
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2017, Vol. 53, No. 1, 226–242
DOI: 10.1214/15-AIHP714
© Association des Publications de l’Institut Henri Poincaré, 2017

The many-to-few lemma and multiple spines

Simon C. Harris and Matthew I. Roberts

Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, UK. E-mail: S.C.Harris@bath.ac.uk; mattiroberts@gmail.com

Received 11 September 2014; revised 8 September 2015; accepted 11 September 2015

Abstract. We develop a simple and intuitive identity for calculating expectations of weighted k-fold sums over particles in branch-
ing processes, generalising the well-known many-to-one lemma.

Résumé. On développe une identité simple et intuitive pour calculer l’espérance des sommations k-plier sur particules dans les
processus de branchement, la généralisation du lemme bien connu ‘many-to-one’.
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1. Introduction

Consider the following simple branching random walk on Z. We begin with one particle at 0, which has two children,
whose positions are independent copies of some random variable X. Each of these two new particles has two children
of its own, whose positions relative to their parent are independent copies of X, and so on. If the initial particle is
the 0th generation, and its children are the first generation, then in the nth generation we have 2n particles. This is
a very basic stochastic model and a classical question asks for the position Mn of the maximal particle in the nth
generation when n is large. If we let Yn(x) be the number of particles in generation n whose position is at least x, then
we anticipate that

Mn ≈ sup
{
x : E[

Yn(x)
] ≥ 1

}
.

Indeed, for an upper bound, P(Mn ≥ x) = P(Yn(x) ≥ 1) ≤ E[Yn(x)]. We would therefore like to calculate E[Yn(x)],
and of course by linearity of expectation we have

E
[
Yn(x)

] = 2nP(Sn ≥ x), (1)

where Si, i ≥ 0 is a random walk with step distribution X. Thus a question about the 2n particles in the nth generation
becomes one about a single random walk, and we call (1) a many-to-one formula. There are ways of extending this
concept to far more complicated branching processes.

For a lower bound on Mn, we note that by Cauchy–Schwarz,

P(Mn ≥ x) = P
(
Yn(x) ≥ 1

) ≥ E[Yn(x)]2

E[Yn(x)2] ,
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and hence we want to calculate the second moment E[Yn(x)2]. By counting the number of pairs of particles whose
last common ancestor was alive at time j for each j = 0, . . . , n − 1, we see that

E
[
Yn(x)2] = E

[
Yn(x)

] +
n−1∑
j=0

22n−j−1P
(
Sj,n ≥ x,S′

j,n ≥ x
)
,

where for each j , (Sj,i , i ≥ 0) and (S′
j,i , i ≥ 0) are random walks with step distribution X such that

• Sj,i = S′
j,i for all i ≤ j , and

• (Sj,j+i − Sj,j , i ≥ 0) and (S′
j,j+i − S′

j,j , i ≥ 0) are independent.

Thus a question about the second moment of a branching random walk becomes one about two dependent random
walks: a many-to-two formula.

It turns out that this formula can also be greatly generalised, and in fact extends to higher moments. Questions
about kth moments of branching processes turn into questions about k dependent random walks.

Several results of this type are already known. A simple version for branching Brownian motion was given by
Sawyer [18]. Kallenberg [12] proved a version for discrete trees, which he calls a “backward tree formula.” Gorostiza
and Wakolbinger [10] extend Kallenberg’s formula to a class of continuous-time processes. Dawson and Perkins
generate what they call “extended Palm formulas” for historical processes (superprocesses enriched with information
on genealogy) in [8]. For the parabolic Anderson model with Weibull upper tails, Albeverio et al. [3] gave a similar
result by considering existence and uniqueness of solutions to a Cauchy problem. Bansaye et al. [4] develop a quite
general many-to-two lemma for Markov branching processes, allowing particles to be born away from their parent.
This list is unlikely to be exhaustive, but reflects the fact that many-to-few results exist in various specialised forms
with little in the way of a consistent underlying theory.

The theory in the many-to-one case is much more complete. The single random walk on the right-hand side of the
formula can be interpreted as a special particle or spine present in the original branching process, and this additional
structure can be used to construct and understand changes of measure on the branching system, which turns out to be
a powerful tool: see for example [2,13].

The aim of this article is to state a quite general kth moment formula which we call the many-to-few lemma, but also
to develop a corresponding theory involving multiple spines. This underlying structure will allow us to incorporate
similar changes of measure to those that have proved so useful for first moment calculations. It should also allow the
reader to transfer the many-to-few lemma to processes not covered by our setup.

There are already several applications of the many-to-few formula either published or underway. To name a few,
Aïdékon and Harris [1] compute moments in order to show that the number of particles hitting a certain level in a
branching Brownian motion with killing at the origin converges in distribution in the limit approaching criticality. Both
Carmona and Hu [5] and Döring and Roberts [9] investigate a catalytic branching model. Gün, König and Sekulović
[11] apply our result to a branching random walk in random environment. Maillard [15] uses many-to-two to bound
numbers and positions of particles in a branching Brownian motion with selection. Chen [7] also uses many-to-two to
investigate the time taken for particles in a branching Brownian motion to become the rightmost. Roberts [17] uses the
many-to-two formula at two different times to look at the consistent maximal displacement of branching Brownian
motion.

The article is arranged as follows. Mostly we work in continuous time, since this is slightly trickier to handle than
discrete time. In Section 2 we give a summary of the multi-spine setup, and then state our main result – the many-to-
few lemma – in Section 3. Since the resulting formula can be difficult to handle, we follow this with a discussion of
some special cases and fully worked examples in Section 4. In Section 5 we give full constructions of the measures
and filtrations used in the theory, and then prove the many-to-few lemma in Section 6. We then give an extension in
Section 7 that allows us to take sums over particles at two different times. Finally, in Section 8 we give a discrete time
version of the many-to-few lemma.

2. Multiple spines

In this section we detail the general continuous-time branching process that we will consider for most of the article,
and introduce the multi-spine setup that will be needed to state our main result.
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We consider a branching process starting with one particle at x under a probability measure Px . This particle moves
within a measurable space (J,B) according to a Markov process with generator M. When at position y, the particle

branches at rate R(y) (more precisely, the probability that the particle has not branched by time t is e− ∫ t
0 R(X(s)) ds

where X(s) is the position of the particle at time s), dying and giving birth to a random number of new particles
with distribution μ(y), supported on {0,1,2, . . .}. Each of these particles then independently repeats the stochastic
behaviour of its parent from its starting point.

We denote by N(t) the set of all particles alive at time t . For a particle v ∈ N(t) we let σv be the time of its birth
and τv the time of its death, and define σv(t) = σv ∧ t and τv(t) = τv ∧ t . If v ∈ N(t) then for s ≤ t we write Xv(s) for
the position of the unique ancestor of v alive at time s. For technical reasons we keep track of particles that die without
giving birth to any children by introducing a graveyard state � /∈ J ; if v has 0 children then we write Xv(s) = � for
all t ≥ τv .

