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A HOMING PROBLEM FOR DIFFUSION PROCESSES
WITH CONTROL-DEPENDENT VARIANCE1

BY MARIO LEFEBVRE

École Polytechnique de Montréal

Controlled one-dimensional diffusion processes, with infinitesimal vari-
ance (instead of the infinitesimal mean) depending on the control variable,
are considered in an interval located on the positive half-line. The process is
controlled until it reaches either end of the interval. The aim is to minimize
the expected value of a cost criterion with quadratic control costs on the way
and a final cost equal to zero (resp. a large constant) if the process exits the in-
terval through its left (resp. right) end point. Explicit expressions are obtained
both for the optimal value of the control variable and the value function when
the infinitesimal parameters of the processes are proportional to a power of
the state variable.

1. Introduction. Let x(t) be a one-dimensional controlled diffusion process
defined by the stochastic differential equation

dx(t) = a[x(t), t]dt + b[x(t), t]u(t) dt + {v[x(t), t]}1/2 dW(t),

wherev(·, ·) is positive andW(t) is a standard Brownian motion, and define

τ (x) := inf
{
t ≥ 0 :x(t) ∈ {d1, d2}

∣∣ x(0) = x ∈ [d1, d2]}.
Using a result due to Whittle [(1982), page 289], we can show that if the
uncontrolled processy(t) that corresponds tox(t) is certain to leave the interval
[d1, d2], then the value of the controlu(t) that minimizes the expected value of the
cost criterion

J (x) =
∫ τ(x)

0

1
2q[x(t), t]u2(t) dt + K

(
x(τ ), τ

)
,

whereq(·, ·) is positive andK(·, ·) is a general termination cost function, can be
obtained from the mathematical expectation

E
[
e−K(y(τ),τ)/α

∣∣y(0) = x
]
,

in whichα is a positive parameter such that the relation

v = αb2/q
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holds. Actually, the mathematical expectation above is equal toe−F(x)/α, where
F(x) is the value function defined by

F(x) = inf
u(t),0≤t≤τ(x)

E[J (x)].(1)

Whittle has termed this type of problemLQG homing. It can be generalized [see
Lefebvre (1989, 1997)] in particular by using a risk-sensitive cost criterion instead
of J (x) [see Kuhn (1985) and Whittle (1990), page 222].

Next, the author [Lefebvre (2001)] modified the problem set up by Whittle by
considering the controlled process defined by

dx(t) = b[x(t)]u(t) dt + {v[x(t)]|u(t)|}1/2 dW(t)

and the cost criterion

J (x) =
∫ τ(x)

0

{1
2q[x(t)]u2(t) + λ

}
dt,

whereq(·) is positive,λ is a positive parameter and

τ (x) := inf
{
t ≥ 0 :|x(t)| = d

∣∣ x(0) = x ∈ [−d, d]}.
He found, under some symmetry assumptions, that the control that minimizes the
expected value ofJ (x) is given by

u∗ =
(

2λ

q(x)

)1/2

when 0≤ x ≤ d.

He also gave a probabilistic interpretation to the value functionF(x) and, finally,
he computed explicitly this function in the most important cases, for instance,
the cases whenx(t) with u(t) ≡ 1 is a Wiener process or a geometric Brownian
motion.

In the present paper, we assume that the controlled stochastic processX(t)

obeys the stochastic differential equation

dX(t) = f [X(t)]dt + {v[X(t)]|u(t)|}1/2 dW(t),(2)

wheref (x) andv(x) are positive functions forx > d1, and we let

τ (x) := inf
{
t ≥ 0 :X(t) ∈ {d1, d2}

∣∣ X(0) = x ∈ [d1, d2]}
with d1 ≥ 0. Therefore, it is the infinitesimal variance of the controlled processX(t)

that is control-dependent, rather than itsinfinitesimal mean, as in Whittle [(1982),
page 289]. The cost criterion is

J (x) =
∫ τ(x)

0

{1
2q[X(t)]u2(t) + λ

}
dt + K{X[τ (x)]}.(3)

In J (x), the parameterλ can now take any real value andK(·) is defined by

K{X[τ (x)]} =
{

0, if X[τ (x)] = d1,

K0, if X[τ (x)] = d2,
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whereK0 is a (large enough) positive constant. Thus, ifλ is positive, then the
aim is to make the controlled processX(t) leave the interval(d1, d2) as soon as
possible and through its left end pointd1, whereas whenλ is negative there is
a reward given for survival in(d1, d2). If λ = 0, time spent in the continuation
region (d1, d2) is neither directly rewarded nor penalized; however, because the
functionq(·) is assumed to be strictly positive, the soonerX(t) exits (d1, d2), the
better. In all cases, the quadratic control costs must of course be taken into account.

