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Abstract. We give a Dirichlet form approach for the construction of a distorted Brownian motion in E := [0,∞)n, n ∈ N, where
the behavior on the boundary is determined by the competing effects of reflection from and pinning at the boundary (sticky
boundary behavior). In providing a Skorokhod decomposition of the constructed process we are able to justify that the stochastic
process is solving the underlying stochastic differential equation weakly for quasi every starting point with respect to the associated
Dirichlet form. That the boundary behavior of the constructed process indeed is sticky, we obtain by proving ergodicity of the
constructed process. Therefore, we are able to show that the occupation time on specified parts of the boundary is positive. In
particular, our considerations enable us to construct a dynamical wetting model (also known as Ginzburg–Landau dynamics) on a
bounded set DN ⊂ Zd under mild assumptions on the underlying pair interaction potential in all dimensions d ∈ N. In dimension
d = 2 this model describes the motion of an interface resulting from wetting of a solid surface by a fluid.

Résumé. Nous construisons un mouvement brownien tordu dans E := [0,∞)n, n ∈N, en utilisant des méthodes de la théorie des
formes de Dirichlet alors que le comportement à la frontière est déterminé par les effets concurrents de la réflexion de la frontière et
l’ancrage à la frontière (comportement adhésif sur la frontière de E). En fournissant une décomposition de Skorokhod du processus
construit nous pouvons justifier que le processus stochastique est une solution faible de l’équation différentielle stochastique fon-
damentale pour quasi tous les points de départ par rapport à la forme de Dirichlet associée. En démontrant l’ergodicité du processus
construit, nous obtenons que le comportement sur la frontière du processus est en effet adhésif. En conséquence, il est possible de
démontrer que le séjour sur des parties fixées de la frontière de E est positif. En particulier, nos considérations nous permettent
de construire un modèle dynamique d’humectage (ausssi connu comme dynamique de Ginzburg–Landau) sur un ensemble borné
DN ⊂ Zd , d ∈ N. Le potentiel qui détermine l’interaction des variables adjacentes est soumis à des conditions peu restrictives en
toute dimension d ∈ N. En dimension d = 2, ce modèle décrit le mouvement d’une interface résultant de l’humectage d’une surface
solide par un fluide.
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1. Introduction

In [8] the authors study stochastic differential equations (SDEs) with sticky boundary behavior and provide existence
and uniqueness of solutions to the SDE system{

dXt = 1
2 d�0+

t (X) + 1(0,∞)(Xt )dBt ,

1{0}(Xt )dt = 1
μ

d�0+
t (X),

(1.1)
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for reflecting Brownian motion X in [0,∞) sticky at 0, where X := (Xt )t≥0 starts at x ∈ [0,∞), μ ∈ (0,∞) is a given
constant, �0+(X) is the right local time of X at 0 and B := (Bt )t≥0 is the standard Brownian motion. In particular,
H.-J. Engelbert and G. Peskir show that the system (1.1) has a jointly unique weak solution and moreover, they prove
that the system (1.1) has no strong solution, thus verifying Skorokhod’s conjecture of the non-existence of a strong
solution in this case. For an outline of the historical evolution in the study of sticky Brownian motion we refer to the
references given in [8].

In the present paper we construct a reflected distorted Brownian motion in E := [0,∞)n, n ∈ N, with sticky
boundary behavior. First we use Dirichlet form techniques in order to construct solutions in the sense of the associated
martingale problem for general Wentzell type boundary conditions. Then, by providing a Skorokhod decomposition
for the constructed process, we can show that this process solves the stochastic differential equation

dXj
t = 1 ◦

E
(Xt )

√
2 dB

j
t + ∂j ln(�)(Xt )1 ◦

E
(Xt )dt

+
∑

∅ �=B�I

{
1E+(B)(Xt )

√
2 dB

j
t + ∂j ln(�)(Xt )1E+(B)(Xt )dt, if j ∈ B,

1
β
1E+(B)(Xt )dt, if j ∈ I \ B

+ 1

β
1{(0,...,0)}(Xt )dt, for some β > 0, (1.2)

weakly for quasi every starting point with respect to the underlying Dirichlet form. Here j ∈ I := {1, . . . , n},
E+(B) := {x ∈ E|xi > 0 for all i ∈ B and xi = 0 for all i ∈ I \ B} for B ⊂ I with E+(B) ⊂ ∂E for B � I , (B

j
t )t≥0

are one dimensional independent standard Brownian motions, j ∈ I . � is a continuously differentiable density on E

such that for all B ⊂ I , � is almost everywhere positive on E+(B) with respect to the Lebesgue measure and for
all ∅ �= B ⊂ I ,

√
�|E+(B) is in the Sobolev space of weakly differentiable functions on E+(B), square integrable

together with its derivative. � continuously differentiable on E implies that the drift part (∂j ln(�))j∈I is continuous
on {� > 0}. The stochastic differential equation (1.2) can be rewritten as

dXj
t = 1(0,∞)

(
Xj

t

)(√
2 dB

j
t + ∂j ln(�)(Xt )dt

)+ 1

β
1{0}
(
Xj

t

)
dt, j ∈ I, for some β > 0, (1.3)

or equivalently

dXj
t = 1(0,∞)

(
Xj

t

)(√
2 dB

j
t + ∂j ln(�)(Xt )dt

)+ d�
0,j
t ,

with �
0,j
t := 1

β

∫ t

0
1{0}
(
Xj

s

)
ds, j ∈ I, for some β > 0.

Note that a solution to (1.3) is a continuous semimartingale. By [20], Chapter VI, the right local time �
0+,j
t of

(Xj
t )t≥0, j ∈ I , is charaterized by

∣∣Xj
t

∣∣= ∣∣Xj

0

∣∣+ ∫ t

0
sgn
(
Xj

s

)
dXj

s + �
0+,j
t ,

where sgn is defined by sgn(x) = 1 for x > 0 and sgn(x) = −1 for x ≤ 0. For a solution to (1.3) holds

∣∣Xj
t

∣∣ = ∣∣Xj

0

∣∣+ ∫ t

0
1(0,∞)

(
Xj

s

)
dXj

s + 1

β

∫ t

0
1{0}
(
Xj

s

)
ds

= ∣∣Xj

0

∣∣+ ∫ t

0
sgn
(
Xj

s

)
dXj

s + 2

β

∫ t

0
1{0}
(
Xj

s

)
ds,

since Xj
t ≥ 0 for all t ≥ 0 and sgn(0) = −1. Hence, �

0+,j
t = 2

β

∫ t

0 1{0}(Xj
s )ds = 2�

0,j
t almost surely. In other words,

�
0,j
t equals one half of the right local time �

0+,j
t . Furthermore, due to [20], Corollary 1.9, we can conclude that �

0,j
t
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coincides with the central local time of (Xj
t )t≥0, i.e., it holds almost surely

�
0,j
t = 1

β

∫ t

0
1{0}
(
Xj

s

)
ds = 1

2
lim
ε↓0

1

ε

∫ t

0
1[0,ε)

(
Xj

s

)
d
〈
Xj
〉
s

= lim
ε↓0

1

2ε

∫ t

0
1(−ε,ε)

(
Xj

s

)
d
〈
Xj
〉
s
.

Our considerations are motivated by the so-called ∇φ interface model which provides a fundamental mathematical
model for the physical description of interfaces from a microscopic or mesoscopic point of view. As an application of
our results we are interested in the time development of such interfaces. In [11] the authors consider a scalar field φt ,
t ≥ 0, where its motion is governed by a reversible stochastic dynamics, i.e., in a finite volume Λ ⊂ Zd , d ∈ N,
under suitable boundary conditions, the scalar field φt := (φt (x))x∈Λ, t ≥ 0, is described by the stochastic differential
equations

dφt (x) = −
∑
y∈Λ

|x−y|=1

V ′(φt (x) − φt (y)
)

dt + √
2 dBt(x), x ∈ Λ, t ≥ 0.

Here | · | denotes the norm induced by the euclidean scalar product on Rd , V ∈ C2(R) is a symmetric, strictly convex
potential and {(Bt (x))t≥0|x ∈ Λ} are independent standard Brownian motions. Such a dynamics is known as the
Ginzburg–Landau ∇φ interface model in finite volume. Of particular interest in the framework of ∇φ interface models
is the so-called entropic repulsion. Though one considers the ∇φ interface model with reflection on a hard wall. This
phenomenon was investigated, e.g., in [5] and [2] for the static ∇φ interface model. Interface motion with entropic
repulsion, i.e., the Ginzburg–Landau ∇φ interface model with entropic repulsion was studied recently in [7] for
dimension d ≥ 2. Here the underlying potentials are again symmetric, strictly convex and nearest neighbor C2-pair
potentials. The Ginzburg–Landau dynamics with repulsion was introduced by T. Funaki and S. Olla in [10,12]. In [26]
this problem was tackled via Dirichlet form techniques in dimension d = 1.

In considering the ∇φ interface model with reflection on a hard wall and additionally putting a pinning effect on
that wall, we are dealing with the so-called wetting model. In dimension d = 2 this model describes the wetting of
a solid surface by a fluid. The static wetting model was studied recently in [6], see also [3]. Considerations of the
Ginzburg–Landau dynamics with reflection on a hard wall under the influence of an outer force, causing, e.g., a mild
pinning effect on the wall can be found in [12].

In [13], Section 15.1, J.-D. Deuschel and T. Funaki investigated the scalar field φt := (φt (x))x∈Λ, t ≥ 0, described
by the stochastic differential equations

dφt (x) = −1(0,∞)

(
φt (x)

) ∑
y∈Λ

|x−y|=1

V ′(φt (x) − φt (y)
)

dt + 1(0,∞)

(
φt (x)

)√
2 dBt(x) + d�0

t (x), x ∈ Λ, (1.4)

subject to the conditions:

φt (x) ≥ 0, �0
t (x) is non-decreasing with respect to t, �0

0(x) = 0,∫ ∞

0
φt (x)d�0

t (x) = 0,

β�0
t (x) =

∫ t

0
1{0}
(
φs(x)

)
ds for fixed β > 0,

where �0
t (x) denotes the central local time of φt (x) at 0 and the pair interaction potential V is again symmetric,

strictly convex and C2.
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For treating this system of stochastic differential equations the authors gave reference to classical solution tech-
niques as developed e.g. in [17]. The methods provided therein require more restrictive assumptions on the drift part
as in our situation (instead of boundedness and Lipschitz continuity we only need continuity and a mild integrability
condition, see Condition 2.14 and Remark 2.15), moreover, do not apply directly (the geometry differs). First steps in
the direction of applying [17] are discussed in [13] by J.-D. Deuschel and T. Funaki.

As far as we know the only reference that applies to the system of stochastic differential equations (1.3) is [15].
By means of a suitable choice of the coefficients the system of equations given by [15], (II.1), coincides with (1.3),
but amongst others the drift part is also assumed to be Lipschitz continuous and boundend. For this reason, it is not
possible to apply the results of [15] to the setting invenstigated by J.-D. Deuschel and T. Funaki, since the potential V

naturally causes an unbounded drift. Moreover, neither properties of the corresponding L2-semigroup are worked out
nor the invariant measure, Dirichlet form or generator are provided. Such tools are very useful for analyzing scaling
limits of the considered system, see, e.g., [16] and [26]. These we plan to investigate in a follow-up article.