2.1. The k-spine measures Pk
x and Qk

x

We define new measures Pk
x and Qk

x under which there are k distinguished lines of descent, which we call spines.
Briefly, Pk

x is simply an extension of Px in that all particles behave as in the original branching process; the only
difference is that some particles carry marks showing that they are part of a spine. Under Qk

x the marked particles will
behave differently from under Pk

x , but non-marked particles will be unchanged. We will eventually see the relationship
between Qk

x and Pk
x in terms of a Radon–Nikodym derivative, but for now it is enough to state their properties.

Under Pk
x particles behave as follows:

• We begin with one particle at position x which (as well as its position) carries k marks 1,2, . . . , k.
• All particles move as Markov processes with generator M, independently of each other given their birth times and

positions, just as under Px .
• We think of each of the marks 1, . . . , k as distinguishing a particular line of descent or “spine,” and define ξ i

t to be
the position of whichever particle carries mark i at time t .

• A particle at position y carrying j marks b1 < b2 < · · · < bj at time t branches at rate R(y), dying and being
replaced by a random number of particles with law μ(y) independently of the rest of the system, just as under Px .

• Given that a particles v1, . . . , va are born at a branching event as above, the j marks each choose a particle to follow
independently and uniformly at random from amongst the a available. Thus for each 1 ≤ l ≤ a and 1 ≤ i ≤ j the
probability that vl carries mark bi just after the branching event is 1/a, independently of all other marks.

• If a particle carrying j > 0 marks b1 < b2 < · · · < bj dies and is replaced by 0 particles, then its marks remain with
it as it moves to the graveyard state �.

Again we emphasise that under Pk
x , the system behaves exactly as under Px except that some particles carry extra

marks showing the lines of descent of k spines. We call the collection of particles that have carried at least one spine
up to time t the skeleton at time t , and write skel(t); see Figure 1. Of course Pk

x is not defined on the same σ -algebra
as Px . We let Fk

t be the filtration containing all information about the system (including the k spines) up to time t ;
then Pk

x is defined on Fk∞. This will be clarified in Section 5.
Now, for each n ≥ 0 and y ∈ R let

mn(y) =
∑
a∈Z+

anμ(y)(a),

the nth moment of the offspring distribution. Define

μ
(y)
n (a) = anμ(y)(a)

mn(y)
, a ∈ Z+;

μ
(y)
n is called the nth size-biased distribution with respect to μ(y). Let

αn(y) = (
mn(y) − 1

)
R(y).
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Fig. 1. Each particle in the skeleton is a different colour, and particles not in the skeleton are drawn in grey. The numbers show how many spines
are carried by each particle.

For 1 ≤ i, j ≤ k define T (i, j) to be the first split time of the ith and j th spines, i.e. the first time at which marks i

and j are carried by different particles. Let D(v) be the total number of marks carried by particle v.
Suppose that ζ(X, t) is a functional of a process (Xt , t ≥ 0) such that if (Xt , t ≥ 0) is a Markov process with gener-

ator M then ζ(X, t) is a non-negative martingale with respect to the natural filtration of (Xt , t ≥ 0), with ζ(X,0) = 1
almost surely. For example if X is a Brownian motion on R then we might take ζ(X, t) = eXt−t/2. We will sometimes
slightly abuse notation by writing ζ(Xv, t), or even ζ(v, t), where v ∈ N(t). Since ζ(X, t) must be measurable with
respect to σ(Xs, s ≤ t), it does not matter that Xv(u) is not defined for u > t .

Under Qk
x particles behave as follows:

• We begin with one particle at position x which (as well as its position) carries k marks 1,2, . . . , k.
• Just as under Pk

x , we think of each of the marks 1, . . . , k as a spine, and write ψi
t for whichever particle carries mark

i at time t , and ξ i
t for its position (i.e. ξ i

t = Xψi
t
(t)).

• A particle with mark i at time t moves as if under the changed measure Qi
x |σ(ξ i

s ,s≤t) := ζ(ξ i, t)Pk
x |σ(ξ i

s ,s≤t).
• A particle at position y carrying j marks at time t branches at rate mj(y)R(y), dying and being replaced by a

random number of particles with law μ
(y)
j independently of the rest of the system.

• Given that a particles v1, . . . , va are born at such a branching event, the j marks each choose a particle to follow
independently and uniformly at random.

• Particles not in the skeleton (those carrying no marks) behave just as under P, branching at rate R(y) and giving
birth to numbers of particles with law μ(y) when at y.

In other words, under Qk
x spine particles move as if weighted by the martingale ζ , they breed at an modified rate, and

they give birth to size-biased numbers of children. The birth rate and number of children depend on how many marks
the spine particle is carrying, whereas the motion does not.

3. The many-to-few lemma

If Y is measurable with respect to Fk
t , then it can be expressed as the sum

Y =
∑

v1,...,vk∈N(t)∪{�}
Y(v1, . . . , vk)1{ψ1

t =v1,...,ψ
k
t =vk}, (2)

where for any v1, . . . , vk ∈ N(t) ∪ {�}, the random variable Y(v1, . . . , vk) is Ft -measurable. We sometimes write
Y(ψ1

t , . . . ,ψk
t ) for Y , but emphasise that Y need not depend only on the k spines and can depend on the entire process

up to time t .
For example, if k = 2 we might take Y = 1{ξ1

t ≥x,ξ2
t ≥x} and then Y(v1, v2) = 1{Xv1 (t)≥x,Xv2 (t)≥x}. This choice of Y

would allow us to calculate

E
[
#
{
v ∈ N(t) : Xv(t) ≥ x

}2]
.
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To prove that Y can be written in the form (2), one can generalize the argument on pages 24–25 of [16]. Since
this is a purely measure-theoretic argument and will be clear for most Y of interest, we leave it as an exercise for the
reader. We now state our main result (in continuous time) in full. A similar statement will be given in discrete time in
Section 8.

Lemma 1 (Many-to-few). For any k ≥ 1 and Fk
t -measurable Y as above,

Px

[ ∑
v1,...,vk∈N(t)

Y (v1, . . . , vk)1{ζ(vi ,t)>0∀i=1,...,k}
]

=Qk
x

[
Y

∏
v∈skel(t)

ζ(Xv,σv(t))

ζ(Xv, τv(t))
exp

(∫ τv(t)

σv(t)

αD(v)

(
Xv(s)

)
ds

)]
.

We will see in the next section that although the quantity on the left-hand side depends on all the particles in the
branching Brownian motion, for many natural choices of Y the right-hand side will depend only the particles in the
skeleton, of which there are at most k at any time. Hence the name “many-to-few.”

