
0 M(u)du. When

combined with the expansion given above forW ′
δ(xδ), the left-hand side of (5.2)

is equal to

hcAφ̄(x∗)
V (x)

φ̄(x∗)
x∗σ(x∗)

∫ 1

0
M(u)du + o(h),

which is exactly the right-hand side of (5.2).

PROOF OFPROPOSITION5.7. We consider the test function

f (x)
.=




0, if x ≤ 0,

x, if 0 ≤ x ≤ 1,

k, if x ≥ 2.
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We requiref (x) to be increasing and smooth, except at the pointx = 0 (the
specific choice ofk is not important). It follows from the generalized Itô formula
and the integration by parts formula that

d
[
e−rthf

(
Y

(h)
t

)] = −rhe−rthf
(
Y

(h)
t

)
dt + e−rthD−f

(
Y

(h)
t

)
dY

(h)
t

+ 1
2e−rthf ′′(Y (h)

t

)
dY

(h)
t · dY

(h)
t + e−rth dLX(h)

t (0).

Without loss of generality, we letf ′′(0) = 0. Now we integrate both sides from 0
to Nh and take expected value.

The first term on the right-hand side will contribute

−rhEx
∫ Nh

0
e−rthf

(
Y

(h)
t

)
dt = −rhEx

∫ Nh

τδ/h
e−rthf

(
Y

(h)
t

)
dt,

sincef (x) = 0 for x ≤ 0. We recall the definition (5.4) ofXh,u. It follows from
the strong Markov property that

Ex
∫ Nh

τδ/h
e−rthf

(
Y

(h)
t

)
dt ≤ kEx

∫ Nh

τδ/h
1{Y (h)

t ≥0} dt = kExG(h,Uh),

where

Uh
.= τδ

h
−

⌊
τδ

h

⌋

and

G(h,u)
.= EXh,u.

By the uniform integrability ofXh,u for small h andu ∈ [0,1), ExG(h,Uh) is
uniformly bounded for smallh. Therefore, the expectation of the first term in the
right-hand side goes to zero ash → 0.

The second term in the right-hand side contributes (observe that the stochastic
integral has expectation zero)

√
hEx

∫ Nh

0
e−rthD−f

(
Y

(h)
t

)(√
hY

(h)
t + xδ

)
b
(√

hY
(h)
t + xδ

)
dt.

Note that the integrand is bounded by1{Y (h)
t ≥0} up to a proportional constant. It

follows exactly as in the case of the first term that the contribution of the second
term goes to zero.

The third term in the right-hand side contributes

Ex
∫ Nh

0

1
2e−rthf ′′(Y (h)

t

)(√
hY

(h)
t + xδ

)2
σ 2(√hY

(h)
t + xδ

)
dt.

Sincef ′′(x) = 0 for x < 0, the expected value equals

Ex
∫ Nh

τδ/h

1
2e−rthf ′′(Y (h)

t

)(√
hY

(h)
t + xδ

)2
σ 2(√hY

(h)
t + xδ

)
dt.
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It follows from strong Markov property that the expectation can also be written

Ex[e−rτδF (h;Uh)],
where

F(h;u)
.= E

∫ Nh

u

1
2e−r(t−u)hf ′′(Y (h)

t

)(√
hY

(h)
t +xδ

)2
σ 2(√hY

(h)
t +xδ

)
1{Y (h)

t ≥0} dt

and whereY (h) satisfies the same dynamics withY
(h)
u = 0. Since the integrand is

bounded due to the fact thatf ′′(x) = 0 for all x ≥ 2, it follows from an analogous
argument to the one given in the proof of Lemma 5.5 that:

1. F(h;u) is uniformly bounded for smallh and allu ∈ [0,1);

2.

J (u)
.= lim

h→0
F(h;u) = 1

2E

∫ N

u
f ′′(Y ∗

t )x2∗σ 2(x∗) dt

and the convergence is uniform on any compact subset of[0,1).

The uniform convergence (on compact sets) ofF and Proposition A.3 in the
Appendix imply that the expectation of the third term converges to

Ex[e−rτ∗]
∫ 1

0
J (u)du.

We omit the details here since an analogous argument is used in the proof of
Proposition 5.2.

It remains to calculate the contribution from the term

Ex[
e−rτh

δ f
(
Y

(h)

Nh

)] = Ex[e−rτδK(h,Uh)],
where

K(h;u)
.= E

[
e−r(Nh−u)hf

(
Y

(h)

Nh

)]
with Y

(h)
u = 0. However, the boundedness and continuity off ensure the

following:

1. K(h;u) is uniformly bounded for allh and allu ∈ [0,1).

2.

I (u)
.= lim

h→0
K(h;u) = E[f (Y ∗

N)|Y ∗
u = 0]

and the convergence is uniform on any compact subset of[0,1).