The theory of Dirichlet forms provides appropiate techniques in order to construct and analyze solutions to (1.4)
for a large class of potentials. Indeed, we obtain a weak solution to (1.4) with sticky boundary behavior under rather
mild assumption on the underlying probability density. Note that in view of the results provided in [8], this notion
of solution is the only reasonable one. That the boundary behavior of the constructed weak solution to (1.4) indeed
is sticky, we obtain by proving an ergodicity result (see Theorem 5.6 below). From this we can conclude, that the
occupation time on the boundary of the constructed process increases asymptotically linear, whenever the process
starts in a point with positive density � connected with the boundary, see Corollary 5.7 below.

A Skorokhod decomposition for reflected diffusions on bounded Lipschitz domains with singular non-reflection
part was provided by G. Trutnau in [24]. Here we consider the case of the Wentzell type boundary condition. Dirichlet
form methods in the context of Wentzell boundary condition were introduced in, e.g., [25]. Here, however, in view
of our application we construct via the underlying bilinear form a dynamics even on the boundary. In [25] a static
boundary behavior is realized. An overview of the state of the art in the framework of interface models is presented
in, e.g., [13,14].

Our paper is organized as follows. In Section 2 we provide the functional analytic background to apply Dirichlet
form methods in order to tackle the problem of sticky reflected distorted Brownian motion. We analyze the bilinear
form (2.3) below and show in Theorem 2.12 and in the proof of Lemma 5.4 that (E,D(E)) is a recurrent, hence
in particular conservative, strongly local, strongly regular, symmetric Dirichlet form on the underlying L2-space.
In Section 3 we present the probabilistic counterpart of Section 2. The main result of this section is obtained in
Theorem 3.1, where we show that (E,D(E)) has an associated conservative diffusion process M, i.e., an associated
strong Markov process with continuous sample paths and infinite life time. The diffusion process M is analyzed in
Section 4. Here we provide in Corollary 4.18 a Skorokhod decomposition of M. This proves that M is a weak solution
to (1.4). In Section 5 we show in Theorem 5.6 that the constructed process M is ergodic. Moreover, we present
the consequences of the ergodicity result for the occupation time on the boundary of the constructed process, see
Corollary 5.7 below. Finally, we apply our results to the problem of the dynamical wetting model, see Theorems 6.6,
6.10, 6.11 and Corollary 6.12 below.

The following list of main results summarizes the progress achieved in this paper:

(i) We construct conservative diffusion processes in [0,∞)n, n ∈ N, with the competing effects of reflection and
pinning at the boundary (sticky reflected distorted Brownian motion) under mild assumptions on the drift part,
see Theorems 3.1 and 3.2 below.

(ii) We provide a Skorokhod decomposition of the constructed processes and thereby prove that the processes solve
the underlying stochastic differential equations weakly for quasi all starting points, see Corollary 4.18 below.

(iii) We show ergodicity of the constructed processes, see Theorem 5.6 below. Using this ergodicity result, we illus-
trate the behavior of the processes at the boundary by studying the occupation times on specified parts of the
boundary by the constructed processes, see Corollary 5.7 below.

(iv) Our general considerations apply to the construction of the dynamical wetting model in finite volume and all
dimensions d ∈ N for a large class of pair interaction potentials, see Theorems 6.10, 6.11 and Corollary 6.12
below.
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2. The functional analytic background

Let n ∈ N, I := In := {1, . . . , n} and E := En := [0,∞)n. We have that
◦
E = (0,∞)n and we denote by ∂E the

boundary of E. For each x = (x1, . . . , xn) ∈ E we set

I0(x) := {i ∈ I |xi = 0} and I+(x) := {i ∈ I |xi > 0},

and define for A,B ⊂ I ,

E0(A) := {x ∈ E|I0(x) = A
}

and E+(B) := {x ∈ E|I+(x) = B
}
,

respectively.

Remark 2.1. We have the decomposition

E =
⋃̇
A⊂I

E0(A) =
⋃̇
B⊂I

E+(B).

In particular,

∂E = E \ ◦
E =

⋃̇
∅ �=A⊂I

E0(A) =
⋃̇
B�I

E+(B).

On (E,B(E)) with B(E) being the trace σ -algebra of the Borel σ -algebra B(Rn) on E we define for fixed
β ∈ (0,∞) the measures

mn,β :=
∑
B⊂I

λ
n,β
B with λ

n,β
B := βn−#Bλ

(n)
B and λ

(n)
B :=

∏
i∈B

dxi+
∏

j∈I\B
dδ

j

0 , (2.1)

where #S denotes the number of elements in a set S, dxi+ is the Lebesgue measure on ([0,∞),B([0,∞))) and δ
j

0
denotes the Dirac measure on ([0,∞),B([0,∞))) at 0. The indices i, j ∈ I give reference to the component of
x = (x1, . . . , xn) ∈ E being integrated by dxi+ and δ

j

0 , respectively.

Condition 2.2. � is a mn,β -a.e. positive function on E such that � ∈ L1(E;mn,β).

Remark 2.3. In particular, � can be chosen to be a probability density.

Under Condition 2.2 we define on (E,B(E)) the measure μn,β,� := �mn,β and hence, the space of square inte-
grable functions on E with respect to μn,β,� , denoted by L2(E;μn,β,�).

Remark 2.4. Note that the measure μn,β,� on (E,B(E)) is a Baire measure. In our setting this means μn,β,� is a
Borel measure with the additional property that

μn,β,�(K) < ∞ for all compact sets K ⊂ E. (2.2)

(2.2) is fulfilled, since � ∈ L1(E;mn,β,�). Obviously, E is locally compact and countable at infinity.

We set

C0
c (E) := {f :E →R|f is continuous on E with supp(f ) ⊂ E compact

}
,
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where supp denotes the support of the corresponding function and for k ∈ N we define

Ck
c (E) := {f :E → R|f is k-times continuously differentiable on

◦
E

with supp(f ) ⊂ E compact and

∂lf extends continuously to E for |l| ≤ k
}
.

Here and below ∂lf denotes the partial derivative of f to the multi index l ∈Nn
0, i.e.,

l = (l1, . . . , ln) ∈Nn
0, |l| = l1 + · · · + ln,

∂lf := ∂
l1
1 ∂

l2
2 · · ·∂ln

n f, ∂
li
i f := ∂li

xi
f, ∂0

xi
f := f, i ∈ I.

We write ∂i instead of ∂1
i . Furthermore, C∞

c (E) :=⋂k∈N0
Ck

c (E).

Remark 2.5. Under Condition 2.2 we have that C∞
c (E) is dense in L2(E;μn,β,�).

2.1. Dirichlet forms

Let n ∈ N be fixed and denote by {e1, . . . , en} the canonical basis of Rn. For β ∈ (0,∞) and � fulfilling Condition 2.2
we define on L2(E;μn,β,�) the bilinear form

E(f, g) := En,β,�(f, g) :=
∑

∅ �=B⊂I

EB(f,g), f, g ∈ D := C2
c (E), (2.3)

with

EB(f,g) := En,β,�

B (f, g) :=
∫

E+(B)

(∇Bf,∇Bg
)

dμ
�,n,β

B , ∅ �= B ⊂ I,

where μ
�,n,β

B := �λ
n,β
B (see (2.1)), (·, ·) denotes the euclidean inner product and ∇Bf :=∑i∈B ∂if ei for f ∈D.

Remark 2.6. Suppose that Condition 2.2 is satisfied. Then (E,D) is a symmetric, positive definite bilinear form which
is densely defined on L2(E;μn,β,�).

To prove closability of the underlying bilinear form, we have to put an additional restriction on the density �. For
∅ �= B ⊂ I we define

R�

(
E+(B)

) := {x ∈ E+(B)

∣∣∣ ∫
Bε(x)

�−1 dλ
n,β
B < ∞ for some ε > 0

}
,

where Bε(x) := {y ∈ E+(B)||x − y| < ε} and for ∅ �= B ⊂ I , E+(B) is the closure of E+(B) with respect to | · |.

Condition 2.7. For ∅ �= B ⊂ I we have that � = 0 λ
n,β
B -a.e. on E+(B) \ R�(E+(B)).

Lemma 2.8. Let Condition 2.7 be satisfied. For ∅ �= B ⊂ I let ϕ ∈ C∞
c (R�(E+(B))) and f ∈ L2(E,μ�,n,β).

(i) There exists C1(ϕ,B) ∈ (0,∞) such that∣∣∣∣ ∫
R�(E+(B))

f ϕ dλ
n,β
B

∣∣∣∣≤ C1(ϕ,B) · ‖f ‖
L2(E+(B);μ�,n,β

B )
.

Here L2(E+(B);μ�,n,β

B ) denotes the spaces of square integrable functions on E+(B) with respect to μ
�,n,β

B .
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(ii) There exists C2(ϕ,B) ∈ (0,∞) such that∣∣∣∣ ∫
∂R�(E+(B))

f ϕ dσ
n,β
B

∣∣∣∣≤ C2(ϕ,B) · ‖f ‖L2(E;μ�,n,β ),

where σ
n,β
B :=∑

B̂�B
λ

n,β

B̂
.

Proof.

(i) See, e.g., [19], Chapter 2, Lemma 2.2.
(ii) Let ∅ �= B ⊂ I , ϕ ∈ C∞

c (R�(E+(B))) and f ∈ L2(E,μ�,n,β). By a multiple application of part (i) we obtain∣∣∣∣ ∫
∂R�(E+(B))

f ϕ dσ
n,β
B

∣∣∣∣ ≤ ∑
B̂�B

∣∣∣∣ ∫
∂R�(E+(B))

f ϕ dλ
n,β

B̂

∣∣∣∣
≤
∑
B̂�B

C1(ϕ, B̂) · ‖f ‖
L2(E+(B̂);μ�,n,β

B̂
)
≤ C2(ϕ,B) · ‖f ‖L2(E;μ�,n,β ).

�

Proposition 2.9. Suppose that Conditions 2.2 and 2.7 are satisfied. Then (E,D) is closable on L2(E;μ�,n,β). Its
closure we denote by (E,D(E)).

Proof. Let (fk)k∈N be a Cauchy sequence in D with respect to E , i.e., E(fk − fl, fk − fl) → 0 as k, l → ∞.
Furthermore, we suppose that fk → 0 in L2(E;μ�,n,β) as k → ∞, i.e., (fk, fk)L2(E;μ�,n,β ) → 0 as k → ∞. We
have to check whether E(fk, fk) → 0 as k → ∞. Let ∅ �= B ⊂ I . We know that for fixed i ∈ B , (∂ifk)k∈N
converges to some hi in L2(E+(B);μ�,n,β

B ), since (∂ifk)k∈N is a Cauchy sequence in L2(E+(B);μ�,n,β

B ) and

(L2(E+(B);μ�,n,β

B ),‖ · ‖
L2(E+(B);μ�,n,β

B )
) is complete. Let ϕ ∈ C∞

c (R�(E+(B))). Using Lemma 2.8(i) we obtain that∣∣∣∣ ∫
R�(E+(B))

hiϕ dλ
n,β
B −

∫
R�(E+(B))

∂ifkϕ dλ
n,β
B

∣∣∣∣
=
∣∣∣∣ ∫

R�(E+(B))

(hi − ∂ifk)ϕ dλ
n,β
B

∣∣∣∣≤ C1(ϕ,B) · ‖hi − ∂ifk‖L2(E+(B);μ�,n,β
B )

→ 0 as k → ∞.

