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BOUCHAUD'S MODEL EXHIBITS TWO DIFFERENT AGING
REGIMES IN DIMENSION ONE

BY GERARD BEN AROUS AND JIRi CERNY

Courant Institute of Mathematical Sciences and Weierstrass I nstitute
for Applied Analysis and Stochastics

Let E; be a collection of i.i.d. exponential random variables. Bouchaud’s
model onZ is a Markov chainX(r) whose transition rates are given
by w;j = vexp(—B((1 — a)E; — ak))) if i, j are neighbors irZ. We
study the behavior of two correlation functio®:X (t,, +t) = X (t,)] and
PIX(t') = X(ty) Yt € [tw, ty + t]]. We prove the (sub)aging behavior of
these functions whe > 1 anda € [0, 1].

1. Introduction. Aging is an out-of-equilibrium physical phenomenon that
is gaining considerable interest in contemporary physics and mathematics. An
extensive literature exists in physics (see [6] and therein references). The
mathematical literature is substantially smaller, although some progress was
achieved in recent years ([2, 3, 5, 7, 9]; see also [1] for a survey).

The following model has been proposed by Bouchaud as a toy model for
studying the aging phenomenon. l@t= (V, §) be a graph, and lef = {E;};cv
be the collection of i.i.d. random variables indexed by vertices of this graph with
the common exponential distribution with mean 1. We consider the continuous-
time Markov chainX (¢) with state spac#&, such that

w;; dt, if i, j are connected i,

(1) PX@¢+d)=jlX@t)=i,E)= {0 otherwise

The transition rates);; are defined by
(2) Wi j =vexp(—ﬁ((1—a)El~ —CZE‘,')).

The parameteg denotes, as usual, the inverse temperature and the parameter
0 <a <1, drives the “symmetry” of the model. The valuewofixes the time scale
and is irrelevant for our paper; we thus set 1.

This model has been studied whéhis Z anda = 0 by Fotnes, Isopi and
Newman [8, 9]. It is an elementary model wh@ris the complete graph, which is
a good ansatz for the dynamics of the REM (see [3]).

The time spent by the system at sitgrows with the value ofz;. The value
of E; can thus be regarded as the depth of the trap at the.sfthe model is
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1162 G. BEN AROUS AND JCERNY

sometimes referred to as “Bouchaud’s trap model.” It describes the motion of
the physical system between the states with energi€s It can be regarded as
a useful rough approximation of spin-glass dynamics. The states of Bouchaud’s
trap model correspond to a subset of all possible states of the spin-glass system
with exceptionally low energy. This justifies in a certain sense the exponential
distribution of E; since itis the distribution of extreme values. The idea behind this
model is that the spin-glass dynamics spends most of the time in the deepest states
and it passes through all others extremely quickly. Thus, only the extremal states
are important for the long-time behavior of dynamics, which justifies formally the
introduction of Bouchaud’s model.

Usually, proving an aging result consists in finding a two-point function
F(ty, ty + 1), @ quantity that measures the behavior of the system atrtimg,
after it has aged for the timg,, such that a nontrivial limit

3 Nim F (1, ty +1) = F(6)
t/ty=0

exists. The choice of the two-point function is crucial. For instance, it has been
observed by Rinn, Maass and Bouchaud [11] that a good choice is

4) R(ty, ty +1) =EP(X (1 + t,,) = X (1) |E),

which is the probability that the system will be in the same state at the end of the
observation period (i.e., at timret ¢,,) as it was in the beginning (i.e., at timg).
Another quantity exhibiting aging behavior, which was studied by Fontes, Isopi
and Newman [9], is

(5) RI(ty tw +1) =E Y [P(X(t + 1) =i|E, X (tu)) ],
i€eZ

which is the probability that two independent walkers will be at the same site after
timer + 1, if they were at the same site at timg, averaged over the distribution
of the common starting poir¥ (¢,,). These authors have proved that, for these two
two-point functions, aging occurs when= 0. We extend this result to the case
a > 0. The limiting object will be independent af Thus the parameter could
seem to be of no relevance for aging.

However, it is not the case for all two-point functions. For instance, for the
function

(6) (ty, ty +1) =EP(X(t") = X (t,)) V1’ € [ty, tw +11|E),

that is, for the probability that the system does not change its state betyeen
andt, + ¢, it was predicted by Rinn, Maass and Bouchaud [11] that there exists
a constanty such that the limit ling, — o IT(¢y, ty + 0t exists and depends
nontrivially on a. The namesubaging was introduced for this type of behavior,
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that is, for the fact that there exists a constart § < 1 such that for some two-
point functionF (¢, t,, + t), there is a nontrivial limit

(7 lim F(ty, t, +1) = F().
—00
t/th=0

One of the main results of the present paper is the proof of the subaging behavior
of the function (6) for an arbitrary < [0, 1].

Let us have a closer look at the role of the parametéf a« = 0, the dynamics
of the model is sometimes referred to as “random hopping time (RHT) dynamics”
(cf. [10]). In this case the rates;; do not depend on the value &f;. Hence, the
system jumps to all neighboring sites with the same probability and the process
X (r) can be regarded as a time change of the simple random walk.

On the other hand, i > 0, the system is attracted to the deepest traps and the
underlying discrete-time Markov chain is some kind of random walk in a random
environment (RWRE). There are already some results about aging of RWRE in
dimension 1 [7]. In that article Sinai’s RWRE is considered. It is proved there that
there is aging on the scale loglogt,, — const.

In our situation the energy landscape, far from being seen as a two-sided
Brownian motion as in Sinai's RWRE, should be seen as essentially flat with
few very narrow deep holes around the deep traps. The drifts on neighboring sites
are dependent and this dependency does not allow the existence of large domains
with drift in one direction. This can be easily seen by looking at sites surrounding
one particularly deep traf;. Here, the drift at sité — 1 pushes the system very
strongly to the right and at site+ 1 to the left because the system is attracted
to the sitei. Moreover, these drifts have approximately the same size. A more
precise description of this picture will be presented later (Section 5). However,
these differences do not change notably the mechanism responsible for aging.
Again, during the exploration of the random landscape, the pracdissls deeper
and deeper traps that slow down its dynamics.

It was observed numerically by Rinn, Maass and Bouchaud [11]fligtages
only if the temperature is low enough,> 1. (In the sequel we will consider only
the low-temperature regime.) This heuristically corresponds to the fact that @
andg > 1, the mean tim&(exp(8 Eo)) spent byX (¢) at an arbitrary site becomes
infinite. This implies that the distribution of the depth at which we find the system
at time ¢+ does not converge as— oo. The processX(¢) can find deeper and
deeper traps where it stays longer.

If a > 0, the previous explanation is not precise. The time before the jump is
shortened whem increases. On the other hand, the system is attracted to deep
traps. This means that instead of staying in one deep trap, the process prefers
to jump out and then to return back very quickly. For the two-point functions
(4) and (5) these two effects cancel and the limiting behavior is thus independent
of a. For the two-point function (6), there cannot be cancellation, because the
attraction to deeper traps has no influence on it.
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Before stating the known results about the model we generalize it slightly. All
statements in this paper do not actually requiteto be an exponential random
variable. The only property of; that we will need is that the random variable
exXp(BE;) is in the domain of attraction of the totally asymmetric stable law with
index B~1 = «. Clearly, the original exponential random variable satisfies this
property.

Recently, this model was studied rigorously by Fontes, Isopi and Newman [8, 9]
in connection with the random voter model and chaotic time dependence. In that
papers only the RHT case, = 0, was considered. Iff =1 and 8 > 1, they
proved that the Markov chaii (t) possesses an interesting property called there
localization. Namely, it was shown there that
(8) lim supsupP(X (1) =i|E) > 0, P-a.s.

