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Abstract. Let X1,X2, . . . be a sequence of i.i.d. real-valued random variables with mean zero, and consider the scaled random
walk of the form YN

k+1 = YN
k

+ aN(YN
k

)Xk+1, where aN : R →R+. We show, under mild assumptions on the law of Xi , that one

can choose the scale factor aN in such a way that the process (YN�Nt�)t∈R+ converges in distribution to a given diffusion (Mt )t∈R+
solving a stochastic differential equation with possibly irregular coefficients, as N → ∞. To this end we embed the scaled random
walks into the diffusion M with a sequence of stopping times with expected time step 1/N .

Résumé. Soit X1,X2, . . . une suite de variables aléatoires indépendantes avec espérance E(Xi) = 0, et YN
k+1 = YN

k
+

aN(YN
k

)Xk+1 une marche aléatoire renormalisée avec une fonction aN : R → R+. On montre, sous certaines conditions lé-

gères sur la loi de Xi , que l’on peut choisir le facteur aN d’une facon que (YN�Nt�)t∈R+ converge en loi, quand N tend vers l’infini,

vers une diffusion (Mt )t∈R+ étant la solution d’une équation differentielle stochastique avec des coefficients irréguliers. À cet
effet, nous plongeons la marche aléatoire renormalisée dans la diffusion M par une suite de temps d’arrêt ayant un pas de temps
avec espérance 1/N .

MSC: 60F17; 60J60; 65C30

Keywords: Stochastic differential equations; Irregular diffusion coefficient; Weak law of large numbers for u.i. arrays; Weak convergence of
processes; Skorokhod embedding problem

Introduction

Let X1,X2, . . . be a sequence of i.i.d. integrable random variables with E(Xi) = 0. Let aN : R → R+ be a function
depending on N ∈N, and let (YN

k )k∈N0 be the process satisfying YN
0 = m ∈R and

YN
k+1 = YN

k + aN

(
YN

k

)
Xk+1, k ∈N0 = {0,1,2, . . .}. (1)

We extend YN to a continuous time processes by defining YN
t = YN�t� + (t − �t�)(YN

�t�+1 − YN�t�).
Consider the particular case where E(X2

i ) = 1 and aN is constant equal to 1√
N

. Then (YN
k )k∈N0 is the random walk

generated by (Xk)k∈N0 , scaled by the constant 1√
N

, and Donsker’s theorem implies that the continuous-time process

(YN
Nt )t∈R+ converges in distribution to a Brownian motion as N → ∞ (see e.g. [3,14] or Section 8.6 in [4]).
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In this paper we address the question of whether one can choose the scale factor aN in such a way that the scaled
random walk (YN

Nt )t∈R+ converges in distribution to a time homogeneous diffusion M satisfying the stochastic differ-
ential equation (SDE)

dMt = η(Mt) dWt , M0 = m, (2)

where W is a Brownian motion, and η:R → R is a Borel-measurable function that satisfies the Engelbert–Schmidt
conditions (see [5]) in some interval (l, r), −∞ ≤ l < r ≤ ∞, and vanishes outside (l, r).

If convergence takes place, then one can use the limiting process M as a proxy for the scaled random walk YN for
large N ; or vice versa, YN can be used for approximating the SDE M . One can thus profit from tools for continuous-
time and discrete-time processes for analyzing both processes M and YN .

If η is Lipschitz continuous, then a natural choice for the scale factor is aN(y) = 1√
N

η(y). Then (YN
k )k∈N0 can be

interpreted as the Euler approximation of M , and it is known that it converges in distribution to M (see e.g. [10]).
For arbitrary diffusion coefficients η satisfying the Engelbert–Schmidt conditions the question of whether there exist
scale factors such YN converges to M has not been solved. If the diffusion coefficient is very irregular, then the
diffusion intensity η(x0) at a fixed state point x0 can not be used as an approximation of the diffusion coefficient in
the neighborhood of x0. Therefore, in order to have convergence, the scaling factors aN need to take into account the
global structure of η.

Recall that Skorokhod proves Donsker’s theorem by embedding in law the random walk scaled by the constant 1√
N

into the Brownian motion with a sequence of stopping times (see [15]). We take on Skorokhod’s idea and show, under
some nice conditions on the distribution of Xi , that there exists a scale factor aN : (l, r) → (0,∞) such that (YN

k )k∈N0

can be embedded into the diffusion M with a sequence of stopping times with expected time step 1/N .
Loosely speaking, the embedding works as follows. We first choose aN(m) (recall that m is the starting point

in (2)) and an (Ft )-stopping time ρ1 such that E(ρ1) = 1/N and Mρ1

d= YN
1 , where (Ft ) denotes the underlying

filtration. Conditionally on {Mρ1 = y} we choose aN(y) and an (Fρ1+t )-stopping time ρ2 such that E(ρ2) = 1/N and

Mρ1+ρ2

d= y +aN(y)X2. By proceeding like this we obtain a sequence of (Ft )-stopping times τk = ρ1 +· · ·+ρk such
that (Mτk

)k∈N0 has the same distribution as the scaled random walk (YN
k )k∈N0 .

The times ρk turn out to be pairwise uncorrelated and we can check that they satisfy a certain uniform integrability
property (see Lemma 3.4). Under such a uniform integrability property we prove a version of the weak law of large
numbers for uncorrelated arrays, which is also interesting in itself because we do not require finiteness of the second
moments (see Theorem 3.2). This weak law of large numbers entails that for all t ∈ R+ we have τ�Nt� → t in proba-
bility, as N → ∞. From this, one can deduce that (Mτ�Nt�)t∈R+ converges in probability to M uniformly on compact
time intervals. Therefore, (YN

Nt )t∈R+ converges in distribution to M .
For our approach to work one needs to make sure that for every N ∈ N and y ∈ (l, r) there exists a scale factor

aN(y) such that the distribution of y + aN(y)Xi can be embedded into the diffusion M , conditioned to M0 = y, with
a stopping time with expectation 1/N . The collection of distributions that can be embedded into M with integrable
stopping times is fully described in [1]. Moreover, there is a closed form integral expression for the minimal expecta-
tion of an embedding stopping time (see Theorem 3 in [1]). This allows us to derive weak sufficient conditions (see
Section 2) for the existence of a scale factor aN : (l, r) → (0,∞) such that (YN

k )k∈N0 can be embedded into M with
stopping times having expectation 1/N .

Our approach to generalize Donsker’s theorem is essentially different from the one pioneered by Stone in [16]
(also see [2] for a recent generalization to tree-valued processes). In that approach the approximating processes are
continuous-time Markov processes that do not jump over points in their state spaces (that is, they can be e.g. diffusions
or birth and death processes). On the contrary, in this paper we approximate M via discrete-time Markov chains.
Another conceptual difference is that we develop our theory without requiring that the approximating Markov chains
do not jump over points. On an informal level, one might view conditions (18)–(19) and (26)–(29) at which we arrive
in Section 2 as an indication of what comes out when we want to allow overjumping.

The paper is organized in the following way. In Section 1, we recall a necessary and sufficient condition, derived
in [1], for a distribution to be embeddable into the diffusion M with an integrable stopping time. Moreover, we
slightly generalize an integral formula for the minimal expectation of an embedding stopping time. In Section 2,
we characterize families of scaled random walks whose laws can be embedded into M via a sequence of increasing
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stopping times such that the expected distance between two consecutive stopping times is equal to 1/N , for N ∈ N. In
Section 3, we provide sufficient conditions for a sequence of scaled random walks, embeddable into M , to converge
in distribution to M .

1. Embedding distributions in integrable time

In this section we recall a necessary and sufficient condition from [1] for a centered distribution to be embeddable in
a diffusion via an integrable stopping time.

Let I = (l, r) with l ∈ [−∞,∞) and r ∈ (−∞,∞]. As usual we denote by Ī the closure of I in R. Let η : R→R

be a Borel-measurable function satisfying

η(x) 	= 0 for all x ∈ I, (3)

1

η2
∈ L1

loc(I ), (4)

η(x) = 0 for all x ∈ R \ I, (5)

where L1
loc(I ) denotes the set of functions that are locally integrable on I .

