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Abstract. We give a Dirichlet form approach for the construction of a distorted Brownian motion in E := [0, 00)", n € N, where
the behavior on the boundary is determined by the competing effects of reflection from and pinning at the boundary (sticky
boundary behavior). In providing a Skorokhod decomposition of the constructed process we are able to justify that the stochastic
process is solving the underlying stochastic differential equation weakly for quasi every starting point with respect to the associated
Dirichlet form. That the boundary behavior of the constructed process indeed is sticky, we obtain by proving ergodicity of the
constructed process. Therefore, we are able to show that the occupation time on specified parts of the boundary is positive. In
particular, our considerations enable us to construct a dynamical wetting model (also known as Ginzburg—Landau dynamics) on a
bounded set Dy C 74 under mild assumptions on the underlying pair interaction potential in all dimensions d € N. In dimension
d =2 this model describes the motion of an interface resulting from wetting of a solid surface by a fluid.

Résumé. Nous construisons un mouvement brownien tordu dans E := [0, 00)", n € N, en utilisant des méthodes de la théorie des
formes de Dirichlet alors que le comportement a la fronticre est déterminé par les effets concurrents de la réflexion de la frontiére et
I’ancrage a la frontiére (comportement adhésif sur la frontiére de E). En fournissant une décomposition de Skorokhod du processus
construit nous pouvons justifier que le processus stochastique est une solution faible de 1’équation différentielle stochastique fon-
damentale pour quasi tous les points de départ par rapport a la forme de Dirichlet associée. En démontrant I’ergodicité du processus
construit, nous obtenons que le comportement sur la frontiere du processus est en effet adhésif. En conséquence, il est possible de
démontrer que le séjour sur des parties fixées de la frontiere de E est positif. En particulier, nos considérations nous permettent
de construire un modele dynamique d’humectage (ausssi connu comme dynamique de Ginzburg—Landau) sur un ensemble borné
Dy C 7%, d eN. Le potentiel qui détermine I’interaction des variables adjacentes est soumis a des conditions peu restrictives en
toute dimension d € N. En dimension d = 2, ce modele décrit le mouvement d’une interface résultant de I’humectage d’une surface
solide par un fluide.

MSC: 60K35; 60J50; 60J55; 82C41
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1. Introduction

In [8] the authors study stochastic differential equations (SDEs) with sticky boundary behavior and provide existence
and uniqueness of solutions to the SDE system

dX, = 1 de¥T(X) + 1(0.00)(X,) dBy,

1.1
Loy (X1 dr = £ deg* (X)), (1)
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for reflecting Brownian motion X in [0, 0co) sticky at 0, where X := (X/);>¢ starts at x € [0, 00), u € (0, 00) is a given
constant, £91(X) is the right local time of X at 0 and B := (B;);>0 is the standard Brownian motion. In particular,
H.-J. Engelbert and G. Peskir show that the system (1.1) has a jointly unique weak solution and moreover, they prove
that the system (1.1) has no strong solution, thus verifying Skorokhod’s conjecture of the non-existence of a strong
solution in this case. For an outline of the historical evolution in the study of sticky Brownian motion we refer to the
references given in [8].

In the present paper we construct a reflected distorted Brownian motion in E := [0, 00)", n € N, with sticky
boundary behavior. First we use Dirichlet form techniques in order to construct solutions in the sense of the associated
martingale problem for general Wentzell type boundary conditions. Then, by providing a Skorokhod decomposition
for the constructed process, we can show that this process solves the stochastic differential equation

dX! =1,(X))v2dB! + 9;In(0)(X)1 5(X,) dr

f Y 1, 8 X)V2dB! +9;In(0) X1k, 8)(X,)dr, if j € B,

l . .
o4BCI EﬂEJr(B)(X,)dZ, if jel\ B
1
+ Eﬂ{(o,_._,o)}(x,)dt, for some 8 > 0, (1.2)
weakly for quasi every starting point with respect to the underlying Dirichlet form. Here j € I := {1,...,n},

E{(B):={x€E|x; >0foralli e Bandx; =0foralli € I \ B} for B C I with E;(B) CoE for BC I, (B,])tzo
are one dimensional independent standard Brownian motions, j € I. g is a continuously differentiable density on E
such that for all B C I, o is almost everywhere positive on E (B) with respect to the Lebesgue measure and for
all @ # B C I, \/ole, () is in the Sobolev space of weakly differentiable functions on E(B), square integrable
together with its derivative. ¢ continuously differentiable on E implies that the drift part (3; In(0)) jes is continuous
on {o > 0}. The stochastic differential equation (1.2) can be rewritten as

. . . 1 .
dX{ =1(0,00) (X,j)(«/delj + 9 In(0)(X}) dt) + E]l{o} (X{) dt, jel, forsome g >0, (1.3)

or equivalently
j j j 0,j
dX/ = 10,00) (X} ) (V2dB] +8; In(0)(X,) dr) +de;"”,

1t .
with E?‘] = Ef 1{0}(X§)ds, j €, for some 8 > 0.
0

Note that a solution to (1.3) is a continuous semimartingale. By [20], Chapter VI, the right local time K?+’j of
(X{)t209 Jj € 1, is charaterized by

. . t . . .