1—>00 el
Also aging for the two-point functions (4) and (5) was proved there. In dimension
d > 2, results of that papers imply that there is no localization in the sense of (8).
However, there is numerical evidence [11] that the system ages. A rigorous proof
of this claim will be presented in a forthcoming paper [4].

In this article we generalize the results of Fontes, Isopi and Newman [9] in
dimension 1 to the general casez# 0. As we have already noted, the main
difficulty comes from the fact that the underlying discrete-time Markov chain is
not a simple random walk. We will prove aging for the quantities (4) and (5). We
will then prove subaging for the two-point function (6).

As in [9], we relate the asymptotic behavior of quantities (4), (5) and (6)
to the similar quantities computed using a singular diffusifxin) in a random
environmentp—singular meaning here that the single time distributiong afre
discrete.

DEeFINITION 1.1 (Diffusion with random speed measure). The random envi-
ronmentp is a random discrete measupeg; v;é,,, where the countable collection
of (x;, v;)’s yields an inhomogeneous Poisson point procesR on(0, co) with
density measuréx ov~1"* dv. Conditional orp, Z(s) is a diffusion process [with
Z(0) = 0] that can be expressed as a time change of a standard one-dimensional
Brownian motionW (¢) with the speed measuge Denotingl(z, y) the local time
of W(t) aty, we define

©) $° (1) = / £t y)p(dy)

and the stopping timey*(s) as the first timer when ¢”(¢) = s; then Z(¢) =
WP (1)).

A more detailed description of time changes of Brownian motion can be found
in Section 2.
Our main result about aging is the following.
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THEOREM 1.2. For any 8 > 1 and a € [0, 1] there exist nontrivial functions
R(9), RY(9) such that

[}m R(t,t+01) = tlim EP[X((1+6)t) = X (1)|E] = R(0),
lim R, 1 +61) = tirgoEZ [P(X((1+0)t) =i|E, X (1))]* = RI(6).
i€’

Moreover, R(9) and R4 (6) can be expressed using the similar quantities defined
using the singular diffusion Z:

a R(O)=EP[Z(1+60)=Z(1)|p],

RIO)=E > [P(Z(1+6)=x|p, ZD)]>.
xeR

For a = 0, this result is contained in [9]. Since the diffusiafz) does not
depend onx, the functionsk (6) and R?(9) do not depend on it either. This is the
result of the compensation of shorter visits of deep traps by the attraction to them.

We will also prove subaging for the quantifi(z,,, ¢, + t). We usey to denote
the subaging exponent

(12) y=r b

:1+a:1+/3'

THEOREM1.3. Forany g > landa € [0, 1] there existsa nontrivial function
I1(9) such that

Nim Tt 1 + fa(2,0))
13
() = lim BP[X (') = X (1) Vi' €[t.t + fa(t. DI E] = T1(),

where the function f, is given by
(14) fa(t,0) =617 L),

and L(¢) is a slowly varying function that is determined only by the distribution
of Eo. Its precise definition isgiven in Lemma 8.1. The function IT(6) can be again
written using the singular diffusion Z,

(15) ne = [  20u Y dF (u),

where F(u) = EP[p(Z(1)) < u|p], and where g,()) is the Laplace transform
E(e~*Ta) of the random variable

(16) T, = 2° L exp(aB Eo)[E(exp(—2aB Eo)) ] “.

If a =0, (15)can be written as

(17) () = /Oooeg/”dF(u).
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REMARK. Note that if E;'s are exponential random variables, the function
L(¢) satisfiesL(r) = 1. The same is true if eXp E;) has a stable law.

As can be seen, in this case the functiirid) depends oru. This is not
surprising since the compensation by attraction has no influence here and the jumps
rates clearly depend an

This behavior of the two-point functiors (z,,, t + #,,) andR (¢, t + t,,) iS not
difficult to understand, at least heuristically. One should first look at the behavior
of the distribution of the depth of the location of the process at tiyndt can

be proved that this depth grows Iiké/(l“’) (see Proposition 8.2). From this one
can see that the main contribution to quantities (4) and (5) comes from trajectories
of X (¢) that, between times, andz, + 1, leaver" ™ times the original

site and then return to it. Each visit of the original site lasts an amount of time of
orders(1~4/ 4+,

In the case of the two-point function (6), we are interested only in the first visit
and thus the time should scale aéjl_“)/(lﬂ). Proofs can be found in Sections 7,
8 and 9. In Section 2 we summarize some known results about time-scale changes
of Brownian motion and about point-process convergence. In Section 3 we express
the processX and its scaled versions as a time-scale change and in Section 4 we
introduce a coupling between the different scalesXofln Section 5 we prove
convergence of speed measures which is used for time-scale change and we apply
this result to show the convergence of finite time distributions of rescaled versions
of X to the finite time distributions of .

2. Definitions and known results. In this section we define some notation
that we will use often later, and we summarize some known results.

2.1. Time-scale change of Brownian motion. The limiting quantitiesR(6),
R1(0) and I1(0) are expressed using the singular diffusion defined by a time
change of Brownian motion. So, it will be convenient to express also the chains
with discrete state space as a time-scale change of Brownian motion. The scale
change is necessarydf#£ 0, because the proce&<r) does not jump left or right
with equal probability.

Consider a locally finite measure

(18) u(dx) =y w;sy, (dx)

which has atoms with weights; at positionsy;. The measurg will be referred to

as the speed measure. lSdbe a strictly increasing function defined on the{se}.

We call suchS the scaling function. Let us introduce slightly nonstandard notation
S o u for the “scaled measure”

(19) (Som)(dx) =Y wids(y(dx).
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We useW (¢) to denote the standard Brownian motion starting at 0.4ety) be
its local time. We define the function

(20) ¢ (1. S)(1) = /R 0t y)(S o w)(dy)

and the stopping timer(u, S)(s) as the first time whem (i, S)(#) = s. The
function ¢ (i, S)(¢) is a nondecreasing, continuous function, afh@, S)(s) is

its generalized right-continuous inverse. It is an easy corollary of the results of
Stone [12] that the process

(21) X (1, S)(6) = STHW (¥ (1, )(2)))

is a time-changed nearest-neighbor random walk on the set of atomps of
Moreover, every nearest-neighbor random walk on a countable, nowhere dense
subset ofR satisfying some mild conditions on transition probabilities can be
expressed in this way. We call the proce¥su, S) the time-scale change of
Brownian motion. IfS is the identity function, we speak only about time change.
The following proposition describes the propertiex@fx, S) if the set of atoms
of u has no accumulation point. In this case we can suppose that the locations of
atomsy; satisfyy; < y; if i < j. The claim is the consequence of [12], Section 3.
The extra factor 2 comes from the fact that Stone uses the Brownian motion with
generatorA.

PROPOSITION 2.1. The process X (u, S)(¢) is a nearest-neighbor random
walk on the set {y;} of atoms of ;.. The waiting timein the state y; is exponentially
distributed with mean
22) 2w; (S(yi+1) — Si))(S(yi) — S()’i—l)).

S(yi+1) — S(yi-1)
After leaving state y;, X(u,S) enters states y;_1 and y;.1 with respective
probabilities

S(yi+1) — Si) and S(yi) —S(yi-1)

(23) :
S(i+1) — SQi-1) S(iv1) — SGi-1)

It will be useful to introduce another proceBsu, S) as
(24) Y (u, $)(1) = X(Sopu, 1d)(@),

where Id is the identity function oRR. The proces¥ (u, S) can be regarded as
X (e, S) before the final change of scale in (21). Actually,

(25) Y(u, () = W (¥ (r, $)()).