Consider the SDE

dMt = η(Mt) dWt , M0 ∼ γ, (6)

where γ is a probability measure on I . The assumptions (3)–(5) imply that (6) possesses a weak solution that is
unique in law (see e.g. [5] or Theorem 5.5.7 in [9]). This means that there exists a pair of processes (M,W) on a
filtered probability space (�,F, (Ft ),P ), with (Ft ) satisfying the usual conditions, such that W is an (Ft )-Brownian
motion, M0 is an F0-measurable random variable with distribution γ and (M,W) satisfies the SDE (6). Let us note
that M stays in l (resp. r) once it hits l (resp. r).

For all y ∈ I and x ∈R we define

q(y, x) =
∫ x

y

∫ u

y

2

η2(z)
dz du.

Notice that Itô’s formula implies that the process (q(M0,Mt) − t) is a local martingale starting in 0. The assumptions
(3)–(5) imply that for all y ∈ I the nonnegative function q(y, ·) is finite on I and equal to ∞ on R \ [l, r]. Besides,
q(y, ·) is strictly convex on I , strictly decreasing to zero on (l, y) and strictly increasing from zero on (y, r). Moreover,
for all y, ȳ ∈ I and x ∈ R we have

q(y, x) = q(ȳ, x) − q(ȳ, y) − qx(ȳ, y)(x − y), (7)

where qx denotes the partial derivative of q with respect to the second argument.
Recall that by Feller’s test for explosions we have q(y, l+) = ∞ if and only if the probability for the process M

to attain l in finite time is equal to zero. Notice that the non-explosion condition q(y, l+) = ∞ does not depend on y.
Moreover, if l = −∞, then q(y, l+) = ∞, and hence any solution of (6) does not attain −∞ in finite time. Similar
statements hold true for the right-hand side boundary r .

We next recall a result from [1] providing a necessary and sufficient condition for a distribution to be embeddable
in M with an integrable stopping time. Let μ be a centered probability measure on R, i.e.

∫ |x|μ(dx) < ∞ and∫
xμ(dx) = 0. Moreover, we assume that μ 	= δ0. Let K(y,a, ·), y ∈ Ī , a ∈ R+, be the location-scale family of

probability distributions defined by

K(y,a,B) = μ

(
B − y

a

)
, B ∈ B(R), (8)

whenever a > 0; and K(y,0, ·) = δy . Consider the problem of finding a stopping time τ such that

Law(Mτ |F0) = K
(
M0, a(M0), ·

)
, (9)
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where Law(Mτ |F0) denotes the regular conditional distribution of Mτ with respect to F0 and a: Ī → R+ is a given
Borel function. The unconditional version of this problem is usually referred to as the Skorokhod embedding problem
or the SEP, see [7] or [13] for an overview. In the subsequent sections we need embedding stopping times that satisfy
E[τ |F0] < ∞ a.s. Notice that the conditional expectation is always defined because τ is nonnegative. For all y ∈ I

we define

Q(y) =
∫
R

q(y, x)K
(
y, a(y), dx

)
. (10)

One can show that Q(y) is the minimal expected time required for embedding K(y,a(y), ·) into M , conditioned
to M0 = y. To provide an intuition, suppose that the starting in 0 local martingale (q(M0,Mt) − t) is a true
martingale and τ is a solution of the embedding problem (9). If the optional sampling theorem applies, then
E[τ |F0] = E[q(M0,Mτ )|F0] = Q(M0). More formally, we have the following result, which is a straightforward
generalization of Theorem 3 and Proposition 4 in [1]:

Theorem 1.1.

(i) Any (Ft )-stopping time τ solving (9) satisfies E[τ |F0] ≥ Q(M0) a.s.
(ii) There exists a solution τ of the embedding problem (9) satisfying the property E[τ |F0] < ∞ a.s. if and only if

Q(M0) < ∞ a.s. (11)

In this case, there exists an embedding stopping time τ with

E[τ |F0] = Q(M0) a.s. (12)

For the proof of the main results of Section 3 it turns out to be helpful to work with the specific solution of the
embedding problem (9) provided in [1]. For the reader’s convenience we briefly explain the solution method in the
Appendix.

2. Embedding scaled random walks

Let (M,W) be a weak solution of

dMt = η(Mt) dWt , M0 = m, (13)

with m ∈ I . Moreover, let X1,X2, . . . be a sequence of i.i.d. real-valued integrable random variables with E(Xi) = 0.
We denote the distribution of Xi by μ. Throughout we assume that μ 	= δ0.

Definition 2.1. Let a :R→ R+ be a Borel function. The process Y = (Yk)k∈N0 , defined by Y0 = m and

Yk+1 = Yk + a(Yk)Xk+1, k ≥ 0, (14)

is called random walk generated by (Xk)k∈N0 with scale factor a and starting point m.
We say that Y = (Yk)k∈N0 is a scaled random walk if there exists a scale factor a such that Y is the random walk

generated by (Xk)k∈N0 with scale factor a.

In this section we aim at constructing scale factors such that (Yk)k∈N0 can be embedded in distribution into M with

a sequence of stopping times (τk)k∈N0 such that (Mτk
)k∈N0

d= (Yk)k∈N0 , that is, both discrete time processes have the
same law. More precisely, we solve the following problem.

Problem (P). Let N ∈ N. Does there exist a scale factor aN such that the associated scaled random walk (YN
k )k∈N0

with YN
0 = m can be embedded in distribution into M with a nondecreasing sequence of (Ft )-stopping times (τN

k )k∈N0
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with

τN
0 = 0 and E

[
τN
k+1|FτN

k

] = τN
k + 1

N
, (15)

for all k ≥ 0?

In order to determine the scale factor solving Problem (P), we introduce, for all y ∈ I , the mapping Gy : [0,∞) →
[0,∞] defined via

Gy(a) =
∫
R

q(y, x)K(y, a, dx) =
∫
R

q(y, y + ax)μ(dx). (16)

Recall that Gy(a) is the minimal expected time needed for embedding K(y,a, dx) into M (cf. Theorem 1.1 and the
discussion following (10)). For y ∈ I let

ainf(y) := inf
{
a ∈ [0,∞) : Gy(a) = ∞}

, inf∅ := ∞.

Notice that, for all y ∈ I , the map Gy(·) is increasing on [0,∞) and strictly increasing on [0, ainf(y)] with Gy(0) =
0, left-continuous by the monotone convergence theorem, and continuous on [0,∞) \ {ainf(y)} by the dominated
convergence theorem.

We now provide sufficient conditions guaranteeing that a solution of Problem (P) exists. We need to distinguish
four cases.

2.1. Case 1: l = −∞ and r = ∞

In this subsection we make the following assumption.

(A1) There exists y ∈ I such that Gy(a) < ∞ for all a > 0.

Lemma 2.2. (A1) is equivalent to the condition that for all y ∈ I and a > 0 we have Gy(a) < ∞.

Proof. Let ȳ ∈ I and suppose that Gȳ(a) < ∞ for all a > 0. Let y ∈ I and notice that q(y, x) = q(ȳ, x) − q(ȳ, y) −
qx(ȳ, y)(x − y). Since μ is centered, we have

Gy(a) =
∫
R

q(y, y + ax)μ(dx) =
∫
R

q(ȳ, y + ax)μ(dx) − q(ȳ, y).

For all a > 0 and x ∈ R with |x| ≥ |y−ȳ|
a

we have

q(ȳ, y + ax) ≤ q(ȳ, ȳ + 2ax).

From this we obtain Gy(a) < ∞. �

The following theorem provides a solution to Problem (P) in Case 1.

Theorem 2.3. If (A1) is satisfied, then for all N ∈ N there exists a unique scale factor aN satisfying

Gy

(
aN(y)

) = 1

N
, y ∈ I. (17)

Moreover, the random walk (YN
k )k∈N0 generated by (Xk)k∈N0 with scale factor aN and starting point m can be

embedded into M with a sequence of stopping times satisfying (15).