In the next section, the optimal value of the control variable will be computed.
The case when the functionsf , v and q are proportional toXn(t), where
n ∈ {0,1,2}, will be treated thoroughly. Particular examples, including the case
when X(t) with u(t) ≡ 1 is a Wiener process, will be presented in Section 3.
Finally, a few concluding remarks will be made in Section 4.

2. Computation of the optimal control. Let F(x) be the value function
defined in (1). Assuming that it exists and is twice differentiable, we can easily
show that it satisfies the dynamic programming equation

0 = inf
u

{1
2q(x)u2 + λ + f (x)F ′(x) + 1

2v(x)|u|F ′′(x)
}

(4)

for d1 < x < d2, whereu := u(0). Moreover, the boundary conditions are

F(d1) = 0 and F(d2) = K0.(5)

Now, sinceu(t) only appears in absolute value in the stochastic differential
equation (2) and squared in the cost criterion (3), the sign ofu(t) is actually
irrelevant. Hence, we can assume without loss of generality thatu is nonnegative
and it then follows at once that the optimal controlu∗ is given by

u∗ = − v(x)

2q(x)
F ′′(x) (≥ 0).(6)

REMARKS. 1. We will have to check below thatF ′′(x) is indeed less than
or equal to zero. Actually, we cannot haveF ′′(x) = 0 and satisfy both boundary
conditions in (5). So,F ′′(x) should in fact be strictly negative.
2. We have assumed above that the functionf (x) is positive if x > d1. Notice

that if f (x) is negative forx ∈ [d1, d2] andλ = 0, then the optimal control
is trivially given by u∗ ≡ 0. Indeed, we then obtain thatF(x) = 0 (for d1 ≤
x < d2), which is clearly the smallest value thatF(x) can take. However,
when we choose a parameterλ different from zero, the casef (x) �= 0 could
be considered.

3. If the parameterλ = 0, then the functionF(x) takes its values in the
interval[0,K0].

4. In some cases, the origin is an inaccessible boundary for the uncontrolled
processX1(t) obtained by settingu(t) ≡ 1; that is, the origin cannot be reached
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in finite time. This is true, in particular, whenX1(t) is a geometric Brownian
motion defined by the stochastic differential equation

dX1(t) = X1(t) dt + |X1(t)|dW(t).

Therefore, it is natural to choosed1 strictly positive in such a case. However, in
other casesd1 can be chosen equal to zero in a very legitimate way.

Next, substituting the optimal controlu∗ into the dynamic programming
equation (4), we find that the value functionF(x) satisfies the second-order
nonlinear ordinary differential equation

0 = λ + f (x)F ′(x) − v2(x)

8q(x)
[F ′′(x)]2.(7)

Summing up, we may state the following proposition.

PROPOSITION 2.1. If the value functionF(x) exists and is twice differen-
tiable, then the optimal controlu∗ is given by the formula(6). Moreover, the func-
tion F(x) can be obtained by solving the ordinary differential equation(7),subject
to the boundary conditions(5).

REMARK. Note that for the problem set up above to make sense, we must
haveλ + f (x)F ′(x) ≥ 0 [see (7)].

Next, we will solve explicitly the nonlinear ordinary differential equation (7) in
two particular cases.

CASE 1. Assume first thatf (x) ≡ f0, a positive constant, and that

v2(x)

8q(x)
:= h(x) = h0x

n,(8)

whereh0 is also a positive constant andn ∈ {−2,−1, . . . ,4}.