We will also need processes that are not started at the origin but at some point
x € suppu. They are defined in the obvious way using the Brownian motion started
atS(x). We useX (u, S; x) andY (i, S; x) to denote them.
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2.2. Point-process convergence. To be able to work with quantities (4)—(6)
that have a discrete nature (in the sense that they depend on the probability being
exactly at some place) we recall the definition of the point-process convergence of
measures introduced in [9]. Lat denote the set of locally finite measuresi®n

DEFINITION 2.2 ([9]). Given a familyv, v¢, ¢ > 0, in M, we say that®
convergesn the point-process sense to v, and writev? 8y, ase — 0, provided
the following holds: if the atoms af, v¢ are, respectively, at the distinct locations
yi, yir with weightsw;, w?,, then the subsets 6f° = U, {(y/, w})} of R x (0, oo)
converge toV = (J;{(yi, w;)} ase — 0 in the sense that for any opén whose
closureU is a compact subset & x (0, oo) such that its boundary contains no
points of V, the number of pointsVé N U| in V¢ N U is finite and equal$y N U |

for all ¢ small enough.

Besides this type of convergence we will use the following two more common
types of convergence.

DEFINITION 2.3. For the same family as in the previous definition, we say
thatv? convergesiaguely to v, and writev® — v, ase — 0, if for all continuous
real-valued functiong” onRR with bounded supporf f (y)vé(dy) — [ f(y)v(dy)

ase — 0. We say that*® convergesveakly, and we writev® = v, ase — 0, if the
same is true for all bounded continuous functiondRon

To prove the point-process convergence we will use the next lemma which is
the copy of Proposition 2.1 of [9].

Letv, v® be locally finite measures dd and let(y;, w;), (y{, w;) be the sets of
atoms of these measures {s the position andv; is the weight of the atom).

ConDITION 1. For eacli there exists a sequengge) such that

(26) (yf‘l(s)’ wj,(g)) — (y1, wy) ase — 0.

LEMMA 2.4. For any family v, vé, ¢ > 0, in M, the following two assertions
hold. If v¢ 28 v ase — 0, then Condition 1 holds. If Condition 1 holds and v® S
ase — 0,thenalso v¢ 2 v ase — 0.

2.3. Convergence of the fixed time distributions. We want to formulate, for
future use, a series of results of Fontes, Isopi and Newman [9]. They will allow
us to deduce the convergence of fixed time distributions from the convergence of
speed measures.
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PrOPOSITION2.5. Let u®, u be the collection of deterministic locally finite
measures, and let Y¢, Y be defined by

(27) Ye@) =Y (u,1d)(r) and Y(t)=Y(u,ld)@).
For any deterministic 7o > 0O, let v® denote the distribution of Y*(zp) and let v
denote the distribution of Y (79). Suppose

(28) S and Wy ase—o0.

(i) Then,ase — O,

(29) ¥ 3y and vy,

(i) Let (x7,vf) and (x;, v;) bethecollections of atoms of .* and .. Smilarly,

let (y7, w?) and (y;, w;) bethe collections of atoms of v* and v. Then the sets of
locations of the atoms are equal,

(30) it={x} and {yi}={x}.
(i) Suppose that we have denoted x;’s and y;’s in such a way that x; = y;,
x; =y [whichispossible by (ii)]. Let the sequence ji(¢) satisfy
(31) (%5, ey Vi) = (a5 vr) ase — 0.
Then the sequence of corresponding atoms of v¢ satisfies

(32) (Viers Wiie)) = (5 eys W) = Giywr)  ase — 0.

(iv) Let z2 — z and t* — 19 as ¢ — 0. Then parts (i)—(iii) stay valid if we
replace the process Y (¢) by the process started outside the origin Y (u%, Id; z%),
the process Y (¢) by Y (u, Id; z), and we define v¢ as the distribution of Y (¢¢).

Part (i) of this proposition is stated as Theorem 2.1 in [9]. Part (ii) is a
consequence of Lemmas 2.1 and 2.3 of the same paper. Part (iii) follows from
the proof of that theorem, but it is not stated there explicitly. Its proof is, however,
the central part of the proof of (i). The remaining part is an easy consequence
of (i)—(iii) and of the joint continuity of the local timé(z, y).

3. Expression of X(¢) in terms of Brownian motion. To explore the
asymptotic behavior of the chai(¢), we consider its scaling limit
(33) X(t) =¢eX(t/ece).

The constant, will be determined later. For the time being the reader can consider
1/a
Ce ~ ETT.
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As we already noted in the previous section, it is convenient to express the
walks X (+) and X*(¢) as a time-scale change of the standard Brownian motion
W (¢) started at 0. To achieve it we use Proposition 2.1. We define measures

(34)  p(dx)=ptdx) =) udi(dx) and pi(dx)=c. ) 1dei(dx),
ieZ ieZ

where
(35) T = 3 exp(BE/)E(exp(—2aBEo)).
We will consider the following scaling function. Let

_ exp(—pa(Ei + Eiyi))

(36) T T R(exp(—2BaEqg))
and let
i—1
Z ri, if i >0,
(37) siy=1""
=Y rj, otherwise.
'

The constant factoff(exp(—2BaEg)) that appears in (35) and (36) is not
substantial, but it is convenient and it will simplify some expressions later.
We useX®(t), 0 < ¢ <1, to denote the process

(38) XE(1) = X (uf, eS(e71)) (1),

which means thaX (¢) is the time-scale change of Brownian motion with speed
measure: and scale functionS(¢~1.). If we write ¢ (¢) for ¥ (u?, eS(e 1)) (1),
we have

(39) Xe(t) =eS e IWE (vl ())).

The processdv¢ is the rescaled Brownian motio##/?(r) = e W (¢ ~2¢), which has
the same distribution a® (¢). It is introduced only to simplify the proof of the
next lemma. In the sequel we will omit the superscript & 1, that is, we will
write X (¢) for X1(¢), and so on. Note that the functigit?(.) is well defined for
all values of its argument. Indeed, the set of atoms$fc 1) o u? is the set
{eS(i):i € Z}, and thuss~1We (y# (1)) takes values only ifiS(i) ;i € Z}.

PROPOSITION3.1. The processes X (1) and X¢(¢) have the same distribution
as X (¢) and X¢(r) = eX (t/ce€).
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PrROOF We use the symbol~" to denote the equality in distribution. The
time that X () stays at site’ is exponentially distributed with meaqw; ;+1 +
w; ;_1)"*. The probability that it jumps right or left is
(40) — St gnd Rl

Wi,i+1+ Wii-1 Wi,i+1+ Wii-1
Plugging the definition (2) oiv;; into these expressions, it is easy to see that these
values coincide with the same quantities #¢) which can be computed using
Proposition 2.1. This implies that(r) ~ X (¢).

To compare the distributions of¢ (1) and X® (), let us first look at the scaling
of ¢¢(¢). After an easy calculation, using the fact that the local tifi(e, y) of W¢
satisfiest? (¢, y) = ef(¢ %, e~ 1y), we obtain

(41) B0 = [ €6 (ESE ) 0 1) dy) = eccp(e ).
From it we gety® (1) = 2y (¢ /ec,). Hence,

eX(t/ece) =S H W (t/ece))) = eS™HW (e 2y (1))
“ =S e W (1) = X° (),

where we used the scaling v}f(t) and (39). SinceX () has the same distribution
asX(t), the same is valid fok*(r) and X*(z). O

4. A coupling for walks on different scales. Itis convenient to introduce the
processe¥ (¢) and Y*(¢) that are only a time change of Brownian motion with
speed measureso 1 andeS(e 1) o uf. Namely,

(43) YE() =Y (uf,eSE1))(@) and Y1) =Y (u. $)().
Using (25) we have

(44) Yt) =W @) and Y*(@t) =Wy @).

The original processe¥ and X¢ are related to them by

(45) X()=8"Yy @) and X°(r)=eS" (1Y (r)).