Remark 2.4. It is worth noting that (A1) is satisfied whenever μ has compact support.
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For the proof of the theorem we need the following auxiliary result.

Lemma 2.5. If (A1) is satisfied, then Gy is a bijective mapping from [0,∞) to [0,∞), for all y ∈ I .

Proof. Notice that limx→±∞ q(y, x + y) = ∞. Moreover, if 0 ≤ a < b and x 	= 0, then q(y, y + ax) < q(y, y + bx).
Therefore, Gy is strictly increasing and by monotone convergence, lima→∞ Gy(a) = ∞. Condition (A1), Lemma 2.2
and a dominated convergence argument show that Gy is continuous, and consequently, bijective. �

Proof of Theorem 2.3. Let N ∈ N. Lemma 2.5 implies that for all y ∈ I there exists a scale factor aN(y) that
satisfies (17).

We next define a sequence of stopping times (τ (k))k∈N0 that embeds the transition probabilities into the diffu-
sion M . First define τ(0) = 0. Suppose that τ(k) is already defined. Set M̃t = Mt+τ(k), for t ≥ 0, and observe that

dM̃t = η(M̃t ) d(Wt+τ(k) − Wτ(k)), M̃0 = Mτ(k).

Theorem 1.1 implies that there exists an (Ft+τ(k))-stopping time ρ(k + 1) with

E
[
ρ(k + 1)|Fτ(k)

] = Q(Mτ(k)) = GMτ(k)

(
aN(Mτ(k))

) = 1

N

such that M̃ρ(k+1)
d= YN

k + aN(YN
k )Xk+1. Now define τ(k + 1) = τ(k) + ρ(k + 1). By construction, the sequence

(Mτ(k))k∈N0 has the same distribution as (YN
k )k∈N0 . �

The next example shows that a scale factor satisfying (17) does not necessarily exist if (A1) does not hold true.

Example 2.6. Let μ be the probability measure with density f (x) = c e−|x|
1+x2 , where c = (

∫
e−|x|
1+x2 dx)−1. Moreover let

m = 0 and η(x) = e−x/2, x ∈ R. Then we have q(y, x) = 2ey(ex−y − (x − y) − 1). A straightforward calculation
shows that Gy(a) = ∞ for a > 1. Therefore Condition (A1) is not satisfied. Moreover, for a = 1 we have that

Gy(1) = 2eyc

∫
R

(
ex − x − 1

) e−|x|

1 + x2
dx < ∞.

By considering the limit y → −∞ we see that for every N ∈N there exists y ∈R such that Gy(1) < 1/N . In particu-
lar, there exists no solution to (17).

2.2. Case 2: l > −∞ and r = ∞
Here we impose the following assumption.

(A2) inf suppμ > −∞ and there exists y ∈ I such that the integral over the positive real line
∫
R+ q(y, y +

ax)μ(dx) < ∞ for all a > 0.

For every y > l we set ā(y) = l−y
inf suppμ

. Note that for all a ≤ a(y) we have a suppμ ⊂ [l − y,∞).
We now present a solution to Problem (P) in Case 2.

Theorem 2.7. Suppose that (A2) is satisfied and additionally that the following implications hold true:

if q(m, l+) < ∞, then μ
({inf suppμ}) > 0, (18)

if q(m, l+) = ∞, then lim inf
y→∞ Gy

(
ā(y)

)
> 0 and lim inf

y↘l
Gy

(
ā(y)

)
> 0. (19)

Then there exists N0 ∈ N such that for all N ≥ N0 there exists a unique scale factor aN satisfying

aN(y) = sup

{
a ∈ [0,∞) : Gy(a) ≤ 1

N

}
, y ∈ I, (20)
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and aN(l) = 0. Moreover, the random walk (YN
k )k∈N0 , generated by (Xk)k∈N0 with scale factor aN and starting in m,

can be embedded in M with stopping times satisfying (15).
In the case q(m, l+) < ∞, we can take N0 = 1; while in the case q(m, l+) = ∞, the scale factor aN of (20)

satisfies (17) for all y ∈ I and N ≥ N0 (here N0 ≥ 1 can be necessary).

Remark 2.8. It is worth noting that the assumptions of Theorem 2.7 are satisfied whenever μ has compact support
and μ({inf suppμ}) > 0 (see Proposition 2.12).

Proof. From similar arguments as in the proof of Lemma 2.2 it follows that condition (A2) implies
∫
R+ q(y, y +

ax)μ(dx) < ∞ for all y ∈ I and a > 0. Notice that the sup in (20) is attained, since Gy is left-continuous. As in the
proof of Lemma 2.5 one can show that Gy : [0, ā(y)] → [0,Gy(ā(y))] is bijective.

Now assume q(m, l+) < ∞. Equation (18) implies that w = μ({inf suppμ}) is positive. Let N ∈ N and νN(y,B) =
K(y,aN(y),B) for y ∈ I and B ∈ B(R). Similarly to the proof of Theorem 2.3 we construct a sequence of stopping
times (τ (k))k∈N0 embedding the transition probabilities into M . Let τ(0) = 0. Suppose that τ(k) is defined. By
Theorem 1.1 there exists an (Ft+τ(k))-stopping time ρ(k+1) that embeds νN(Mτ(k), ·) into the process M̃t = Mt+τ(k),
t ≥ 0, and, with Q(y) = Gy(aN(y)), satisfies

E
[
ρ(k + 1)|Fτ(k)

] = Q(Mτ(k)) = GMτ(k)

(
aN(Mτ(k))

) ≤ 1

N
.

Define τ(k + 1) = τ(k) + ρ(k + 1) if Mτ(k)+ρ(k+1) > l, and τ(k + 1) = τ(k) + ρ(k + 1) + 1
w

[ 1
N

− Q(Mτ(k))] if
Mτ(k)+ρ(k+1) = l. Then we have

E
[
τ(k + 1)|Fτ(k)

] = τ(k) + Q(Mτ(k)) + 1

w

[
1

N
− Q(Mτ(k))

]
P(Mτ(k)+ρ(k+1) = l|Fτ(k))

= τ(k) + 1

N
.

Next assume that q(m, l+) = ∞. Due to (19) and Lemma 2.9 below, we have

inf
y∈I

Gy

(
ā(y)

)
> 0.

Choosing N0 ∈N such that 1/N0 < infy∈I Gy(ā(y)) yields that for every N ≥ N0 and y ∈ I we have Gy(aN(y)) = 1
N

.
The rest of the proof goes along the lines of the proof of Theorem 2.3. �

Lemma 2.9. Suppose (A2).

(i) The function y �→ Gy(ā(y)) is a lower semicontinuous function I → (0,∞].
(ii) For any compact subinterval J ⊂ I , we have

inf
y∈J

Gy

(
ā(y)

)
> 0.

Proof. To simplify notation we assume that inf suppμ = −1. For y > l, we have Gy(ā(y)) > 0, ā(y) = y − l and
g(y) := Gy(ā(y)) = ∫

q(y, y + (y − l)x)μ(dx). Since q(y, ·) nonnegative, Fatou’s lemma yields for y0 ∈ I

lim inf
y→y0

g(y) ≥
∫

lim inf
y→y0

q
(
y, y + (y − l)x

)
μ(dx) = g(y0). (21)

This proves the first statement. The second statement immediately follows from the first one. �

Remark 2.10. In comparison with Case 1 the condition that determines the scale factor changes from (17) to a
less pleasant one (20). Notice that in Case 1, conditions (17) and (20) are equivalent. As stated in Theorem 2.7, in
Case 2 with q(m, l+) = ∞ again (17) holds true. Example 2.11 below shows that, in Case 2 with q(m, l+) < ∞, it
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can indeed happen that the scale factor does not satisfy (17) any longer. However, by Lemma 2.9(ii), the following
statement holds:

(Eq) Suppose (A2) and, for N ∈ N, consider the scale factor aN satisfying (20). Then, for any compact subinterval
J ⊂ I , there exists N1 ∈ N such that, for all N ≥ N1, the scale factor aN satisfies (17) on J .