This, together with an integration by parts, triangle inequality, Lemma 2.8(ii) and the fact that (fk, fk)L2(E;μ�,n,β ) → 0
as k → ∞ implies:∣∣∣∣∫

R�(E+(B))

hiϕ dλ
n,β
B

∣∣∣∣ = lim
k→∞

∣∣∣∣∫
R�(E+(B))

∂ifkϕ dλ
n,β
B

∣∣∣∣
= lim

k→∞

∣∣∣∣∫
∂(R�(E+(B)))

fkϕ dσ
n,β
B −

∫
R�(E+(B))

fk∂iϕ dλ
n,β
B

∣∣∣∣
≤ lim

k→∞

∣∣∣∣∫
∂(R�(E+(B)))

fkϕ dσ
n,β
B

∣∣∣∣+ lim
k→∞

∣∣∣∣∫
R�(E+(B))

fk∂iϕ dλ
n,β
B

∣∣∣∣= 0 as k → ∞.

Thus hi = 0 in L2(R�(E+(B));λn,β
B ) and therefore hi = 0 in L2(E+(B);�λ

n,β
B ) by Condition 2.7. For all ∅ �= B ⊂ I

this yields hi = 0 in L2(E+(B);μ�,n,β

B ) for all i ∈ B . Moreover,

E(fk, fk) =
∑

∅ �=B⊂I

∫
E+(B)

∣∣∇Bfk

∣∣2 dμ
�,n,β

B =
∑

∅ �=B⊂I

∑
i∈B

‖∂ifk − hi‖2
L2(E+(B);μ�,n,β

B )
→ 0 as k → ∞

and closability is shown. �
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Remark 2.10. Since (E,D) is closable on L2(E;μ�,n,β) by Proposition 2.9 we have that D(E) is complete with

respect to the norm ‖ · ‖E1 := E(·, ·)1/2 + (·, ·)1/2
L2(E;μ�,n,β )

.

Proposition 2.11. Suppose that Conditions 2.2 and 2.7 are satisfied. Then (E,D(E)) is a symmetric, regular, strongly
local and recurrent, hence in particular conservative, Dirichlet form.

Proof. The Markov property is clear, see, e.g., [9], Theorem 1.4.1. Regularity can be shown as follows. The extended
Stone–Weierstraß theorem, see, e.g., [21], Chapter 7, Section 38, yields that C∞

c (E) is dense in C0
c (E) with respect

to ‖ · ‖sup. Furthermore, D is dense in D(E) with respect to ‖ · ‖E1 . Since C∞
c (E) ⊂ D ⊂ D(E) ∩ C0

c (E), we obtain
that (E,D(E)) is regular. Using [9], Theorem 3.1.1, and [9], Exercise 3.1.1, it is sufficient to show the strong local
property for elements in D. Therefore, let f,g ∈ D with supp(f ), supp(g) compact and let g be constant on some
open (in the trace topology of E) neighborhood U of supp(f ). Then

E(f, g) =
∑

∅ �=B⊂I

∫
E+(B)

(∇Bf,∇Bg
)

dμ
�,n,β

B

=
∑

∅ �=B⊂I

∫
E+(B)∩supp(f )

(∇Bf,∇Bg︸︷︷︸
=0

)
dμ

�,n,β

B +
∑

∅ �=B⊂I

∫
E+(B)\supp(f )

(∇Bf︸ ︷︷ ︸
=0

,∇Bg
)

dμ
�,n,β

B = 0.

Hence (E,D(E)) is strongly local.
In order to deduce recurrence of (E,D(E)), it is enough to show that there exists a sequence (fk)k∈N ⊂ D(E)

such that limk→∞ fk = 1 μ�,n,β -a.e. and limk→∞ E(fk, fk) = 0 by [9], Theorem 1.6.3. This we do next. 1E ∈
L2(E;μ�,n,β) by Condition 2.2. We show that 1E ∈ D(E). Set Λ := [−1,∞)n and Kk := [0, k]n, k ∈ N. Then there
exist cutoff functions fk ∈ C∞

c (Λ), k ∈ N, such that 0 ≤ fk ≤ fk+1 ≤ 1, fk = 1 on Kk , supp(fk) ⊂ B1(Kk) and
|∂ifk| ≤ C3 < ∞. C3 independent of k ∈N. Here B1(Kk), k ∈ N, denotes the 1-neighborhood of the set Kk . Hence

‖1E − fk‖2
L2(E;μ�,n,β )

=
∫

E

(1E − fk)
2 dμ�,n,β

=
∫

E\Kk

(1E − fk)
2 dμ�,n,β ≤ μ�,n,β(E \ Kk) → 0 as k → ∞. (2.4)

Furthermore,

E(fk, fk) =
∑

∅ �=B⊂I

∫
E+(B)

∣∣∇Bfk

∣∣2 dμ
�,n,β

B ≤ nC2
3μ�,n,β(E \ Kk) → 0 as k → ∞. (2.5)

Using (2.4) and (2.5) we easily obtain by applying the Cauchy–Schwarz inequality that (fk)k∈N is E1-Cauchy. Hence
1E ∈ D(E) with

E(1E,1E) = lim
k→∞E(fk, fk) = 0.

Therefore, (E,D(E)) is recurrent and, hence in particular, conservative. �

Finally, we end up with the following result.

Theorem 2.12. For fixed n ∈ N, β ∈ (0,∞) and density function � we have that under Conditions 2.2 and 2.7

E(f, g) =
∑

∅ �=B⊂I

EB(f,g), f, g ∈D = C2
c (E),

with

EB(f,g) =
∫

E+(B)

(∇Bf,∇Bg
)

dμ
�,n,β

B , ∅ �= B ⊂ I,
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and μ
�,n,β

B = �λ
n,β
B , is a densely defined, positive definite, symmetric bilinear form, which is closable on L2(E;

μ�,n,β). Its closure (E,D(E)) is a recurrent, hence in particular conservative, strongly local, regular, symmetric
Dirichlet form on L2(E;μ�,n,β).

Proof. See Remark 2.6 and Propositions 2.9 and 2.11. �

2.2. Generators

By Friedrichs representation theorem we have the existence of the self-adjoint generator (H,D(H)) corresponding to
(E,D(E)).

Proposition 2.13. Suppose that Conditions 2.2 and 2.7 are satisfied. There exists a unique, positive, self-adjoint,
linear operator (H,D(H)) on L2(E;μ�,n,β) such that

D(H) ⊂ D(E) and E(f, g) = (Hf,g)L2(E;μ�,n,β ) for all f ∈ D(H),g ∈ D(E).

Proof. Using Proposition 2.9 this is a direct application of [9], Coro. 1.3.1. �

We need additional assumptions on the density function � in order to derive an explicit formula for the generator
H on a subset of its domain D(H), dense in L2(E;μ�,n,β).

Condition 2.14. � is a mn,β -a.e. positive function on E such that

(i)
√

�|E+(B) ∈ H 1,2(E+(B)) for all ∅ �= B ⊂ I , where H 1,2(E+(B)) denotes the Sobolev space of weakly differen-
tiable functions on E+(B), square integrable together with their derivative.

(ii) � ∈ C1(E), where C1(E) denotes the space of continuously differentiable functions on E.

Remark 2.15.

(i) Note that the additional assumptions collected in Condition 2.14 are not necessary for the existence of the
generator (H,D(H)).

(ii) Condition 2.14(i) is equivalent to (∂i ln(�))ni=1 ∈ L2(E;μ�,n,β).
(iii) Condition 2.14(ii) implies that (∂i ln(�))ni=1 is continuous on the set {� > 0}.
(iv) If � fulfills Condition 2.14(ii), � is in particular continuous on E and therefore Condition 2.7 is implied. More-

over, Condition 2.14(i) implies Condition 2.2.

For f ∈D = C2
c (E) and B ⊂ I we define

LBf := Ln,�,Bf :=
∑
i∈B

(
∂2
i f + ∂if ∂i(ln�)

)+ ∑
i∈I\B

1

β
∂if = ΔBf + (∇Bf,∇B ln�

)+ 1

β

(∇I\Bf, e
)
,

and

Lf :=
∑
B⊂I

1E+(B)L
Bf,

where ΔBf :=∑i∈B ∂2
i f for f ∈D, B ⊂ I and e is a vector of length n containing only ones.

Proposition 2.16. Suppose that Condition 2.14 is satisfied. For functions f,g ∈ D we have the representation
E(f, g) = (−Lf,g)L2(E;μ�,n,β ).
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Remark 2.17. Let LB
1 := ΔB + (∇B,∇B ln�) and L

I\B
2 := (∇I\B, e). Using this notation we can express L in the

form

Lf =
∑
B⊂I

1E+(B)

(
LB

1 f + 1

β
L

I\B
2 f

)

= 1E+(I ) · LI
1f +

∑
B�I

1E+(B)

(
−L

I\B
1 f + 1

β
L

I\B
2 f

)
, f ∈D.

The interpretation of L is that on E+(B) the operator LB
1 describes the dynamics of the coordinates i ∈ B by means

of a diffusive and a drift term whereas the operator 1
β
L

I\B
2 forces the remaining coordinates i ∈ I \ B with constant

drift 1
β

back to positive height. The operator −LB
1 + 1

β
LB

2 for B �= ∅ is called a Wentzell type boundary operator.
The associated Cauchy problem can be formulated in the form⎧⎨⎩

∂
∂t

ut (x) = Δut(x) + (∇ut (x),∇(ln�)(x)), t > 0, x ∈ E,

∂2
i ut (x) + ∂iut (x) ∂i(ln�)(x) − 1

β
∂iut (x) = 0, t > 0, i ∈ I , x ∈ E ∩ {xi = 0},

u0(x) = f (x).

(2.6)

The second line of (2.6) is called Wentzell boundary condition (for the ith coordinate).

Proof of Proposition 2.16. Let f ∈ D and g ∈ C1
c (E). In order to show this representation we carry out an integration

by parts. We start with B = I , i.e., #B = n:

EI (f, g) =
∑
i∈I

∫
◦
E

∂if ∂ig� dλ
(n)
I =

∑
i∈I

∫
◦
E

∂if � ∂ig dλ
(n)
I

=
∑
i∈I

∫
◦
E

(−∂2
i f � − ∂if ∂i�

)
g(x)dλ

(n)
I −

∑
B⊂I

#B=n−1

∑
i∈I\B

∫
E+(B)

∂ifg� dλ
(n)
B

=
∑
i∈I

∫
◦
E

(−∂2
i f − ∂if ∂i ln(�)

)
g(x)� dλ

(n)
I −

∑
B⊂I

#B=n−1

∑
i∈I\B

∫
E+(B)

∂ifg� dλ
(n)
B .