Note that the many-to-few lemma is only interested in particles v ∈ N(t) such that ζ(v, t) > 0. This can be useful
in applications: if we wish to introduce a model incorporating killing of particles in some subset of J , we can choose
ζ to be zero on J so that we only count those particles still alive at time t .

4. Examples

Lemma 1 contains a large amount of information within a single identity. Here we expand some of that information
by working out the details of some simple cases.

4.1. The many-to-one formula

If k = 1, then the skeleton simply consists of a single spine particle ξ . We obtain

Px

[ ∑
v∈N(t)

Y (v)1{ζ(v,t)>0}
]

=Q1
x

[
Y

1

ζ(ξ, t)
e
∫ t

0 α1(ξs ) ds

]
.

For example, if x = 0 and our branching process is branching Brownian motion (i.e. M = 1
2�) with μ(y)(2) ≡

1 (binary branching) and R ≡ β > 0, we might choose Y = f (ξt ) for some function f : R → R, and ζ(X, t) =
eλXt−λ2t/2. We then obtain

P0

[ ∑
v∈N(t)

f
(
Xv(t)

)] =Q1
0

[
f (ξt )e

−λξt+λ2t/2+βt
]
.

To carry out an actual calculation, take f (z) = 1{z≥λt} and λ > 0 to get

P0
[
#
{
v ∈ N(t) : Xv(t) ≥ λt

}] =Q1
0

[
1{ξt≥λt}e−λξt+λ2t/2+βt

] ≤ e(β−λ2/2)t .

We will use the many-to-two formula to get a similar lower bound in the next section.

4.2. The many-to-two formula

If k = 2, then under Q2
x the first particle in the skeleton branches at rate m2(y)R(y) when at position y, into a particles

with probability a2μ(y)(a)/m2(y). At such a branching event, the two marks follow different particles with probability
1 − 1/a. Thus T (1,2) – the time at which the two spines split – satisfies

Q2
x

(
T (1,2) ≥ t |ξ1

s , s ∈ [0, t]) = e− ∫ t
0 (m2(ξ

1
s )−m1(ξ

1
s ))R(ξ1

s ) ds .
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Writing out the many-to-two formula and simplifying, we obtain

Px

[ ∑
v1,v2∈N(t)

Y (v1, v2)1{ζ(vi ,t)>0∀i=1,2}
]

= Q2
x

[
Y

ζ(ξ1, T (1,2) ∧ t)

ζ(ξ1, t)ζ(ξ2, t)
e
∫ T (1,2)∧t

0 (m2(ξ
1
s )−2m1(ξ

1
s )+1)R(ξ1

s ) ds+∫ t
0 α1(ξ

1
s ) ds+∫ t

0 α1(ξ
2
s ) ds

]

= Q2
x

[
Y

1

ζ(ξ1, t)
e
∫ t

0 α1(ξ
1
u ) du

∣∣∣T (1,2) ≥ t

]

+
∫ t

0
Q2

x

[
Y

ζ(ξ1, s)

ζ(ξ1, t)ζ(ξ2, t)

(
α2

(
ξ1
s

) − α1
(
ξ1
s

))
e
∫ t

0 α1(ξ
1
u ) du+∫ t

s α1(ξ
2
u ) du

∣∣∣T (1,2) = s

]
ds.

Simplification: Many-to-two with binary branching at constant rate with ζ ≡ 1
For a very simple version of the many-to-two formula, suppose that μ(y)(2) = 1 for all y and R(y) = r for all y,
so under Px we have binary branching at constant rate r . Suppose also that ζ ≡ 1 and that Y depends only on the
positions of the two spines, Y = f (ξ1

t , ξ2
t ). Then

Px

[ ∑
v1,v2∈N(t)

f
(
Xv1(t),Xv2(t)

)] = Q2
x

[
f

(
ξ1
t , ξ2

t

)
e2rt+r(T (1,2)∧t)

]
.

But T (1,2) is exponentially distributed with parameter 2r (the particle carrying the two spines 1 and 2 breeds at rate
22r = 4r , and at each of these events the two spines follow different children with probability 1/2), and the motion of
the spines is the same under Q2

x as under P2
x , so

Px

[ ∑
v1,v2∈N(t)

f
(
Xv1(t),Xv2(t)

)]

= ertP2
x

[
f

(
ξ1
t , ξ1

t

)|T (1,2) > t
] +

∫ t

0
2rer(2t−s)P2

x

[
f

(
ξ1
t , ξ2

t

)|T (1,2) = s
]
ds.

Simplification: Many-to-two with homogeneous breeding
To include slightly more generality than the simplification above, suppose that m2(y) ≡ m2, m1(y) ≡ m1 and R(y) ≡
β > 0 do not depend on y. Then we may write

Px

[ ∑
v1,v2∈N(t)

Y (v1, v2)1{ζ(vi ,t)>0∀i=1,2}
]

= e(m1−1)βtQ2
x

[
Y

1

ζ(ξ1, t)

∣∣∣T (1,2) ≥ t

]

+
∫ t

0
(m2 − m1)βem1β(2t−s)Q2

x

[
Y

ζ(ξ1, s)

ζ(ξ1, t)ζ(ξ2, t)

∣∣∣T (1,2) = s

]
ds.

Example: Large deviations for branching Brownian motion
Fix λ,β > 0. In the previous section we saw that for branching Brownian motion with binary branching at rate β , we
have

P0
(∃v ∈ N(t) : Xv(t) ≥ λt

) ≤ P0
[
#
{
v ∈ N(t) : Xv(t) ≥ λt

}] ≤ e(β−λ2/2)t .

We will now use the many-to-two lemma to give a lower bound on the same probability when β − λ2/2 < 0. We use
the random variable

Y = 1{ξ1
s ≤λs+1∀s≤t,ξ2

s ≤λs+1∀s≤t,ξ1
t ≥λt,ξ2

t ≥λt}
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and the same martingale as before, ζ(X, t) = eλXt−λ2t/2. These choices give

P0
[
#
{
v ∈ N(t) : Xv(s) ≤ λs + 1∀s ≤ t,Xv(t) ≥ λt

}2]
= eβtQ2

0

[
1{ξ1

s ≤λs+1∀s≤t,ξ1
t ≥λt}

1

eλξ1
t −λ2t/2

∣∣∣T (1,2) ≥ t

]

+
∫ t

0
2βeβ(2t−s)Q2

x

[
1{ξ1

s ≤λs+1∀s≤t,ξ2
s ≤λs+1∀s≤t,ξ1

t ≥λt,ξ2
t ≥λt}

eλξ1
s −λ2s/2

eλξ1
t +λξ2

t −λ2t

∣∣∣T (1,2) = s

]
ds

≤ eβt−λ2t/2 + 2β

∫ t

0
eβ(2t−s) e

λ2s/2+λ

eλ2t
ds.