In the sequel we want to use Proposition 2.5 to prove the convergence of the
finite time distributions ofY¢. Thus, we want to apply this proposition to the
sequence of random speed measuyréslt is easy to see that convergence in
distribution of this sequence is not sufficient for its application. That is why we
will construct a coupling between measugeson different scales on a larger
probability space. Using this coupling we obtain the a.s. convergence on this space.
It is not surprising that the same coupling as in [9] does the job.



1172 G. BEN AROUS AND JCERNY

Consider the Lévy proces¥ (x), x € R, V(0) = 0, with stationary and
independent increments and cadlag paths defing@o& , P) given by

—_ . ¢} .
(46) E[ezr(V(x+x0)—V(xo))] — exp[xa/ (elrw _ 1)w—l—oz dw]
0

Let p be the random Lebesgue—Stielties measur@® associated td/, that is,
pa,b] = V(b) — V(a). It is a known fact thaip(dx) = }_; v;dx,(dx), where
(x;,v;) is an inhomogeneous Poisson point process with dedsityy 17 dv.
Note thatp has the same distribution aswhich we used as speed measure in the
definition of the singular diffusioix.

For each fixed > 0, we will now define the sequence of i.i.d. random variables
E; such thatE?’s are defined on the same spaceVaand p and they have the
same distribution agy.

Define a functionG : [0, oo) — [0, 0o) such that

(47) P(V(1) > G(x)) = P(z0 > x).

The function G is well defined sinceV (1) has continuous distribution, it
is nondecreasing and right continuous, and hence has nondecreasing right-
continuous generalized inverée 1. Let g, : [0, 00) — [0, 0o) be defined as

(48) g:(x) =, G L Yy) forall x > 0,
where
(49) ce = (inf[t > 0:P(rg > 1) < 8])_1.
Note that ifzg is thea stable random variable with characteristic function
. oo,
(50) E(e'™) = exp[a/ (e — w1 dw],
0

the choice ofc, andg, can be simplified (although it does not correspond to the
previous definition):

(51) ce=¢Y and g.(y)=y.
The reader who is not interested in the technical details should keep this choice in
mind.

LEMMA 4.1. Let

(52) Tl = %Sgg(V(s(i + 1)) — V(ei))
and

1 2t¢
53 Ef =—| L .
(53) ‘=B Og<E(eXp(—2aﬁEo)))

Thenfor any ¢ > 0,the r¥ arei.i.d. with the same law as 7o, and {E7 },<z have the
same distribution as {E; };¢z.
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PROOF. By stationarity and independence of incrementd/at is sufficient
to showP(z§ > 1) = P(ro > t). However,
(54) P(z§ > 1) =P(V(e) > eY/*G (1))

by the definitions ofr; andG. The result then follows from (47) and the scaling
invariance ofV: V(g) ~ ¢/*V(1). The second claim follows easily using (35).
]

Let us now define the random speed measyesising the collectiongE; }
from the previous lemma,

(55) A°(dx) =) cetf8si(dx).
i€Z
We also define the scaling functiofis similarly as in (37). Let

. exp(—Ba(Ef + E£, )

(56) " T T E(exp(—2aBEo))
and

i—1

S, ifiz0,
(57) Seiy=1""°

- er- otherwise.

It is an easy consequence of Lemma 4.1 that~ u° and S, ~ S for any
e e (0,1].

5. Convergence of speed measuresThe following proposition proves the

convergence of the scaled speed measures.idfthe identity, that isq = 0, it
corresponds to Proposition 3.1 of [9].

ProOPOSITIONS.1. Let if and p be defined as above. Then
(58) eS¢ Mot > 5 and eS.(e ot 5 ase— 0, P-as
The proof requires three technical lemmas.

LEMMA 5.2. Ase — Owehave
(59) sSe(Le’lyJ) —>y ase — 0, P-as.

uniformly on compact intervals.
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Notice that this lemma sheds more light on the difference between the discrete-
time embedded walk of the proceX¥sand Sinai's RWRE. In the case of Sinai’'s
RWRE the scale functio corresponds, loosely speaking, to the function

n
(60) S'(n)y=Y_p1...pon,

i=1
wherep; = (1 — p;)/pi, p;i is the probability going right at, and p;’s are i.i.d.
In our casep; = r;/ri—1. An easy computation gives that the prodygt .. p,
depends only o and E,,+1. Thus,S’(n) is in our situation essentially a sum of
i.i.d. random variables, which is definitively not the case for Sinai's RWRE.

PROOF OFLEMMA 5.2. We consider only > 0. The proof fory < 0 is
very similar. By definition ofS, we havesS,(le1y]) = szfzol”*l ré, where
for fixed ¢ the sequence; is an ergodic sequence of bounded positive random
variables. Moreover;’ is independent of aH]’?" with j ¢ {i —1,i,i +1}. TheP-a.s.
convergence for fixeg is then a consequence of the strong law of large numbers
for triangular arrays. Note that this law of large numbers can be easily proved in
our context using the standard methods, because the varigldes bounded and
thus their moments of arbitrary large degree are finite. The uniform convergence
on compact intervals is easy to prove using the fact$p@p is increasing and the
identity function is continuous. ]

The next two lemmas correspond to Lemmas 3.1 and 3.2 of [9]. We state them
without proofs.

LEMMA 5.3. For anyfixed y > 0, g°(y) - y ase — 0.

LEMMA 5.4. For any §’ > 0, there exist constants C’ and C” in (0, co) such
that
(61) ge(x)<Cx¥Y  fore¥* <x<lande <C”.

PROOF OFPROPOSITIONS.1. We first prove the vague convergence. £ éie
a bounded continuous function with compact supgartR. Then,

62) [ f@)(eSie 0 0 i) @) = T FeSu@ge(V (el +D) = Vieh).
ieJg

where we used the notation

(63) J;:{ieZ:aSg(i)eI,V(a(i—i—l))—V(si)zy}.

Choose now > 0. To estimate the last sum, we treat separately the sums/pyer
le/a \ J5 andJ§ \ le/a.
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Due to the convergence o, (¢~1.) to the identity, we know that fos small
enough there is a small neighborhobdof I such that/§ c e~11'. The process
V hasP-a.s. only finitely many jumps larger thanin I’, so the first sum has
only a finite number of terms. Using the continuity gfand applying Lemmas
5.2 and 5.3 we have

(64) 3 FES@Nge(V(e+D) = VD) > 3 fx)vj,

ieJ§ jrvj=z8

with (x;, v;) being the set of atoms gf. In the previous expression we also use
the fact thate — x; for the corresponding terms in the sums.
By Lemma 5.4 we have for sondésuch tha’ + o <1

> f(ESe())ge(V(eli + 1) — V(ed)

i€ \J§
(65) ’
<C Y (Ve +D) - VD) Y<c Yot =
ieJ:l/a\Jf Jiv;<é
XjGI’

From the definition of the point proceés, v;) we have
- 8 /
(66) (H;) < a|I/|/ w ¥ w % gy >0 ass— 0.
0

Since H; is decreasing and positive, the limit imo H; existsPP-a.s. The domi-
nated convergence theorem then gi¥dsn; .o H; = 0, and thus lip,0 Hs =0
P-a.s.

The third part of the sum is also negligible fersmall enough. Indeed, by
monotonicity ofg,, we haveg, (x) < g.(e¥/%) < Cc, for all x < ¢1/*. Hence,

S f(eSe)ge(V (el + D) — V(D)
AV
(67)
<Clc, Z 1§C//C‘9871—> 0 ase — 0.
iee=1I'nZ
In the last equation we use the fact thatdfis in the domain of attraction of the
stable law with index, there existg > 0 such that the functior. can be bounded
from above byCe=*+1/¢ with —x + 1/ > 1.
Putting now all three parts together, we have

I|m Z f(eSe(@)ge(V(ei + 1)) — V(ei))

IGJO

= lim > flxjpvj= ffd,o

] e

(68)
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This proves the vague convergence.

