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BOUCHAUD’S MODEL EXHIBITS TWO DIFFERENT AGING
REGIMES IN DIMENSION ONE

BY GÉRARD BEN AROUS AND JIŘÍ ČERNÝ

Courant Institute of Mathematical Sciences and Weierstrass Institute
for Applied Analysis and Stochastics

Let Ei be a collection of i.i.d. exponential random variables. Bouchaud’s
model on Z is a Markov chainX(t) whose transition rates are given
by wij = ν exp(−β((1 − a)Ei − aEj )) if i, j are neighbors inZ. We
study the behavior of two correlation functions:P[X(tw + t) = X(tw)] and
P[X(t ′) = X(tw) ∀ t ′ ∈ [tw, tw + t]]. We prove the (sub)aging behavior of
these functions whenβ > 1 anda ∈ [0,1].

1. Introduction. Aging is an out-of-equilibrium physical phenomenon that
is gaining considerable interest in contemporary physics and mathematics. An
extensive literature exists in physics (see [6] and therein references). The
mathematical literature is substantially smaller, although some progress was
achieved in recent years ([2, 3, 5, 7, 9]; see also [1] for a survey).

The following model has been proposed by Bouchaud as a toy model for
studying the aging phenomenon. LetG = (V,E) be a graph, and letE = {Ei}i∈V

be the collection of i.i.d. random variables indexed by vertices of this graph with
the common exponential distribution with mean 1. We consider the continuous-
time Markov chainX(t) with state spaceV, such that

P
(
X(t + dt) = j |X(t) = i,E

) =
{

wij dt, if i, j are connected inG,

0, otherwise.
(1)

The transition rateswij are defined by

wij = ν exp
( − β

(
(1− a)Ei − aEj

))
.(2)

The parameterβ denotes, as usual, the inverse temperature and the parametera,
0≤ a ≤ 1, drives the “symmetry” of the model. The value ofν fixes the time scale
and is irrelevant for our paper; we thus setν = 1.

This model has been studied whenG is Z and a = 0 by Fotnes, Isopi and
Newman [8, 9]. It is an elementary model whenG is the complete graph, which is
a good ansatz for the dynamics of the REM (see [3]).

The time spent by the system at sitei grows with the value ofEi . The value
of Ei can thus be regarded as the depth of the trap at the sitei. The model is
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sometimes referred to as “Bouchaud’s trap model.” It describes the motion of
the physical system between the states with energies−Ei . It can be regarded as
a useful rough approximation of spin-glass dynamics. The states of Bouchaud’s
trap model correspond to a subset of all possible states of the spin-glass system
with exceptionally low energy. This justifies in a certain sense the exponential
distribution ofEi since it is the distribution of extreme values. The idea behind this
model is that the spin-glass dynamics spends most of the time in the deepest states
and it passes through all others extremely quickly. Thus, only the extremal states
are important for the long-time behavior of dynamics, which justifies formally the
introduction of Bouchaud’s model.

Usually, proving an aging result consists in finding a two-point function
F(tw, tw + t), a quantity that measures the behavior of the system at timet + tw
after it has aged for the timetw, such that a nontrivial limit

lim
t→∞
t/tw=θ

F (tw, tw + t) = F(θ)(3)

exists. The choice of the two-point function is crucial. For instance, it has been
observed by Rinn, Maass and Bouchaud [11] that a good choice is

R(tw, tw + t) = EP
(
X(t + tw) = X(tw)|E)

,(4)

which is the probability that the system will be in the same state at the end of the
observation period (i.e., at timet + tw) as it was in the beginning (i.e., at timetw).
Another quantity exhibiting aging behavior, which was studied by Fontes, Isopi
and Newman [9], is

Rq(tw, tw + t) = E

∑
i∈Z

[
P

(
X(t + tw) = i|E,X(tw)

)]2
,(5)

which is the probability that two independent walkers will be at the same site after
time t + tw if they were at the same site at timetw, averaged over the distribution
of the common starting pointX(tw). These authors have proved that, for these two
two-point functions, aging occurs whena = 0. We extend this result to the case
a > 0. The limiting object will be independent ofa. Thus the parametera could
seem to be of no relevance for aging.

However, it is not the case for all two-point functions. For instance, for the
function

�(tw, tw + t) = EP
(
X(t ′) = X(tw) ∀ t ′ ∈ [tw, tw + t]|E)

,(6)

that is, for the probability that the system does not change its state betweentw
and tw + t , it was predicted by Rinn, Maass and Bouchaud [11] that there exists
a constantγ such that the limit limtw→∞ �(tw, tw + θt

γ
w) exists and depends

nontrivially on a. The namesubaging was introduced for this type of behavior,
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that is, for the fact that there exists a constant 0< γ < 1 such that for some two-
point functionF(tw, tw + t), there is a nontrivial limit

lim
t→∞

t/t
γ
w=θ

F (tw, tw + t) = F(θ).(7)

One of the main results of the present paper is the proof of the subaging behavior
of the function (6) for an arbitrarya ∈ [0,1].

Let us have a closer look at the role of the parametera. If a = 0, the dynamics
of the model is sometimes referred to as “random hopping time (RHT) dynamics”
(cf. [10]). In this case the rateswij do not depend on the value ofEj . Hence, the
system jumps to all neighboring sites with the same probability and the process
X(t) can be regarded as a time change of the simple random walk.

On the other hand, ifa > 0, the system is attracted to the deepest traps and the
underlying discrete-time Markov chain is some kind of random walk in a random
environment (RWRE). There are already some results about aging of RWRE in
dimension 1 [7]. In that article Sinai’s RWRE is considered. It is proved there that
there is aging on the scale logt/ log tw → const.

In our situation the energy landscape, far from being seen as a two-sided
Brownian motion as in Sinai’s RWRE, should be seen as essentially flat with
few very narrow deep holes around the deep traps. The drifts on neighboring sites
are dependent and this dependency does not allow the existence of large domains
with drift in one direction. This can be easily seen by looking at sites surrounding
one particularly deep trapEi . Here, the drift at sitei − 1 pushes the system very
strongly to the right and at sitei + 1 to the left because the system is attracted
to the sitei. Moreover, these drifts have approximately the same size. A more
precise description of this picture will be presented later (Section 5). However,
these differences do not change notably the mechanism responsible for aging.
Again, during the exploration of the random landscape, the processX finds deeper
and deeper traps that slow down its dynamics.

It was observed numerically by Rinn, Maass and Bouchaud [11] thatX(t) ages
only if the temperature is low enough,β > 1. (In the sequel we will consider only
the low-temperature regime.) This heuristically corresponds to the fact that ifa = 0
andβ > 1, the mean timeE(exp(βE0)) spent byX(t) at an arbitrary site becomes
infinite. This implies that the distribution of the depth at which we find the system
at time t does not converge ast → ∞. The processX(t) can find deeper and
deeper traps where it stays longer.

If a > 0, the previous explanation is not precise. The time before the jump is
shortened whena increases. On the other hand, the system is attracted to deep
traps. This means that instead of staying in one deep trap, the process prefers
to jump out and then to return back very quickly. For the two-point functions
(4) and (5) these two effects cancel and the limiting behavior is thus independent
of a. For the two-point function (6), there cannot be cancellation, because the
attraction to deeper traps has no influence on it.
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Before stating the known results about the model we generalize it slightly. All
statements in this paper do not actually requireEi to be an exponential random
variable. The only property ofEi that we will need is that the random variable
exp(βEi) is in the domain of attraction of the totally asymmetric stable law with
index β−1 ≡ α. Clearly, the original exponential random variable satisfies this
property.

Recently, this model was studied rigorously by Fontes, Isopi and Newman [8, 9]
in connection with the random voter model and chaotic time dependence. In that
papers only the RHT case,a = 0, was considered. Ifd = 1 and β > 1, they
proved that the Markov chainX(t) possesses an interesting property called there
localization. Namely, it was shown there that

lim sup
t→∞

sup
i∈Z

P
(
X(t) = i|E)

> 0, P-a.s.(8)

Also aging for the two-point functions (4) and (5) was proved there. In dimension
d ≥ 2, results of that papers imply that there is no localization in the sense of (8).
However, there is numerical evidence [11] that the system ages. A rigorous proof
of this claim will be presented in a forthcoming paper [4].

In this article we generalize the results of Fontes, Isopi and Newman [9] in
dimension 1 to the general case,a 	= 0. As we have already noted, the main
difficulty comes from the fact that the underlying discrete-time Markov chain is
not a simple random walk. We will prove aging for the quantities (4) and (5). We
will then prove subaging for the two-point function (6).

As in [9], we relate the asymptotic behavior of quantities (4), (5) and (6)
to the similar quantities computed using a singular diffusionZ(t) in a random
environmentρ—singular meaning here that the single time distributions ofZ are
discrete.

DEFINITION 1.1 (Diffusion with random speed measure). The random envi-
ronmentρ is a random discrete measure,

∑
i viδxi

, where the countable collection
of (xi, vi)’s yields an inhomogeneous Poisson point process onR × (0,∞) with
density measuredx αv−1−α dv. Conditional onρ, Z(s) is a diffusion process [with
Z(0) = 0] that can be expressed as a time change of a standard one-dimensional
Brownian motionW(t) with the speed measureρ. Denoting	(t, y) the local time
of W(t) aty, we define

φρ(t) =
∫

	(t, y)ρ(dy)(9)

and the stopping timeψρ(s) as the first timet when φρ(t) = s; then Z(t) =
W(ψρ(t)).

A more detailed description of time changes of Brownian motion can be found
in Section 2.