When β − λ2/2 < 0, this is at most (1 + 2βeλ

λ2/2−β
)e(β−λ2/2)t .

Using the many-to-one lemma with the same martingale and Y = 1{ξs≤λs+1∀s≤t,ξt≥λt}, we get

P0
[
#
{
v ∈ N(t) : Xv(s) ≤ λs + 1∀s ≤ t,Xv(t) ≥ λt

}]
= Q1

0

[
1{ξs≤λs+1∀s≤t,ξt≥λt}

1

eλξt−λ2t/2
eβt

]

≥ e−λe(β−λ2/2)tQ1
0(ξs ≤ λs + 1∀s ≤ t, ξt ≥ λt).

Now, under Q1
0, the process (ξs, s ≥ 0) moves as if under the changed measure Q0|σ(ξs ,s≤t) := eλξt−λ2t/2P1

0|σ(ξs ,s≤t).
By Girsanov’s theorem, (ξs − λs, s ≥ 0) is therefore a standard Brownian motion, and we have

P0
[
#
{
v ∈ N(t) : Xv(s) ≤ λs + 1∀s ≤ t,Xv(t) ≥ λt

}] ≥ e−λe(β−λ2/2)tP1
0(ξs ≤ 1∀s ≤ t, ξt ≥ 0).

It is an easy exercise using the reflection principle to prove that this is at least a positive constant times e(β−λ2/2)t t−3/2.
Putting these two calculations together, and using the inequality (from Cauchy–Schwarz) P(X > 0) ≥ P[X]2/

P[X2], we have that for β − λ2/2 < 0,

P0
(∃v ∈ N(t) : Xv(t) ≥ λt

) ≥ P0
(∃v ∈ N(t) : Xv(s) ≤ λs + 1∀s ≤ t,Xv(t) ≥ λt

)
≥ P0[#{v ∈ N(t) : Xv(s) ≤ λs + 1∀s ≤ t,Xv(t) ≥ λt}]2

P0[#{v ∈ N(t) : Xv(s) ≤ λs + 1∀s ≤ t,Xv(t) ≥ λt}2]

≥ ce2(β−λ2/2)t t−3

e(β−λ2/2)t
= ce(β−λ2/2)t t−3/2

for some constant c > 0. Thus, together with the upper bound from the previous section, we have that when λ > 0 and
β − λ2/2 < 0,

lim
t→∞

1

t
logP

(∃v ∈ N(t) : Xv(t) ≥ λt
) = β − λ2/2.

With only slightly more work, it is possible to show that the number of particles above λt at time t when β −λ2/2 >

0 is approximately eβ−λ2/2. Similar techniques can be used to prove far more delicate estimates.

4.3. The many-to-few formula

In this section we will apply the many-to-few lemma to a very simple model. There are many other ways of doing the
same calculations, but we hope this will allow the reader to see how the many-to-few lemma is – despite appearances –
relatively intuitive even for higher moments. We then mention a further extension of the theory, which we will not
detail in this article.
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Example: Yule tree
We take the simplest possible choices: Y ≡ 1, each ζ j ≡ 1, μ(2) ≡ 1 (purely binary branching, so mk ≡ 2k) and
R ≡ 1. This completely ignores the spatial movement of the particles, so we shall simply be calculating the moments
of the number of particles in a Yule tree (a continuous-time Galton–Watson process with 2 children at every branch
point). Let T = inf1≤i,j≤k T (i, j) be the first time at which any two spines split, and let Sj be the event that at time
T , j of the spines follow the first child and k − j follow the second child. Recall that under Qk , the first birth time
is exponentially distributed with parameter 2k , and then each spine independently chooses to follow either of the
two children with probability 1/2. In particular T is exponentially distributed with parameter 2k(1−2−k+1) = 2k −2,

corresponding to a birth where not all of the spines follow the same child, and Qk(Sj |T ∈ ds) = (
k
j

) 2−k

1−2−k+1 . Therefore

E
[∣∣N(t)

∣∣k] = Qk

[ ∏
v∈skel(t)

e(2D(v)−1)(τv(t)−σv(t))

]

= Qk
[
e(2k−1)t1{T >t}

] +
k−1∑
j=1

∫ t

0
Qk

[ ∏
v∈skel(t)

e(2D(v)−1)(τv(t)−σv(t))1{T ∈ds}1Sj

]

= et +
k−1∑
j=1

(
k

j

)∫ t

0
esE

[∣∣N(t − s)
∣∣j ]E[∣∣N(t − s)

∣∣k−j ]
ds.

Thus E[|N(t)|2] = 2e2t − et , E[|N(t)|3] = 6e3t − 6e2t + et , E[|N(t)|4] = 24e4t − 36e3t + 14e2t + 3et , and so on.

Extension: Stopping lines
Rather than looking at a fixed time t , we might like, for example, to count the number of particles that hit some subset
of J at the time they hit. The theory of stopping lines allows us to extend the many-to-few lemma to cover this kind of
calculation. However, the concept of a stopping line involves a large amount of notation in itself, and combining this
with the many-to-few lemma would make this article longer than we would like. We therefore leave it to the reader to
extend our methods in this way. A detailed discussion can be found in [14].

5. Multiple spines and changes of measure

Our main aim in this section is to give full details of the setup introduced in Section 2.

5.1. Trees

We use the Ulam–Harris labelling system: define a set of labels

� := {∅} ∪
⋃
n∈N

Nn.

We often call the elements of � particles. We think of ∅ as our inital ancestor, and (3,2,7) for example as representing
the seventh child of the second child of the third child of the initial ancestor. For a particle u ∈ � we define |u|, the
generation of u, to be the length of u (so if u ∈Nn then |u| = n, and |∅| = 0). For two labels u,v ∈ � we write uv for
the concatenation of u and v, taking ∅u = u∅ = u. We write u ≤ v and say that u is an ancestor of v if there exists
w ∈ � such that uw = v.

We define T to be the set of all trees: subsets τ ⊆ � such that

• ∅ ∈ τ : the initial ancestor is part of τ ;
• for all u,v ∈ �, uv ∈ τ ⇒ u ∈ τ : if τ contains a particle then it contains all the ancestors of that particle;
• for each u ∈ τ , there exists Au ∈ {0,1,2, . . .} such that for j ∈N, uj ∈ τ if and only if 1 ≤ j ≤ Au: each particle in

τ has a finite number of children.
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5.2. Marked trees

Since we wish to have a particular view of trees, as systems evolving in time and space, we define a marked tree to be
a set T of triples of the form (u, lu,Xu) such that u ∈ �, the set

tree(T ) := {
u : ∃lu,Xu such that (u, lu,Xu) ∈ T

}
forms a tree, lu ∈ [0,∞) is the lifetime of u, and, setting σu := ∑

v<u lv and τu := ∑
v≤u lu,

Xu : [σu, τu) → J

is the position function of u. We think of the inital ancestor ∅ moving around in space according to its position
function X∅ until time l∅. It then disappears and a number A∅ of new particles appear; each moves according to its
position function for a period of time equal to its lifetime, before being replaced by a number of new particles; and so
on.