To prove the point-process convergence we use Lemma 2.4. Since we have
already proved the vague convergence, we must only verify Condition 1 for the
measures S, (¢ 1) o ¢ andp. Thus, for any atonix;, v;) of o we want to find a
sequencegj(¢) such that
(69)  &S.(i(e)) — x and ge(V(e(ji(e) + 1)) — V(eji(e))) — vr.

Choosej;(¢) such thaty; € (¢ji(e), e(ji(e) +1)]. Then by Lemma 5.2 we have the
first statement of (69), and by Lemma 5.3 we have the second. This completes the
proof of Proposition 5.1. (I

6. Change of scale for fixed time distributions. Write X¢ and X for the
processes defined as in (38), but using the speed megstirasd the scaling
functionssS,. Sinceii® ~ u® andS, ~ S, we haveX® ~ X¢. Similarly, we define
the processe¥®, Y as in (44), andZ as in Definition 1.1 using the measures
with bars. Evidentlyy? ~ Y¢, Y ~Y andZ ~ Z. The following proposition is a
consequence of Propositions 2.5 and 5.1.

PrROPOSITIONG.1. Fix g > 0. Write D;V for the distribution of Y¢(zg) and
by for the distribution of Z(tg) conditionally on V. Then, P-a.s. we have
(70) o, >y and o5, Zoy  ase—0

The proof of the convergence of the fixed time distributioixéfwill be finished
if we can compare the limits of* andY®.

PROPOSITION 6.2. Fix f9 as in Proposition 6.1. Let ﬁ;,v denote the
distribution of X¢(zp) conditionally on V. Then, P-a.s. we have
(71) lim v§ v = lim vy, = vy,
e—0 e—0 7’
where the limits are taken in both the vague and the point-process sense.

PROOF As an easy consequence of Lemma 5.2 we have
(72) ¢S e ly) >y,  P-as

We will again apply Lemma 2.4 to prove the convergence. L&k a continuous
function with bounded supportC R. By continuity of f and (72), choosing the
fixed realization of Brownian motioi#/, we haveP-a.s.

(73) lim £ (X*(t0)) = lim_ £ (¥* (10)).

A standard application of the dominated convergence theorem yields

(74) |imffda§vz|imffdﬁ§vszdav.
e—0 ’ e—0 ’
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We finally verify Condition 1. Write(x?, v7), (y;, w?) for the collections of
atoms ofvg ,, and vy . By Proposition 2.5(i)) we can choosg = ¢i and
yi = eS8 (i), setting eventuallyuE respectivelyw?, equal to zero if there is no
atom atx?, respectivelyy?. Using this choice ok} andy’ and the relation (45)
we havevf = w;. Let (z;,u;) be the collection of atoms dfy and letj;(e) be
the sequence of indexes such thaj ., wj,)) — (z1, u;). Then by (72) we have
(Xj,(e)» Vji(e)) = (21, u7) Which completes the proof.[]

7. Proof of Theorem 1.2. We first express the quantities that we are interested
in using the processe&®. From the definition of{¢, Proposition 3.1 and the fact
that X¢ ~ X¢ we get that if the following limits exist (as we show below), they
should satisfy

im_EP[X((140)1u) = X (1) E]

(75) = |imOIE:I@>[X8(1 +60)=X*(|V]
= Im R ®
and similarly
lim ES [P(X((L+0)1,) =il E, X (1,))]?
wTee i€’
(76) = !@OEZ [B(X°(1+06) =ie|V, X°(1)]?
=i q
_l[)noRs ).

We introduce some notation for the sets of atoms of the measures we will
consider. In the following everything depends on the realization of the Lévy
processV and we will not denote this dependence explicitly. We write

(77) nf = Z vide and p= Z V; 8y, -

The atoms of the distribution{ of X*(1) will be denoted by(xf, w?). Similarly,

(xi, w;) denotes the atoms of the distributionof Z(1). The weights of the joint
distribution of X (1) and X* (1 + 0) will be denoted byufj,

= B[(R° (1) =28) N (RE(L+0) =2)|V],
wjj =ED[(Z(1) =xl~) N (Z(1+9) =)Cj)|V].

The last measure we will introduce is the distributiof ,(-|x;) of Xe(1+6)
conditioned onX¢(1) = x?. We denote its atoms byt ¢, ufj). Thus,

=P[X*(146) =x{|X* () =x{, V],

(78)

(79) . )
=P[Z(1+6) =x;|Z(1) =x;, V].
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Observe thatv;; = wiu;; andw;; = wju;;.
Using this notation we can rewrite (75) and (76),

(80) R.(6) =I‘E[Z wfufi:| and RY(9) =1‘E[Z wa(ufj)2:|,
i i j
where the expectations are taken over all realizatioris.@bviously we have
(81) R(0) :E[Z wiuiii| and Rq(Q) ZI_E|:Z wi(uij)2:|.
i ij

If we prove theP-a.s. convergence of the expressions inside the expectations
in (80) to the corresponding expressions in (81), the proof will follow easily us-
ing the dominated convergence theorem. We want to use the results of Propo-
sition 6.2, namely the point-process convergencejofo vy and v, ,(:[x} )
to vi19(-|x;). Here, as usualji(e) satisfies(xj, ), vj;)) — (xi,v;) ase — 0.

Note that the point-process convergencevpf, (-|x; ) follows from Proposi-
tions 6.2 and 2.5(iv).

In the proof we will need one property of the atoms of different measures
that is connected with Condition 1. From the point-process convergengé of
we know that for every atontx;, v;) of p there is a functionj;(¢) such that
(le(s), jl(g)) converges tdx;, v;). From Proposition 2.5(iii) we can see that for
the same function?, ., Sy ju(e) — Uik, and thusw® ) o ) — wik as
¢ — 0. This observation is essential, because only the point-process convergence
of all measures is not sufficient to imply our results.

We prove the convergence only for the quantig). The proof forR4(9) is
entirely similar. Point-process convergence, Condition 1 and the observation of the
previous paragraph give

(82) Zw,u” = I|m ijl(g)ujl(g) e < I|m|anw £

To show the opposite bound we chodse 0, and divide the sum in (80) into
sums over three disjoint sets

— Wi, U

A (8) ={i1w] > 8, uj; > 68},
(83) B (8) ={i:uf; <8},
Ce(8) ={i:wf <8,u;; > 8}

The sum overA.(§) has necessarily a finite humber of terms. From point-
process convergence we have

(84) limsup Y wiufi= Y wjui,
=0 a8 icA(d)
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whereA(8) has the obvious meaning. For the second part we have

(85) limsup > wfuf; <slimsup >  wf <3,

121
e=>0 ;cB.(5) ¢=0 e (5)

sincev] is the probability measure. The last part satisfies

(86) limsup Y wiuj; <limsup > wf<1-—liminf Y  w;.
e—0 ieCy(8) e—0 i€Cq(8) ¢=0 i:wf>5

The sum in the last expression has a finite number of terms. Hence

(87) limsup > wiuf; <1— > wy,

=0 jec.(9) iw;>8

and the last sum goes to 1&s> 0, because is a purely discrete measure. From
(84)—(87) itis easy to see that

(88) limsup) " wiuf; < Y wiuii+5+(l— > w,-)
e—0 i

i€eA(d) i:w;>48

and the proof is completed by taking the limit> 0.

8. Proof of the sub-aging in symmetric case. We start the proof by a
technical lemma that will provide the connection between the rescaled processes
attimer = 1 and the procesk at some large time. Let¢(¢) be defined by

(89) e(t) =supe > 0:ecet <1}.

We writec; for c.;) and we definé (1) = e(t)c;t.

The next lemma defines the slowly varying functidriz) that is used in
Theorem 1.3. Note that all slowly varying functions that we use are slowly varying
at infinity.