REMARK. The most important cases for applications are the ones when
f (x) = f0x

k , v(x) = v0x
j and q(x) = q0x

l with j, k, l ∈ {0,1,2}. Actually,
we could also include the case whenf (x) = f0/x. Indeed,X(t) with u(t) ≡ 1
could then be a Bessel process [ifv(x) ≡ 1; see Karlin and Taylor (1981), pages
175 and 176, for instance].

When the formula (8) holds [andf (x) ≡ f0], we may rewrite the ordinary



790 M. LEFEBVRE

differential equation (7) as

h(x)[F ′′(x)]2 = λ + f0F
′(x).(9)

Differentiating this differential equation, we obtain that

h′(x)[F ′′(x)]2 + 2h(x)F ′′(x)F ′′′(x) = f0F
′′(x).

Hence, because we must haveF ′′(x) < 0 (see above), we may write that

2h(x)G′(x) + h′(x)G(x) = f0,(10)

whereG(x) := F ′′(x). The general solution of (10) is given by

G(x) = h−1/2(x)

{
f0

∫ 1

2h1/2(x)
dx + c

}
,

wherec is a constant. It is now easy to obtain an explicit expression in the case
whenh(x) = h0x

n. We find that

G(x) = c√
h0

x−n/2 + f0

h0

x1−n

2− n
if n �= 2

and(11)

G(x) = c√
h0

1

x
+ f0

h0

lnx

2x
if n = 2.

Integrating the functionG(x) twice, we obtain that the value functionF(x) is
given by

2c√
h0

x2−(n/2)

(2− n)(2− n/2)
+ f0

h0

x3−n

(2− n)2(3− n)
+ c1x + c0

if n �= 2,3,4,

c√
h0

x(lnx − 1) + f0

4h0
x(ln2 x − 2 lnx + 2) + c1x + c0

(12) if n = 2,

− c√
h0

4x1/2 + f0

h0
lnx + c1x + c0 if n = 3,

− c√
h0

lnx − f0

4h0

1

x
+ c1x + c0 if n = 4,

wherec1 andc0 are constants.
Finally, the constantsc, c1 andc0 are uniquely determined from the boundary

conditions (5) and the equation (9). Actually, we find thatc2 = λ + f0c1. An
example will be presented in the next section.
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CASE 2. If λ = 0 and

v2(x)

8q(x)f (x)
:= g(x) = g0x

m,

whereg0 is a positive constant andm ∈ {−4,−3, . . . ,4}, we have

g(x)[F ′′(x)]2 = F ′(x).(13)

Proceeding as above, we find that the functionF(x) is given by (12), withf0 = 1,
n replaced bym and h0 by g0, and that the constantsc, c1 and c0 are now
uniquely determined from the boundary conditions (5) and the ordinary differential
equation (13). Here, we find thatc2 = c1. As for Case 1, an example will be
provided in the next section.

REMARKS.
1. As mentioned above, we must also check that the conditionF ′′(x) < 0 is

satisfied.
2. As will be seen in the examples presented in Section 3, there is also a restriction

on the constantK0 in the definition of the functionK(·).
3. Examples. (a) First, we consider the particular case whenf (x) ≡ f0,

v(x) ≡ v0 andq(x) ≡ q0, wheref0, v0 andq0 are all positive constants. Then,
the controlled processX(t) with u(t) ≡ 1 is a Wiener process with infinitesimal
parametersf0 andv0. We have

h(x) = h0 = v2
0

8q0
,

so thatn = 0 in (8). It follows that [see (12)]

F(x) = 2f0q0

3v2
0

x3 + c
√

2q0

v0
x2 + c1x + c0.

We find that the ordinary differential equation (9) is satisfied if and only if we take
c2 = λ + f0c1, as noticed above. It follows that

F(x) = 2f0q0

3v2
0

x3 + c
√

2q0

v0
x2 + c2 − λ

f0
x + c0.

Next, the boundary conditionF(d1) = 0 implies that

F(x) = 2f0q0

3v2
0

(x3 − d3
1) + c

√
2q0

v0
(x2 − d2

1) + c2 − λ

f0
(x − d1),

and finally,F(d2) = K0 yields that

K0 = c2(d2 − d1)

f0
+ c

√
2q0(d

2
2 − d2

1)

v0
+ 2f0q0(d

3
2 − d3

1)

3v2
0

− λ(d2 − d1)

f0
.
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Hence, we have

c = f0

2(d2 − d1)

×
[
−

√
2q0(d

2
2 − d2

1)

v0

±
{

2q0(d
2
2 − d2

1)2

v2
0

− 4
d2 − d1

f0

(
2f0q0(d

3
2 − d3

1)

3v2
0

− λ(d2 − d1)

f0
− K0

)}1/2
]
.