We let T be the set of all marked trees, and for T ∈ T we define

N(t) := {
u ∈ tree(T ) : σu ≤ t < τu

}
,

the set of particles alive at time t . For convenience, we extend the position path of a particle v to all times t ∈ [0, τv),
to include the paths of all its ancestors:

Xv(t) :=
{

Xv(t) if σv ≤ t < τv,

Xu(t) if u < v and σu ≤ t < τu

and if Av = 0 then we write Xv(t) = � ∀t ≥ τv .

5.3. Marked trees with spines

We now enlarge our state space further to include the notion of spines. A spine ψ on a marked tree τ is a subset of
tree(τ ) such that

• ∅ ∈ ψ ;
• ψ ∩ (N(t) ∪ {�}) contains exactly one particle for each t ;
• if v ∈ ψ and u < v then u ∈ ψ ;
• if v ∈ ψ and Av > 0, then ∃j ∈ {1, . . . ,Av} such that vj ∈ ψ ; otherwise ψ ∩ N(t) =∅ ∀t ≥ τv .

If v ∈ ψ ∩ N(t) then we write ψt := v, and write ξt := Xv(t) for the position of the spine at time t . We say that a
marked tree with spines is a sequence (τ,ψ1,ψ2,ψ3, . . .) where τ ∈ T is a marked tree and each ψj , j ≥ 1 is a spine
on τ . We let T̃ be the set of all marked trees with spines.

5.4. Filtrations

We now work exclusively on the space T̃ of marked trees with spines, and use different filtrations on this space to
encapsulate different amounts of information. We give descriptions of these filtrations below; formal definitions are
similar to those in [16] and are left to the reader.

The filtration (Ft , t ≥ 0): We define (Ft , t ≥ 0) to be the natural filtration of the branching process – it does not
know anything about the spines.

The filtrations (Fk
t , t ≥ 0): For each k ≥ 1 we let (Fk

t , t ≥ 0) be the natural filtration for the branching process and
the first k spines. It does not know anything about spines ψk+1, ψk+2, . . . .

The filtrations (Gj
t , t ≥ 0): For each j we define Gj

t := σ(ξ
j
s , s ∈ [0, t]), where ξ

j
s represents the position of the j th

spine at time s. Gj
t contains just the spatial information about the j th spine up to time t (and whether or not it has

died), but does not know which nodes of the tree actually make up that spine.
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The filtrations (G̃{i1,...,ij }
t , t ≥ 0): For each j -tuple i1, . . . , ij we define

G̃{i1,...,ij }
t := σ

(
Gk

t ∪Ak
t ∪ Ck

t , k ∈ {i1, . . . , ij }
)
,

where

Ak
t = {{

v = ψk
s

} : v ∈ �,s ∈ [0, t]}
and

Ck
t = {{

v < ψk
t ,Av = a,σv ≤ σ

} : v ∈ �,a ≥ 2, σ ∈ [0,∞)
}
.

In words, G̃{i1,...,ij }
t contains all the information about spines ψi1, . . . ,ψij up to time t : which nodes make up the

spines, their positions, and for all spine nodes not in N(t) (so all the strict ancestors of the spines at time t ) their
lifetimes and number of children.

The filtration (G̃k
t , t ≥ 0): We use the shorthand G̃k

t = G̃{1,...,k}
t , so that G̃k

t knows everything about the first k spines

up to time t . (Note in particular that G̃k
t is different from G̃{k}

t , which only knows about the kth spine.)

5.5. Probability measures

We may now take a probability measure Px on T̃ such that under Px , the system evolves as a branching process
starting with one particle at x, each particle moves as a Markov process with generator M independently of all others
given its birth time and position, and a particle at position y branches at rate R(y) into a random number of particles
with distribution μ(y). This is the system described in Section 2. This measure, however, has no knowledge of the
spines (since it sees only the filtration Ft ). We would like to extend this to a measure on each of the finer filtrations
F̃k

t . To do this, we imagine each spine, at each fission event, choosing uniformly from the available children. Then
it is easy to see that, for any particle u in a marked tree T and any j ≥ 1, we would like the probability that u is in
the j th spine, conditional on the family sizes (Av, v < u), to be

∏
v<u

1
Av

. We recall from Section 2 that if Y is an

F̃k
t -measurable random variable then we can write:

Y =
∑

v1,...,vk∈N(t)∪{�}
Y(v1, . . . , vk)1{ψ1

t =v1,...,ψ
k
t =vk}, (3)

where each Y(v1, . . . , vk) is Ft -measurable.

Definition 2. We define the probability measure Pk
x on (T̃ , F̃∞), by setting

Pk
x[Y ] = Px

[ ∑
v1,...,vk∈N(t)∪{�}

Y(v1, . . . , vk)

k∏
j=1

∏
u<vj

1

Au

]
(4)

for each Fk
t -measurable Y with representation (3). Note that Px = Pk

x |F∞ .

In summary, particles carrying spines behave just as they would under Px , and when such a particle branches, each
spine makes an independent choice uniformly from amongst the available children.

5.6. Martingales and a change of measure

As in Section 2 define T (i, j) := inf{t ≥ 0 : ψi
t �= ψ

j
t }, and suppose that we are given a functional ζ(·, t), t ≥ 0,

such that ζ(Y, t) is a non-negative unit-mean martingale with respect to the natural filtration of the Markov process
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(Yt , t ≥ 0) with generator M. We call ζ the single-particle martingale. We recall that we sometimes slightly abuse
notation by writing ζ(Xv, t), or even ζ(v, t), where v ∈ N(t). Since ζ(Y, t) must be measurable with respect to
σ(Ys, s ≤ t), it does not matter that Xv(u) is not defined for u > t .

Recall that we defined skelk(t), the skeleton, to be the subtree up to time t generated by those particles carrying at
least one of the k spines,

skelk(t) = {
u ∈ � : ∃s ≤ t, j ≤ k such that ψ

j
s = u

}
.