Example 2.11. Let M be a Brownian motion starting at m > 0 and absorbed as it reaches zero, i.e. we have I =
(0,∞) and η ≡ 1. Let μ = 1

2 (δ−1 + δ1). A short computation shows that, for y > 0,

Gy(a) =
{

a2 if a ∈ [0, y],
∞ if a ∈ (y,∞).

Hence, aN(y) = 1√
N

∧ y, and (17) fails whenever y ∈ (0, 1√
N

).

While (18) is a condition on the primitives of our problem, (19) is harder to verify. In the sequel we present
sufficient conditions on μ (Proposition 2.12) and η (Proposition 2.13) that imply (19).

Proposition 2.12. Suppose (A2). If μ({inf suppμ}) > 0, then (19) is satisfied. Moreover, Theorem 2.7 applies with
N0 = 1.

Proof. From q(m, l+) = ∞ and μ({inf suppμ}) > 0 it follows that Gy(ā(y)) = ∞ for all y ∈ I , which implies the
claims. �

Proposition 2.13. Under (A2) assume that

lim sup
x↘l

|η(x)|
x − l

< ∞ and lim sup
x↗∞

|η(x)|
x

< ∞.

Then (19) is satisfied.

Proof. To simplify notation we assume that inf suppμ = −1. For y > l we have ā(y) = y − l and g(y) := Gy(ā(y)) =∫
h(x, y)μ(dx) with h(x, y) := q(y, y + (y − l)x). We need to show that lim infy→y0 g(y) > 0 for y0 ∈ {l,∞}. Note

that

h(x, y) = 2
∫ x

0

∫ u

0

(y − l)2

η2((y − l)z + y)
dz du. (22)

We have for every z > −1

lim inf
y↘l

(
y − l

|η((y − l)z + y)|
)

= 1

z + 1
lim inf

y↘l

(
(y − l)z + y − l

|η((y − l)z + y)|
)

= 1

z + 1
lim inf

x↘l

(
x − l

|η(x)|
)

> 0

and

lim inf
y↗∞

(
y − l

|η((y − l)z + y)|
)

= 1

z + 1
lim inf
x↗∞

(
x − l

|η(x)|
)

= 1

z + 1
lim inf
x↗∞

(
x

|η(x)|
)

> 0.

Thus, for y0 ∈ {l,∞}, applying Fatou’s lemma in (22) (observe that the area of integration is positively oriented also
for x ≤ 0) yields lim infy→y0 h(x, y) > 0 for every x ∈ (−1,∞) \ {0}. Now the argument similar to (21) yields the
claim. �

Remark 2.14. We can replace the conditions lim supx↘l
|η(x)|
x−l

< ∞ and lim supx↗∞
|η(x)|

x
< ∞ in the formulation of

Proposition 2.13 by the weaker conditions lim infy↘l h(·, y) > 0 and lim infy↗∞ h(·, y) > 0 on a set of positive mass
with respect to μ, where h is defined as in the proof of Proposition 2.13.
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Let us illustrate in more detail how the assumptions in Theorem 2.7 work when q(m, l+) = ∞. Recall that, in the
case q(m, l+) = ∞, the scale factor aN satisfies (17) (not only (20)). If, however, (A2) does not hold true, then a scale
factor satisfying (17) does not necessarily exist. This can be shown by means of an example similar to Example 2.6.
The role of condition (19) is as follows. Together with (A2) it guarantees that, in the case q(m, l+) = ∞, there is a
scale factor satisfying (17). Examples 2.15 and 2.16 below show that (19) can fail and a scale factor satisfying (17)
does not necessarily exist when we require (A2) alone.

Example 2.15. Let us consider the constant elasticity of variance (CEV) process with α > 1, i.e. l = 0, r = ∞ and
η(x) = xα on I . For y > 0, we have

q(y, x) =
{ 2

2α−1 [ 1
2α−2 ( 1

x2α−2 − 1
y2α−2 ) + x−y

y2α−1 ] if x ≥ 0,
∞ if x < 0,

(23)

in particular, q(y,0+) = ∞. We see that any centered measure μ 	= δ0 with inf suppμ > −∞ satisfies (A2).
Notice that q(y/a, x/a) = a2α−2q(y, x) for a, x, y > 0. With b = − inf suppμ > 0 we now calculate ā(y) = y/b

and

Gy

(
ā(y)

) = 1

y2α−2

∫
R

q

(
1,1 + x

b

)
μ(dx) = b2α−2

y2α−2

∫
R

q(b, b + x)μ(dx).

Thus, Theorem 2.7 applies if and only if μ 	= δ0 is centered, inf suppμ > −∞ and, for some ε > 0,∫
[inf suppμ,inf suppμ+ε]

q(− inf suppμ,− inf suppμ + x)μ(dx) = ∞. (24)

Here we used that such an integral over R is infinite if and only if (24) is satisfied (for any y > 0, the function
x �→ q(y, x) has linear growth as x → ∞). Notice that a sufficient condition for (24) is μ({inf suppμ}) > 0.

The previous example shows that, choosing a centered measure μ 	= δ0 with inf suppμ > −∞ in a way that (24)
fails, we have (A2) but violate (19) in the way Gy(ā(y)) → 0 as y → ∞. This raises the question of whether it
is possible to violate (19), under (A2), in the way Gy(ā(y)) → 0 as y ↘ l. This must be more delicate because,
on the one hand, the condition |η(x)| ≥ c(x − l)α , for all x ∈ (l, b), with some c > 0, b > l and α < 1, implies
q(m, l+) < ∞, while, on the other hand, the condition |η(x)| ≤ c(x − l), for all x ∈ (l, b), with some c > 0 and b > l,
implies lim infy↘l Gy(ā(y)) > 0 by Proposition 2.13. Still this is possible as the following example shows.

Example 2.16. We consider again I = (0,∞) and define

η(x) =
{

2
√

2x
(− logx)

3
4√−1−2 logx

if x ∈ (0,1/2),

1 if x ∈ [1/2,∞).

Then one can verify that

q(1/2, x) =
{√− logx + 1√

log 2
(x − 1

2 ) − √
log 2 if x ∈ (0,1/2),

x2 − x + 1/4 if x ∈ [1/2,∞),

in particular, q(1/2,0+) = ∞. We see that any centered measure μ 	= δ0 with inf suppμ > −∞ and
∫
R+ x2μ(dx) <

∞ satisfies (A2).
Let now μ be a centered measure with

inf suppμ = −1 and sup suppμ = 1,

in particular, ā(y) = y for y > 0. Moreover assume that∫
R

− log(x + 1)μ(dx) < ∞. (25)
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By formula (7), we have for x ∈ (−1,1] and y ∈ (0,1/4]

q(y, y + xy) =
√

− log
[
y(x + 1)

] − √− logy + x

2
√− logy

.

In particular, for any x ∈ (−1,1], the mapping y �→ q(y, y + xy) is increasing with q(y, y + xy) → 0 as y ↘ 0.
Indeed, we have√

− log
[
y(x + 1)

] − √− logy = − log(x + 1)√− log[y(x + 1)] + √− logy
.

Then dominated convergence (cf. (25)) ensures that Gy(ā(y)) → 0 as y ↘ 0.

Finally, we illustrate how Theorem 2.7 works when q(m, l+) < ∞.

Example 2.17. Let us now consider the CEV process with α ∈ (−∞,1) \ {0}, i.e. I = (0,∞) and η(x) = xα on I . In
the case α 	= 1

2 , for y > 0, the function q(y, ·) is given by formula (23). In the case α = 1
2 , for y > 0, we have

q(y, x) =
{

2x log x
y

− 2(x − y) if x ≥ 0,
∞ if x < 0.

In particular, q(y,0+) < ∞ in both cases. Thus, Theorem 2.7 applies if and only if μ 	= δ0 is centered, inf suppμ >

−∞, μ({inf suppμ}) > 0 and

if α = 1

2
, then

∫
R+

x logxμ(dx) < ∞,

if α <
1

2
, then

∫
R+

x2−2αμ(dx) < ∞.