Indeed, the first claim is trivial. As for the second claim, letuh → u. Then as
h → 0, Y (h) ⇒ Y ∗. By the Skorohod representation theorem, we can assume
Y (h) → Y ∗ with probability one, which also implies thatNh → N with probability
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one. Therefore,Y (h)

Nh → Y ∗
N with probability one. The claim now follows from the

dominated convergence theorem. Similarly,

Ex[
e−rτh

δ f
(
Y

(h)

Nh

)] → Ex[e−rτ∗]
∫ 1

0
I (u) du

ash → 0. It is now sufficient to prove

I (u) − J (u) = Q(u) ∀u ∈ [0,1).

This is the same showing

E

[
f (Y ∗

N) − 1
2

∫ N

u
f ′′(Y ∗

t )x2∗σ 2(x∗) dt − LY ∗
u,N(0)

]
= 0,

where

Y ∗
t = x∗σ(x∗)Wt , Y ∗

u = 0.

But this is a direct consequence from the generalized Itô formula and we complete
the proof. �

APPENDIX

A.1. Weak convergence of (τδ,Uh). For an arbitraryy > 0, define the
function

P y(x, t)
.= P

(
max

0≤u≤t
Su ≥ y|S0 = x

)
.

We have the following lemma.

LEMMA A.1. For every fixed y > 0, function P y ∈ C1,2((0, y) × (0,∞)) ∩
C((0, y) × [0,∞)) and satisfies the parabolic equation

−∂P y

∂t
(x, t) + LP y(x, t) = 0, (x, t) ∈ (0, y) × (0,∞).

PROOF. It follows from a standard weak convergence argument thatP y is
a continuous function; see, for example, [16]. Let(x0, t0) ∈ (0, y) × (0,∞) and
define the region

D
.= (x0 − ε, x0 + ε) × (t0 − ε, t0).

Consider the parabolic equation

−∂u

∂t
(x, t) + Lu(x, t) = 0, (x, t) ∈ D,
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with boundary conditionu = P y on its parabolic boundary. It follows from
standard PDE theory that there exists a classical solutionu [9]. It remains to show
thatu = P y in the domainD. Define the stopping time

τ
.= inf{t ≥ 0 :(t0 − t, St ) /∈ D}.

It follows that the processu(St , t0 − t) is a (bounded) martingale. In particular,

u(x0, t0) = Ex0u(Sτ , t0 − τ) = Ex0P y(Sτ , t0 − τ) = P y(x0, t0).

Here the last equality follows from the strong Markov property.�

For fixed 0< x < y, the density of the hitting timeτy is defined as

py(x, t)
.= ∂P y

∂t
(x, t).

According to the preceding lemma,py is continuous in the domain(0, y)×(0,∞).

LEMMA A.2. Suppose yn → y∗, then P yn(x, t) → P y∗(x, t) and pyn(x, t) →
py∗

(x, t) uniformly on any compact subset of (0, y∗) × (0,∞).

PROOF. It suffices to show thatP yn(x, t) → P y∗
(x, t) uniformly on any com-

pact subset. The uniform convergence ofpyn then follows from [9], Section 3.6.
SupposeD .= [x0, x1] × [t0, t1] ⊆ (0, y∗) × (0,∞) is a compact subset. In the fol-
lowing, we will denoteP yn andP y∗ by Pn andP , respectively. Also, we assume
yn ≤ y∗ for all n, which implies that

Pn(x, t) ≥ P(x, t).

An analogous argument can be used for the caseyn ≥ y∗.
For anyε > 0, we want to show that, for large enoughn,

0≤ Pn(x, t) − P(x, t) ≤ ε ∀ (x, t) ∈ D.

Define

τ
.= inf{t ≥ 0 :St ≥ y∗}; τn

.= inf{t ≥ 0 :St ≥ yn}.
SinceP is continuous, it is uniformly continuous on the compact subsetD. It
follows that there exists a numberh such that

P(t < τ ≤ t + h|S0 = x) = P(x, t + h) − P(x, t) ≤ ε

2
∀ (x, t) ∈ D,

and, thus, for all(x, t) ∈ D,

Pn(x, t) − P(x, t) = P x(τn ≤ t, τ > t) ≤ P x(τn ≤ t, τ > t + h) + ε

2
.

However, it follows from strong Markov property that, for any(x, t) ∈ D,

P(τn ≤ t, τ > t + h|S0 = x) ≤ P

(
max

0≤u≤h
St ≤ y∗|S0 = yn

)
.
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Note that the right-hand side is independent of(x, t) ∈ D. A proof analogous to
that of Lemma 5.5 yields that the right-hand side is dominated by

P

(
max

0≤t≤σ̄2h

[
−c1

σ
t + Bt

]
≤ log

y∗
yn

)
.