LEMMA 8.1. (i) There exists a lowly varying function L(¢) such that
(90) ctVL(t) =1
(ii) Thefunction k(¢) satisfieslim;_, o k() = 1.

The proof of this lemma is postponed to the end of the section.
The main step in proving Theorem 1.3 is the following proposition that
describes the scaling of the distribution of the depth of the site wikestays
at timet. We recall that
1

_ B
®D y—m 1+a
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PROPOSITION8.2. Let F;(u) =EP(t(X(t))/tY L(¢t) <u|E). Then
(92) Nim_Fi(u) =EP(p(Z(1) <ulp) = F ()

for all points of continuity of F(u).
We use this proposition to prove subagingdocs 0.

PROOF OFTHEOREM1.3IN THE SYMMETRIC CASE. The procesX stays at
the sitei for an exponentially long time with meam. Using the Markov property
we can write

P[X(")=X@) Vi €lt,t 40tV L(1)]]

(93) — /0 e LOM G E () (47 L(1))) = /0 e 0 g Fy ().

By the weak convergence stated in Proposition 8.2, the last expression converges
to [e /" dF(u)=T1(p). O

The proof of Theorem 1.3 for the asymmetric case is postponed to the next
section because it is relatively complicated and relies on some notation introduced
later in this section.

PrROOF OF PROPOSITION8.2. We follow a strategy similar to that in the
proof of aging. Again we start with some notation. Lits) be such that
lims_oh(e) =1. We write
(94) A(dx) =Y cot{8ic(dx) and p(dx) =) vidy, (dx).

i€eZ i€z
Similarly, the distributions of¢ (h(¢)) and Z(1) satisfy
(95) Vhe)(@x) =Y widic(dx) and bi(dx) =) widy, (dx).
ieZ ieZ
Here again we use the fact that the sets of positions of atoimantlv; are equal.
Note thatw; depends on the functioh but we do not denote this dependence

explicitly. We also introduce the distributions of the depth at the tinie),
respectively, 1:

(96) ey (dx) =D wfde, e (dx)
i€eZ
and
(97) m1(dx) =Y wiSs(dx) =) widy (dx).
i€z ieZ

We claim that:
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LEMMA 8.3.

(98) Thie) S and Thie) e ase — 0, P-as.

PROOF As usual, we prove the vague convergence and Condition 1. To verify
the second property, let us first observe that for any atomw;) of w1 there
existsx; such that(x;, v;) is an atom ofp, and (x;, w;) is an atom ofv;. From
the point-process convergenc,e%ﬂ'i 0, ‘751(8) 2 v1 and from the direct part of
Lemma 2.4 we have that for amythere exist sequencgge) andk;(¢), such that
(e)i(€), ceTjy () — (x1, v) and(eki (e), wy, ) = (x1, wy) ase — 0. Moreover, it
can be seen from Proposition 2.5(iii) thate) = k;(¢). Putting together the last
three claims and taking into account tf¥aé.s.x; # x,, impliesv; # v,,, we easily
show that(cgr;l(g), u);](g)) — (v;, wy) ase — 0.

We should now verify the vague convergence. Lftbe a nonnegative,
continuous function with compact support. We us¢o denote the open rectangle
(—871,871) x (8, 2). By (96) we have

/f(x)”lf(g)(dx) = waf(cgtfe
ieZ

= Z wff(c‘gfieg) + Z wff(cgfii\ :

i (ie,wd)els i:Gie,ws)¢ls

(99)

From the point-process convergencenf., we know that for all but countably
many § > 0 and fore large enough, the number of atoms iqj‘(g) in Is is
finite and is equal to the number of atomsiafin Is. Moreover, by the first
part of Lemma 2.4 we have for any such at@ém, w;) the sequence of atoms
(eji(8), wjl(g)) converging to(x;, w;). By the same reasoning as in the previous
paragraph the sequen@gr‘fl@) converges ag — 0 to p(x;) = v;. Thus, by
continuity of f we have

(100) lim Yo wifleti)= D wif().
TV ewd)els i (x,wi)els

The right-hand side of the last equation is bounded| b}~ and increases as
decreases. Thus, its limit &s— 0 exists and is equal tp f (x)71(dx).
The second sum in (99) is bounded by

(101) c Y w= c(1 - > we)
i (ie,wd)els i (ie,wd)els
Using the same argument as in (87) we have

(102) ginollmsup<l— Z wl.):(slm)(l— Z w,-):Q

e—0 i:(ie,wh)els it (g wp)els
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since the finite time distribution df is discrete. [J

We can now complete the proof of Proposition 8.2. By definition (33Y0f)
we have

(103) F;(u) =P[t(X())/tYL(t) <ul = ]P’[r(s_lXe(tscg))/tyL(t) <u].
Inserting the definition (34) of® into the last claim yields

(104) Fi(u) =P[c; s (X5 (tece)) /1Y L(t) < ul.

Settinge = ¢(¢) and using the equality of the distributio®$ ~ X¢, 1° ~ u® and
Lemma 8.1, we get

(105) Fr(u) =P[O (X*O (k(1))) < u].

By definition (96) ofn,f((l’)) we have

(106) 1— F,(u) =EP[*®(X*D(k(1))) > u|V] = I_E[ > f“)}.

¢ rs(t)

The point process convergence proved in Lemma 8.3 implies that the sum in the
last expectation converg@sa.s. for allu such that # v; for all i:

(107) lm 3w = 3w =PpZD) > ulV].

et
zct() i:vi>u

Using the fact thatp, Z) has the same distribution &g, Z) and applying the
dominated convergence theorem, it is easy to complete the priobf.

PROOF OFLEMMA 8.1. LetL1(¢) be defined by
(108) Plro > t]=1"%L1(2).

Sincerg is in the domain of attraction of the stable law with indexthe function
L1 is slowly varying.

We first show the second claim of the lemma, namely kigt— 1 ast — oo.
It is easy to see from (89) tha{z) > 1. To get an upper bound take> 0 and
assume that

(109) limsupk(t) = I|m sups(t)c,t >1456.

t—00
If this is true, then there is a sequengesuch thatr, - oo asn — oo, and
e(ty)cy, tn > (14 8). Using again (89) we get

(110) e(t)e, = L+ 811> (1468 lim ec..

ete(tn)
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This means thatl + 8)c€‘(tln) < iMgre@s, c;l. Using the definition (49) of,, it is

easy to see that this can only happen if there is a sequgrsteh that, — oo as

n — 0o, andP[tg > s,,] = P[to > (1 + 8)s,,]. However, then

Li((1+8)sp)  (1+8)%s,Plro> (14 6)sn]
Li(sy) saP[t0 > ]

and this leads to contradiction sindg is a slowly varying function. There-

fore (109) is false and the second part of the lemma is proved.

To verify the first claim of the lemma we should only prove tihét) is slowly
varying. From definition (49) of, we get

(112) e Pl > cg_l] -1 ase — 0.

Indeed, it is easy to see that'P[rg > ¢;1] < 1. Taken > 0; the lower bound
follows from

(111) = (1+6)"

-1
(14 2n)~% = lim o> (A +2m/(d+ i;icg 1
e>0  Plro>1/(1+ n)cs
1
]

(113)
<liminf e YP[zo > ¢,

e—0

sincen is arbitrary. From (112) and (108) we get

(114) el Li(c;h -1 ase—0.
Using (114) and () — 1 we get
(115) at’LY(c7h -1 ast — .