2.3. Case 3: l = −∞ and r < ∞

This case can be reduced to Case 2 by considering the diffusion −M .

2.4. Case 4: l > −∞ and r < ∞

In this subsection we make the following assumption.

(A3) inf suppμ > −∞ and sup suppμ < ∞.

For every y ∈ I we set ā(y) = l−y
inf suppμ

∧ r−y
sup suppμ

. Note that for all a ≤ a(y) we have a suppμ ⊂ [l − y, r − y].
A solution to Problem (P) in Case 4 is given in the next theorem.

Theorem 2.18. Suppose that (A3) is satisfied and additionally that the following implications hold true:

if q(m, l+) < ∞, then μ
({inf suppμ}) > 0, (26)

if q(m, l+) = ∞, then lim inf
y↘l

Gy

(
ā(y)

)
> 0, (27)

if q(m, r−) < ∞, then μ
({sup suppμ}) > 0, (28)

if q(m, r−) = ∞, then lim inf
y↗r

Gy

(
ā(y)

)
> 0. (29)

Then there exists N0 ∈ N such that for all N ≥ N0 there exists a unique scale factor aN satisfying (20) and aN(l) =
aN(r) = 0. Moreover, the random walk (YN

k )k∈N0 , scaled with aN and starting in m, is embeddable in M with stopping
times (τN

k )k∈N0 satisfying (15).
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Proof. Similar to the proof of Theorem 2.7. �

Remark 2.19. Notice that the assumptions of Theorem 2.18 are satisfied whenever μ has compact support,
μ({inf suppμ}) > 0 and μ({sup suppμ}) > 0 (see Proposition 2.20).

The next two propositions provide sufficient conditions for the properties (27) and (29) to hold true.

Proposition 2.20. Suppose (A3). If μ({inf suppμ}) > 0, then (27) is satisfied.

Proof. Similar to the proof of Proposition 2.12. �

Similarly, the condition μ({sup suppμ}) > 0 is sufficient for (29).

Proposition 2.21. Suppose (A3). If lim supx↘l
|η(x)|
x−l

< ∞, then (27) is satisfied. If lim supx↗r
|η(x)|
r−x

< ∞, then (29)
is satisfied.

Proof. Similar to the proof of Proposition 2.13. �

Finally, it is worth noting that the detailed discussions in Case 2 about the role of different assumptions, etc., have
their analogues in Case 4. In particular, we have:

• The statements of Lemma 2.9 apply verbatim under (A3) instead of (A2);
• Statement (Eq) in Remark 2.10 applies verbatim under (A3) instead of (A2);
• The conclusion of Theorem 2.18 holds true with N0 = 1 whenever (A3) is satisfied and we have

μ
({inf suppμ}) > 0 and μ

({sup suppμ}) > 0

(cf. with the statements in the end of Theorem 2.7 and Proposition 2.12);
• Under the assumptions of Theorem 2.18, for all N ≥ N0 and y ∈ I , the scale factors aN satisfy (17) (not only (20))

whenever q(m, l+) = q(m, r−) = ∞ (cf. with the statement in the end of Theorem 2.7).

3. Weak convergence

In this section we use the setting and notations of Section 2. In particular, we consider a weak solution (M,W) of (13),
denote by (YN

k )k∈N0 the scaled random walk (14), and assume that μ 	= δ0 is a centered probability measure on R.
Throughout this section we suppose that one of the sufficient conditions from Section 2 is satisfied that guarantees,
for sufficiently large N ∈ N, the existence of a scale factor aN satisfying (20) and solving Problem (P). Let us remark
that under each of these sufficient conditions, we have∫

R

q(m,m + ax)μ(dx) < ∞ for some a > 0. (30)

We extend YN to a continuous-time process on R+ via linear interpolation, i.e. for all t ≥ 0 we set YN
t = YN�t� + (t −

�t�)(YN
�t�+1 − YN�t�).

In this section we present sufficient conditions ensuring that the sequence of continuous processes (YN
Nt )t∈R+

converges in law to the process (Mt)t∈R+ , as N → ∞ (see Theorem 3.1). For example this weak convergence holds
true if the diffusion coefficient η is locally bounded away from 0 and from ±∞ and μ has compact support. One can
thus interpret (YN

k )k∈N0 as a Markov chain approximating the diffusion (Mt)t∈R+ .
To simplify the analysis, we only show the weak convergence on the time interval [0,1]. A straightforward gener-

alization implies the weak convergence on R+.
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Theorem 3.1. Suppose that |η| and 1
|η| are locally bounded on I and the following implications hold true:

if sup supp(μ) = ∞, then |η| and
1

|η| are bounded on (m, r), (31)

if inf supp(μ) = −∞, then |η| and
1

|η| are bounded on (l,m). (32)

Then the processes (YN
Nt )t∈[0,1] converge to (Mt)t∈[0,1] in distribution, as N → ∞, i.e. the associated measures on

(C[0,1],B(C[0,1])) converge weakly.

Let (τN(k))k∈N0 be a sequence of stopping times embedding (YN
k )k∈N0 into M and satisfying (15). The first aim

in the proof of Theorem 3.1 is to show (up to a localization) that τN(�Nt�) converges to t in probability as N → ∞.
To this end, denote the difference between two consecutive embedding times by ρN(k) = τN(k) − τN(k − 1), k ∈N.
Notice that ρN(k) is an (FτN (k−1)+t )t∈R+ -stopping time with E(ρN(k)) = 1

N
. Moreover, the sequence (ρN(k))k∈N is

pairwise uncorrelated. We aim at applying the following version of the weak law of large numbers to prove that the
sum of the ρN(k) converges.

Theorem 3.2 (Weak LLN for uncorrelated arrays). Let (Zn
k )n∈N,1≤k≤n be a triangular array of nonnegative and

uniformly integrable random variables. Suppose that, for all n ∈N, the random variables Zn
k , 1 ≤ k ≤ n, are pairwise

nonpositively correlated, i.e. E(Zn
k Zn

l ) ≤ EZn
k EZn

l for k 	= l. Then 1
n

∑n
k=1(Z

n
k − EZn

k ) converges to zero in L1 and
hence in probability.

The corresponding statement of Theorem 3.2 for sequences of random variables is established in Theorem 2 of [11],
which assumes that the random variables are nonnegative, Cesàro uniformly integrable and pairwise nonpositively
correlated. It is straightforward to extend the proof of Theorem 2 in [11] to triangular arrays. Nevertheless, for the
convenience of the reader we provide a short self-contained proof of Theorem 3.2. We remark that Example 4 in [11]
shows that the statement does not hold true if one omits the nonnegativity assumption (see also Theorem 1 in [12]).

There are many different forms of weak laws of large numbers for arrays of random variables. Often it is assumed
that the random variables in each row of the array are pairwise independent, which cannot yield Theorem 3.2. In
several articles, including [6,8,17] and [18], pairwise independence is not assumed, and weak laws of large numbers
for arrays are established under different Cesàro-type conditions and obtained in forms similar to the following one:
1
n

∑n
k=1(Z

n
k − an

k ) converges to zero in probability, where an
k = E[Zn

k |Zn
i ,1 ≤ i ≤ k − 1], n ∈ N, 1 ≤ k ≤ n. While

weak laws of such type can be in principle applied in the situation of Theorem 3.2, they do not seem to imply our result
because the important role of the nonnegativity assumption in Theorem 3.2 does not appear in the aforementioned line
of research.

Proof of Theorem 3.2. Let us set Z
n

k = Zn
k 1{Zn

k ≤n} and define the sums Sn = ∑n
k=1 Zn

k and Sn = ∑n
k=1 Z

n

k . Notice

that the aim is to prove Sn−ESn

n

L1−→ 0. Since the family (Zn
k )n,k is uniformly integrable, we have

D(y) := sup
n∈N,1≤k≤n

EZn
k 1{Zn

k >y} → 0, y → ∞.