Next we consider all B ⊂ I such that #B = n − 1, i.e.,

EB(f,g) =
∑
i∈B

∫
E+(B)

∂if ∂igβ�
∏
i∈B

dxi+
∏

j∈I\B
dδ

j

0

=
∑
i∈B

∫
E+(B)

(−∂2
i f − ∂if ∂i ln(�)

)
g�β dλ

(n)
B

−
∑
B̃⊂B

#B̃=n−2

∑
i∈B\B̃

∫
E+(B̃)

∂ifg�β dλ
(n)

B̃
.

Proceeding inductively we end up with all B ⊂ I fulfilling #B = 1, i.e., we consider

EB(f,g) =
∑
i∈B

∫
E+(B)

∂if ∂ig�βn−1
∏
i∈B

dxi+
∏

j∈I\B
dδ

j

0

=
∑
i∈B

∫
E+(B)

(−∂2
i f − ∂if ∂i ln(�)

)
g�βn−1 dλ

(n)
B − βn−1

∑
i∈B

∂if (0)g(0)�(0).
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Combining all this yields

E(f, g) =
∑

∅ �=B⊂I

EB(f,g)

=
∑
i∈I

∫
◦
E

(−∂2
i f − ∂if ∂i ln(�)

)
g� dλ

(n)
I

+
∑
B⊂I

#B=n−1

∫
E+(B)

(∑
i∈B

(−∂2
i f − ∂if ∂i ln(�)

)− 1

β

∑
i∈I\B

∂if

)
gβ� dλ

(n)
B

+
∑
B⊂I

#B=n−2

∫
E+(B)

(∑
i∈B

(−∂2
i f − ∂if ∂i ln(�)

)− 1

β

∑
i∈I\B

∂if

)
gβ2� dλ

(n)
B

+
...

+
∑
B⊂I

#B=1

∫
E+(B)

(∑
i∈B

(−∂2
i f − ∂if ∂i ln(�)

)− 1

β

∑
i∈I\B

∂if

)
gβn−1�(x)dλ

(n)
B

−
∑
i∈I

1

β
∂if (0)g(0)βn�(0). (2.7)

Now using the definition of L, we obtain the desired result. �

3. The associated Markov process

Since (E,D(E)) is a regular, symmetric Dirichlet form on L2(E;μ�,n,β) which is recurrent, hence in particular con-
servative, and possesses the strong local property, we obtain the following theorem, where (Tt )t>0 denotes the C0-
semigroup corresponding to (E,D(E)), see, e.g., [9], Chapter 4 and Chapter 7.

Theorem 3.1. Suppose that Conditions 2.2 and 2.7 are satisfied. Then there exists a conservative diffusion process
(i.e., a strong Markov process with continuous sample paths and infinite life time)

M := M�,n,β := (Ω,F, (Ft )t≥0, (Xt )t≥0, (Θ t )t≥0,
(
P�,n,β

x

)
x∈E

)
with state space E which is associated with (E,D(E)), i.e., for all (μ�,n,β -versions of) f ∈ L2(E;μ�,n,β) and all
t > 0 the function

E � x �→ ptf (x) := E
�,n,β
x

(
f (Xt )

) := ∫
Ω

f (Xt )dP�,n,β
x ∈ [0,∞)

is a quasi continuous version of Ttf . M is up to μ�,n,β -equivalence unique. In particular, M is μ�,n,β -symmetric, i.e.,∫
E

ptfg dμ�,n,β =
∫

E

fptg dμ�,n,β for allf,g :E → [0,∞) measurable and all t > 0,

and has μ�,n,β as reversible, invariant measure, i.e.,∫
E

ptf dμ�,n,β =
∫

E

f dμ�,n,β for all f :E → [0,∞) measurable and all t > 0.
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In the above theorem M is canonical, i.e., Ω = C0([0,∞),E), the space of continuous functions on [0,∞) into
E, Xt (ω) = ω(t), ω ∈ Ω . The filtration (Ft )t≥0 is the natural minimum completed admissible filtration obtained from
the σ -algebras F0

t := σ {Xs |0 ≤ s ≤ t}, t ≥ 0, and F := F∞ :=∨t∈[0,∞) Ft . For each t ≥ 0 we denote by Θ t :Ω → Ω

a shift operator such that Xs ◦ Θ t = Xs+t for all s ≥ 0.

Proof of Theorem 3.1. See, e.g., [9], Theorem 7.2.2 and Exercise 4.5.1. �

Theorem 3.2. The diffusion process M from Theorem 3.1 is up to μ�,n,β -equivalence the unique diffusion process
having μ�,n,β as symmetrizing measure and solving the martingale problem for (H,D(H)), i.e., for all g ∈ D(H)

g̃(Xt ) − g̃(X0) +
∫ t

0
(Hg)(Xs)ds, t ≥ 0,

is an Ft -martingale under P�,n,β
x for quasi all x ∈ E. Quasi all x ∈ E or quasi every x ∈ E (abbreviated by q.a.

x ∈ E or q.e. x ∈ E, respectively) means all x ∈ E except those contained in a set of capacity zero. (Here g̃ denotes a
quasi-continuous version of g, see [19], Chap. IV, Prop. 3.3. Moreover, note that in our setting the notions of capacity
in the sence of [19] and [9] coincide.)

Proof. See, e.g., [1], Theorem 3.4(i). �

4. Analysis of the stochastic process by additive functionals

Throughout this section we assume that we are given the regular, symmetric Dirichlet form (E,D(E)) on
L2(E;μ�,n,β) which is recurrent, hence in particular conservative, and possesses the strong local property, see Sec-
tion 2, and the associated diffusion process M from Section 3. Let g ∈ D(E) be essentially bounded. Due to [9],
Section 3.2, there exists a unique, finite, positive Radon measure ν〈g〉 on (E,B(E)) satisfying∫

E

f dν〈g〉 = 2E(gf,g) − E
(
g2, f

)
for all f ∈ D(E) ∩ C0

c (E).

Remark 4.1. For an essentially bounded g ∈ D(E) the measure ν〈g〉 is called the energy measure of g.

Lemma 4.2. Suppose that Condition 2.2 is satisfied and that � is additionally continuous on E. Let Ω be a relatively
compact subset of E \{� = 0} such that Ω ⊂ E \{� = 0} and ∅ �= B ⊂ I such that E+(B)∩Ω is non-empty. Then the
restriction map iB :g �→ g|E+(B)∩Ω maps continuously from D(E) to H 1,2(E+(B) ∩ Ω), i.e., there exists a constant
CB = CB(B,β,n,�,Ω) such that ‖g‖H 1,2(E+(B)∩Ω) ≤ CB

√
E1(g, g) for g ∈ D(E).

Proof. Let ∅ �= B ⊂ I such that E+(B)∩Ω �=∅. By assumption Ω is compact and contained in {� > 0}. Therefore,
there exist constants �+, �− ∈ (0,∞) and such that �− ≤ � ≤ �+ on Ω . Let g ∈ D. Note that g ∈ D is (weakly)
differentiable on E+(B) with gradient ∇Bg :=∑i∈B ∂igei . We have∫

E+(B)∩Ω

g2 dλ
(n)
B +

∫
E+(B)∩Ω

∣∣∇Bg
∣∣2 dλ

(n)
B

≤ 1

βn−#B�−

(∫
E+(B)∩Ω

g2 dμ
�,n,β

B +
∫

E+(B)∩Ω

∣∣∇Bg
∣∣2 dμ

�,n,β

B

)
≤ 1

βn−#B�−

(∫
E+(B)

g2 dμ
�,n,β

B +
∫

E+(B)

∣∣∇Bg
∣∣2 dμ

�,n,β

B

)
≤ 1

βn−#B�− E1(u,u) < ∞.
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Hence, iB :D → H 1,2(E+(B) ∩ Ω) is well-defined and continuous. Therefore, iB admits a continuous extension to
D(E). Let g ∈ D(E) and (gk)k∈N be a sequence in D converging to g with respect to the E1/2

1 -norm. Then iB(gk) =
gk|E+(B)∩Ω → v = iB(g) in H 1,2(E+(B) ∩ Ω). In particular, the same holds true with respect to the L2(E+(B) ∩
Ω;λ(n)

B )-norm. Certainly, the convergence of (gk)k∈N to g implies convergence in L2(E;μ�,n,β) which in turn implies

that gk|E+(B)∩Ω → g|E+(B)∩Ω in L2(E+(B) ∩ Ω;λ(n)
B ) due to the boundedness of � on Ω . Hence, we can conclude

that iB(g) = g|E+(B)∩Ω by the uniqueness of the limit. Thus, the map

iB :D(E) → H 1,2(E+(B) ∩ Ω
)
, g �→ g|E+(B)∩Ω

is well-defined and continuous. Set CB := 1√
βn−#B�− . �

Proposition 4.3. Suppose that Conditions 2.2 is satisfied and that � is additionally continuous on E. Let g ∈
D(E) ∩ C0

c (E). Then g is weakly differentiable on E+(B) \ {� = 0} for each ∅ �= B ⊂ I with gradient ∇Bg ∈
L2(E+(B);μ�,n,β

B ) and its energy measure ν〈g〉 is given by

ν〈g〉 = 2
∑

∅ �=B⊂I

∣∣∇Bg
∣∣2μ�,n,β

B .

In particular, for g ∈D holds

ν〈g〉 = 2
∑

∅ �=B⊂I

∑
i∈B

(∂ig)2μ
�,n,β

B .

Proof. First let f,g ∈D. We have

2E(gf,g) − E
(
g2, f

)
= 2

∑
∅ �=B⊂E

∫
E+(B)

∑
i∈B

∂i(gf ) ∂ig dμ
�,n,β

B −
∑

∅ �=B⊂I

∫
E+(B)

∑
i∈B

∂i

(
g2) ∂if dμ

�,n,β

B

= 2
∑

∅ �=B⊂I

∫
E+(B)

∑
i∈B

(∂igf + g ∂if ) ∂ig dμ
�,n,β

B − 2
∑

∅ �=B⊂I

∫
E+(B)

∑
i∈B

g ∂ig ∂if dμ
�,n,β

B

= 2
∑

∅ �=B⊂I

∫
E+(B)

∑
i∈B

(
(∂ig)2f + g ∂ig ∂if

)
dμ

�,n,β

B − 2
∑

∅ �=B⊂I

∫
E+(B)

∑
i∈B

g ∂ig ∂if dμ
�,n,β

B

= 2
∑

∅ �=B⊂I

∫
E+(B)

∑
i∈B

(∂ig)2f dμ
�,n,β

B =
∫

E

f 2
∑

∅ �=B⊂I

∑
i∈B

(∂ig)2 dμ
�,n,β

B .

This shows the assertion for g ∈ D, since D is dense in C0
c (E) with respect to ‖ · ‖sup. Now let g ∈ D(E)∩C0

c (E) and
f ∈ D. Moreover, let (gk)k∈N ⊂D such that gk → g in (D(E),‖ · ‖E1). By [9], p. 123, it holds∣∣∣∣(∫

E

f dν〈g〉
)1/2

−
(∫

E

f dν〈gk〉
)1/2∣∣∣∣≤ (∫

E

f dν〈g−gk〉
)1/2

≤
√

2‖f ‖supE(g − gk, g − gk).