To simplify further, we takef0 = v0 = 1 andq0 = 1/2. We get that

c = −(d2 + d1)

2

± {(d2
2 − d2

1)2 − 4(d2 − d1)(1/3(d3
2 − d3

1) − λ(d2 − d1) − K0)}1/2

2(d2 − d1)
.

(14)

We then deduce that the constantK0 must satisfy the inequality

K0 ≥ λ(d2 − d1) + 1
12(d2 − d1)

3.(15)

Notice that the larger the parameterλ is, the largerK0 must be. Conversely, ifλ is
(negative and) small enough, anyK0 > 0 is admissible.

To determine whether we must choose the “+” or “ −” sign in (14), we will use
the fact that we must haveF ′′(x) < 0; that is, withf0 = v0 = 1 andq0 = 1

2,

F ′′(x) ≡ G(x) = 2x + 2c < 0 for d1 ≤ x ≤ d2.

This implies that the constantc must be smaller than or equal to−d2. Using (14),
we obtain that

±{(d2
2 − d2

1)2 − 4(d2 − d1)(1/3(d3
2 − d3

1) − λ(d2 − d1) − K0)}1/2

2(d2 − d1)
(16)

<
d1 − d2

2
(< 0).

Thus, we must choose the “−” sign. Then, we find that (16) implies that

(d2
2 − d2

1)2 − 4(d2 − d1)
(1

3(d3
2 − d3

1) − λ(d2 − d1) − K0
)
> (d2 − d1)

4

(17) ⇐⇒ K0 > λ(d2 − d1) + 1
3(d2 − d1)

3.

Since this last condition is more restrictive than the one in (15), this is a condition
that must be fulfilled.
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Summing up, when we choosef (x) ≡ 1, v(x) ≡ 1 andq(x) ≡ 1
2, the optimal

control is given by

u∗ = −2(x + c),

where the constantc is defined in (14), in which the “−” sign is chosen and the
constantK0 satisfies the condition (17). Furthermore, the value function is

F(x) = 1
3(x3 − d3

1) + c(x2 − d2
1) + (c2 − λ)(x − d1) for d1 ≤ x ≤ d2.

(b) Next, we consider the controlled stochastic processX(t) defined by the
stochastic differential equation

dX(t) = X(t) dt + {X2(t)|u(t)|}1/2 dW(t)

and we look for the controlu∗ that minimizes the expected value of the cost
criterion

J (x) =
∫ τ(x)

0

1
2X(t)u(t) dt + K{X[τ (x)]}.

That is, we takef [X(t)] = X(t), v[X(t)] = X2(t) andq[X(t)] = X(t). Moreover,
we setλ = 0. In the case whenu(t) ≡ 1, X(t) is a geometric Brownian motion.
Notice that

v2(x)

8q(x)f (x)
= x2

8
≡ g(x).

It follows that the value function is given by [see (12) withn (= m) = 2, f0 = 1
andh0 (= g0) = 1

8]

F(x) = 2
√

2cx(lnx − 1) + 2x(ln2x − 2 lnx + 2) + c1x + c0

and

G(x) ≡ F ′′(x) = 2
√

2c
1

x
+ 4

lnx

x
.

Furthermore, the optimal controlu∗ is

u∗ = −√
2c − 2 lnx.(18)

Next, (13) yields that

c2 + 2 ln2x + 2
√

2c lnx = 2
√

2c lnx + 2 ln2x + c1 �⇒ c2 = c1,

which is in fact true for all problems in Case 2. Hence, we have

F(x) = 2
√

2cx(lnx − 1) + 2x lnx(lnx − 2) + 4x + c2x + c0.