It follows from Sn − Sn ≥ 0 and

E(Sn − Sn)

n
= 1

n

n∑
k=1

EZn
k 1{Zn

k >n} ≤ D(n) → 0, n → ∞,
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that Sn−Sn

n

L1−→ 0. Subtracting the expectation yields Sn−ESn

n
− Sn−ESn

n

L1−→ 0. Therefore, it is enough to prove that
Sn−ESn

n
converges to zero in L1. We now show that the latter sequence converges to zero even in L2. We have

E

(
Sn − ESn

n

)2

= 1

n2
VarSn ≤ 1

n2

(
n∑

k=1

E
(
Z

n

k

)2 + 2
∑

1≤k<l≤n

Cov
(
Z

n

k,Z
n

l

))
. (33)

Since E(Z
n

k)
2 = ∫ ∞

0 2yP (Z
n

k > y)dy ≤ ∫ n

0 2yP (Zn
k > y)dy ≤ ∫ n

0 2D(y)dy, we get

1

n2

n∑
k=1

E
(
Z

n

k

)2 ≤ 1

n

∫ n

0
2D(y)dy → 0, n → ∞. (34)

Using that the random variables Zn
k , 1 ≤ k ≤ n, are pairwise nonpositively correlated, we get, for k 	= l,

Cov
(
Z

n

k,Z
n

l

) = EZ
n

kZ
n

l − EZ
n

kEZ
n

l ≤ EZn
k Zn

l − EZ
n

kEZ
n

l

≤ EZn
k EZn

l − (
EZn

k − EZn
k 1{Zn

k >n}
)(

EZn
l − EZn

l 1{Zn
l >n}

)
≤ C

(
EZn

k 1{Zn
k >n} + EZn

l 1{Zn
l >n}

) ≤ 2CD(n),

where C := supn∈N,1≤k≤n EZn
k is finite due to the uniform integrability of (Zn

k )n,k . Hence,

lim sup
n→∞

sup
1≤k<l≤n

Cov
(
Z

n

k,Z
n

l

) = 0.

Together with (34) and the fact that the right-hand side of (33) is nonnegative, this implies that the right-hand side of
(33) converges to zero. The proof is completed. �

We apply Theorem 3.2 to a slight modification of (NρN(k))N∈N,1≤k≤N . This modified array will appear as a part
of a localization argument, which we now prepare. In what follows, we fix an increasing sequence of intervals

In = (ln, rn) ⊂ I = (l, r), n ∈N, (35)

defined according to the following rules (cf. (31)–(32)):

(1) if sup supp(μ) = ∞, then rn = r for all n ∈N (note that r = ∞ in this case);
(2) if sup supp(μ) < ∞, then rn ↗ r with rn < r for all n ∈ N;
(3) if inf supp(μ) = −∞, then ln = l for all n ∈ N (note that l = −∞ in this case);
(4) if inf supp(μ) > −∞, then ln ↘ l with ln > l for all n ∈ N.

By skipping finitely many elements if necessary, we can assume that m ∈ In for all n ∈N.

Lemma 3.3. Under the assumptions of Theorem 3.1, for every In, the following property is satisfied: there exists
A ∈ (0,∞) and N0 ∈N such that for all y ∈ In, x ∈ [inf supp(μ), sup supp(μ)] and N ≥ N0, we have

1

A
≤ ∣∣η(

y + aN(y)x
)∣∣ ≤ A (36)

and

aN(y) ≤ A√
N

. (37)

Observe that A and N0 in Lemma 3.3 depend on the localization parameter n.
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Proof. Fix n ∈ N. Suppose first that supp(μ) is bounded. Choose ε > 0 such that [ln − ε, rn + ε] ⊂ I . Since |η| and
1
|η| are locally bounded, there exists C > 0 such that 1

C
≤ |η(x)| ≤ C for all x ∈ [ln − ε, rn + ε]. This further implies

q(y, x) ≥
∫ x

y

∫ u

y

2

C2
dzdu = (x − y)2

C2
(38)

for all y ∈ In and x ∈ [ln − ε, rn + ε]. Next define

bN = 1√
N

C√∫
x2μ(dx)

and choose N0 ∈N such that bN ≤ −ε
inf supp(μ)

∧ ε
sup supp(μ)

for all N ≥ N0. Notice that for all y ∈ In and N ≥ N0∫
q(y, y + bNx)μ(dx) ≥ 1

C2

∫
b2
Nx2μ(dx) = 1

N
.

Therefore, aN(y) ≤ bN . This further implies y + aN(y)x ∈ [ln − ε, rn + ε], and consequently 1
C

≤ |η(y + aN(y)x)| ≤
C for all y ∈ In, x ∈ [inf supp(μ), sup supp(μ)] and N ≥ N0. Thus, by setting A = max(C, C√∫

x2μ(dx)
) we have

shown inequalities (36) and (37).
Now assume that sup supp(μ) = ∞ and inf supp(μ) > −∞. Then the argumentation above works with [ln − ε,∞)

in place of [ln − ε, rn + ε]. Here we also need to check that
∫

x2μ(dx) < ∞. The latter follows from (30) and (38),
where (38) now holds for all y ∈ In and x ∈ [ln − ε,∞) (also recall that m ∈ In).

The remaining cases are considered in a similar way. �

We next modify the stopping times (ρN(k))k∈N so as to make them satisfy the integrability condition of Theo-
rem 3.2. Let H(In) denote the first exit time of M from In. For a fixed n let ρ̂N (k + 1) = 1

N
if τN(k) > H(In), and let

ρ̂N (k + 1) = ρN(k + 1) otherwise. We set τ̂ N (0) = 0 and τ̂ N (k) = ∑k
j=1 ρ̂N (j) for k ≥ 1. Notice that (̂τN (k))k∈N0

and (ρ̂N (k))k∈N depend on the localization parameter n.

Lemma 3.4. Under the assumptions of Theorem 3.1, for any localization parameter n, the (FτN (k−1)+t )t≥0-stopping
times ρN(k) can be chosen in such a way that the family Nρ̂N(k), 1 ≤ k ≤ N , N ∈N, is uniformly integrable.

Proof. Fix n ∈ N. Choose ρN(k) according to the construction method outlined in the Appendix. More precisely, sup-
pose that ρN(k) = �(MτN(k−1)) (see the last line of the Appendix for the definition), and let ρ̂N (k) be the associated
modified version. We now show that the family Nρ̂N(k), 1 ≤ k ≤ N , N ∈ N, is uniformly integrable.

Below, for random variables ξ and ζ , we write ξ
d= ζ (resp. ξ

d≤ ζ ) to indicate that ξ and ζ have the same distribution
(resp. ζ stochastically dominates ξ ). Let A > 0 and N0 ∈N be as in Lemma 3.3. By Lemmas A.3 and 3.3, for N ≥ N0,
we have

ρN(1) = �(M0)
d=

∫ 1

0

a2
N(m)b2

x(s, W̃s)

η2(aN(m)b(s, W̃s) + m)
ds ≥ a2

N(m)

A2

∫ 1

0
b2
x(s, W̃s) ds

(notice that b(s, W̃s) takes values only in [inf supp(μ), sup supp(μ)]; also recall that m ∈ In). Therefore, the random
variable Z := ∫ 1

0 b2
x(s,Ws) ds is integrable. With M̃0 having the distribution of MτN(k), we get

ρN(k + 1) = �(MτN(k))
d=

∫ 1

0

a2
N(M̃0)b

2
x(s, W̃s)

η2(aN(M̃0)b(s, W̃s) + M̃0)
ds.
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By Lemma 3.3, on the event {M̃0 ∈ In}, for N ≥ N0, we have aN(M̃0) ≤ A√
N

and η(aN(M̃0)b(s, W̃s) + M̃0) ≥ 1
A

.
Therefore, for N ≥ N0,

1{M
τN (k)

∈In}ρN(k + 1)
d≤ A4

N
Z.