Our main result about aging is the following.
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THEOREM 1.2. For any β > 1 and a ∈ [0,1] there exist nontrivial functions
R(θ), Rq(θ) such that

lim
t→∞R(t, t + θt) = lim

t→∞EP
[
X

(
(1+ θ)t

) = X(t)|E] = R(θ),

(10)
lim

t→∞Rq(t, t + θt) = lim
t→∞E

∑
i∈Z

[
P

(
X

(
(1+ θ)t

) = i|E,X(t)
)]2 = Rq(θ).

Moreover, R(θ) and Rq(θ) can be expressed using the similar quantities defined
using the singular diffusion Z:

R(θ) = EP[Z(1+ θ) = Z(1)|ρ],
(11)

Rq(θ) = E

∑
x∈R

[
P

(
Z(1+ θ) = x|ρ,Z(1)

)]2
.

For a = 0, this result is contained in [9]. Since the diffusionZ(t) does not
depend ona, the functionsR(θ) andRq(θ) do not depend on it either. This is the
result of the compensation of shorter visits of deep traps by the attraction to them.

We will also prove subaging for the quantity�(tw, tw + t). We useγ to denote
thesubaging exponent

γ = 1

1+ α
= β

1+ β
.(12)

THEOREM 1.3. For any β > 1 and a ∈ [0,1] there exists a nontrivial function
�(θ) such that

lim
t→∞�

(
t, t + fa(t, θ)

)
(13)

= lim
t→∞EP

[
X(t ′) = X(t) ∀ t ′ ∈ [t, t + fa(t, θ)]|E] = �(θ),

where the function fa is given by

fa(t, θ) = θtγ (1−a)L(t)1−a,(14)

and L(t) is a slowly varying function that is determined only by the distribution
of E0. Its precise definition is given in Lemma 8.1.The function �(θ) can be again
written using the singular diffusion Z,

�(θ) =
∫ ∞

0
g2

a(θua−1) dF (u),(15)

where F(u) = EP[ρ(Z(1)) ≤ u|ρ], and where ga(λ) is the Laplace transform
E(e−λTa ) of the random variable

Ta = 2a−1 exp(aβE0)
[
E

(
exp(−2aβE0)

)]1−a
.(16)

If a = 0, (15)can be written as

�(θ) =
∫ ∞

0
e−θ/u dF (u).(17)
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REMARK. Note that ifEi ’s are exponential random variables, the function
L(t) satisfiesL(t) ≡ 1. The same is true if exp(βEi) has a stable law.

As can be seen, in this case the function�(θ) depends ona. This is not
surprising since the compensation by attraction has no influence here and the jumps
rates clearly depend ona.

This behavior of the two-point functions�(tw, t + tw) andR(tw, t + tw) is not
difficult to understand, at least heuristically. One should first look at the behavior
of the distribution of the depth of the location of the process at timetw. It can
be proved that this depth grows liket1/(1+α)

w (see Proposition 8.2). From this one
can see that the main contribution to quantities (4) and (5) comes from trajectories
of X(t) that, between timestw and tw + t , leavet

(a+α)/(1+α)
w times the original

site and then return to it. Each visit of the original site lasts an amount of time of
ordert (1−a)/(1+α)

w .
In the case of the two-point function (6), we are interested only in the first visit

and thus the timet should scale ast (1−a)/(1+α)
w . Proofs can be found in Sections 7,

8 and 9. In Section 2 we summarize some known results about time-scale changes
of Brownian motion and about point-process convergence. In Section 3 we express
the processX and its scaled versions as a time-scale change and in Section 4 we
introduce a coupling between the different scales ofX. In Section 5 we prove
convergence of speed measures which is used for time-scale change and we apply
this result to show the convergence of finite time distributions of rescaled versions
of X to the finite time distributions ofZ.

2. Definitions and known results. In this section we define some notation
that we will use often later, and we summarize some known results.

2.1. Time-scale change of Brownian motion. The limiting quantitiesR(θ),
Rq(θ) and �(θ) are expressed using the singular diffusion defined by a time
change of Brownian motion. So, it will be convenient to express also the chains
with discrete state space as a time-scale change of Brownian motion. The scale
change is necessary ifa 	= 0, because the processX(t) does not jump left or right
with equal probability.

Consider a locally finite measure

µ(dx) = ∑
i

wiδyi
(dx)(18)

which has atoms with weightswi at positionsyi . The measureµ will be referred to
as the speed measure. LetS be a strictly increasing function defined on the set{yi}.
We call suchS the scaling function. Let us introduce slightly nonstandard notation
S ◦ µ for the “scaled measure”

(S ◦ µ)(dx) = ∑
i

wiδS(yi)(dx).(19)
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We useW(t) to denote the standard Brownian motion starting at 0. Let	(t, y) be
its local time. We define the function

φ(µ,S)(t) =
∫

R

	(t, y)(S ◦ µ)(dy)(20)

and the stopping timeψ(µ,S)(s) as the first time whenφ(µ,S)(t) = s. The
function φ(µ,S)(t) is a nondecreasing, continuous function, andψ(µ,S)(s) is
its generalized right-continuous inverse. It is an easy corollary of the results of
Stone [12] that the process

X(µ,S)(t) = S−1(W (
ψ(µ,S)(t)

))
(21)

is a time-changed nearest-neighbor random walk on the set of atoms ofµ.
Moreover, every nearest-neighbor random walk on a countable, nowhere dense
subset ofR satisfying some mild conditions on transition probabilities can be
expressed in this way. We call the processX(µ,S) the time-scale change of
Brownian motion. IfS is the identity function, we speak only about time change.

The following proposition describes the properties ofX(µ,S) if the set of atoms
of µ has no accumulation point. In this case we can suppose that the locations of
atomsyi satisfyyi < yj if i < j . The claim is the consequence of [12], Section 3.
The extra factor 2 comes from the fact that Stone uses the Brownian motion with
generator−
.

PROPOSITION 2.1. The process X(µ,S)(t) is a nearest-neighbor random
walk on the set {yi} of atoms of µ. The waiting time in the state yi is exponentially
distributed with mean

2wi

(S(yi+1) − S(yi))(S(yi) − S(yi−1))

S(yi+1) − S(yi−1)
.(22)

After leaving state yi , X(µ,S) enters states yi−1 and yi+1 with respective
probabilities

S(yi+1) − S(yi)

S(yi+1) − S(yi−1)
and

S(yi) − S(yi−1)

S(yi+1) − S(yi−1)
.(23)

It will be useful to introduce another processY(µ,S) as

Y(µ,S)(t) = X(S ◦ µ, Id)(t),(24)

where Id is the identity function onR. The processY(µ,S) can be regarded as
X(µ,S) before the final change of scale in (21). Actually,

Y(µ,S)(t) = W
(
ψ(µ,S)(t)

)
.(25)

We will also need processes that are not started at the origin but at some point
x ∈ suppµ. They are defined in the obvious way using the Brownian motion started
atS(x). We useX(µ,S;x) andY(µ,S;x) to denote them.
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2.2. Point-process convergence. To be able to work with quantities (4)–(6)
that have a discrete nature (in the sense that they depend on the probability being
exactly at some place) we recall the definition of the point-process convergence of
measures introduced in [9]. LetM denote the set of locally finite measures onR.

DEFINITION 2.2 ([9]). Given a familyν, νε, ε > 0, in M, we say thatνε

convergesin the point-process sense to ν, and writeνε pp→ ν, asε → 0, provided
the following holds: if the atoms ofν, νε are, respectively, at the distinct locations
yi , yε

i′ with weightswi , wε
i′ , then the subsets ofV ε ≡ ⋃

i′ {(yε
i′,w

ε
i′)} of R× (0,∞)

converge toV ≡ ⋃
i{(yi,wi)} asε → 0 in the sense that for any openU , whose

closureŪ is a compact subset ofR × (0,∞) such that its boundary contains no
points ofV , the number of points|V ε ∩ U | in V ε ∩ U is finite and equals|V ∩ U |
for all ε small enough.

Besides this type of convergence we will use the following two more common
types of convergence.

DEFINITION 2.3. For the same family as in the previous definition, we say
thatνε convergesvaguely to ν, and writeνε v→ ν, asε → 0, if for all continuous
real-valued functionsf onR with bounded support

∫
f (y)νε(dy) → ∫

f (y)ν(dy)

asε → 0. We say thatνε convergesweakly, and we writeνε w→ ν, asε → 0, if the
same is true for all bounded continuous functions onR.

To prove the point-process convergence we will use the next lemma which is
the copy of Proposition 2.1 of [9].

Let ν, νε be locally finite measures onR and let(yi,wi), (yε
i ,w

ε
i ) be the sets of

atoms of these measures (yi is the position andwi is the weight of the atom).

CONDITION 1. For eachl there exists a sequencejl(ε) such that(
yε
jl(ε)

,wε
jl(ε)

) → (yl,wl) asε → 0.(26)

LEMMA 2.4. For any family ν, νε, ε > 0, in M, the following two assertions

hold. If νε pp→ ν as ε → 0, then Condition 1 holds. If Condition 1 holds and νε v→ ν

as ε → 0, then also νε pp→ ν as ε → 0.