We want to show that, = ¢ ~¥ L(r)~1 whereL(¢) is slowly varying. Choosé > 0
and defined, = L(¢)/L(kt). Taken > 0 small and assume that limjof, d; <
1—25n. We choosé > 0 and we considerlarge enough such tha,ttVL{(ct_l) €
(1—34,1+6). This can be done by (115). We have

L(t) :@ky>1_5_L{(Cz_l):1_5. L{(ct—l) |
Lkty e~ 1+8 Li(chy 1468 LY@ e )

Our assumption implies that there exists a sequensach tha‘d;l > 1+ p for
all n. SinceL1 is slowly varying, we know that for arbitrary > 0 there existsg
such that for all > 1+ andx > xo we haveL1(/x) <% L1(x). This implies that
for n large enough we have

_1-8 LY (e,
th — : —v60 _ *
148 q, " LY (c; k)

(117)

Taking the limitn — oo, using that,, — oo and thatL is slowly varying, we get

. . 1+yg l - (S
(118) Ilnn_1)|or<|)f d, " = 113
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For everyn we can take andé such that the last equation is in contradiction with
liminf, ~d; <1—25. Thus liminf_ - d; > 1. The proof of the upper bound
follows from

146 dVOLV(k Ye —l

119 d
(119) "SIy Ly<ct,,)

This can be proved if one assumes that limsupd; > 1+ 25 and it leads to a
contradiction similarly as in (118).0

9. Proof of subaging in the nonsymmetric case.If a > 0, the jump rates
depend also on the depths of the neighboring sites. As it is easy to see from the
definition of 7, the depth of the neighboring sites of some very deep trap does
not convergeP-a.s. (By very deep trap we mean here a trap wheteas a large
chance to stay at time) On the other hand, we expect (see [11]) that the depth of
these sites is, at leastrf is large, almost independent of the diffusion and has the
same distribution agy. We will show that this expectation is correct.

We consider the functiohl (z, r + f, (¢, 6)). By its definition we have

I(r, 1+ fo(2,0))

(120)
= E[ZP(XU) =i|E)exp(—(wi,i+1+ wii—1) fa(t, 9))i|-

ieZ
The ratesw; ;+1 andw; ;_1 can be expressed using the varialaes

+ 7% 4 [E(exp(—2aB Eg)) 1+~
(121) Wi it1+ Wii—1= i 11 a“[ = > PEo }
l

We useK to denote the constant in the brackets in the last expression. Then, taking
e =¢(t) asin (89),

(1,1 + f4(2,0))

(122) —E[Z]P’ (X®(rece) = ¢€i|E) exp( K fa(t, G)Lﬂ
i€Z T

_ ( 15(1))a+( 5(’))a
=E[§wi(z)exp<—l(fa(r,9) +(1 Oy )}

wherew; (1) = P(X¢® (te(t)c,) = ie(t)|V) = P(XED k(1)) = ie(r)|V).
Letm > 0 large and; > 0 small. We usé,} = J,/ (V) to denote the set of deep
traps not far from the origin:

(123) JI={xe[-m,m]:V(x) — V(x—)>n}
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Let 7, (¢) be the set of sites corresponding/p at the scale:
(124) T(e) =i € Z: (is, (i + el N J) ).
Note thatJ/,} and T, (¢) areP-a.s. finite sets.

In the following proposition we show that it is possible to chomsandn such
that X¢® (k(z)) is with an arbitrarily large probability i}, (¢()). This can be
regarded as a stronger version of the localization effect (8) since the size of the set
T, (¢) can be bounded uniformly inby | J,}].

PROPOSITION9.1. Let h(e) be such that lim,_gh(e) = 1. Then for every
8 > Othereexist m, n and g such that for ¢ < ¢g

(125) P[P(s X (h(e)) € TN (e)|V) > 1—8] > 1—36.

We postpone the proof of this proposition to the end of this section and we use
it to further simplify (122). Lets > 0 and letn andn be such that (125) holds. We
divide the sum in (122) into two parts. The contribution of the sum owef;, (¢)
is not important. Indeed, by Proposition 9.1, forzlihrge enough
(D + (74 )}

e(t)\1—
(7; )¢

I'E[ > wi(t)exp(—fa(t,e)K

i €Z\ T (£(1))

SI_E[ > w,-(t)i|§28.

i€Z\ T (e(1))

(126)

To estimate the contribution of the sum oviee T, (¢) we define the set of
neighbors of deep sites

(127)  N'(e)={i € Z\T/(¢):3j € T)(e) such thati — j] = 1}.
Lets? be a sequence of i.i.d. random variables define@adhat are independent
of V and have the same distribution &§ conditioned onJ,) N (0,¢] = @. Let
6 =min(s;, cg_l/z). We define
R K fori e N, (e),
= {r? otherwise,

i

and
(128)
67, fori e Nyl (¢),
T. =
! T’ otherwise.

A

We define measureg®, 1° and scaling functionss,, 38 similarly as in
(55) and (57) but using’, 7 instead ofr{. Further, let

(129) X*(t) =X (A%, eSe(e™1))(1) and X*(t) =X (A%, eSe(e™1))(0),

and letw; (¢), w; (t) be defined similarly as; ().
To finish the proof of the theorem we will need four technical lemmas.
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LEMMA 9.2. For every fixed realization of 67, P-a.s.

i
(130) eS. (1) ofi* > 5 and eS. (1) onf L 0 ase — 0.

Therefore, the distribution of X*) (k(r)) converges as t — oo weakly and in the
point-process sense to the distribution of Z(1).
In particular, for all x € J,

(131)  lim i, () =P(Z(D) =x|V)=w, and lim .t} =),
where j. = j.(x) € Tl (¢) satisfies x € (¢j¢, (je + D)].

PrROOE The proof of the first part of this lemma is very similar to the proofs of
Lemma 5.2 and Proposition 5.1; the finite number of changes of neighbors of the
deep traps loses its influencesas> 0. Therefore, we only describe modifications
that must be done in the original proofs.

To get an equivalent of Lemma 5.2 we must show th&t([¢1y|) =

eZJL.‘;;yJ ff converges toy. Since J,! is finite, only a finite number off’s is
influenced by changing the sequence sf Sincer; are bounded, the contribution
of the changed part of the sum tends to zere as 0. The rest of the sum can be
treated in the same way as in the proof of Lemma 5.2.

Further, we must show the vague convergence and Condition 1 for the measures
sﬁg(sfl-) o if. Let x be position of an atom op and leti(¢) be given by
x € (gi(e),e(i(e) + 1)]. It is easy to observe thate) ¢ N, (e) for all ¢ small
enough. The proof of Condition 1 can be then finished using the same reasoning
as before.

To show the vague convergence fdt) be a bounded continuous function with
bounded support. Then

‘ f F)(eSe(e™) 0 %) (dx) — / F)(eSe(e™) 0 1) (dx)

(132)
Y f(eSe())csbf].

ieN (g)

<! > f(SSs(i))ge(ﬁ(i&(i+1)8))‘+

iEN,) ()

The contribution of the first term can be proved to be small observingthat
[defined in (63)] satisfiedy N N, (e) = @ for all § > 0 if ¢ is small enough. The
second term in (132) is also negligible singé < e Y% and [N (e)| < 210 is
a.s. finite.

The convergence ot k(1)) and ofwj,,, () is then a consequence of the first

part of the lemma and Proposition 2.5.]

LEMMA 9.3. The sequence 7/ hasthe same distribution as ;.
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PROOF.  The proof is obvious because the distributionsgfis chosen to be
equal to the distribution of? conditioned on' ¢ T, (). O

LEMMA 9.4. For P-a.e realization of V
(133) IimOP(ai e NI (e):6f 67 |V) =
E—>

PROOF  The probability thais > cg_l/2 tends to zero. Sincé/,}(¢) is a.s.
finite, the proof is complete.]

LEMMA 9.5. Ase — 0therandom variables 6 converge weakly to to.

PROOFR By definition of5;, P(6§ < a) = P(z§ < alJs N (0, e] = @). Since
the probability of the conditioning event tends to leas- 0 andr; has the same
distribution asro, this converges t@®(zo < a). Therefore,gj converges weakly

—1/2 —1/2
to 7o. Sinces = min(ég, . / ) andc, 2 0 ass — 0, the lemma follows.