We also set

Dk(v) = #
{
j ≤ k : ∃t with v = ψ

j
t

}
to be the number of spines following particle v, and define

Ek(v, t) = exp

(
−

∫ τv(t)

σv(t)

αD(v)

(
Xv(s)

)
ds

)
,

where we recall that αn(y) = (mn(y) − 1)R(y). Since we will not always know which particles are the spines (when
we are working on Ft for example), it will sometimes be helpful to have the above concepts defined for a general
skeleton of k particles u1, . . . , uk instead of the spines. For this reason we define

skelu1,...,uk
(t) = {v ∈ � : σv ≤ t,∃j with v ≤ uj },

Du1,...,uk
(v) = #{j : v ≤ uj },

and

Eu1,...,uk
(v, t) = exp

(
−

∫ τv(t)

σv(t)

αDu1,...,uk
(v)

(
Xv(s)

)
ds

)

so that

skelk(t) = skelψ1
t ,...,ψk

t
(t), Dk(v) = Dψ1

σv
,...,ψk

σv
(v) and Ek(v, t) := Eψ1

σv
,...,ψk

σv
(v, t).

Remark. We note that, with the notation given above,

Pk
x

(
ψ1

t = u1, . . . ,ψ
k
t = uk|Ft

) =
∏

v∈skelu1,...,uk
(t)\N(t)

A
−Du1,...,uk

(v)
v .

Definition 3. We define an F̃k
t -adapted (and, in fact, G̃k

t -adapted) process ζ̃ k(t), t ≥ 0 by

ζ̃ k(t) = 1{ζ(ξ i ,t)>0∀i=1,...,k}
∏

v∈skelk(t)

(
ζ(Xv, τv(t))

ζ(Xv,σv(t))
Ek(v, t)

) ∏
v∈skelk(t)\N(t)

ADk(v)
v

(if Av = 0 then we define ζ(Xv, τv(t)) = 0) and an Ft -adapted process Zk(t), t ≥ 0 by

Zk(t) =
∑

u1,...,uk∈N(t)

1{ζ(ui ,t)>0∀i=1,...,k}
∏

v∈skelu1,...,uk
(t)

ζ(Xv, τv(t))

ζ(Xv,σv(t))
Eu1,...,uk

(v, t).

We remark here that Zk and ζ(ξj , ·) are, in fact, simply the projections of ζ̃ k onto the relevant filtrations:

Zk(t) = Pk
x

[
ζ̃ k(t)|Ft

]
and ζ

(
ξj , t

) = Pk
x

[
ζ̃ k(t)|G{j}

t

]
.
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Lemma 4. The process ζ̃ k(t), t ≥ 0 is a martingale with respect to the filtrations G̃k
t and F̃k

t .

Proof. Let χ = (v1, v2, . . .) be a single line of descent (so in particular v1 < v2 < · · ·), with χt representing the
position of the unique vi that is alive at time t . The births along χ form a Cox process driven by χt with rate function R.
Thus for any j ≥ 0,

Px

[ ∏
v<χt

Aj
v

∣∣∣χs, s ∈ [0, t]
]

= exp

(∫ t

0
αj (χs) ds

)
.

We work by induction on k. The case k = 1 is just the single spine case, and is proved by conditioning first on G1
t ,

since the births along the spine form a Cox process driven by ξ1
t with rate function R. Then, by induction, it is enough

to consider the process up to the first split time of the skeleton, since after this time no particle carries more than k − 1
spines. But up to the first split we have a single particle carrying k spines, so the same argument holds as for the single
spine case: the births again form a Cox process driven by ξ1

t with rate function R. �

Definition 5. We define the measure Qk
x by setting

dQk
x

dPk
x

∣∣∣∣
Fk

t

= ζ̃ k(t).

The proof that Qk
x behaves as claimed in Section 2.1 is identical to the proof for one spine given by Chauvin and

Rouault [6], applied to each branch of the skeleton independently.

6. Proof of the many-to-few lemma

We first calculate the probability that particles (u1, . . . , uk) make up the skeleton at time t .

Lemma 6 (Gibbs–Boltzmann weights for Qk). For any u1, . . . uk ∈ N(t) ∪ {�},

Qk
x

(
ψ1

t = u1, . . . ,ψ
k
t = uk|Ft

) = 1

Z(t)

∏
v∈skelu1,...,uk

(t)

ζ(Xv, τv(t))

ζ(Xv,σv(t))
Eu1,...,uk

(v, t).

Proof. By the fact that Pk
x[ζ̃ (t)|Ft ] = Z(t) and standard properties of conditional expectation,

Qk
x

(
ψ1

t = u1, . . . ,ψ
k
t = uk|Ft

) =
Pk

x[ζ̃ (t)1{ψ1
t =u1,...,ψ

k
t =uk}|Ft ]

Pk
x[ζ̃ (t)|Ft ]

= 1

Z(t)

( ∏
v∈skelu1,...,uk

(t)

ζ(Xv, τv(t))

ζ(Xv,σv(t))
Eu1,...,uk

(v, t)

)

·
( ∏

v∈skelu1,...,uk
(t)\N(t)

A
Du1,...,uk

(v)
v

)
Pk

x

(
ψ1

t = u1, . . . ,ψ
k
t = uk|Ft

)

= 1

Z(t)

∏
v∈skelu1,...,uk

(t)

ζ(Xv, τv(t))

ζ(Xv,σv(t))
Eu1,...,uk

(v, t).

�

The proof of the many-to-few lemma is now straightforward.
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Proof of Lemma 1. We begin with the right-hand side.

Qk
x

[
Y

∏
v∈skel(t)

ζ(Xv,σv(t))

ζ(Xv, τv(t))

1

E(v, t)

]

=Qk
x

[ ∑
u1,...,uk∈N(t)∪{�}

Y(u1, . . . , uk)
∏

v∈skelu1,...,uk
(t)

ζ(Xv,σv(t))

ζ(Xv, τv(t))

1

Eu1,...,uk
(v, t)

1{ψ1
t =u1,...,ψ

k
t =uk}

]

=Qk
x

[ ∑
u1,...,uk∈N(t)∪{�}

Y(u1, . . . , uk)
∏

v∈skelu1,...,uk
(t)

ζ(Xv,σv(t))

ζ(Xv, τv(t))

Qk
x(ψ

1
t = u1, . . . ,ψ

k
t = uk|Ft )

Eu1,...,uk
(v, t)

]

=Qk
x

[
1

Zk(t)

∑
u1,...,uk∈N(t)

Y (u1, . . . , uk)

]

=Qk
x

[
1

Zk(t)

∑
u1,...,uk∈N(t)

Y (u1, . . . , uk)1{ζ(ui ,t)>0∀i=1,...,k}
]

= Pk
x

[ ∑
u1,...,uk∈N(t)

Y (u1, . . . , uk)1{ζ(ui ,t)>0∀i=1,...,k}
]
,

where for the last step we used the fact that dQk
x

dPk
x
|Ft

= Zk(t). �

7. Many-to-two at two different times

We can also calculate things like

Px

[
#
{
v ∈ N(s),w ∈ N(t) : Xv(s) ≥ xs,Xw(t) ≥ xt

}]
,

where s < t and x, xs, xt ∈ R. This is useful for example in [17] to estimate the number of particles that stay near the
maximum in a branching Brownian motion. In this case we might expect an expression involving one spine at time s

and the other at time t . A calculation using the many-to-few formula confirms this, and indeed similar statements for
k particles at k different times. To save ourselves from having to carry around too much notation, we restrict to the
case k = 2.