2.3. Convergence of the fixed time distributions. We want to formulate, for
future use, a series of results of Fontes, Isopi and Newman [9]. They will allow
us to deduce the convergence of fixed time distributions from the convergence of
speed measures.
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PROPOSITION2.5. Let µε, µ be the collection of deterministic locally finite
measures, and let Y ε, Y be defined by

Y ε(t) = Y(µε, Id)(t) and Y(t) = Y(µ, Id)(t).(27)

For any deterministic t0 > 0, let νε denote the distribution of Y ε(t0) and let ν

denote the distribution of Y(t0). Suppose

µε v→ µ and µε pp→ µ as ε → 0.(28)

(i) Then, as ε → 0,

νε v→ ν and νε pp→ ν.(29)

(ii) Let (xε
i , v

ε
i ) and (xi, vi) be the collections of atoms of µε and µ. Similarly,

let (yε
i ,w

ε
i ) and (yi,wi) be the collections of atoms of νε and ν. Then the sets of

locations of the atoms are equal,

{yε
i } = {xε

i } and {yi} = {xi}.(30)

(iii) Suppose that we have denoted xi ’s and yi ’s in such a way that xi = yi ,
xε
i = yε

i [which is possible by (ii)]. Let the sequence jl(ε) satisfy(
xε
jl(ε)

, vε
jl(ε)

) → (xl, vl) as ε → 0.(31)

Then the sequence of corresponding atoms of νε satisfies(
yε
jl(ε)

,wε
jl(ε)

) = (
xε
jl(ε)

,wε
jl(ε)

) → (yl,wl) as ε → 0.(32)

(iv) Let zε → z and tε → t0 as ε → 0. Then parts (i)–(iii) stay valid if we
replace the process Y ε(t) by the process started outside the origin Y(µε, Id; zε),
the process Y(t) by Y(µ, Id; z), and we define νε as the distribution of Y ε(tε).

Part (i) of this proposition is stated as Theorem 2.1 in [9]. Part (ii) is a
consequence of Lemmas 2.1 and 2.3 of the same paper. Part (iii) follows from
the proof of that theorem, but it is not stated there explicitly. Its proof is, however,
the central part of the proof of (i). The remaining part is an easy consequence
of (i)–(iii) and of the joint continuity of the local time	(t, y).

3. Expression of X(t) in terms of Brownian motion. To explore the
asymptotic behavior of the chainX(t), we consider its scaling limit

Xε(t) = εX(t/εcε).(33)

The constantcε will be determined later. For the time being the reader can consider
cε ∼ ε1/α .
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As we already noted in the previous section, it is convenient to express the
walks X(t) andXε(t) as a time-scale change of the standard Brownian motion
W(t) started at 0. To achieve it we use Proposition 2.1. We define measures

µ(dx) = µ1(dx) = ∑
i∈Z

τiδi(dx) and µε(dx) = cε

∑
i∈Z

τiδεi(dx),(34)

where

τi = 1
2 exp(βEi)E

(
exp(−2aβE0)

)
.(35)

We will consider the following scaling function. Let

ri = exp(−βa(Ei + Ei+i))

E(exp(−2βaE0))
,(36)

and let

S(i) =




i−1∑
j=0

rj , if i ≥ 0,

−
−1∑
j=i

rj , otherwise.

(37)

The constant factorE(exp(−2βaE0)) that appears in (35) and (36) is not
substantial, but it is convenient and it will simplify some expressions later.

We useX̃ε(t), 0< ε ≤ 1, to denote the process

X̃ε(t) = X
(
µε, εS(ε−1·))(t),(38)

which means that̃X(t) is the time-scale change of Brownian motion with speed
measureµε and scale functionεS(ε−1·). If we writeψε(t) for ψ(µε, εS(ε−1·))(t),
we have

X̃ε(t) = εS−1(ε−1Wε(ψε(t))
)
.(39)

The processWε is the rescaled Brownian motion,Wε(t) = εW(ε−2t), which has
the same distribution asW(t). It is introduced only to simplify the proof of the
next lemma. In the sequel we will omit the superscript ifε = 1, that is, we will
write X̃(t) for X̃1(t), and so on. Note that the functionS−1(·) is well defined for
all values of its argument. Indeed, the set of atoms ofεS(ε−1·) ◦ µε is the set
{εS(i) : i ∈ Z}, and thusε−1Wε(ψε(t)) takes values only in{S(i) : i ∈ Z}.

PROPOSITION3.1. The processes X̃(t) and X̃ε(t) have the same distribution
as X(t) and Xε(t) = εX(t/cεε).
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PROOF. We use the symbol “∼” to denote the equality in distribution. The
time thatX(t) stays at sitei is exponentially distributed with mean(wi,i+1 +
wi,i−1)

−1. The probability that it jumps right or left is

wi,i+1

wi,i+1 + wi,i−1
and

wi,i−1

wi,i+1 + wi,i−1
.(40)

Plugging the definition (2) ofwij into these expressions, it is easy to see that these
values coincide with the same quantities forX̃(t) which can be computed using
Proposition 2.1. This implies thatX(t) ∼ X̃(t).

To compare the distributions ofXε(t) andX̃ε(t), let us first look at the scaling
of ψε(t). After an easy calculation, using the fact that the local time	ε(t, y) of Wε

satisfies	ε(t, y) = ε	(ε−2t, ε−1y), we obtain

φε(t) =
∫

	ε(t, y)
(
εS(ε−1·) ◦ µε)(dy) = εcεφ(ε−2t).(41)

From it we getψε(t) = ε2ψ(t/εcε). Hence,

εX̃(t/εcε) = εS−1(W(ψ(t/εcε))
) = εS−1(W(ε−2ψε(t))

)
(42)

= εS−1(ε−1Wε(ψε(t))
) = X̃ε(t),

where we used the scaling ofW(t) and (39). SincẽX(t) has the same distribution
asX(t), the same is valid for̃Xε(t) andXε(t). �

4. A coupling for walks on different scales. It is convenient to introduce the
processesY(t) andY ε(t) that are only a time change of Brownian motion with
speed measuresS ◦ µ andεS(ε−1·) ◦ µε. Namely,

Y ε(t) = Y
(
µε, εS(ε−1·))(t) and Y(t) = Y(µ,S)(t).(43)

Using (25) we have

Y(t) = W(ψ(t)) and Y ε(t) = W(ψε(t)).(44)

The original processesX andXε are related to them by

X(t) = S−1(Y (t)) and Xε(t) = εS−1(ε−1Y ε(t)
)
.(45)

In the sequel we want to use Proposition 2.5 to prove the convergence of the
finite time distributions ofY ε. Thus, we want to apply this proposition to the
sequence of random speed measuresµε. It is easy to see that convergence in
distribution of this sequence is not sufficient for its application. That is why we
will construct a coupling between measuresµε on different scalesε on a larger
probability space. Using this coupling we obtain the a.s. convergence on this space.
It is not surprising that the same coupling as in [9] does the job.
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Consider the Lévy processV (x), x ∈ R, V (0) = 0, with stationary and
independent increments and cadlag paths defined on(�̄, F̄ , P̄) given by

Ē
[
eir(V (x+x0)−V (x0))

] = exp
[
xα

∫ ∞
0

(eirw − 1)w−1−α dw

]
.(46)

Let ρ̄ be the random Lebesgue–Stieltjes measure onR associated toV , that is,
ρ̄(a, b] = V (b) − V (a). It is a known fact thatρ̄(dx) = ∑

j vj δxj
(dx), where

(xj , vj ) is an inhomogeneous Poisson point process with densitydx αv−1−α dv.
Note thatρ̄ has the same distribution asρ which we used as speed measure in the
definition of the singular diffusionZ.

For each fixedε > 0, we will now define the sequence of i.i.d. random variables
Eε

i such thatEε
i ’s are defined on the same space asV and ρ̄ and they have the

same distribution asE0.
Define a functionG : [0,∞) 
→ [0,∞) such that

P̄
(
V (1) > G(x)

) = P(τ0 > x).(47)

The function G is well defined sinceV (1) has continuous distribution, it
is nondecreasing and right continuous, and hence has nondecreasing right-
continuous generalized inverseG−1. Let gε : [0,∞) 
→ [0,∞) be defined as

gε(x) = cεG
−1(ε−1/αx) for all x ≥ 0,(48)

where

cε = (
inf[t ≥ 0 :P(τ0 > t) ≤ ε])−1

.(49)

Note that ifτ0 is theα stable random variable with characteristic function

E(eirτ0) = exp
[
α

∫ ∞
0

(eirw − 1)w−1−α dw

]
,(50)

the choice ofcε andgε can be simplified (although it does not correspond to the
previous definition):

cε = ε1/α and gε(y) ≡ y.(51)

The reader who is not interested in the technical details should keep this choice in
mind.

LEMMA 4.1. Let

τ ε
i = 1

cε
gε

(
V

(
ε(i + 1)

) − V (εi)
)

(52)

and

Eε
i = 1

β
log

(
2τ ε

i

E(exp(−2aβE0))

)
.(53)

Then for any ε > 0, the τ ε
i are i.i.d. with the same law as τ0, and {Eε

i }i∈Z have the
same distribution as {Ei}i∈Z.
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PROOF. By stationarity and independence of increments ofV it is sufficient
to showP̄(τ ε

0 > t) = P(τ0 > t). However,

P̄(τ ε
0 > t) = P̄

(
V (ε) > ε1/αG(t)

)
(54)

by the definitions ofτ ε
0 andG. The result then follows from (47) and the scaling

invariance ofV : V (ε) ∼ ε1/αV (1). The second claim follows easily using (35).
�

Let us now define the random speed measuresµ̄ε using the collections{Eε
i }

from the previous lemma,

µ̄ε(dx) = ∑
i∈Z

cετ
ε
i δεi(dx).(55)

We also define the scaling functionsSε similarly as in (37). Let

rε
i = exp(−βa(Eε

i + Eε
i+1))

E(exp(−2aβE0))
(56)

and

Sε(i) =




i−1∑
j=0

rε
j , if i ≥ 0,

−
−1∑
j=i

rε
j , otherwise.