Hence∫
E

f dν〈g〉 = lim
k→∞

∫
E

f dν〈gk〉 = lim
k→∞

(
2E(fgk, gk) − E

(
g2

k , f
))

= lim
k→∞

∫
E

f 2
∑

∅ �=B⊂I

∑
i∈B

(∂igk)
2 dμ

�,n,β

B .
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It remains to show that g possesses on each set E+(B) \ {� = 0} a square-integrable weak gradient (with respect to
μ

�,n,β

B ) and that ∇Bgk → ∇Bg in L2(E+(B);μ�,n,β

B ) as k → ∞.
Define Gj := [0, j)n ∩(E \B1/j ({� = 0}) and GB

j := E+(B)∩Gj for j ∈N. Then each Gj fulfills the assumptions

of Lemma 4.2 and GB
j ↑ E+(B)\{� = 0} as j↑∞. This yields a weak gradient ∇Bg of g on each set GB

j and therefore

a weak gradient in L1
loc(E+(B) \ {� = 0}). Additionally, it holds∫

E+(B)

∣∣∇Bg
∣∣2 dμ

�,n,β

B ≤ lim inf
j→∞

∫
E+(B)

1Gj

∣∣∇Bg
∣∣2 dμ

�,n,β

B ≤ EB(g, g),

since the last inequality holds for fixed j ∈ N. This shows that ∇Bg ∈ L2(E+(B);μ�,n,β

B ) and furthermore, applying
the above inequality to g − gk finishes the proof. �

Proposition 4.4. Suppose that Condition 2.14 is satisfied. Let f,g ∈D ⊂ D(E). Then

E(f, g) = 〈νf , g〉 :=
∫

E

g dνf

with

νf :=
∑
B⊂I

(−ΔBf − (∇Bf,∇B ln(�)
))

λ
�,n,β

B − 1

β

∑
B�I

(∇I\Bf, e
)
λ

�,n,β

B .

Proof. This representation is valid due to the integration by parts carried out in the proof of Proposition 2.16. �

Next we recall the definition of a positive, continuous, additive functional (see, e.g., [9], Appendices A.2, A.3).

Definition 4.5 (Additive functional). A family (At )t≥0 of extended real valued functions At :Ω → R, with R :=
R∪ {−∞,∞}, is called additive functional (AF in abbreviation) of M if it satisfies the following conditions:

(A1) At is Ft -measurable for each t ≥ 0.
(A2) There exists Λ ∈ F∞ with P�,n,β

x (Λ) = 1 for all x ∈ E, Θ tΛ ⊂ Λ for all t > 0 and for each ω ∈ Λ, t �→ At(ω)

is right continuous and has left limit on [0,∞) satisfying
(i) A0(ω) = 0, and

(ii) At+s(ω) = At(ω) + As(Θ tω) for all t, s ≥ 0.

The set Λ in the above is called a defining set for (At )t≥0. An (At )t≥0 is said to be finite if |At(ω)| < ∞ for all
t ∈ [0,∞) and each ω in a defining set. An (At )t≥0 is said to be continuous if [0,∞) � t �→ At(ω) ∈ R is con-
tinuous for each ω in a defining set. A continuous AF (At )t≥0 consisting of a family of [0,∞]-valued functions
At :Ω → [0,∞] is called a positive continuous AF (PCAF in abbreviation). The set of all PCAFs we denote by A+

c .
Moreover, we call an AF which is also a square integrable martingale with respect to (Ft )t≥0 a martingale AF (MAF
in abbreviation).

Remark 4.6. Suppose that Conditions 2.2 and 2.7 are satisfied. Let 0 ≤ g ∈ C0(E) and M ∈ B(E). Then A := (At )t≥0
with

At(ω) :=
∫ t

0
g
(
Xs(ω)

)
1M

(
Xs(ω)

)
ds, ω ∈ Ω,

is a PCAF, i.e., A ∈ A+
c . If g is bounded, A is even finite. Compare, e.g., [9], Example 5.1.1.

Given M and a positive measure μ on (E,B(E)) we define a positive measure Pμ on (Ω,F) by

Pμ(Γ ) :=
∫

E

P�,n,β
x (Γ )dμ(x), Γ ∈ F.
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Now we want to assign to the measures ν〈g〉 from Proposition 4.3 and νf from Proposition 4.4 the corresponding
additive functionals (AFs). In order to do this we make use of [9], Theorem 5.1.3.

We consider the following classes of measures.

Definition 4.7 (Smooth measure, measure of finite energy integral). We denote by S the family of smooth measures,
i.e., all positive Borel measures μ on B(E) such that μ charges no set of capacity zero and there exists an increasing
sequence (Fk)k∈N of closed sets in E such that μ(Fk) < ∞ for all k ∈ N and limk→∞ cap(K \ Fk) = 0 for any
compact set K ⊂ E. Here cap(S) denotes the capacity of a set S ⊂ E.

A positive Radon measure μ on B(E) is said to be of finite energy integral if∫
E

|f |dμ ≤ C4
√
E1(f,f ), f ∈ D(E) ∩ C0

c (E),

for some C4 ∈ (0,∞). We denote by S0 the set of all positive Radon measures of finite energy integral.

Remark 4.8. A positive Radon measure μ on B(E) is of finite energy integral if and only if there exists for each α > 0
a unique Uαμ ∈ D(E) such that

Eα(Uαμ,f ) =
∫

E

f dμ for all f ∈ D(E) ∩ C0
c (E),

where Eα(·, ·) := E(·, ·) + α(·, ·)L2(E;μ�,n,β ).

Definition 4.9 (α-potential). We call Uαμ from Remark 4.8 an α-potential and denote by S00 the set of all finite
μ ∈ S0 such that ‖U1μ‖L∞(E;μ�,n,β ) < ∞.

Remark 4.10. Let μ ∈ S00 be a finite measure and g :E → [0,∞) measurable and bounded. Applying [9], Theo-
rem 2.2.1, we obtain that μg := gμ ∈ S00.

Let t > 0, μ ∈ S, A ∈ A+
c and f,h :E → [0,∞) measurable. Then we consider

Ehμ�,n,β

(
(f A)t

) := ∫
Ω

∫ t

0
f (Xs)dAs dPh·μ�,n,β (4.1)

and ∫ t

0
〈f μ,psh〉ds :=

∫ t

0

∫
E

(psh)f dμds =
∫ t

0

∫
E

∫
Ω

h
(
Xs(ω)

)
dP�,n,β

x (ω)f (x)dμ(x)ds. (4.2)

Definition 4.11 (Revuz correspondence). A measure μ ∈ S and a AF A ∈ A+
c are said to be in Revuz correspondence

if and only if equality of (4.1) and (4.2) holds for all f,h :E → [0,∞) measurable.

Remark 4.12. Suppose that Condition 2.14 is satisfied. Using the symmetry of (pt )t≥0 in (4.2) one easily checks that
the measure μ�,n,β is in Revuz correspondence with the PCAF (At )t≥0 := (t)t≥0.

Remark 4.13. Suppose that Condition 2.14 is satisfied. Then for B ⊂ I the positive Radon measure μB := μ
n,�

B :=
�λ

(n)
B is an element of S00 and, by using Remark 4.12 together with [9], Lemma 5.1.3, in Revuz correspondence with

the PCAF (AB
t )t≥0 given by

AB
t := A

n,β,B
t := 1

βn−#B

∫ t

0
1E+(B)(Xs)ds.

Remark 4.14. Suppose Conditions 2.2 and 2.7. Let η ∈ C0(E) such that η ≥ 0. Again by applying [9], Lemma 5.1.3,
and using Remark 4.10 we obtain:
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(i) If μ ∈ S00 and At = ∫ t

0 g(Xs)1M(Xs)ds, t ≥ 0, as in Remark 4.6, are in Revuz correspondence, then

μη := ημ and A
η
t :=

∫ t

0
η(Xs)g(Xs)1M(Xs)ds

are in Revuz correspondence.
(ii) If, moreover, η has compact support, then μη ∈ S00.

Remark 4.15. If μ1,μ2 ∈ S00 with Revuz corresponding AFs A1, A2, respectively. Then μ1 + μ2 ∈ S00 with Revuz
corresponding AF A given by A := A1 + A2.

Theorem 4.16. Suppose that Condition 2.14 is satisfied. Let f ∈D. Then

f (Xt ) − f (X0) = M[f ]
t + N[f ]

t , P�,n,β
x -a.s. for q.e. x ∈ E, (4.3)

where M[f ]
t is a MAF with quadratic variation

〈
M[f ]〉

t
= 2

∑
∅ �=B⊂I

∫ t

0

∣∣∇Bf (Xs)
∣∣21E+(B)(Xs)ds

and

N[f ]
t =

∫ t

0

(∑
B⊂I

((
ΔBf + (∇Bf,∇B ln(�)

))
(Xs)1E+(B)(Xs)

)
+
(∑

B⊂I

1

β

(∇I\Bf, e
)
(Xs)1E+(B)(Xs)

))
ds.

Remark 4.17. Note that the decomposition (4.3) is valid P�,n,β
x -a.s. for q.e. x ∈ E. This is weaker then the statement

in [9], Theorem 5.2.5, where the decomposition holds P�,n,β
x -a.s. for each x ∈ E. This is caused by the fact that in our

setting we do not know if the absolute continuity condition is fulfilled.

Proof of Theorem 4.16. We have to check the assumptions of [9], Theorem 5.2.5. f ∈ D ⊂ D(E) is clearly bounded
and continuous. The measure ν〈f 〉 ∈ S00 due to Proposition 4.3, Remarks 4.13, 4.14(ii) and 4.15 applied inductively.
In addition, these results yield that ν〈f 〉 is in Revuz correspondence with the PCAF

2
∑

∅ �=B⊂I

∫ t

0

∑
i∈B

(∂if )2(Xs)1E+(B)(Xs)ds.

By Proposition 4.4

E(f, g) = 〈νf , g〉 =
∫

E

g dνf

with

νf =
∑
B⊂I

(∑
i∈B

(−∂2
i f − ∂if ∂i ln(�)

))
λ

�,n,β

B − 1

β

∑
B⊂I

( ∑
i∈I\B

∂if

)
λ

�,n,β

B

for all f,g ∈ D. We can split the densities contained in νf into positive and negative part. This yields two positive
Radon measures ν+

f and ν−
f such that νf = ν+

f − ν−
f . These measures belong to S00 by Remarks 4.13, 4.14 and 4.15.
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We can calculate the associated PCAFs A+ and A− in the same way like in the case of ν〈f 〉. By [9], Theorem 5.2.5,

N[f ]
t = −A+ + A− and we obtain that

N[f ]
t =

∫ t

0

(∑
B⊂I

(∑
i∈B

(
∂2
i f + ∂if ∂i ln(�)

))
(Xs)1E+(B)(Xs)

)

+
(∑

B⊂I

(
1

β

∑
i∈I\B

∂if

)
(Xs)1E+(B)(Xs)

)
ds.