0

We can now estimate the contribution of the sum averT;, (¢) in (122). Using
Lemma 9.3 we get

e(a S(f) a
. +(z
E[ > wz(t)exp( Kfa(t, 9)( ’+(1)g<t>)§ p L )}

i€Tmn(e(t)

B .e(t)\a 8(1‘) a
El > (z)exp(—Kfaa,e)( l“l(,f i V )
(134) LT (e(t)) (z; )¢
B '*5(1‘) a AE(I) a
El > zb,-(t)eXD<—Kfa(t,9)( ’”L; i : )
Li Ty (e() (T )¢

+ R1(e(1)).
The error termR1(¢) can be bounded by
(135)  |Ri(e)| <E[P(Fi e N(e):6f #6{|V)] >0 ase—0

by Lemma 9.4 and the dominated convergence theorem. Recalftfrat) =
0¥ 1= (1)1~ Therefore, using Lemma 8.1, the main term in (134) can be
rewritten as

_ (E D)+ (E0) ) p)"
E[waeXIO(—Kfa(t,@) )+ Fio )}+R2(e(r>>

i~ l_)(x)l “

xel)
(136)

'\8) a

- e(1) (X 1)a+( F[-x_l)
E[Z wxexp( o i )+,0(x)1 L@ )}-I—Rz(s(t)),
xedn
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wherej. (x) is defined as in Lemma 9.2 amitd(¢) is an error that comes from the
replacement ofo; (1) andff(’) by w, andc¢;p(x). It follows from Lemma 9.2 that
|R2(g)] — 0 ase — 0.

We can now easily compute the expectation owerin (136). Let gZ(1)
denote the Laplace transform &f(65)“, g, (1) = I_E(exp(—AK(&g)“)), and let
g8a(A) = E(exp(—1Kt§)). Since o has the same distribution as €gEo) x
E(exp(—2aBEp))/2, K t§ has the same distribution as

(137) 2L exp(aB Eo) (E(exp(—2aBEo))) “ = T,

andg, (1) = E(e ') as required by Theorem 1.3. From Lemma 9.5 it follows
that lime_.0 g5 (1) = g4 (). Using this notation, (126), (134) and (136) we get

limsupTl(z, f,(z,6))
—00

= ot a4 (5t a
(138) §IimsupE[Z wy exp(—Ke( e+ + 0 0-1) )} 428

e—0 el ﬁ(x)l—a
= I‘E[ > wxgg(Qﬁ(x)“_l):| +25.

xel,

Inserting the remaining atoms pfinside the sum, making again an error of order
at most 4, we get

—00

(139) limsupIl(z, fa(z,0)) < }E[Z wxgg(e,é(x)“_l)} +44.

An analogous calculation gives

(140) liminf T1(r, fa(r,0)) = E[Z wxgi(eﬁ(x)“‘l)} —~43.
Sinces was arbitrary we have
o
(141) ) = / S2Ou Y dF ),
0

which finishes the proof of subaging in the asymmetric situation. We still have to
show Proposition 9.1.

PrRooF oF PRopPoOsSITION 9.1. The claim follows from the existence of
n andm such that

(142) P[P(Z(1) e J2|V)>1-§/2] >1-§/2,
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and from theP-a.s. point-process convergence of the distributionét1) to
that of Z(1). Namely, for P-a.e. realization ofV it follows from Proposi-
tion 2.5(iii), (iv) that there i (V) > 0 such that fog < (V)

(143) IP(Z(D) € JIV) — B(X*(h(e)) € T)1(e)|V)| < 8/2.

We then takeq such thatP(e(V) > gg) > 1 —§/2.
We should still verify (142). It is equivalent to

(144) P[B(Z(D) ¢ JIV) <8/2] = 1-5/2.
The last claim can be easily verified if we show

(145) PIZ(D) ¢ I3 =E[P(Z(D) ¢ J)V)] < 5%/4.
Indeed, assume that (144) is not true, that is,

(146) P[P(Z(1) ¢ J2|V) > 8/2] > 8/2.
Then clearly

(147) E[B(Z(1) ¢ J;1V)] > 62/4,

in contradiction with (145).
We establish claim (145) using two lemmas.

LEMMA 9.6. Letn(t) = YA+ and m(r) = 1%/ Then

(148) P(Z(1) € J1) =B(Z(t) € J'D).

m(t)

LEMMA 9.7. For every §’ there exist m” and n’ such that
1_ _ /
(149) / P(Zt)eJ!)dt>1-4¢.
0

We first finish the proof of Proposition 9.1. Lemma 9.7 ensures the existence
of t € (0, 1) such thatP(Z(r) € J,Z/) > 1—§". The claim (145) then follows from
Lemma 9.6, choosing = §2/4, m = =%/ A0y andny =~ VA0, O

PROOF OFLEMMA 9.6. The pair
(150) (W), Va(x)) = (AW .20), A2 v (.7 1x))

has the same distribution a% (r), V (x)). The measure;, associated td;, can
be written as

(151) =D (Valxi)) — Va(xi—))8x, =A%) (V(53i) — V(3i—)) by, -

xi Vi
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We thus have

(1) = / 0t ) B (dy) = / M2, 0.7 1y) 33 (dy)
(152)
=Y 2072y (Vi) = V(yi—)) = 2D (2
Yi

and therefore its generalized inverse satisfjggr) = A2y (A~ @*D/*r). The
rescaled singular diffusion defined b¥, = W, (y.(1)) that has the same
distribution asZ thus satisfies

(153) Zy(6) = Wa (o)) = AZ (1~ +D/%4).

Clearly, the triplet(W,, Vi, Z,) has the same distribution &%, V, Z) too. We
thus have

(154) P(Z(D) € J(V)) =B(Z,.(D) € I (V).

The setJ, (V,) satisfies],) (V;) = AJ’Zij/a(V) as can be easily verified from the
scaling ofV or from (151) and thus

- - — — -1/
P(Z(1) € J1(V)) = BRZ(—@+D/ay 577" (v))
(155) mi
- = -1/«
=P(Z( Dy e g7 (V).
The proof is complete taking satisfyingr~@+D/« —¢ O
PROOF OFLEMMA 9.7. The claim of the lemma is equivalent with

1_ /
(156) fo P(Z@t) ¢ J))dt <¢'.

We useo (m) to denote the first tim& leaves[—m, m]. Let m’ be large enough
such that

(157) P(o(m') <1) <8'/2

and letc = o (m’). Then

/01]13>(Z(t) ¢ J7)dt = I'E[/Oll{Z(z) ¢ Jn'z//}dtj|
(158) SI—E[

< I_E/OG UZ(t) ¢ I7 ) dt +8'/2.
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We should bound the expectation in the last expressio#i /& We establish this
bound by proving

(159) P[E(foa 1Z() ¢ JJ{,}d:\V) > 3’/4] <8'/4.

The conditional expectation inside the brackets can be written as

(160) IE[/ 1{2(¢)¢Jn';ﬁ}dt\v]: Y GO ),
0 x;i€[—m’,m’]
vi<n’

where as usualx;, v;) is the collection of atoms op and G,,(x, y) is the
Green function of the standard Brownian motion killed on exit frpam, m].
There exists a constatt depending only onn such thatG,,(0, x) < k for all
x € [—m, m]. We thus have

(161) P[E(/OU 1{Z(t)¢J,Z/,}dt‘V)33’/4]51?’[]{ 3 vizg’/4].
x;€[—m’,m’]
vi<n'

The sum in the last equation has the same distribution as the Lévy pricess
without jumps larger than’ at the time 2:". One can thus easily choogésmall
enough, such that the last probability is smaller thiad. [
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