(57)

It is an easy consequence of Lemma 4.1 thatµ̄ε ∼ µε and Sε ∼ S for any
ε ∈ (0,1].

5. Convergence of speed measures.The following proposition proves the
convergence of the scaled speed measures. IfS is the identity, that is,a = 0, it
corresponds to Proposition 3.1 of [9].

PROPOSITION5.1. Let µ̄ε and ρ̄ be defined as above. Then

εSε(ε
−1·) ◦ µ̄ε v→ ρ̄ and εSε(ε

−1·) ◦ µ̄ε pp→ ρ̄ as ε → 0, P̄-a.s.(58)

The proof requires three technical lemmas.

LEMMA 5.2. As ε → 0 we have

εSε(�ε−1y�) → y as ε → 0, P̄-a.s.(59)

uniformly on compact intervals.
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Notice that this lemma sheds more light on the difference between the discrete-
time embedded walk of the processX and Sinai’s RWRE. In the case of Sinai’s
RWRE the scale functionS corresponds, loosely speaking, to the function

S′(n) =
n∑

i=1

ρ1 . . . ρn,(60)

whereρi = (1 − pi)/pi , pi is the probability going right ati, andpi ’s are i.i.d.
In our caseρi = ri/ri−1. An easy computation gives that the productρ1 . . . ρn

depends only onE0 andEn+1. Thus,S′(n) is in our situation essentially a sum of
i.i.d. random variables, which is definitively not the case for Sinai’s RWRE.

PROOF OF LEMMA 5.2. We consider onlyy > 0. The proof fory < 0 is

very similar. By definition ofSε we haveεSε(�ε−1y�) = ε
∑�ε−1y�−1

j=0 rε
j , where

for fixed ε the sequencerε
i is an ergodic sequence of bounded positive random

variables. Moreover,rε
i is independent of allrε

j with j /∈ {i −1, i, i +1}. TheP̄-a.s.
convergence for fixedy is then a consequence of the strong law of large numbers
for triangular arrays. Note that this law of large numbers can be easily proved in
our context using the standard methods, because the variablesrε

i are bounded and
thus their moments of arbitrary large degree are finite. The uniform convergence
on compact intervals is easy to prove using the fact thatSε(i) is increasing and the
identity function is continuous.�

The next two lemmas correspond to Lemmas 3.1 and 3.2 of [9]. We state them
without proofs.

LEMMA 5.3. For any fixed y > 0, gε(y) → y as ε → 0.

LEMMA 5.4. For any δ′ > 0, there exist constants C′ and C′′ in (0,∞) such
that

gε(x) ≤ C′x1−δ′
for ε1/α ≤ x ≤ 1 and ε ≤ C′′.(61)

PROOF OFPROPOSITION5.1. We first prove the vague convergence. Letf be
a bounded continuous function with compact supportI ⊂ R. Then,∫

f (x)
(
εSε(ε

−1x) ◦ µ̄ε)(dx) = ∑
i∈J ε

0

f (εSε(i))gε

(
V

(
ε(i + 1)

) − V (εi)
)
,(62)

where we used the notation

J ε
y = {

i ∈ Z : εSε(i) ∈ I,V
(
ε(i + 1)

) − V (εi) ≥ y
}
.(63)

Choose nowδ > 0. To estimate the last sum, we treat separately the sums overJ ε
δ ,

J ε
ε1/α \ J ε

δ andJ ε
0 \ J ε

ε1/α .



AGING FOR BOUCHAUD’S MODEL 1175

Due to the convergence ofεSε(ε
−1·) to the identity, we know that forε small

enough there is a small neighborhoodI ′ of I such thatJ ε
0 ⊂ ε−1I ′. The process

V has P̄-a.s. only finitely many jumps larger thanδ in I ′, so the first sum has
only a finite number of terms. Using the continuity off and applying Lemmas
5.2 and 5.3 we have∑

i∈J ε
δ

f (εSε(i))gε

(
V

(
ε(i + 1)

) − V (εi)
) → ∑

j : vj≥δ

f (xj )vj ,(64)

with (xi, vi) being the set of atoms of̄ρ. In the previous expression we also use
the fact thatiε → xi for the corresponding terms in the sums.

By Lemma 5.4 we have for someδ′ such thatδ′ + α ≤ 1∑
i∈J ε

ε1/α \J ε
δ

f (εSε(i))gε

(
V

(
ε(i + 1)

) − V (εi)
)

(65)
≤ C

∑
i∈J ε

ε1/α \J ε
δ

(
V

(
ε(i + 1)

) − V (εi)
)1−δ′ ≤ C

∑
j : vj≤δ

xj∈I ′

v1−δ′
j = Hδ.

From the definition of the point process(xi, vi) we have

Ē(Hδ) ≤ α|I ′|
∫ δ

0
w1−δ′

w−1−α dw → 0 asδ → 0.(66)

SinceHδ is decreasing and positive, the limit limδ→0 Hδ existsP̄-a.s. The domi-
nated convergence theorem then givesĒ limδ→0 Hδ = 0, and thus limδ→0 Hδ = 0
P̄-a.s.

The third part of the sum is also negligible forε small enough. Indeed, by
monotonicity ofgε, we havegε(x) ≤ gε(ε

1/α) ≤ Ccε for all x ≤ ε1/α . Hence,∑
i∈J ε

0\J ε

ε1/α

f (εSε(i))gε

(
V

(
ε(i + 1)

) − V (εi)
)

(67)
≤ C′cε

∑
i∈ε−1I ′∩Z

1 ≤ C′′cεε
−1 → 0 asε → 0.

In the last equation we use the fact that ifτ0 is in the domain of attraction of the
stable law with indexα, there existsκ > 0 such that the functioncε can be bounded
from above byCε−κ+1/α with −κ + 1/α > 1.

Putting now all three parts together, we have

lim
ε→0

∑
i∈J ε

0

f (εSε(i))gε

(
V

(
ε(i + 1)

) − V (εi)
)

(68)
= lim

δ→0

∑
j : vj≥δ

f (xj )vj =
∫

f dρ̄.
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This proves the vague convergence.
To prove the point-process convergence we use Lemma 2.4. Since we have

already proved the vague convergence, we must only verify Condition 1 for the
measuresεSε(ε

−1·) ◦ µ̄ε andρ̄. Thus, for any atom(xl, vl) of ρ̄ we want to find a
sequencejl(ε) such that

εSε(jl(ε)) → xl and gε

(
V

(
ε
(
jl(ε) + 1

)) − V (εjl(ε))
) → vl.(69)

Choosejl(ε) such thatxl ∈ (εjl(ε), ε(jl(ε)+1)]. Then by Lemma 5.2 we have the
first statement of (69), and by Lemma 5.3 we have the second. This completes the
proof of Proposition 5.1. �

6. Change of scale for fixed time distributions. Write X̄ε and X̄ for the
processes defined as in (38), but using the speed measuresµ̄ε and the scaling
functionsSε. Sinceµ̄ε ∼ µε andSε ∼ S, we haveX̄ε ∼ Xε. Similarly, we define
the processes̄Y ε, Ȳ as in (44), andZ̄ as in Definition 1.1 using the measures
with bars. Evidently,Ȳ ε ∼ Y ε, Ȳ ∼ Y andZ̄ ∼ Z. The following proposition is a
consequence of Propositions 2.5 and 5.1.

PROPOSITION6.1. Fix t0 > 0. Write ν̄ε
Y,V for the distribution of Ȳ ε(t0) and

ν̄V for the distribution of Z̄(t0) conditionally on V . Then, P̄-a.s. we have

ν̄ε
Y,V

v→ ν̄V and ν̄ε
Y,V

pp→ ν̄V as ε → 0.(70)

The proof of the convergence of the fixed time distribution ofX̄ε will be finished
if we can compare the limits of̄Xε andȲ ε.

PROPOSITION 6.2. Fix t0 as in Proposition 6.1. Let ν̄ε
X,V denote the

distribution of X̄ε(t0) conditionally on V . Then, P̄-a.s. we have

lim
ε→0

ν̄ε
X,V = lim

ε→0
ν̄ε
Y,V = ν̄V ,(71)

where the limits are taken in both the vague and the point-process sense.

PROOF. As an easy consequence of Lemma 5.2 we have

εS−1
ε (ε−1y) → y, P̄-a.s.(72)

We will again apply Lemma 2.4 to prove the convergence. Letf be a continuous
function with bounded supportI ⊂ R. By continuity off and (72), choosing the
fixed realization of Brownian motionW , we haveP̄-a.s.

lim
ε→0

f (X̄ε(t0)) = lim
ε→0

f (Ȳ ε(t0)).(73)

A standard application of the dominated convergence theorem yields

lim
ε→0

∫
f dν̄ε

X,V = lim
ε→0

∫
f dν̄ε

Y,V =
∫

f dν̄V .(74)
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We finally verify Condition 1. Write(xε
i , v

ε
i ), (yε

i ,w
ε
i ) for the collections of

atoms of ν̄ε
X,V and ν̄ε

Y,V . By Proposition 2.5(ii) we can choosexε
i = εi and

yε
i = εSε(i), setting eventuallyvε

i , respectivelywε
i , equal to zero if there is no

atom atxε
i , respectivelyyε

i . Using this choice ofxε
i andyε

i and the relation (45)
we havevε

i = wε
i . Let (zl, ul) be the collection of atoms of̄νV and letjl(ε) be

the sequence of indexes such that(yjl(ε),wjl(ε)) → (zl, ul). Then by (72) we have
(xjl(ε), vjl(ε)) → (zl, ul) which completes the proof.�

7. Proof of Theorem 1.2. We first express the quantities that we are interested
in using the processes̄Xε. From the definition ofX̃ε, Proposition 3.1 and the fact
that X̄ε ∼ X̃ε we get that if the following limits exist (as we show below), they
should satisfy

lim
tw→∞EP

[
X

(
(1+ θ)tw

) = X(tw)|E]
= lim

ε→0
ĒP̄[X̄ε(1+ θ) = X̄ε(1)|V ](75)

≡ lim
ε→0

Rε(θ)

and similarly

lim
tw→∞E

∑
i∈Z

[
P

(
X

(
(1+ θ)tw

) = i|E,X(tw)
)]2

= lim
ε→0

Ē

∑
i∈Z

[
P̄

(
X̄ε(1+ θ) = iε|V, X̄ε(1)

)]2(76)

≡ lim
ε→0

Rq
ε (θ).