�

Corollary 4.18. Let j ∈ I . We denote by πj :Rn → R, x �→ xj , the projection on the j th coordinate. Then under the

assumptions of Theorem 4.16 the coordinate processes (Xj
t )t≥0 := (πj (Xt ))t≥0, 1 ≤ j ≤ n, corresponding to M is

given by

Xj
t − Xj

0 = √
2
∫ t

0
1 ◦

E
(Xs)dB

j
s +
∫ t

0
∂j ln(�)(Xs)1 ◦

E
(Xs)ds

+
∑

∅ �=B�I

{√
2
∫ t

0 1E+(B)(Xs)dB
j
s + ∫ t

0 ∂j ln(�)(Xs)1E+(B)(Xs)ds, if j ∈ B,
1
β

∫ t

0 1E+(B)(Xs)ds, if j ∈ I \ B

+ 1

β

∫ t

0
1{(0,...,0)}(Xs)ds, P�,n,β

x -a.s. for q.e. x ∈ E, (4.4)

where (B
j
t )t≥0 is a one dimensional standard Brownian motion. Moreover, (B

j
t )t≥0 and (Bi

t )t≥0 are independent for
i, j ∈ I with i �= j .

Proof. We consider

πk
j (x) :=

{
xj , if x ∈ [0, k + 1)n,
0, if x ∈ [k + 2,∞)n,

1 ≤ j ≤ n, k ∈N, such that πk
j ∈ D.

Furthermore, we define

τk := inf
{
t ≥ 0|Xt /∈ [0, k]n}, k ∈N.

(τk)k∈N is a sequence of stopping times with τk ↑ ∞ as k → ∞. Now using the decomposition (4.3) we obtain for
k ∈N and j ∈ I the representation

Xj
t∧τk

− Xj

0 = πk
j (Xt∧τk

) − πk
j (X0) = M

[πk
j ]

t∧τk
+ N

[πk
j ]

t∧τk

= M
[πk

j ]
t∧τk

+
∫ t∧τk

0
∂j ln(�)(Xs)1 ◦

E
(Xs)ds

+
∑

∅ �=B�I

{∫ t∧τk

0 ∂j�(Xs)1E+(B)(Xs)ds, if j ∈ B,
1
β

∫ t∧τk

0 1E+(B)(Xs)ds, if j ∈ I \ B

+ 1

β

∫ t∧τk

0
1{(0,...,0)}(Xs)ds, P�,n,β

x -a.s. for q.e. x ∈ E.

Additionally we have the cross variation

〈
M[πk

i ],M[πk
j ]〉

t∧τk
= δij

〈
M[πk

j ]〉
t∧τk

= δij

∑
∅ �=B⊂I

2
∫ t∧τk

0
1E+(B)(Xs)ds, P�,n,β

x -a.s., x ∈ E.
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For k ∈ N large enough M
[πk

j ]
t∧τk

= M
[πj ]
t is a continuous, local martingale and moreover, for fixed ∅ �= B ⊂ I and

i, j ∈ B we have that

〈
M[πi ],M[πj ]〉

t
= δij 2

∫ t

0
1E+(B)(Xs)ds =

∫ t

0

(
δij

√
21E+(B)(Xs)

)2 ds, P�,n,β
x -a.s., x ∈ E.

Thus for t ≥ 0 and j ∈ B we obtain (perhaps after enlarging the probability space) by using [18], Theorem 18.12, that

M
[πj ]
t = √

2
∫ t

0
1E+(B)(Xs)dB

j
s , P�,n,β

x -a.s., x ∈ E,

where (B
j
t )t≥0 is a one dimensional standard Brownian motion. Moreover, (B

j
t )t≥0 and (Bi

t )t≥0 are independent for
i, j ∈ I with i �= j . �

5. Ergodicity and occupation time

Definition 5.1 (Part of a Dirichlet form). Let (G,D(G)) be an arbitrary regular Dirichlet form on some locally
compact separable metric space X, m a positive Radon measure on X with full topological support and G an open
subset of X. Then we define by GG(f,g) := G(f, g) for f,g ∈ {f ∈ D(G)|f̃ = 0 q.e. on X \ G} the part of the form
(G,D(G)) on G, where f̃ denotes a quasi-continuous version of f . Indeed, this defines a regular Dirichlet form on
L2(G;m) and for any special standard core C of (G,D(G)), CG := {f ∈ C| supp[f ] ⊂ G} is a core of (G,D(G)) (see
[9], Theorem 4.4.3).

Throughout this section, suppose Condition 2.14 is satisfied and denote by

M := M�,n,β := (Ω,F, (Ft )t≥0, (Xt )t≥0, (Θ t )t≥0,
(
P�,n,β

x

)
x∈E

)
the process constructed in Theorem 3.1. Furthermore, for an open subset G of E

MG := (Ω,F, (Ft )t≥0,
(
X0

t

)
t≥0, (Θ t )t≥0,

(
P�,n,β

x

)
x∈GΔ

)
is called the part of the process M on G, where X0

t (ω) results from Xt (ω) by killing the path upon leaving G for
ω ∈ Ω . Here GΔ := G ∪ {Δ}, where Δ denotes the cemetery, see, e.g., [9], Chap. A.2. By [9], Theorem 4.4.2, the
process MG is associated to (EG,D(EG)).

In (2.3) we defined the form EB for ∅ �= B ⊂ I and functions f,g ∈ D. We can extend the definition to func-
tions in f,g ∈ C2

c (E+(B)). Denote the closure of the pre-Dirichlet form (EB,C2
c (E+(B))) on L2(E+(B);μ�,n,β

B ) by
(EB,D(EB)) and by (T B

t )t>0 the corresponding semigroup. It is known that this yields for each B a strongly local,
recurrent, regular Dirichlet form.

Let Ai , i ∈ I , be the connected components of Ẽ := E \ {� = 0} for some index set I and AB
i := Ai ∩ E+(B). We

suppose an additional condition:

Condition 5.2. I is finite, each Ai , i ∈ I , is convex and the density � fulfills∫
Br({�=0})

dμ�,n,β ≤ Cr2 as r → 0

with a constant C < ∞.

For the following lemma we need the notion of a strongly regular Dirichlet form (see also [22], Section 4.2, and
[23]):
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Definition 5.3 (Strong regularity). A regular Dirichlet form (G,D(G)) on L2(E;μ�,n,β) is called strongly regular, if
the topology induced by the intrinsic metric

d(x, y) := sup

{
f (x) − f (y)|f ∈ D(G) ∩ C0

c (E) with
1

2
ν〈f 〉 ≤ μ�,n,β

}
, x, y ∈ E,

coincides with the topology generated by the euclidean metric on E. Here 1
2ν〈f 〉 ≤ μ�,n,β means that the energy

measure of f is absolutely continuous w.r.t. μ�,n,β and its Radon–Nikodym derivative is almost everywhere less or
equal than two.

Lemma 5.4.

(i) {� = 0} is of capacity zero and {� = 0} ∩ E+(B) is of capacity zero for every ∅ �= B ⊂ I .
(ii) Ai is open and Tt -invariant for every i ∈ I .

(iii) AB
i is open in E+(B) and T B

t -invariant for every i ∈ I and ∅ �= B ⊂ I .

Proof.

(i) We only show the first statement for the Dirichlet form (E,D(E)). The second statement follows for the same
reasons. By [23], Theorem 3, and Condition 5.2 it is enough to show strong regularity of (E,D(E)). Let f ∈
D(E) ∩ C0

c (E). Then the energy measure of f has the form

1

2
ν〈f 〉 =

∑
∅ �=B⊂I

∣∣∇Bf
∣∣2μ�,n,β

B =
( ∑
∅ �=B⊂I

∣∣∇Bf
∣∣21E+(B)

)
μ�,n,β

by Proposition 4.3. Thus,

d(x, y) = sup

{
f (x) − f (y)|f ∈ D(E) ∩ Cc(E) with

∑
∅ �=B⊂I

∣∣∇Bf
∣∣21E+(B) ≤ 1 a.e. on E

}

= sup
{
f (x) − f (y)|f ∈ D(E) ∩ Cc(E) with

∣∣∇Bf
∣∣2 ≤ 1 a.e. on E+(B),∅ �= B ⊂ I

}
for x, y ∈ E. Since E is convex, we have by the fundamental theorem of calculus

|x − y| = d(x, y).

This proves the assertion.
(ii) Clearly, each Ai is open in E, since � is continuous. In order to show Tt -invariance, it is sufficient to prove that

Ai is quasi open and quasi closed simultaneously by [9], Corollary 4.6.3. Since each open set is quasi open, it is
left to show that Ai is quasi closed or equivalently that E \ Ai is quasi open. Thus, let ε > 0. Since {� = 0} is of
capacity zero by (i), there exists an open set B containing {� = 0} with cap(B) < ε. The set G :=⋃j �=i Aj ∪ B

is open, contains E \ Ai and it holds

cap
(
G \ (E \ Ai)

)≤ cap(B) < ε.

Hence E \ Ai is quasi closed. Thus Ai is Tt -invariant.
(iii) Follows by the same arguments. �

Remark 5.5.

(i) Due to [9], Lemma 4.6.3, Tt -invariance of Ai implies that there exists a properly exceptional set Ni such that
Ai \ Ni is M-invariant in the sense that

P�,n,β
x

(
Xt ∈ (Ai \ Ni) for all t ≥ 0

)= 1 for all x ∈ Ai \ Ni.
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(ii) Fix some set AB
i and define Gk := {x ∈ AB

i |d(x, {� = 0} ∩ E+(B)) > 1
k
} ∩ [0, k)n. This yields a sequence

of bounded open subsets of AB
i increasing to AB

i . Since � ∈ C1(E) by Condition 2.14, it follows that γk :=
ess infx∈Gk

� > 0, k = 1,2, . . . (with respect to the measure λ
(n)
B ).

(iii) By a similar argument, Lp-norms on K with respect to the measures μ
�,n,β

B and λ
(n)
B respectively are equivalent

for some compact set K contained in some AB
i .

(iv) In the case that �(x) > 0 for all x ∈ E, Ẽ = E is already connected. Moreover, in Condition 5.2 instead of
assuming convexity it suffices to require that I is finite and the intersection of some Ai with E+(B) is either
empty or connected.

Theorem 5.6. Let i ∈ I . For all f ∈ L1(Ai;μ�,n,β) holds

lim
t→∞

1

t

∫ t

0
f (Xs)ds =

∫
Ai

f dμ�,n,β

μ�,n,β(Ai)
(5.1)

P�,n,β
x -a.s. for q.e. x ∈ Ai .

Proof. Fix i ∈ I . Due to [9], Theorem 4.7.3(iii), the definition of MAi and Remark 5.5(i) it is sufficient to show that
(EAi ,D(EAi )) is irreducible recurrent. Recurrence has already been shown in Proposition 2.11. In particular, we have
that 1E ∈ D(E) and E(1E,1E) = 0. Since Ai is Tt -invariant, we have 1Ai

= 1Ai
1E ∈ D(E) and

0 = E(1E,1E) = E(1Ai
,1Ai

) + E(1E\Ai
,1E\Ai

)

by [9], Theorem 1.6.1. Hence, 1Ai
∈ D(EAi ) and EAi (1Ai

,1Ai
) = 0 which implies recurrence of (EAi ,D(EAi )).