One complication is as follows. When working with one time t , we asked that our random variable be F2
t -

measurable. Now that we are handling two different times s < t , we need something more subtle: Y should depend
only on some part of the tree after time s. The following definition makes this precise.

Fix s < t . Suppose that we have an F2
t -measurable random variable Y . We say that Y respects the tree at time s if

Y can be written in the form

Y =
∑

v∈N(s)

∑
w∈N(t)

Y (v,w)1{ψ1
s =v,ψ2

t =w},

where for each v ∈ N(s) and w ∈ N(t), Y(v,w) is Ft -measurable and, given F2
s , on the event {v � w}, Y(v,w) is

independent of the subtree generated by v (that is, the labels, positions, lifetimes, and number of children of v and its
descendants).

For example, for any measurable functions f,g : R → R, the random variable f (ξ1
t )g(ξ2

s ) respects the tree at
time s.
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Lemma 7 (Many-to-two at two different times). Fix s < t . Suppose that we have an F2
t -measurable random vari-

able Y that respects the tree at time s. Then

Px

[ ∑
v∈N(s)

∑
w∈N(t)

Y (v,w)1{ζ(v,s)>0,ζ(w,t)>0}
]

=Q2
x

[
Y

ζ(ξ1, T (1,2) ∧ s)

ζ(ξ1, s)ζ(ξ2, t)
e
∫ T (1,2)∧s

0 α2(ξ
1
u ) du+∫ s

T (1,2)∧s α1(ξ
1
u ) du+∫ t

T (1,2)∧s α1(ξ
2
u ) du

]
. (5)

Proof. For a particle v ∈ N(t), let vs be the ancestor of v that was alive at time s. Write T as shorthand for T (1,2),
the split time for the two spines. For v,w ∈ N(t) let S(v,w) be the death time of the most recent common ancestor of
v and w (in particular if v = w then S(v,w) = τv > t). Also set

Ỹ (v,w) = 1{S(v,w)≤s}1{ζ(v,s)>0,ζ(w,t)>0}Y(vs,w)1{v=vs }e
∫ t
s R(Xv(u)) du

+ 1{S(v,w)>t}1{ζ(w,t)>0}Y(vs,w). (6)

We will prove the result by showing that both sides of (5) are equal to Px[∑v,w∈N(t) Ỹ (v,w)].
From the definition of Ỹ (v,w),

Px

[ ∑
v,w∈N(t)

Ỹ (v,w)

]
= Px

[ ∑
v∈N(s)

∑
w∈N(t):

v�w

1{ζ(v,s)>0,ζ(w,t)>0}Y(v,w)1{τv>t}e
∫ t
s R(Xv(u)) du

]

+ Px

[ ∑
v∈N(s)

∑
w∈N(t):

v≤w

1{ζ(w,t)>0}Y(v,w)

]
. (7)

By the fact that Y respects the tree at time s, given F2
s , if v ∈ N(s), w ∈ N(t) and v �w, then Y(v,w) is independent

of the subtree generated by v. Also P(τv > t |F2
s ) = e− ∫ t

s R(Xv(u)) du, so

Px

[ ∑
v,w∈N(t)

Ỹ (v,w)

]
= Px

[ ∑
v∈N(s)

∑
w∈N(t):

v�w

1{ζ(v,s)>0,ζ(w,t)>0}Y(v,w)

]

+ Px

[ ∑
v∈N(s)

∑
w∈N(t):

v≤w

1{ζ(w,t)>0}Y(v,w)

]

= Px

[ ∑
v∈N(s)

∑
w∈N(t)

1{ζ(v,s)>0,ζ(w,t)>0}Y(v,w)

]
.

We have shown that the left-hand side of (5) is equal to Px[∑v,w∈N(t) Ỹ (v,w)]. We essentially want to apply the
standard many-to-two lemma to this quantity, but it turns out that this does not quite give us the required expression
and thus we need to rework the proof to adapt it to Ỹ (v,w).

We return to the definition (6) of Ỹ (v,w). We have that

Px

[ ∑
v,w∈N(t)

Ỹ (v,w)

]
= Px

[ ∑
v,w∈N(t)

1{S(v,w)≤s}1{ζ(v,s)>0,ζ(w,t)>0}Y(vs,w)1{v=vs }e
∫ t
s R(Xv(u)) du

]

+ Px

[ ∑
v,w∈N(t)

1{S(v,w)>t}1{ζ(v,t)>0}Y(vs,w)

]
.
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First note that

Px

[ ∑
v,w∈N(t)

1{S(v,w)>t}1{ζ(v,t)>0}Y(vs,w)

]
= Q2

x

[
Y1{T >t}

1

ζ(ξ2, t)
e
∫ t

0 α2(ξ
2
u ) du

]

= Q2
x

[
Y

1

ζ(ξ2, t)
e
∫ t

0 α2(ξ
2
u ) du1{T >s}Q2

x

(
T > t |G2

t ,F2
s

)]

= Q2
x

[
Y

1

ζ(ξ2, t)
e
∫ s

0 α2(ξ
2
u ) du+∫ t

s α1(ξ
2
u ) du1{T >s}

]
.

We will also show that

Px

[ ∑
v,w∈N(t)

1{S(v,w)≤s}1{ζ(v,s)>0,ζ(w,t)>0}Y(vs,w)1{v=vs }e
∫ t
s R(Xv(u)) du

]

=Q2
x

[
Y1{T ≤s}

ζ(ξ1, T )

ζ(ξ1, s)ζ(ξ2, t)
e
∫ T

0 α2(ξ
1
u ) du+∫ s

T α1(ξ
1
u ) du+∫ t

T α1(ξ
2
u ) du

]
. (8)

Combining these two equalities, we get that

Px

[ ∑
v,w∈N(t)

Ỹ (v,w)

]
=Q2

x

[
Y

ζ(ξ1, T ∧ s)

ζ(ξ1, s)ζ(ξ2, t)
e
∫ T ∧s

0 α2(ξ
1
u ) du+∫ s

T ∧s α1(ξ
1
u ) du+∫ t

T ∧s α1(ξ
2
u ) du

]

which will be enough to complete the proof.
It remains to show (8). By the definition (4) of P2

x ,

Px

[ ∑
v,w∈N(t)

1{S(v,w)≤s}1{ζ(v,s)>0,ζ(w,t)>0}Y(vs,w)1{v=vs }e
∫ t
s R(Xv(u)) du

]

= P2
x

[
1{T ≤s}1{ζ(ξ1,s)>0,ζ(ξ2,t)>0}Y1{ψ1

t =ψ1
s }e

∫ t
s R(ξ1

u ) du

( ∏
v≤ψ1

T

A2
v

)( ∏
ψ1

T <v<ψ1
t

Av

)( ∏
ψ2

T <v<ψ2
t

Av

)]
.