We introduce some notation for the sets of atoms of the measures we will
consider. In the following everything depends on the realization of the Lévy
processV and we will not denote this dependence explicitly. We write

µ̄ε = ∑
i

vε
i δxε

i
and ρ̄ = ∑

i

viδxi
.(77)

The atoms of the distributionνε
1 of X̄ε(1) will be denoted by(xε

i ,w
ε
i ). Similarly,

(xi,wi) denotes the atoms of the distributionν1 of Z̄(1). The weights of the joint
distribution ofX̄ε(1) andX̄ε(1+ θ) will be denoted bywε

ij ,

wε
ij = P̄

[(
X̄ε(1) = xε

i

) ∩ (
X̄ε(1+ θ) = xε

j

)|V ]
,

(78)
wij = P̄

[(
Z̄(1) = xi

) ∩ (
Z̄(1+ θ) = xj

)|V ]
.

The last measure we will introduce is the distributionνε
1+θ (·|xε

i ) of X̄ε(1 + θ)

conditioned onX̄ε(1) = xε
i . We denote its atoms by(xε

j , u
ε
ij ). Thus,

uε
ij = P̄[X̄ε(1+ θ) = xε

j |X̄ε(1) = xε
i ,V ],

(79)
uij = P̄[Z̄(1+ θ) = xj |Z̄(1) = xi,V ].
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Observe thatwε
ij = wε

i u
ε
ij andwij = wiuij .

Using this notation we can rewrite (75) and (76),

Rε(θ) = Ē

[∑
i

wε
i u

ε
ii

]
and Rq

ε (θ) = Ē

[∑
i

wε
i

∑
j

(uε
ij )

2

]
,(80)

where the expectations are taken over all realizations ofV . Obviously we have

R(θ) = Ē

[∑
i

wiuii

]
and Rq(θ) = Ē

[∑
i,j

wi(uij )
2

]
.(81)

If we prove theP̄-a.s. convergence of the expressions inside the expectations
in (80) to the corresponding expressions in (81), the proof will follow easily us-
ing the dominated convergence theorem. We want to use the results of Propo-
sition 6.2, namely the point-process convergence ofνε

1 to ν1 and νε
1+θ (·|xε

ji(ε)
)

to ν1+θ (·|xi). Here, as usual,ji(ε) satisfies(xji(ε), vji(ε)) → (xi, vi) as ε → 0.
Note that the point-process convergence ofνε

1+θ (·|xε
ji(ε)

) follows from Proposi-
tions 6.2 and 2.5(iv).

In the proof we will need one property of the atoms of different measures
that is connected with Condition 1. From the point-process convergence ofµ̄ε

we know that for every atom(xl, vl) of ρ̄ there is a functionjl(ε) such that
(xε

jl(ε)
, vε

jl(ε)
) converges to(xl, vl). From Proposition 2.5(iii) we can see that for

the same functionwε
jl(ε)

→ wl , uε
jl(ε),jk(ε)

→ ulk , and thuswε
jl(ε),jk(ε)

→ wlk as
ε → 0. This observation is essential, because only the point-process convergence
of all measures is not sufficient to imply our results.

We prove the convergence only for the quantityR(θ). The proof forRq(θ) is
entirely similar. Point-process convergence, Condition 1 and the observation of the
previous paragraph give∑

i

wiuii = lim
ε→0

∑
i

wε
ji(ε)

uε
ji(ε),ji (ε)

≤ lim inf
ε→0

∑
i

wε
i u

ε
ii .(82)

To show the opposite bound we chooseδ > 0, and divide the sum in (80) into
sums over three disjoint sets

Aε(δ) = {i :wε
i > δ,uε

ii > δ},
Bε(δ) = {i :uε

ii ≤ δ},(83)

Cε(δ) = {i :wε
i ≤ δ, uε

ii > δ}.
The sum overAε(δ) has necessarily a finite number of terms. From point-

process convergence we have

lim sup
ε→0

∑
i∈Aε(δ)

wε
i u

ε
ii = ∑

i∈A(δ)

wiuii,(84)
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whereA(δ) has the obvious meaning. For the second part we have

lim sup
ε→0

∑
i∈Bε(δ)

wε
i u

ε
ii ≤ δ lim sup

ε→0

∑
i∈Bε(δ)

wε
i ≤ δ,(85)

sinceνε
1 is the probability measure. The last part satisfies

lim sup
ε→0

∑
i∈Cε(δ)

wε
i u

ε
ii ≤ lim sup

ε→0

∑
i∈Cε(δ)

wε
i ≤ 1− lim inf

ε→0

∑
i : wε

i >δ

wε
i .(86)

The sum in the last expression has a finite number of terms. Hence

lim sup
ε→0

∑
i∈Cε(δ)

wε
i u

ε
ii ≤ 1− ∑

i : wi>δ

wi,(87)

and the last sum goes to 1 asδ → 0, becauseν1 is a purely discrete measure. From
(84)–(87) it is easy to see that

lim sup
ε→0

∑
i

wε
i u

ε
ii ≤ ∑

i∈A(δ)

wiuii + δ +
(

1− ∑
i : wi>δ

wi

)
(88)

and the proof is completed by taking the limitδ → 0.

8. Proof of the sub-aging in symmetric case. We start the proof by a
technical lemma that will provide the connection between the rescaled processes
at timet = 1 and the processX at some large timet . Let ε(t) be defined by

ε(t) = sup{ε > 0 :εcεt ≤ 1}.(89)

We writect for cε(t) and we definek(t) = ε(t)ct t .
The next lemma defines the slowly varying functionL(t) that is used in

Theorem 1.3. Note that all slowly varying functions that we use are slowly varying
at infinity.

LEMMA 8.1. (i) There exists a slowly varying function L(t) such that

ct t
γ L(t) = 1.(90)

(ii) The function k(t) satisfies limt→∞ k(t) = 1.

The proof of this lemma is postponed to the end of the section.
The main step in proving Theorem 1.3 is the following proposition that

describes the scaling of the distribution of the depth of the site whereX stays
at timet . We recall that

γ = β

1+ β
= 1

1+ α
.(91)
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PROPOSITION8.2. Let Ft(u) = EP(τ (X(t))/tγ L(t) ≤ u|E). Then

lim
t→∞Ft(u) = EP

(
ρ(Z(1)) ≤ u|ρ) ≡ F(u)(92)

for all points of continuity of F(u).

We use this proposition to prove subaging fora = 0.

PROOF OFTHEOREM 1.3 IN THE SYMMETRIC CASE. The processX stays at
the sitei for an exponentially long time with meanτi . Using the Markov property
we can write

P
[
X(t ′) = X(t) ∀ t ′ ∈ [t, t + θtγ L(t)]]

(93) =
∫ ∞

0
e−θtγ L(t)/u dFt

(
u/(tγ L(t))

) =
∫ ∞

0
e−θ/u dFt (u).

By the weak convergence stated in Proposition 8.2, the last expression converges
to

∫
e−θ/u dF (u) = �(θ). �

The proof of Theorem 1.3 for the asymmetric case is postponed to the next
section because it is relatively complicated and relies on some notation introduced
later in this section.

PROOF OF PROPOSITION 8.2. We follow a strategy similar to that in the
proof of aging. Again we start with some notation. Leth(ε) be such that
limε→0 h(ε) = 1. We write

µ̄ε(dx) = ∑
i∈Z

cετ
ε
i δiε(dx) and ρ̄(dx) = ∑

i∈Z

viδxi
(dx).(94)

Similarly, the distributions of̄Xε(h(ε)) andZ̄(1) satisfy

ν̄ε
h(ε)(dx) = ∑

i∈Z

wε
i δiε(dx) and ν̄1(dx) = ∑

i∈Z

wiδxi
(dx).(95)

Here again we use the fact that the sets of positions of atoms ofρ̄ andν̄1 are equal.
Note thatwε

i depends on the functionh but we do not denote this dependence
explicitly. We also introduce the distributions of the depth at the timeh(ε),
respectively, 1:

πε
h(ε)(dx) = ∑

i∈Z

wε
i δcετ

ε
i
(dx)(96)

and

π1(dx) = ∑
i∈Z

wiδρ̄(xi )(dx) = ∑
i∈Z

wiδvi
(dx).(97)

We claim that:
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LEMMA 8.3.