The boundary conditionsF(d1) = 0 andF(d2) = K0 imply that

F(x) = 2
√

2c[(x lnx − d1 lnd1) − (x − d1)] + 2(x ln2x − d1 ln2 d1)

(19) − 4(x lnx − d1 lnd1) + 4(x − d1) + c2(x − d1),
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where the constantc is such that

K0 = c2(d2 − d1) + 2
√

2c[(d2 lnd2 − d1 lnd1) − (d2 − d1)]
+ 2d2 ln2d2 − 2d1 ln2d1 − 4d2 lnd2 + 4d1 lnd1 + 4(d2 − d1).

For simplicity, letd1 = 1 andd2 = d . Then, we have

0 = (d − 1)c2 + 2
√

2c[d lnd − (d − 1)] + 2d ln2 d − 4d lnd + 4(d − 1) − K0,

so that

c = −2
√

2(d lnd − d + 1) ± [8d ln2 d − 8(d − 1)2 + 4(d − 1)K0]1/2

2(d − 1)
.(20)

Thus, a first restriction on the constantK0 is that

K0 ≥ 2(d − 1) − 2
d

d − 1
ln2 d,

whered > 1.
Finally, we know that we must also have

F ′′(x) = 2
√

2c
1

x
+ 4

lnx

x
< 0 ∀x ∈ [1, d],

which implies that

c < −√
2 lnd.

We then deduce from (20) that we must again choose the “−” sign and that the
constantK0 must satisfy the inequality

K0 > 4(d − 1) − 4 lnd − 2 ln2 d.

Since

4(d − 1) − 4 lnd − 2 ln2 d > 2(d − 1) − 2
d

d − 1
ln2 d ∀d > 1,

we must impose the constraint

K0 > 4
(
d − 1− lnd − 1

2 ln2 d
)
.(21)

In summary, when we choosef [X(t)] = X(t), v[X(t)] = X2(t), q[X(t)] =
X(t), λ = 0,d1 = 1 andd2 = d (> 1), the optimal control is given by (18) with the
constantc defined in (20), in which the “−” sign is chosen and the constantK0
is such that (21) holds. Moreover, the value function is [see (19) withd1 = 1 and
d2 = d ]

F(x) = 2x lnx
[
lnx + √

2c − 2
] + (x − 1)

[
c2 − 2

√
2c + 4

]
.
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4. Concluding remarks. In this article, the problem of optimally controlling
a certain class of one-dimensional diffusion processes was set up and solved
exactly. Contrary to the classic formulation, the diffusion processes in question
had control-dependent infinitesimal variances rather than infinitesimal means.
The objective, when the parameterλ in the cost criterionJ (x) defined in (3) is
nonnegative, was to incite the controlled process to exit, as soon as possible, the
interval [d1, d2] at d1. Whenλ is negative, a reward is given for survival in the
interval(d1, d2).

In Section 3, two particular cases were treated extensively. The first example
involved a controlled Wiener process, whereas in the second example a geometric
Brownian motion was optimally controlled. Many other important cases could
be considered. For instance, particular Bessel processes could have been used. It
would also be interesting to takef [X(t)] = −αX(t), with α a positive constant,
v[X(t)] ≡ v0 > 0 andλ < 0. Then, the controlled processX(t) with u(t) ≡ 1
is an Ornstein–Uhlenbeck process. Sincef [X(t)] is negative whenX(t) is in
the interval[d1, d2], we haveJ (x) = 0 if λ = 0 and if the optimizer chooses
u(t) ≡ 0. However, ifλ is negative and small enough (i.e., large enough in absolute
value), the optimizer can receive a reward overall if the controlled process remains
betweend1 andd2 for a long enough time. Therefore, the optimal controlu∗ will
not always be identical to zero ifλ is small andK0 is not too large. Actually, the
situation is similar even whenf [X(t)] > 0 in the interval[d1, d2]. Indeed, ifK0 is
not large, the optimizer is better off to letX(t) hit d2 befored1 rather than to use a
lot of control to makeX(t) hit d1 first; hence the constraints that we must impose
on the constantK0, as we have seen in the examples presented in Section 3.

Finally, possible extensions of the work presented in this article are the
following: first, a two-dimensional version of the optimal control problem could
be considered. Also, we could use a risk-sensitive cost criterion rather thanJ (x).
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