It follows from the construction of the modified time ρ̂N (k + 1) that, for N ≥ N0,

ρ̂N (k + 1) ≤ max

(
1{M

τN (k)
∈In}ρN(k + 1),

1

N

)
d≤ 1

N
max

(
A4Z,1

)
.

In other words, the integrable random variable max(A4Z,1) stochastically dominates every Nρ̂N(k), 1 ≤ k ≤ N ,
N ≥ N0, which yields uniform integrability of the latter family. By adding finitely many integrable random variables
(the ones with N < N0) we obtain the result. �

Lemma 3.5. Suppose the conditions of Theorem 3.1 are satisfied. We fix a localization parameter n, choose times
ρN(k) as in Lemma 3.4, denote by ρ̂N (k) the associated modified versions and consider the associated cumulative
sums τ̂ N (k), 1 ≤ k ≤ N , N ∈N. For all s ∈ [0,1], we have τ̂ N (�Ns�) → s in probability as N → ∞.

Proof. Let s ∈ [0,1]. Set ZN
k = Nρ̂N(k) if k ≤ �Ns� and ZN

k = 0 otherwise. The family (ZN
k )N∈N,1≤k≤N satisfies

the assumptions of Theorem 3.2 (notice that the random variables in each row are pairwise uncorrelated). Hence,
1
N

∑N
k=1(Z

N
k − E(ZN

k )) converges to zero in probability. Observe that

1

N

N∑
k=1

ZN
k =

�Ns�∑
k=1

ρ̂N (k) = τ̂ N
(�Ns�),

and limN→∞ 1
N

∑N
k=1 E(ZN

k ) = limN→∞ 1
N

�Ns� = s. Consequently, τ̂ (�Ns�) converges to s in probability, as
N → ∞. �

By combining standard arguments (see Section 8.6 in [4]) with our localization we can now prove Theorem 3.1.
We denote by ‖ · ‖C[0,1] the sup norm in C[0,1].

Proof of Theorem 3.1. We first show the result under the additional assumption that we can choose In = I for all n. In
this case ρ̂N (k) = ρN(k) and τ̂ N (k) = τN(k). We can assume that YN

k = MτN(k) and that the family NρN(k), N ∈N,
1 ≤ k ≤ N , is uniformly integrable (see Lemma 3.4). Recall that YN

Nt = YN�Nt� + (Nt − �Nt�)(YN
�Nt�+1 − YN�Nt�) for

t ∈ [0,1].
First we show that ‖YN

N · − M·‖C[0,1] → 0 in probability. To this end let ε > 0. For δ > 0 let

A(δ) =
{
|Mt − Ms | < ε

2
for all t, s ∈ [0,1] such that |t − s| ≤ 2δ

}
.

We choose δ such that 1
δ

∈N and P(A(δ)) > 1 − ε
2 . Next we define

C(N, δ) =
{∣∣τN

(�Nkδ�) − kδ
∣∣ ≤ δ for k = 1, . . . ,

1

δ

}
.

By Lemma 3.5 there exists N1 ∈N such that for all N ≥ N1 we have P(C(N, δ)) > 1 − ε
2 .

Notice that on the event C(N, δ) we have |τN(�Ns�) − s| ≤ 2δ for all s ∈ [0,1]. In the following suppose that
A(δ) ∩ C(N, δ) occurs. Then for s = m

N
we have |τN(m) − m

N
| ≤ 2δ and hence∣∣YN

Ns − Ms

∣∣ = ∣∣YN
m − M m

N

∣∣ <
ε

2
.
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Let now s ∈ ( m
N

, m+1
N

). Set θ = s − m
N

and notice that for all N ≥ 1
2δ∣∣YN

Ns − Ms

∣∣ ≤ θ
∣∣YN

m − M m
N

∣∣ + (1 − θ)
∣∣YN

m+1 − Mm+1
N

∣∣
+ θ |M m

N
− Ms | + (1 − θ)|Mm+1

N
− Ms | < ε.

Consequently, for all N ≥ N1 ∨ 1
2δ

we have P(‖YN
N · − M·‖C[0,1] > ε) < ε. Since ε is arbitrary, we obtain that ‖YN

N · −
M·‖C[0,1] → 0 in probability.

Finally, let ψ :C[0,1] → R be a bounded function that is continuous with respect to the sup norm. It is straightfor-
ward to show that limN→∞ Eψ(YN

N ·) = Eψ(M·), and hence the theorem is proved in the case In = I for sufficiently
large n.

It remains to prove the result in the case In 	= I for all n. Let YN
k = MτN(k) and, for any fixed n, Ŷ N

k = Mτ̂N(k). In
the same way as above one can show that, for any fixed n, ‖Ŷ N

N · − M·‖C[0,1] → 0.
In order to show that convergence holds true also for YN

N ·, we consider several subcases. First let q(m, l+) =
q(m, r−) = ∞, that is, both endpoints l and r are inaccessible. Recall that H(In) denotes the first exit time of M

from In. Fix ε > 0 and choose the localization parameter n such that P(H(In) ≥ 2) > 1 − ε
2 . Then we choose N1

such that, for any N ≥ N1, we have P (̂τN(N) ≤ 2) > 1 − ε
2 . On the event {H(In) ≥ 2, τ̂N (N) ≤ 2} of probability of

at least 1 − ε we have YN
k = Ŷ N

k for all 0 ≤ k ≤ N . Thus, ‖YN
N · − M·‖C[0,1] → 0 in probability.

Let now q(m, l+) < ∞ and q(m, r−) = ∞, i.e. l is accessible, r is inaccessible. In this case, l > −∞ and H(In) →
H(l) a.s. as n → ∞, where H(l) denotes the hitting time of l by the process M . Fix ε > 0 and choose the localization
parameter n such that P(An) < ε

3 and P(Bn) < ε
3 with

An = {
H(l) ≤ 3 and ∃s ∈ [

H(In),H(l)
]

such that Ms > l + ε
}
,

Bn = {
H(l) > 3 and H(In) < 2

}
.

After n is fixed, choose N1 such that, for any N ≥ N1, we have P (̂τN(N) ≤ 2) > 1 − ε
3 . Given an event A, we denote

by Ac the complement of A. For N ≥ N1, on the event{
τ̂ N (N) ≤ 2

} ∩ (An ∪ Bn)
c

of probability of at least 1 − ε we have either

H(l) > 3, H(In) ≥ 2, hence YN
k = Ŷ N

k for all 0 ≤ k ≤ N,

or

H(l) ≤ 3, Ms ∈ [l, l + ε] for s ∈ [
H(In),H(l)

]
,

hence
∣∣YN

Ns − Ms

∣∣ ≤ ε whenever YN
Ns 	= Ŷ N

Ns, s ∈ [0,1].

Thus, ‖YN
N · − M·‖C[0,1] → 0 in probability.

The remaining cases are considered in a similar way. �

Examples

We close the section by illustrating our results with several examples.

Example 3.6 (Brownian motion). Let M be a Brownian motion starting from some m ∈ R, i.e. we have l = −∞,
r = ∞ and η ≡ 1. Then q(y, x) = (x − y)2, for y, x ∈ R, and

Gy(a) = a2
∫

x2μ(dx), y ∈ R, a ≥ 0.
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Therefore, condition (A1) of Section 2.1 is satisfied if and only if σ 2 := ∫
x2μ(dx) < ∞. In this case, the scaled

random walk (YN
k )k∈N0 is determined by the scale factor

aN(y) = 1√
Nσ 2

,

which does not depend on the state y. Theorem 3.1 yields weak convergence of (YN
Nt )t∈R+ to (Mt)t∈R+ under the

assumptions that μ 	= δ0 is centered and
∫

x2μ(dx) < ∞. This is exactly the Donsker–Prokhorov invariance principle.

Example 3.7 (Diffusion between two media). Let l = −∞, r = ∞ and, with some A ∈ R \ {0},
η(x) = 1(0,∞)(x) + A1(−∞,0](x), x ∈R.

Notice that we have

for y ≥ 0 : q(y, x) =
{

(x − y)2, x ≥ 0,
y2 − 2xy + 1

A2 x2, x < 0,

for y ≤ 0 : q(y, x) =
{

1
A2 (x − y)2, x < 0,
1

A2 y2 − 2
A2 xy + x2, x ≥ 0.