πε
h(ε)

v→ π1 and πε
h(ε)

pp→ π1 as ε → 0, P̄-a.s.(98)

PROOF. As usual, we prove the vague convergence and Condition 1. To verify
the second property, let us first observe that for any atom(vl,wl) of π1 there
existsxl such that(xl, vl) is an atom ofρ̄, and(xl,wl) is an atom ofν̄1. From
the point-process convergencesµε pp→ ρ̄, ν̄ε

h(ε)

pp→ ν̄1 and from the direct part of
Lemma 2.4 we have that for anyl there exist sequencesjl(ε) andkl(ε), such that
(εjl(ε), cετ

ε
jl(ε)

) → (xl, vl) and(εkl(ε),w
ε
kl(ε)

) → (xl,wl) asε → 0. Moreover, it
can be seen from Proposition 2.5(iii) thatjl(ε) = kl(ε). Putting together the last
three claims and taking into account thatP̄-a.s.xl 	= xm impliesvl 	= vm, we easily
show that(cετ

ε
jl(ε)

,wε
jl(ε)

) → (vl,wl) asε → 0.
We should now verify the vague convergence. Letf be a nonnegative,

continuous function with compact support. We useIδ to denote the open rectangle
(−δ−1, δ−1) × (δ,2). By (96) we have∫

f (x)πε
h(ε)(dx) = ∑

i∈Z

wε
i f (cετ

ε
iε)

(99)
= ∑

i : (iε,wε
i )∈Iδ

wε
i f (cετ

ε
iε) + ∑

i : (iε,wε
i )/∈Iδ

wε
i f (cετ

ε
iε).

From the point-process convergence ofν̄ε
h(ε) we know that for all but countably

many δ > 0 and for ε large enough, the number of atoms ofν̄ε
h(ε) in Iδ is

finite and is equal to the number of atoms ofν̄1 in Iδ . Moreover, by the first
part of Lemma 2.4 we have for any such atom(xl,wl) the sequence of atoms
(εjl(ε),w

ε
jl(ε)

) converging to(xl,wl). By the same reasoning as in the previous
paragraph the sequencecετ

ε
jl(ε)

converges asε → 0 to ρ̄(xl) = vl . Thus, by
continuity off we have

lim
ε→0

∑
i : (iε,wε

i )∈Iδ

wε
i f (cετ

ε
iε) = ∑

i : (xi ,wi)∈Iδ

wif (vi).(100)

The right-hand side of the last equation is bounded by‖f ‖∞ and increases asδ
decreases. Thus, its limit asδ → 0 exists and is equal to

∫
f (x)π1(dx).

The second sum in (99) is bounded by

C
∑

i : (iε,wε
i )/∈Iδ

wε
i = C

(
1− ∑

i : (iε,wε
i )∈Iδ

wε
i

)
.(101)

Using the same argument as in (87) we have

lim
δ→0

lim sup
ε→0

(
1− ∑

i : (iε,wε
i )∈Iδ

wε
i

)
= lim

δ→0

(
1− ∑

i : (xi ,wi)∈Iδ

wi

)
= 0,(102)
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since the finite time distribution of̄Z is discrete. �

We can now complete the proof of Proposition 8.2. By definition (33) ofXε(t)

we have

Ft(u) = P[τ(X(t))/tγ L(t) ≤ u] = P
[
τ
(
ε−1Xε(tεcε)

)
/tγ L(t) ≤ u

]
.(103)

Inserting the definition (34) ofµε into the last claim yields

Ft(u) = P
[
c−1
ε µε(Xε(tεcε)

)
/tγ L(t) ≤ u

]
.(104)

Settingε = ε(t) and using the equality of the distributionsX̄ε ∼ Xε, µ̄ε ∼ µε and
Lemma 8.1, we get

Ft(u) = P̄
[
µ̄ε(t)(X̄ε(t)(k(t))

) ≤ u
]
.(105)

By definition (96) ofπε(t)
k(t) we have

1− Ft(u) = ĒP̄
[
µ̄ε(t)(X̄ε(t)(k(t))

)
> u|V ] = Ē

[ ∑
i : ct τ

ε(t)
i >u

w
ε(t)
i

]
.(106)

The point process convergence proved in Lemma 8.3 implies that the sum in the
last expectation convergesP̄-a.s. for allu such thatu 	= vi for all i:

lim
t→∞

∑
i : ct τ

ε(t)
i >u

w
ε(t)
i = ∑

i : vi>u

wi = P̄[ρ̄(Z̄(1)) > u|V ].(107)

Using the fact that(ρ,Z) has the same distribution as(ρ̄, Z̄) and applying the
dominated convergence theorem, it is easy to complete the proof.�

PROOF OFLEMMA 8.1. LetL1(t) be defined by

P[τ0 > t] = t−αL1(t).(108)

Sinceτ0 is in the domain of attraction of the stable law with indexα, the function
L1 is slowly varying.

We first show the second claim of the lemma, namely thatk(t) → 1 ast → ∞.
It is easy to see from (89) thatk(t) ≥ 1. To get an upper bound takeδ > 0 and
assume that

lim sup
t→∞

k(t) = lim sup
t→∞

ε(t)ct t ≥ 1+ δ.(109)

If this is true, then there is a sequencetn such thattn → ∞ as n → ∞, and
ε(tn)ctn tn ≥ (1+ δ). Using again (89) we get

ε(tn)ctn ≥ (1+ δ)t−1
n ≥ (1+ δ) lim

ε↑ε(tn)
εcε.(110)
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This means that(1+ δ)c−1
ε(tn) ≤ limε↑ε(tn) c

−1
ε . Using the definition (49) ofcε, it is

easy to see that this can only happen if there is a sequencesn such thatsn → ∞ as
n → ∞, andP[τ0 > sn] = P[τ0 > (1+ δ)sn]. However, then

L1((1+ δ)sn)

L1(sn)
= (1+ δ)αsα

n P[τ0 > (1+ δ)sn]
sα
n P[τ0 > sn] = (1+ δ)α(111)

and this leads to contradiction sinceL1 is a slowly varying function. There-
fore (109) is false and the second part of the lemma is proved.

To verify the first claim of the lemma we should only prove thatL(t) is slowly
varying. From definition (49) ofcε we get

ε−1
P[τ0 > c−1

ε ] → 1 asε → 0.(112)

Indeed, it is easy to see thatε−1
P[τ0 > c−1

ε ] ≤ 1. Takeη > 0; the lower bound
follows from

(1+ 2η)−α = lim
ε→0

P[τ0 > (1+ 2η)/(1+ η)c−1
ε ]

P[τ0 > 1/(1+ η)c−1
ε ]

(113)
≤ lim inf

ε→0
ε−1

P[τ0 > c−1
ε ]

sinceη is arbitrary. From (112) and (108) we get

ε−1cα
ε L1(c

−1
ε ) → 1 asε → 0.(114)

Using (114) andk(t) → 1 we get

ct t
γ L

γ
1 (c−1

t ) → 1 ast → ∞.(115)

We want to show thatct = t−γ L(t)−1 whereL(t) is slowly varying. Choosek > 0
and definedt = L(t)/L(kt). Takeη > 0 small and assume that lim inft→∞ dt <

1− 2η. We chooseδ > 0 and we considert large enough such thatct t
γ L

γ
1 (c−1

t ) ∈
(1− δ,1+ δ). This can be done by (115). We have

dt = L(t)

L(kt)
= ckt

ct

kγ ≥ 1− δ

1+ δ
· L

γ
1 (c−1

t )

L
γ
1 (c−1

kt )
= 1− δ

1+ δ
· L

γ
1 (c−1

t )

L
γ
1 (d−1

t c−1
t kγ )

.(116)

Our assumption implies that there exists a sequencetn such thatd−1
tn > 1 + η for

all n. SinceL1 is slowly varying, we know that for arbitraryθ > 0 there existsx0
such that for alll > 1+ η andx > x0 we haveL1(lx) ≤ lθL1(x). This implies that
for n large enough we have

dtn ≥ 1− δ

1+ δ
· L

γ
1 (c−1

tn )

d
−γ θ
tn L

γ
1 (c−1

tn kγ )
.(117)

Taking the limitn → ∞, using thatctn → ∞ and thatL1 is slowly varying, we get

lim inf
n→∞ d

1+γ θ
tn ≥ 1− δ

1+ δ
.(118)
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For everyη we can takeδ andθ such that the last equation is in contradiction with
lim inf t→∞ dt < 1 − 2η. Thus lim inft→∞ dt ≥ 1. The proof of the upper bound
follows from

dtn ≤ 1+ δ

1− δ
· d

γ θ
tn L

γ
1 (k−γ c−1

ktn
)

L
γ
1 (c−1

ktn
)

.(119)

This can be proved if one assumes that lim supt→∞ dt ≥ 1 + 2η and it leads to a
contradiction similarly as in (118).�

9. Proof of subaging in the nonsymmetric case. If a > 0, the jump rates
depend also on the depths of the neighboring sites. As it is easy to see from the
definition of τ ε

i , the depth of the neighboring sites of some very deep trap does
not convergēP-a.s. (By very deep trap we mean here a trap whereX has a large
chance to stay at timet .) On the other hand, we expect (see [11]) that the depth of
these sites is, at least iftw is large, almost independent of the diffusion and has the
same distribution asE0. We will show that this expectation is correct.

We consider the function�(t, t + fa(t, θ)). By its definition we have

�
(
t, t + fa(t, θ)

)
(120)

= E

[∑
i∈Z

P
(
X(t) = i|E)

exp
(−(wi,i+1 + wi,i−1)fa(t, θ)

)]
.