For n big enough, this probability is, at most,ε/2 sinceyn → y∗. This completes
the proof. �

PROPOSITIONA.3. Suppose f : [0,∞) → R is a bounded continuous func-
tion with

lim
x→∞f (x) = 0,

and g : [0,1) → R a continuous, bounded function. Then

lim
h,δ→0

Ex

[
f (τδ)g

(
τδ

h
−

⌊
τδ

h

⌋)]
= Exf (τ∗) ·

∫ 1

0
g(u)du.

for all x ∈ (0, x∗).

PROOF. Fix x ∈ (0, x∗). Let pδ and p denote the density ofτδ and τ∗,
respectively. We can assume that allxδ are close tox∗, in the sense thatδ ≤ δ0
for someδ0, andx < xδ . Sincef (x) → 0 asx → ∞, we have

Ex

[
f (τδ)g

(
τδ

h
−

⌊
τδ

h

⌋)]
=

∫ ∞
0

f (s)g

(
s

h
−

⌊
s

h

⌋)
pδ(s) ds.

For anyε > 0, there exists 0< a < M < ∞ such that∫
[0,a]

f (s)g

(
s

h
−

⌊
s

h

⌋)
pδ(s) ds ≤ ‖f ‖∞ · ‖g‖∞P(τδ ≤ a)

≤ ‖f ‖∞ · ‖g‖∞P(τδ0 ≤ a)

≤ ε

and ∫
[M,∞]

f (s)g

(
s

h
−

⌊
s

h

⌋)
pδ(s) ds ≤ max

M≤x
|f (x)| · ‖g‖∞ ≤ ε.

Note that such choices of(a,M) also make the above inequalities hold whenpδ is
replaced byp. Also, sincepδ → p uniformly on the compact interval[ε,M], we
have ∫ M

a
f (s)g

(
s

h
−

⌊
s

h

⌋)
|pδ(s) − p(s)|ds ≤ ε

for δ small enough. It remains to show that, forh small enough,∣∣∣∣
∫ M

a
f (s)g

(
s

h
−

⌊
s

h

⌋)
p(s) ds −

∫ M

a
f (s)p(s) ds ·

∫ 1

0
g(u)du

∣∣∣∣ ≤ ε.
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We omit the rather straightforward proof, which follows easily from the uniform
continuity off , p, andf · p on compact intervals.�

A.2. Proof of Lemma 3.1. We first prove the representation forH(u).
Consider the continuously differentiable convex function

f (x)
.= 1

2(x+)2 =
{0, if x ≤ 0,

x2/2, if x ≥ 0.

It follows from the generalized Itô formula [13] that

f (WN∧n) =
∫ N∧n

u
Wt1{Wt≥0} dWt + 1

2

∫ N∧n

u
1{Wt≥0} dt

for all integersn ∈ N. This yields

E(W+
N∧n)

2 = E

∫ N∧n

u
1{Wt≥0} dt ∀n ∈ N.

Lettingn → ∞, the right-hand side converges toE
∫ N
u 1{Wt≥0} dt by the monotone

convergence theorem. SinceW+
N∧n ≤ WN , the result will follow by dominated

convergence if one can show thatEW2
N is finite.

To this end, we observe that

EW2
N =

∞∑
n=1

E
(
W2

N1{N=n}
)

=
∞∑

n=1

∫ ∞
0

2xP (WN ≥ x,N = n)dx

=
∞∑

n=1

∫ ∞
0

2xP (WN ≥ x|N = n)P (N = n)dx.

However, on the set{N = n}, the Brownian motion sample path must cross zero
during time interval(n − 1, n]. Let � denote the cumulative distribution function
for the standard normal distribution. For everyt ∈ [0,1], we have the inequality

P(Wt ≥ x|Wt ≥ 0,W0 = 0) = 2�
(−x/

√
t
) ≤ 2�(−x) ∀x ≥ 0.

Then the strong Markov property easily implies that

P(WN ≥ x|N = n) = P(Wn ≥ x|Wn ≥ 0,Wn−1 < 0, . . . ,W1 < 0)

≤ 2�(−x).

SinceN is finite with probability one, it follows that

EW2
N ≤

∫ ∞
0

4x�(−x)dx < ∞.
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It remains to show the representation forM(u). It follows from Tanaka’s
formula that

WN = W+
N =

∫ N

u
1{Wt≥0} dWt + LW

u,N(0).

However, since the preceding proof already implies thatE
∫ N
u 1{Wt≥0} dt < ∞

(and, hence, that the stochastic integral has zero mean), we have

EWN = ELW
u,N(0) = M(u).

This completes the proof.
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