Since, for appropriate 0 < c1 < c2 < ∞, we have c1(x − y)2 ≤ q(y, x) ≤ c2(x − y)2, condition (A1) is satisfied if and
only if μ has a finite second moment. By Theorem 3.1 the processes (YN

Nt )t∈R+ converge in distribution to (Mt)t∈R+
for any such μ.

Example 3.8 (Geometric Brownian motion). Let l = 0, r = ∞ and η(x) = x on I . For y > 0, we have

q(y, x) =
{

2 x−y
y

− 2 log x
y
, if x > 0,

∞, if x ≤ 0.

Since, for fixed y > 0, q(y, x) has linear growth as x → ∞, condition (A2) of Section 2.2 is satisfied if and only if
inf suppμ > −∞. For all such measures μ, (19) is satisfied due to Proposition 2.13, and hence Theorem 2.7 applies;
that is, for sufficiently large N ∈ N, Problem (P) has a solution with scale factor aN satisfying (17). By Theorem 3.1,
the processes (YN

Nt )t∈R+ converge in distribution to (Mt)t∈R+ for any μ with a compact support.

Appendix

We use the setting and notations of Section 1. In particular, we consider a weak solution (M,W) of (6), where the
initial condition M0 has distribution γ , and we treat the embedding problem (9), where a: I → (0,∞) is a given Borel
function. Let us now briefly explain, following [1], a solution method of (9), which gives an embedding stopping time
satisfying (12) provided (11) holds true.

Let W̃ be an (F̃t )-Brownian motion on some (�̃, F̃, (F̃t ), P̃ ) and M̃0 an F̃0-measurable random variable with
distribution γ . For y ∈ I , let Fy and Fμ be the distribution functions of K(y,a(y), ·) and of μ, as well as F−1

y and

F−1
μ their generalized inverse functions (that is, F−1

y (r) = inf{x ∈ R : Fy(x) > r}, r ∈ (0,1), and the same formula

holds for F−1
μ ). For y ∈ I , t ∈ [0,1] and x ∈R, we define

g(y, t, x) = Ẽ
[
F−1

y ◦ �(W̃1)|W̃t = x
]
,

b(t, x) = Ẽ
[
F−1

μ ◦ �(W̃1)|W̃t = x
]
,

where � denotes the standard normal distribution function, and notice that

g(y, t, x) = y + a(y)b(t, x). (39)
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Let us define the (F̃t )-martingale Nt = b(t, W̃t ), t ∈ [0,1], and the process Lt = g(M̃0, t, W̃t ) = M̃0 + a(M̃0)Nt ,
t ∈ [0,1] (the latter process can fail to be a martingale because it can fail to be integrable). Observe that N1 has the
distribution μ, hence

Law(L1|F̃0) = K
(
M̃0, a(M̃0), ·

)
. (40)

Moreover, we have

P̃
(
(Lt )t∈[0,1] ∈ A|F̃0

) = G(M̃0,A), A ∈ B
(
C[0,1]), (41)

where the kernel G is given by the formula

G(y,A) = P̃
((

g(y, t, W̃t )
)
t∈[0,1] ∈ A

)
, y ∈ I,A ∈ B

(
C[0,1]). (42)

One can also check that the function b is smooth on [0,1) ×R and, for any t ∈ [0,1), the function b(t, ·) is a strictly
increasing bijective mapping R → (inf suppμ, sup suppμ). Let g−1 denote the inverse of g in the last argument,
which is well defined when the second argument t ∈ [0,1).

A straightforward generalization of Theorems 1 and 3 and Lemma 2 in [1] now yields the following statement.

Proposition A.1. Assume that (11) holds true. Then the ODE

δ′(t) = a2(M0)b
2
x(t, g

−1(M0, t,Mδ(t)))

η2(Mδ(t))
, t ∈ [0,1), δ(0) = 0, (43)

has a solution on [0,1) for P -almost all paths. Here, bx denotes the partial derivative of b with respect to the second
argument. We set

δ(1) = lim
t↑1

δ(t), (44)

which is well defined P -a.s. because δ is nondecreasing. Moreover, (δ(t))t∈[0,1] is an (Ft )-time change, the (Ft )-
stopping time δ(1) satisfies

E
[
δ(1)|F0

] = Q(M0) P -a.s., (45)

the process

Zt = 1

a(M0)
(Mδ(t) − M0), t ∈ [0,1], (46)

is an (Fδ(t))-martingale, and

Law
(
Zt ; t ∈ [0,1]|F0

) = Law
(
Nt ; t ∈ [0,1]) P -a.s., (47)

where the left-hand side is the notation for the regular conditional distribution of the process (Zt )t∈[0,1] with respect
to F0, while the right-hand side is the notation for the unconditional distribution of the process (Nt )t∈[0,1] (that is,
the former, which is in general a kernel depending on ω, equals the latter for almost all paths).

Corollary A.2. Assume that (11) holds true. Then

Law
(
Mδ(t); t ∈ [0,1]|F0

) = G(M0, ·) P -a.s., (48)

where the kernel G is given by (42) (recall the relation between the processes (Nt ) and (Lt ) right after (39)). In
particular, δ(1) is a solution of the embedding problem (9) satisfying (45) (see (40) and (41)).

The next lemma summarizes the properties we need in this paper.
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Lemma A.3. Assume (11). Then the following holds true.

(i) The process

Xt = 1

a(M0)
(Mδ(1)∧t − M0), t ≥ 0,

is a uniformly integrable (Ft )-martingale.
(ii) The (Ft )-stopping time δ(1) has the same distribution as the random variable

ξ =
∫ 1

0

a2(M̃0)b
2
x(s, W̃s)

η2(M̃0 + a(M̃0)b(s, W̃s))
ds. (49)

(Of course one can drop the tildes in the latter formula.)

Proof. (i) First observe that the (Ft )-time change (δ(t))t∈[0,1] is P -a.s. strictly increasing on [0,1]. Indeed, if it had
an interval of constancy, then, by (46) and (47), the process (Nt )t∈[0,1] would have an interval of constancy, which is
impossible because Nt = b(t, W̃t ) and, for t ∈ [0,1), b is smooth in both arguments and b(t, ·) is strictly increasing.
Thus, the inverse δ−1 is well defined.

Now, for a fixed t ≥ 0, define η = δ−1(δ(1) ∧ t). Since δ(1) ∧ t is an (Ft )-stopping time, η is an (Fδ(t))-stopping
time. Clearly, η ≤ 1. Doob’s optional sampling theorem applied to the (Fδ(t))-martingale (Zt )t∈[0,1] (see (46)) and to
the bounded (Fδ(t))-stopping times η and 1 yields E(Z1|Fδ(η)) = Zη , P -a.s., which is equivalent to

E(X∞|Fδ(1)∧t ) = Xt P -a.s.

A short calculation reveals that, since the process (Xt )t∈R+ is stopped at δ(1), we also have

E(X∞|Ft ) = Xt P -a.s.

This concludes the proof of (i).
(ii) Formulas (43), (48), (42), (41) as well as

g−1(M̃0, t,Lt ) = W̃t and Lt = M̃0 + a(M̃0)b(t, W̃t )

immediately imply

Law
(
δ(1)|F0

) = H(M0, ·) P -a.s., (50)

where the kernel H is given by the formula

H(y, ·) = Law

(∫ 1

0

a2(y)b2
x(s, W̃s)

η2(y + a(y)b(s, W̃s))
ds

)
, y ∈ I.

Since M̃0 is F̃0-measurable and the process (W̃s) is independent of F̃0, then for the random variable ξ of (49) we get

Law(ξ |F̃0) = H(M̃0, ·) P̃ -a.s. (51)

The statement now follows from (50), (51) and the fact that M0 and M̃0 have the same distribution. �

Sometimes we use the notation � = δ(1) and also write �(M0) instead of � whenever we want to stress the
dependence on M0.
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