The rateswi,i+1 andwi,i−1 can be expressed using the variablesτi :

wi,i+1 + wi,i−1 = τa
i−1 + τa

i+1

τ1−a
i

[
E(exp(−2aβE0))

2

]1−2a

.(121)

We useK to denote the constant in the brackets in the last expression. Then, taking
ε = ε(t) as in (89),

�
(
t, t + fa(t, θ)

)
= E

[ ∑
i∈Z

P
(
Xε(tεcε) = εi|E)

exp
(
−Kfa(t, θ)

τ a
i+1 + τa

i−1

τ1−a
i

)]
(122)

= Ē

[∑
i∈Z

wi(t)exp
(
−Kfa(t, θ)

(τ
ε(t)
i+1)a + (τ

ε(t)
i−1)a

(τ
ε(t)
i )1−a

)]
,

wherewi(t) = P̄(X̄ε(t)(tε(t)ct ) = iε(t)|V ) = P̄(X̄ε(t)(k(t)) = iε(t)|V ).
Let m > 0 large andη > 0 small. We useJ η

m = J
η
m(V ) to denote the set of deep

traps not far from the origin:

J η
m = {x ∈ [−m,m] :V (x) − V (x−) ≥ η}.(123)
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Let T η
m(ε) be the set of sites corresponding toJ

η
m at the scaleε:

T η
m(ε) = {i ∈ Z : (iε, (i + 1)ε] ∩ J η

m 	= ∅}.(124)

Note thatJ η
m andT

η
m(ε) areP̄-a.s. finite sets.

In the following proposition we show that it is possible to choosem andη such
that X̄ε(t)(k(t)) is with an arbitrarily large probability inT η

m(ε(t)). This can be
regarded as a stronger version of the localization effect (8) since the size of the set
T

η
m(ε) can be bounded uniformly inε by |J η

m|.
PROPOSITION 9.1. Let h(ε) be such that limε→0 h(ε) = 1. Then for every

δ > 0 there exist m, η and ε0 such that for ε < ε0

P̄
[
P̄

(
ε−1X̄ε(h(ε)) ∈ T η

m(ε)|V )
> 1− δ

]
> 1− δ.(125)

We postpone the proof of this proposition to the end of this section and we use
it to further simplify (122). Letδ > 0 and letm andη be such that (125) holds. We
divide the sum in (122) into two parts. The contribution of the sum overi /∈ T

η
m(ε)

is not important. Indeed, by Proposition 9.1, for allt large enough

Ē

[ ∑
i∈Z\T η

m(ε(t))

wi(t)exp
(

− fa(t, θ)K
(τ

ε(t)
i+1)a + (τ

ε(t)
i−1)a

(τ
ε(t)
i )1−a

)]

(126)

≤ Ē

[ ∑
i∈Z\T η

m(ε(t))

wi(t)

]
≤ 2δ.

To estimate the contribution of the sum overi ∈ T
η
m(ε) we define the set of

neighbors of deep sites

Nη
m(ε) = {i ∈ Z \ T η

m(ε) :∃ j ∈ T η
m(ε) such that|i − j ] = 1}.(127)

Let σ̇ ε
i be a sequence of i.i.d. random variables defined on�̄ that are independent

of V and have the same distribution asτ ε
0 conditioned onJ η

m ∩ (0, ε] = ∅. Let

σ̂ ε
i = min(σ̇ ε

i , c
−1/2
ε ). We define

τ̇ ε
i =

{
σ̇ ε

i , for i ∈ N
η
m(ε),

τ ε
i , otherwise,

and

(128)

τ̂ ε
i =

{
σ̂ ε

i , for i ∈ N
η
m(ε),

τ ε
i , otherwise.

We define measureṡµε, µ̂ε and scaling functionsṠε, Ŝε similarly as in
(55) and (57) but usinġτ ε

i , τ̂ ε
i instead ofτ ε

i . Further, let

Ẋε(t) = X
(
µ̇ε, εṠε(ε

−1·))(t) and X̂ε(t) = X
(
µ̂ε, εŜε(ε

−1·))(t),(129)

and letẇi(t), ŵi(t) be defined similarly aswi(t).
To finish the proof of the theorem we will need four technical lemmas.
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LEMMA 9.2. For every fixed realization of σ̇ ε
i , P̄-a.s.

εŜε(ε
−1·) ◦ µ̂ε v→ ρ̄ and εŜε(ε

−1·) ◦ µ̂ε pp→ ρ̄ as ε → 0.(130)

Therefore, the distribution of X̂ε(t)(k(t)) converges as t → ∞ weakly and in the
point-process sense to the distribution of Z̄(1).

In particular, for all x ∈ J
η
m

lim
t→∞ ŵjε(t)

(t) = P̄
(
Z̄(1) = x|V ) ≡ wx and lim

ε→0
cετ̂

ε
jε

= ρ̄(x),(131)

where jε = jε(x) ∈ T
η
m(ε) satisfies x ∈ (εjε, ε(jε + 1)].

PROOF. The proof of the first part of this lemma is very similar to the proofs of
Lemma 5.2 and Proposition 5.1; the finite number of changes of neighbors of the
deep traps loses its influence asε → 0. Therefore, we only describe modifications
that must be done in the original proofs.

To get an equivalent of Lemma 5.2 we must show thatεŜε(�ε−1y�) =
ε

∑�ε−1y�
j=0 r̂ ε

j converges toy. SinceJ
η
m is finite, only a finite number of̂rε

j ’s is
influenced by changing the sequence ofτ ’s. Sincer̂ ε

j are bounded, the contribution
of the changed part of the sum tends to zero asε → 0. The rest of the sum can be
treated in the same way as in the proof of Lemma 5.2.

Further, we must show the vague convergence and Condition 1 for the measures
εŜε(ε

−1·) ◦ µ̂ε. Let x be position of an atom ofρ and let i(ε) be given by
x ∈ (εi(ε), ε(i(ε) + 1)]. It is easy to observe thati(ε) /∈ N

η
m(ε) for all ε small

enough. The proof of Condition 1 can be then finished using the same reasoning
as before.

To show the vague convergence letf (x) be a bounded continuous function with
bounded support. Then∣∣∣∣

∫
f (x)

(
εŜε(ε

−1·) ◦ µ̂ε)(dx) −
∫

f (x)
(
εSε(ε

−1·) ◦ µ̄ε)(dx)

∣∣∣∣
(132)

≤
∣∣∣∣∣

∑
i∈N

η
m(ε)

f (εSε(i))gε

(
ρ̄

(
iε, (i + 1)ε

))∣∣∣∣∣ +
∣∣∣∣∣

∑
i∈N

η
m(ε)

f (εŜε(i))cεσ̂
ε
i

∣∣∣∣∣.
The contribution of the first term can be proved to be small observing thatJ ε

δ

[defined in (63)] satisfiesJ ε
δ ∩ N

η
m(ε) = ∅ for all δ > 0 if ε is small enough. The

second term in (132) is also negligible sinceσ̂ ε
i ≤ c

−1/2
ε and |Nη

m(ε)| ≤ 2|J η
m| is

a.s. finite.
The convergence of̂Xε(t)(k(t)) and ofwjε(t)

(t) is then a consequence of the first
part of the lemma and Proposition 2.5.�

LEMMA 9.3. The sequence τ̇ ε
i has the same distribution as τi .
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PROOF. The proof is obvious because the distribution ofσ̇ ε
i is chosen to be

equal to the distribution ofτ ε
i conditioned oni /∈ T

η
m(ε). �

LEMMA 9.4. For P̄-a.e. realization of V

lim
ε→0

P̄
(∃ i ∈ Nη

m(ε) : σ̇ ε
i 	= σ̂ ε

i |V ) = 0.(133)

PROOF. The probability thatσ̇ ε
i ≥ c

−1/2
ε tends to zero. SinceNη

m(ε) is a.s.
finite, the proof is complete.�

LEMMA 9.5. As ε → 0 the random variables σ̂ ε
0 converge weakly to τ0.

PROOF. By definition of σ̇i , P̄(σ̇ ε
0 ≤ a) = P̄(τ ε

0 ≤ a|J η
m ∩ (0, ε] = ∅). Since

the probability of the conditioning event tends to 1 asε → 0 andτ ε
0 has the same

distribution asτ0, this converges tōP(τ0 ≤ a). Therefore,σ̇ ε
0 converges weakly

to τ0. Sinceσ̂ ε
0 = min(σ̇ ε

0 , c
−1/2
ε ) andc

−1/2
ε → ∞ asε → 0, the lemma follows.

�

We can now estimate the contribution of the sum overi ∈ T
η
m(ε) in (122). Using

Lemma 9.3 we get

Ē

[ ∑
i∈T

η
m(ε(t))

wi(t)exp
(
−Kfa(t, θ)

(τ
ε(t)
i+1)a + (τ

ε(t)
i−1)a

(τ
ε(t)
i )1−a

)]

= Ē

[ ∑
i∈T

η
m(ε(t))

ẇi(t)exp
(
−Kfa(t, θ)

(τ̇
ε(t)
i+1)a + (τ̇

ε(t)
i−1)a

(τ̇
ε(t)
i )1−a

)]
(134)

= Ē

[ ∑
i∈T

η
m(ε(t))

ŵi(t)exp
(
−Kfa(t, θ)

(τ̂
ε(t)
i+1)a + (τ̂

ε(t)
i−1)a

(τ̂
ε(t)
i )1−a

)]

+ R1(ε(t)).