Taking into account that the considered form is recurrent, irreducibility is equivalent to the condition that every
f ∈ D(EAi ) with EAi (f,f ) = 0 is μ�,n,β -a.e. constant (on Ai ) by [4], Theorem 2.1.11. Denote by (E i

B,D(E i
B)) the

part of the form (EB,D(EB)) on AB
i . This is the closure of (EB,C2

c (AB
i )) by [9], Theorem 4.4.3, and thus, it is

irreducible. Indeed, the closure of the pre-Dirichlet form

∑
i∈B

∫
AB

i

∂if ∂ig dλ
(n)
B , f, g ∈ C2

c

(
AB

i

)
,

on L2(AB
i ;λ(n)

B ) yields reflecting Brownian motion on AB
i which is irreducible (see [4], p. 128) and hence the closure

of the form defined for functions in C2
c (AB

i ) on L2(AB
i ;λ(n)

B ) is also irreducible in view of [4], Theorem 2.1.11.
Hence, it follows by [9], Corollary 4.6.4, and Remark 5.5(ii) that (E i

B,D(E i
B)) is irreducible. Let f ∈ D(EAi ) and

choose a seqeunce (fk)k∈N in C2
c (Ai) such that fk → f with respect to

√
EAi

1 . Then the restriction to E+(B) is by

definition EB -Cauchy and converges to the restriction of f in L2(E+(B);μ�,n,β

B ). Therefore, the convergence holds
also in D(EB) and

EAi (f,f ) = E(f,f ) = lim
k→∞E(fk, fk) = lim

k→∞
∑

∅ �=B⊂I

AB
i �=∅

EB(fk, fk) =
∑

∅ �=B⊂I

AB
i �=∅

EB(f,f )

by definition. By T B
t -invariance

EAi (f,f ) =
∑

∅ �=B⊂I

AB
i �=∅

E i
B(1AB

i
f,1AB

i
f ).
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Therefore, EAi (f,f ) = 0 implies E i
B(1AB

i
f,1AB

i
f ) = 0 for each summand and hence, f = ci

B μ
�,n,β

B -a.e. on AB
i for

some constant ci
B by [4], Theorem 2.1.11. Thus, we can conclude

f =
∑

AB
i �=∅

ci
B1AB

i
.

It remains to show that there exists a constant c such that ci
B = c for all B . Let ∅ �= B ⊂ I with AB

i �= ∅ be arbitrary
and l ∈ B such that Ai also intersects E+(B \ {l}). We show that ci

B = ci
B\{l} by contradiction. Then the assertion

follows by applying this result successively. If ci
B �= ci

B\{l}, we can assume that ci
B = 0 and ci

B\{l} = 1, since
ci
B1Ai

−f

ci
B−ci

B\{l}
∈

D(EAi ). Fix a point z ∈ A
B\{l}
i . Then, by construction there exists a (bounded) neighborhood U of z in E such that its

closure is contained in Ai . Choose a C∞-cutoff function η defined on E which is constantly one near z and has support
contained in U . Then it is easy to see that ηf ∈ D(EAi ) and (ηfk)k∈N is an approximation for ηf whenever (fk)k∈N
is a sequence of C2

c (Ai)-functions which approximates f in D(EAi ). Moreover, EB(ηfk, ηfk) → 0 as k → ∞. By
construction we have

ηfk(x) = ηfk(x) − ηfk(x + Cel) = −
∫ C

0
∂l(ηfk)(x + tel)dt,

where x ∈ U ∩ E+(B \ {l}) and C > 0 is chosen such that x + Cel ∈ U \ supp(η). Hence,∣∣ηfk(x)
∣∣≤ ∫ ∞

0

∣∣∂l(ηfk)(x + tel)
∣∣dt.

This implies∫
A

B\{l}
i

|ηfk|dλ
(n)
B\{l} ≤

∫
AB

i

∣∣∂j (ηfk)
∣∣dλ

(n)
B .

Since we can restrict our considerations to the closure of U by construction, we have equivalence of norms by Re-
mark 5.5(iii) and hence, the left-hand side converges to a positive constant, whereas the right-hand side converges to
zero. This is a contradiction and thus ci

B = c for some constant c, all B and i. �

By the preceding ergodic theorem it follows immediately by choosing f as the indicator function of the boundary
that the occupation time of the process M on the boundary increases asymptotically linear whenever the process starts
in a component which possesses a boundary part with μ�,n,β positive measure. In particular, the process spends in this

case P�,n,β
x -a.s. a positive amount of time at the boundary (with respect to the Lebesgue measure).

Corollary 5.7. For all measurable Γ ⊂ ∂E = ⋃̇B�IE+(B) and all i ∈ I holds

lim
t→∞

1

t

∫ t

0
1Γ (Xs)ds = μ�,n,β(Γ ∩ Ai)

μ�,n,β(Ai)
(5.2)

P�,n,β
x -a.s. for q.e. x ∈ Ai . In particular, under the condition that μ�,n,β(Γ ∩ Ai) > 0 for q.e. x ∈ Ai and P�,n,β

x -a.a.
ω ∈ Ω there exists T (ω,x) ∈ [0,∞) and c(ω,x) ∈ (0,∞) such that∫ t

0
1Γ

(
Xs(ω)

)
ds ≥ tc(ω, x) for all t ≥ T (ω,x). (5.3)

Corollary 5.8. Let � > 0 pointwisely, j ∈ I and B �= I . Then

lim
t→∞

1

t

∫ t

0
1{0}
(
X

j
s

)
ds = μ�,n,β({xj = 0})

μ�,n,β(E)
> 0 (5.4)
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and

lim
t→∞

1

t

∫ t

0
1E+(B)(Xs)ds = μ�,n,β(E+(B))

μ�,n,β(E)
> 0

P�,n,β
x -a.s. for q.e. x ∈ E and (5.3) holds. Moreover, the right-hand side of (5.4) is increasing in β , converges to 1 as

β → ∞ and converges to 0 as β → 0.

Proof. The first statement follows directly from (5.2). In order to proof the latter assertion note that

μ�,n,β({xj = 0})
μ�,n,β(E)

= 1 − μ�,n,β({xj > 0})
μ�,n,β(E)

and

μ�,n,β({xj > 0})
μ�,n,β(E)

=

∑
B⊂I

j∈B

∫
E+(B)

βn−#B� dλ
(n)
B∑

B⊂I

∫
E+(B)

βn−#B� dλ
(n)
B

=
∑n

i=0 βiai∑n
i=0 βibi

, (5.5)

where

ai :=
∑
B⊂I

#B=n−i,j∈B

∫
E+(B)

� dλ
(n)
B for i = 0, . . . , n − 1,

bi :=
∑
B⊂I

#B=n−i

∫
E+(B)

� dλ
(n)
B for i = 0, . . . , n

and an := 0. It holds 0 < ai < bi for i = 1, . . . , n − 1, 0 = an < bn and 0 < a0 = b0. Hence, (5.5) is decreasing in β ,
converges to 0 as β → ∞ and converges to 1 as β → 0. �

6. Application to the dynamical wetting model in (d + 1)-dimension

Let d ∈ N and Dd := (0,1]d ⊂ Rd . For N ∈ N we define Dd,N := NDd ∩ Zd , where NDd := {Nθ |θ ∈ Dd}. Here
N stands for the scaling parameter. The discretized set Dd,N is a microscopic correspondence to the macroscopic
domain Dd and given by Dd,N = {1,2, . . . ,N}d . The boundary ∂Dd,N of Dd,N is defined by ∂Dd,N := {x ∈ Zd \
Dd,N ||x − y| = 1 for some y ∈ Dd,N } and the closure Dd,N of Dd,N is defined by Dd,N := Dd,N ∪ ∂Dd,N . Hence
Dd,N = {0,1,2, . . . ,N + 1}d . For fixed N ∈N we consider the space of interfaces

Ω+
d,N := [0,∞)Dd,N := {φ :Dd,N → [0,∞)

}
on Dd,N . Note that φ(x) describes the height of an interface φ ∈ Ω+

d,N at position x ∈ Dd,N with respect to the

reference hyperplane Dd,N . Therefore, φ(x), x ∈ Dd,N , is also called height variable. We extend φ ∈ Ω+
d,N to the

boundary ∂Dd,N by setting φ(x) = 0 for all x ∈ ∂Dd,N . The restriction for the functions φ to take values in [0,∞) ⊂R

reflects the fact that a hard wall is settled at height level 0 of the interface.

The potential energy of an interface φ ∈ Ω+
d,N is given by a Hamiltonian with zero boundary condition, i.e.,

Ω+
d,N � φ �→ HV

d,N(φ) := 1

2

∑
x,y∈Dd,N

|x−y|=1

V
(
φ(x) − φ(y)

) ∈R, (6.1)

where the pair interaction potential V fulfills Condition 6.1 below.
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Condition 6.1. The potential V :R → [−b,∞), b ∈ [0,∞), is continuously differentiable and symmetric, i.e.,
V (−r) = V (r) for all r ∈ R and moreover, κ := ∫R exp(−V (r))dr < ∞.

A natural distribution on the space of interfaces (Ω+
d,N ,B(Ω+

d,N )) is given by the probability measure μ
V,β
d,N defined

by

dμ
V,β
d,N (φ) = 1

Z
V,β
d,N

exp
(−HV

d,N(φ)
) ∏

x∈Dd,N

(
β dδ0(x) + dφ+(x)

)
, φ ∈ Ω+

d,N , (6.2)

with pair interaction potential V under Condition 6.1 and normalizing constant Z
V,β
d,N . Here

∏
x∈Dd,N

(dδ0(x) +
dφ+(x)) denotes the product measure on [0,∞)N

d
, where dφ+(x) is the Lebesgue measure on ([0,∞),B([0,∞)))

and δ0(x) denotes the Dirac measure on ([0,∞),B([0,∞))) at 0 for x ∈ Dd,N . μ
V,β
d,N is a finite volume Gibbs measure

conditioned on [0,∞)Dd,N . The corresponding space of square integrable functions we denote by L2(Ω+
d,N ;μV,β

d,N ).
Next we define the probability density

�(φ) := �
V,β
d,N (φ) := 1

Z
V,β
d,N

exp
(−HV

d,N(φ)
)
, φ ∈ Ω+

d,N .

Hence we can rewrite (6.2) as

dμNd,β,� := dμ
V,β
d,N = �

∏
x∈Dd,N

(
β dδ0(x) + dφ+(x)

)
= �

∑
B⊂Dd,N

βNd−#B

(∏
x∈B

dφ+(x)
∏

y∈Dd,N\B
dδ0(y)

)
= �

∑
B⊂Dd,N

dλ
Nd,β
B = � dmNd,β, φ ∈ Ω+

d,N .

Condition 6.2. V′(x, ·) ∈ L2(Ω+
d,N ;μNd,β,�) for all x ∈ Dd,N , where

Ω+
d,N � φ �→ V′(x,φ) :=

∑
y∈Dd,N

|x−y|=1

V ′(φ(x) − φ(y)
) ∈R.

Remark 6.3. Condition 6.1 guarantees that V (0) ∈ [−b,∞), hence flat interfaces are natural elements in the space

of interfaces Ω+
d,N , i.e., occur with positive probability, see (6.2). Furthermore, Conditions 6.1 and 6.2 imply Condi-

tions 2.14 and 5.2 (see also Remark 2.15).