On the event {ψ1
t = ψ1

s }, the second product above can be restricted to v < ψ1
s without changing anything. Then,

using the fact that Y respects the tree at time s, the above is

P2
x

[
1{T ≤s}1{ζ(ξ1,s)>0,ζ(ξ2,t)>0}Y

( ∏
v≤ψ1

T

A2
v

)( ∏
ψ1

T <v<ψ1
s

Av

)( ∏
ψ2

T <v<ψ2
t

Av

)]
.

Using again the fact that Y respects the tree at time s, we see that given F2
s , on the event {T ≤ s},

ζ(ξ1, r)

ζ(ξ1, s)
e− ∫ r

s α1(ξ
1
u ) du1{ζ(ξ1,r)>0}

∏
ψ1

s <v<ψ1
r

Av, r ≥ s

is a martingale that is independent of Y
∏

ψ2
s <v<ψ2

t
Av . Putting this together with the above, we have that

Px

[ ∑
v,w∈N(t)

1{S(v,w)≤s}1{ζ(v,s)>0,ζ(w,t)>0}Y(vs,w)1{v=vs }e
∫ t
s R(Xv(u)) du

]

= P2
x

[
1{T ≤s,ζ(ξ1,t)>0,ζ(ξ2,t)>0}Y

ζ(ξ1, t)

ζ(ξ1, s)
e− ∫ t

s α1(ξ
1
u ) du

( ∏
v≤ψ1

T

A2
v

)( ∏
ψ1

T <v<ψ1
t

Av

)( ∏
ψ2

T <v<ψ2
t

Av

)]
. (9)
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Recall now that on the event {T ≤ s}, since s ≤ t , we have that T ≤ t and hence by Definitions 3 and 5,

dQ2
x

dP2
x

∣∣∣∣
F2

t

= ζ(ξ1, t)ζ(ξ2, t)

ζ(ξ1, T )
1{ζ(ξ1,t)>0,ζ(ξ2,t)>0}e− ∫ T

0 α2(ξ
1
u ) du−∫ t

T α1(ξ
1
u ) du−∫ t

T α1(ξ
2
u ) du

·
( ∏

v≤ψ1
T

A2
v

)( ∏
ψ1

T <v<ψ1
t

Av

)( ∏
ψ2

T <v<ψ2
t

Av

)
.

Applying this to (9), we get that

Px

[ ∑
v,w∈N(t)

1{S(v,w)≤s}1{ζ(v,s)>0,ζ(w,t)>0}Y(vs,w)1{v=vs }e
∫ t
s R(Xv(u)) du

]

=Q2
x

[
Y1{T ≤s}

ζ(ξ1, T )

ζ(ξ1, s)ζ(ξ2, t)
e
∫ T

0 α2(ξ
1
u ) du+∫ s

T α1(ξ
1
u ) du+∫ t

T α1(ξ
2
u ) du

]
.

This establishes (8) and completes the proof. �

8. Many-to-few in discrete time

We state here a version of the many-to-few lemma for discrete-time processes. We shall not prove it, as it is very
similar to the continuous-time version studied above.

We begin, under a probability measure Px , with one particle in generation 0 located at x ∈ J . Any particle at
position y has children whose number and positions are decided according to a finite point process Dy on J . The
children of particles in generation n make up generation n + 1. We define G(n) to be the set of all particles in
generation n, N(n) = #G(n) to be the number of such particles, and Xv to be the position of particle v. We set
mj(y) = Py[N(1)j ] to be the j th moment of the number of particles created by the point process Dy . Write |v| to be
the generation of particle v. For a particle v in generation n ≥ 1, let p(v) be its parent in generation n − 1.

8.1. The measure Qk
x and the main result in discrete time

We define a new measure Pk
x which has k distinguished lines of descent ψ1, . . . ,ψk just as in the continuous-time

case, which we call spines. Under Pk
x , if a particle carrying j marks (i.e. the particle is part of j spines) in generation n

has l children in generation n + 1, then each of its j marks chooses a particle to follow in generation n + 1 uniformly
at random from the l children. We let ξ i

n be the position of the ith spine in generation n and define skel(n) to be the
set of all particles of generation at most n which are part of at least one spine. Let Dv be the number of marks carried
by particle v.

For any i, we note that Xξi
0
,Xξi

1
,Xξi

2
, . . . is a Markov chain with some generator M′ not depending on i. Suppose

that ζ(X,n), n ≥ 0 is a functional of a process (Xn,n ≥ 0) such that if (Xn,n ≥ 0) is a Markov process with generator
M′ then ζ(X,n), n ≥ 0 is a martingale with respect to the natural filtration of (Xn,n ≥ 0).

Under Qk
x particles behave as follows:

• A particle at position y carrying j marks has children whose number and positions are decided by a point process
such that:
– for each j and l ≥ 0, Qj

y(N(1) = l) = ljPy(N(1) = l)/Py[N(1)j ];
– for each i, the sequence Xξi

0
,Xξi

1
,Xξi

2
, . . . is a Markov chain distributed as if under the changed measure

Qi
x |G{i}

n
:= ζ(ξ i, n)Pk

x |G{i}
n

.
• Given that a particles v1, . . . , va are born at such a branching event, the j spines each choose a particle to follow

independently and uniformly at random.
• Particles not in the skeleton (those carrying no marks) have children according to the point process Dy when at

position y, just as under P.
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In other words, under Qk
x spine particles move as if weighted by the martingale ζ , they breed at a modified rate, and

they give birth to size-biased numbers of children. The birth rate and number of children depend on how many marks
the spine particle is carrying, whereas the motion does not.

Lemma 8 (Many-to-few in discrete time). For any k ≥ 1 and Fk
n -measurable Y such that

Y =
∑

v1,...,vk∈G(n)∪{�}
Y(v1, . . . , vk)1{ψ1

n=v1,...,ψ
k
n=vk}

we have

Px

[ ∑
v1,...,vk∈G(n)

Y (v1, . . . , vk)1{ζ(vi ,n)>0∀i=1,...,k}
]

=Qk
x

[
Y

∏
v∈skel(n)\{∅}

ζ(p(v), |v| − 1)

ζ(v, |v|) mDp(v)
(Xp(v))

]
.
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