The error termR1(ε) can be bounded by

|R1(ε)| ≤ Ē
[
P̄

(∃ i ∈ Nη
m(ε) : σ̇ ε

i 	= σ̂ ε
i |V )] → 0 asε → 0(135)

by Lemma 9.4 and the dominated convergence theorem. Recall thatfa(t, θ) =
θtγ (1−α)L(t)1−α . Therefore, using Lemma 8.1, the main term in (134) can be
rewritten as

Ē

[ ∑
x∈J

η
m

wx exp
(
−Kfa(t, θ)

(τ̂
ε(t)
jε(t)(x)+1)

a + (τ̂
ε(t)
jε(t)(x)−1)

a

ca−1
t ρ̄(x)1−a

)]
+ R2(ε(t))

(136)

= Ē

[ ∑
x∈J

η
m

wx exp
(
−Kθ

(σ̂
ε(t)
jε(t)(x)+1)

a + (σ̂
ε(t)
jε(t)(x)−1)

a

ρ̄(x)1−a

)]
+ R2(ε(t)),



1188 G. BEN AROUS AND J.ČERNÝ

wherejε(x) is defined as in Lemma 9.2 andR2(ε) is an error that comes from the
replacement of̂wi(t) andτ̂

ε(t)
i by wx andct ρ̄(x). It follows from Lemma 9.2 that

|R2(ε)| → 0 asε → 0.
We can now easily compute the expectation overσ̂ in (136). Let gε

a(λ)

denote the Laplace transform ofK(σ̂ ε
0 )a , gε

a(λ) = Ē(exp(−λK(σ̂ ε
0 )a)), and let

ga(λ) = E(exp(−λKτa
0 )). Since τ0 has the same distribution as exp(βE0) ×

E(exp(−2aβE0))/2, Kτa
0 has the same distribution as

2a−1 exp(aβE0)
(
E

(
exp(−2aβE0)

))1−a ≡ Ta,(137)

andga(λ) = E(e−λTa ) as required by Theorem 1.3. From Lemma 9.5 it follows
that limε→0 gε

a(λ) = ga(λ). Using this notation, (126), (134) and (136) we get

lim sup
t→∞

�
(
t, fa(t, θ)

)

≤ lim sup
ε→0

Ē

[ ∑
x∈J

η
m

wx exp
(
−Kθ

(σ̂ ε
jε(x)+1)

a + (σ̂ ε
jε(x)−1)

a

ρ̄(x)1−a

)]
+ 2δ(138)

= Ē

[ ∑
x∈J

η
m

wxg
2
a

(
θρ̄(x)a−1)] + 2δ.

Inserting the remaining atoms ofρ̄ inside the sum, making again an error of order
at most 2δ, we get

lim sup
t→∞

�
(
t, fa(t, θ)

) ≤ Ē

[∑
x

wxg
2
a

(
θρ̄(x)a−1)] + 4δ.(139)

An analogous calculation gives

lim inf
t→∞ �

(
t, fa(t, θ)

) ≥ Ē

[∑
x

wxg
2
a

(
θρ̄(x)a−1)] − 4δ.(140)

Sinceδ was arbitrary we have

�(θ) =
∫ ∞

0
g2

a(θua−1) dF (u),(141)

which finishes the proof of subaging in the asymmetric situation. We still have to
show Proposition 9.1.

PROOF OF PROPOSITION 9.1. The claim follows from the existence of
η andm such that

P̄
[
P̄

(
Z̄(1) ∈ J η

m|V ) ≥ 1− δ/2
] ≥ 1− δ/2,(142)
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and from theP̄-a.s. point-process convergence of the distribution ofX̂ε(1) to
that of Z̄(1). Namely, for P̄-a.e. realization ofV it follows from Proposi-
tion 2.5(iii), (iv) that there isε(V ) > 0 such that forε < ε(V )∣∣P̄(

Z̄(1) ∈ J η
m|V ) − P̄

(
X̄ε(h(ε)) ∈ T η

m(ε)|V )∣∣ ≤ δ/2.(143)

We then takeε0 such that̄P(ε(V ) > ε0) > 1− δ/2.
We should still verify (142). It is equivalent to

P̄
[
P̄

(
Z̄(1) /∈ J η

m|V ) ≤ δ/2
] ≥ 1− δ/2.(144)

The last claim can be easily verified if we show

P̄[Z̄(1) /∈ J η
m] = Ē

[
P̄

(
Z̄(1) /∈ J η

m|V )] ≤ δ2/4.(145)

Indeed, assume that (144) is not true, that is,

P̄
[
P̄

(
Z̄(1) /∈ J η

m|V )
> δ/2

]
> δ/2.(146)

Then clearly

Ē
[
P̄

(
Z̄(1) /∈ J η

m|V )]
> δ2/4,(147)

in contradiction with (145).
We establish claim (145) using two lemmas.

LEMMA 9.6. Let η(t) = t1/(1+α) and m(t) = tα/(1+α). Then

P̄
(
Z̄(1) ∈ J η

m

) = P̄
(
Z̄(t) ∈ J

η(t)
m(t)

)
.(148)

LEMMA 9.7. For every δ′ there exist m′ and η′ such that∫ 1

0
P̄

(
Z̄(t) ∈ J

η′
m′

)
dt ≥ 1− δ′.(149)

We first finish the proof of Proposition 9.1. Lemma 9.7 ensures the existence

of t ∈ (0,1) such thatP̄(Z(t) ∈ J
η′
m′) ≥ 1 − δ′. The claim (145) then follows from

Lemma 9.6, choosingδ′ = δ2/4, m = t−α/(1+α)m′ andη = t−1/(1+α)η′. �

PROOF OFLEMMA 9.6. The pair(
Wλ(t),Vλ(x)

) ≡ (
λW(λ−2t), λ1/αV (λ−1x)

)
(150)

has the same distribution as(W(t),V (x)). The measurēρλ associated toVλ can
be written as

ρ̄λ = ∑
xi

(
Vλ(xi) − Vλ(xi−)

)
δxi

= λ1/α
∑
yi

(
V (yi) − V (yi−)

)
δλyi

.(151)
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We thus have

φλ(t) ≡
∫

	λ(t, y)ρ̄λ(dy) =
∫

λ	(λ−2t, λ−1y)ρ̄λ(dy)

(152)
= ∑

yi

λ	(λ−2t, yi)λ
1/α(

V (yi) − V (yi−)
) = λ(α+1)/αφ(λ−2t)

and therefore its generalized inverse satisfiesψλ(t) = λ2ψ(λ−(α+1)/αt). The
rescaled singular diffusion defined bȳZλ = Wλ(ψλ(t)) that has the same
distribution asZ̄ thus satisfies

Z̄λ(t) = Wλ(ψλ(t)) = λZ̄
(
λ−(α+1)/αt

)
.(153)

Clearly, the triplet(Wλ,Vλ, Z̄λ) has the same distribution as(W,V, Z̄) too. We
thus have

P̄
(
Z̄(1) ∈ J η

m(V )
) = P̄

(
Z̄λ(1) ∈ J η

m(Vλ)
)
.(154)

The setJ η
m(Vλ) satisfiesJ η

m(Vλ) = λJ
ηλ−1/α

mλ−1 (V ) as can be easily verified from the
scaling ofV or from (151) and thus

P̄
(
Z̄(1) ∈ J η

m(V )
) = P̄

(
λZ̄

(
λ−(α+1)/α) ∈ λJ

ηλ−1/α

mλ−1 (V )
)

(155)
= P̄

(
Z̄

(
λ−(α+1)/α) ∈ J

ηλ−1/α

mλ−1 (V )
)
.

The proof is complete takingλ satisfyingλ−(α+1)/α = t . �

PROOF OFLEMMA 9.7. The claim of the lemma is equivalent with∫ 1

0
P̄

(
Z̄(t) /∈ J

η′
m′

)
dt ≤ δ′.(156)

We useσ(m) to denote the first timēZ leaves[−m,m]. Let m′ be large enough
such that

P̄
(
σ(m′) < 1

)
< δ′/2(157)

and letσ = σ(m′). Then∫ 1

0
P̄

(
Z̄(t) /∈ J

η′
m′

)
dt = Ē

[∫ 1

0
1
{
Z̄(t) /∈ J

η′
m′

}
dt

]

≤ Ē

[∫ 1

0
1
{
Z̄(t) /∈ J

η′
m′, σ ≥ 1

}
dt +

∫ 1

0
1{σ < 1}dt

]
(158)

≤ Ē

∫ σ

0
1
{
Z̄(t) /∈ J

η′
m′

}
dt + δ′/2.
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We should bound the expectation in the last expression byδ′/2. We establish this
bound by proving

P̄

[
Ē

(∫ σ

0
1
{
Z̄(t) /∈ J

η′
m′

}
dt

∣∣∣V )
≥ δ′/4

]
≤ δ′/4.(159)

The conditional expectation inside the brackets can be written as

Ē

[∫ σ

0
1
{
Z̄(t) /∈ J

η′
m′

}
dt

∣∣∣V ]
= ∑

xi∈[−m′,m′]
vi<η′

Gm′(0, xi)vi,(160)

where as usual(xi, vi) is the collection of atoms of̄ρ and Gm(x, y) is the
Green function of the standard Brownian motion killed on exit from[−m,m].
There exists a constantk depending only onm such thatGm(0, x) ≤ k for all
x ∈ [−m,m]. We thus have

P̄

[
Ē

(∫ σ

0
1
{
Z̄(t) /∈ J

η′
m′

}
dt

∣∣∣V )
≥ δ′/4

]
≤ P̄

[
k

∑
xi∈[−m′,m′]

vi<η′

vi ≥ δ′/4

]
.(161)

The sum in the last equation has the same distribution as the Lévy processV

without jumps larger thanη′ at the time 2m′. One can thus easily chooseη′ small
enough, such that the last probability is smaller thanδ′/4. �
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