Remark 6.4. In [13] the authors assume that the potential V is twice continuously differentiable, symmetric and
strictly convex, i.e., it exist some constants c−, c+ > 0 such that c− ≤ V ′′(r) ≤ c+ for all r ∈R. This implies that κ :=∫
R exp(−V (r))dr < ∞. In particular, the potentials investigated in [13] obviously fulfill Condition 6.1. In addition,

Condition 6.2 is also satisfied. Indeed, in the case d = N = 1 with φ := φ(1) it holds by integration by parts

0 ≤
∫

[0,∞)

V′(1, φ)2 exp
(−2V (φ)

)
(β dδ0 + dφ+)

= lim
b→∞

∫ b

0

(−2V ′(φ)
)(−2V ′(φ)

)
exp
(−2V (φ)

)
dφ+

= lim
b→∞−2V ′(b) exp

(−2V (b)
)+ ∫

[0,∞)

2V ′′(φ) exp
(−2V (φ)

)
dφ+

≤ 2c+
∫

[0,∞)

exp
(−2V (φ)

)
dφ+ < ∞,
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since V ′ is non-decreasing and V ′(0) = 0. Similar, but more lengthy, calculations show that this result is valid for
higher dimensions and larger numbers of height variables. Therefore, the class of admissible potentials in our con-
struction includes the one considered in [13] for the dynamical wetting model.

For each φ ∈ Ω+
d,N we denote by

D
dry
d,N (φ) := {x ∈ Dd,N |φ(x) = 0

}
and Dwet

d,N (φ) := {x ∈ Dd,N |φ(x) > 0
}
,

dry regions and wet regions associated with the interface φ, respectively, and define for A,B ⊂ Dd,N ,

Ω
+,dry
d,N,A := {φ ∈ Ω+

d,N |Ddry
d,N (φ) = A

}
and Ω

+,wet
d,N,B := {φ ∈ Ω+

d,N |Dwet
d,N (φ) = B

}
,

respectively.

Remark 6.5. The following decomposition of the state space is valid:

Ω+
d,N =

⋃̇
A⊂Dd,N

Ω
+,dry
d,N,A =

⋃̇
B⊂Dd,N

Ω
+,wet
d,N,B.

Therefore, μNd,β,� =∑B⊂Dd,N
μ

Nd,β,�

B with μ
Nd,β,�

B := μNd,β,�|B
Ω

+,wet
d,N,B

.

Theorem 6.6. Let d,N ∈ N. For β ∈ (0,∞) we have that under Conditions 6.1 and 6.2

ENd,β,�(F,G) :=
∑

∅ �=B⊂Dd,N

ENd,β,�

B (F,G), F,G ∈ D = C2
c

(
Ω+

d,N

)
(6.3)

with

ENd,β,�

B (F,G) :=
∑
x∈B

∫
Ω

+,wet
d,N,B

∂xF ∂xGdμ
Nd,β,�

B , ∅ �= B ⊂ Dd,N ,

is a densely defined, positive definite, symmetric bilinear form, which is closable on L2(Ω+
d,N ;μNd,β,�). Its closure

(ENd,β,�,D(ENd,β,�)) is a recurrent, hence in particular conservative, strongly local, strongly regular, symmetric

Dirichlet form on L2(Ω+
d,N ;μNd,β,�).

Remark 6.7. Note that for functions in D, l ∈ {1,2} and x ∈ Dd,N we denote by ∂l
x the partial derivative of order l

with respect to the variable φ(x). In particular, ∂x := ∂1
x .

Proof of Theorem 6.6. Use Remark 6.3 and apply Theorem 2.12. For strong regularity see the proof of
Lemma 5.4(i). �

For F ∈ D := C2
c (Ω+

d,N ) and B ⊂ Dd,N we define

LBF := Ld,N,�,BF :=
∑
x∈B

(
∂2
xF + ∂xF∂x(ln�)

)+ ∑
x∈Dd,N\B

1

β
∂xF

= ΔBF + (∇BF,∇B ln�
)+ 1

β

(∇Dd,N\BF, e
)
,

and

LF :=
∑

B⊂Dd,N

1
Ω

+,wet
d,N,B

LBF,
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where ∇BF :=∑x∈B ∂xFec(x) with some c :Dd,N → {1, . . . ,Nd} bijective and {e1, . . . , eNd } being the canonical

basis in RNd
. Moreover, ΔBF :=∑x∈B ∂2

xF for F ∈ D, B ⊂ Dd,N and e is a vector of length Nd containing only
ones.

Proposition 6.8. Suppose Conditions 6.1 and 6.2 to be satisfied. Then we have the representation ENd,β,�(F,G) =
(−LF,G)

L2(Ω+
d,N ;μ

Nd ,β,�
)

for F,G ∈ D.

Proof. Use Remark 6.3 and apply Proposition 2.16. �

Remark 6.9. Let LB
1 := ΔB + (∇B,∇B ln�) and LB

2 := (∇B, e). Using this notation we can express L in the form

LF =
∑

B⊂Dd,N

1
Ω

+,wet
d,N,B

(
LB

1 F + 1

β
LDd,N\B

2 F

)

= 1
Ω

+,wet
d,N,I

LDd,N

1 F +
∑

B�Dd,N

1
Ω

+,wet
d,N,B

(
−LDd,N\B

1 F + 1

β
LDd,N\B

2 F

)
, F ∈ D.

The interpretation of L is that on Ω
+,wet
d,N,B the operator LB

1 describes the dynamics of the height variables φ(x), x ∈ B ,

by means of a diffusive and a drift term whereas the operator 1
β
LDd,N\B

2 forces the remaining height variables φx ,

x ∈ Dd,N \ B with constant drift 1
β

back to positive height. The operator −LB
1 + 1

β
LB

2 for B �=∅ is called a Wentzell
type boundary operator. The associated Cauchy problem can be formulated in the form⎧⎪⎨⎪⎩

∂
∂t

Ut (φ) = ΔUt(φ) + (∇Ut(φ),∇(ln�)(φ)), t > 0, φ ∈ Ω+
d,N ,

∂2
xUt (φ) + ∂xUt (φ)∂x(ln�)(φ) − 1

β
∂xUt (φ) = 0, t > 0, x ∈ Dd,N ,φ ∈ Ω+

d,N ∩ {φx = 0},
U0(φ) = F(φ).

(6.4)

The second line of (6.4) is called Wentzell boundary condition (for the xth height variable).

Theorem 6.10. Suppose that Conditions 6.1 and 6.2 are satisfied. Then there exists a conservative diffusion process
(i.e., a strong Markov process with continuous sample paths and infinite life time)

MNd,β,� = (Ω,F, (Ft )t≥0, (φt )t≥0, (Θ t )t≥0,
(
PNd,β,�

φ

)
φ∈Ω+

d,N

)
with state space Ω+

d,N which is associated with (ENd,β,�,D(ENd,β,�)). MNd,β,� is up to μNd,β,�-equivalence unique.

In particular, MNd,β,� is μNd,β,�-symmetric and has μNd,β,� as invariant and reversible measure.

Proof. Use Remark 6.3 and apply Theorem 3.1. �

Theorem 6.11. The diffusion process MNd,β,� from Theorem 6.10 is up to μNd,β,�-equivalence the unique diffusion

process having μNd,β,� as symmetrizing measure and solving the martingale problem for (HNd,β,�,D(HNd,β,�)),

i.e., for all G ∈ D(HNd,β,�)

G̃(φt ) − G̃(φ0) +
∫ t

0

(
HNd,β,�G

)
(φs)ds, t ≥ 0,

is an Ft -martingale under PNd,β,�
φ for quasi all φ ∈ Ω+

d,N .

Proof. Use Remark 6.3 and apply Theorem 3.2. �
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Corollary 6.12. Suppose that Conditions 6.1 and 6.2 are satisfied. Let x ∈ Dd,N . We denote by πx :Ω+
d,N → [0,∞),

φ �→ φ(x), the projection on the xth coordinate. The coordinate processes (φt (x))t≥0 := (πx(φt ))t≥0 corresponding

to MNd,β,� is given by

φt (x) − φ0(x) = √
2
∫ t

0
1Ω+

d,N
(φs)dBs(x) −

∫ t

0
V′(x,φs)1Ω+

d,N
(φs)ds

+
∑

∅ �=B�Dd,N

⎧⎨⎩
√

2
∫ t

0 1
Ω

+,wet
d,N,B

(φs)dBs(x) − ∫ t

0 V
′(x,φs)1Ω

+,wet
d,N,B

(φs)ds, if x ∈ B,
1
β

∫ t

0 1
Ω

+,wet
d,N,B

(φs)ds, if x ∈ Dd,N \ B

+ 1

β

∫ t

0
1{(0,...,0)}(φs)ds, (6.5)

where (Bt (x))t≥0, x ∈ Dd,N , are one dimensional independent standard Brownian motions and

V′(x,φ) :=
∑

y∈Dd,N

|x−y|=1

V ′(φ(x) − φ(y)
)
, φ ∈ Ω+

d,N ,

with pair interaction potential V .

Proof. Use Remark 6.3 and apply Corollary 4.18. �

Remark 6.13. (6.5) provides a weak solution to (1.4) for quasi every starting point in Ω+
d,N , even for boundary points.

Theorem 6.14. Suppose that Conditions 6.1 and 6.2 are satisfied. For all F ∈ L1(Ω+
d,N ;μNd,β,�) it holds that

lim
t→∞

1

t

∫ t

0
F(φs)ds =

∫
Ω+

d,N

F dμNd,β,�

PNd,β,�
φ -a.s. for q.e. φ ∈ Ω+

d,N .

Proof. Use Remark 6.3 and apply Theorem 5.6. �

Corollary 6.15. Under the conditions of Theorem 6.14 we have that for all measurable Γ ⊂ ∂Ω+
d,N =⋃̇

B�Dd,N
Ω

+,wet
d,N,B it holds that

lim
t→∞

1

t

∫ t

0
1Γ (φs)ds = μNd,β,�(Γ )

PNd,β,�
φ -a.s. for q.e. φ ∈ Ω+

d,N . In particular, under the condition that μNd,β,�(Γ ) > 0 for q.e. φ ∈ Ω+
d,N and PNd,β,�

φ -
a.a. ω ∈ Ω there exists T (ω,φ) ∈ [0,∞) and c(ω,φ) ∈ (0,∞) such that∫ t

0
1Γ

(
φs(ω)

)
ds ≥ tc(ω,φ) for all t ≥ T (ω,φ). (6.6)

Corollary 6.16. Let x ∈ Dd,N and B �= Dd,N . Then under the Conditions of Theorem 6.14 we have that

lim
t→∞

1

t

∫ t

0
1{0}
(
φs(x)

)
ds = μNd,β,�

({
φ(x) = 0

})
> 0 (6.7)
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and

lim
t→∞

1

t

∫ t

0
1

Ω
+,wet
d,N,B

(φs)ds = μNd,β,�

(
Ω

+,wet
d,N,B

)
> 0

PNd,β,�
φ -a.s. for q.e. φ ∈ Ω+

d,N and (6.6) holds. Moreover, the right-hand side of (6.7) is increasing in β , converges
to 1 as β → ∞ and converges to 0 as β → 0.

Proof. Use Remark 6.3 and apply Corollary 5.8. �

Remark 6.17. Corollary 6.16 justifies that β is called strength of pinning.
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