X/ = x| + / sgn(X/) dX{ 4 ¢,
0
where sgn is defined by sgn(x) = 1 for x > 0 and sgn(x) = —1 for x < 0. For a solution to (1.3) holds

. . ! . 1t .

X/ = %1+ [ 100 () ax! 5 [ 10 (x)as
. ' . .o ot .
= [xi|+ /0 sen(X!) ax + 2 /0 110 (X{) ds.

since X{ > 0 for all > 0 and sgn(0) = —1. Hence, £?+’j = %fé 1y (Xﬁ') ds = 26?’j almost surely. In other words,

E?’j equals one half of the right local time Z?J“j . Furthermore, due to [20], Corollary 1.9, we can conclude that E?’j
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coincides with the central local time of (X,] )r>0, 1.€., it holds almost surely

) 1 t . 1 1 t . .
0 = E/o L10)(X;) ds = 5 lim 5 Lo, (X3) dX)

N

o1t ; .
~lim > /0 1 ey (X{) d(X)

Our considerations are motivated by the so-called V¢ interface model which provides a fundamental mathematical
model for the physical description of interfaces from a microscopic or mesoscopic point of view. As an application of
our results we are interested in the time development of such interfaces. In [11] the authors consider a scalar field ¢,,
t > 0, where its motion is governed by a reversible stochastic dynamics, i.e., in a finite volume A C Zd, deN,
under suitable boundary conditions, the scalar field ¢, := (¢, (x))xea, t > 0, is described by the stochastic differential
equations

dp, () == Y V/'(¢,(x) —,(3))dr +vV2dBi(x). xe€A,t>0.
yeA
le—yl=1

Here | - | denotes the norm induced by the euclidean scalar product on R4,V € C2(R) is a symmetric, strictly convex
potential and {(B;(x));>0lx € A} are independent standard Brownian motions. Such a dynamics is known as the
Ginzburg—Landau V ¢ interface model in finite volume. Of particular interest in the framework of V¢ interface models
is the so-called entropic repulsion. Though one considers the V¢ interface model with reflection on a hard wall. This
phenomenon was investigated, e.g., in [5] and [2] for the static V¢ interface model. Interface motion with entropic
repulsion, i.e., the Ginzburg-Landau V¢ interface model with entropic repulsion was studied recently in [7] for
dimension d > 2. Here the underlying potentials are again symmetric, strictly convex and nearest neighbor C2-pair
potentials. The Ginzburg—Landau dynamics with repulsion was introduced by T. Funaki and S. Olla in [10,12]. In [26]
this problem was tackled via Dirichlet form techniques in dimension d = 1.

In considering the V¢ interface model with reflection on a hard wall and additionally putting a pinning effect on
that wall, we are dealing with the so-called wetting model. In dimension d = 2 this model describes the wetting of
a solid surface by a fluid. The static wetting model was studied recently in [6], see also [3]. Considerations of the
Ginzburg-Landau dynamics with reflection on a hard wall under the influence of an outer force, causing, e.g., a mild
pinning effect on the wall can be found in [12].

In [13], Section 15.1, J.-D. Deuschel and T. Funaki investigated the scalar field ¢, := (¢,(x))xea, ¢ > 0, described
by the stochastic differential equations

dg, (¥) = —L0,00) (B, (X)) D V'(h,(x) — b, () dt + L0,00) (6, (X)) V2dB, (x) + ) (x), x€A, (14)

yeA
lx—yl=1

subject to the conditions:
¢,(x) >0, Z?(x) is non-decreasing with respect to ¢, Zg(x) =0,

/0 ¢, (x)deY(x) =0,
t

BLO(x) = f 110} (¢, (x)) ds  for fixed g > 0,
0

where E?(x) denotes the central local time of ¢,(x) at 0 and the pair interaction potential V is again symmetric,
strictly convex and C2.
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For treating this system of stochastic differential equations the authors gave reference to classical solution tech-
niques as developed e.g. in [17]. The methods provided therein require more restrictive assumptions on the drift part
as in our situation (instead of boundedness and Lipschitz continuity we only need continuity and a mild integrability
condition, see Condition 2.14 and Remark 2.15), moreover, do not apply directly (the geometry differs). First steps in
the direction of applying [17] are discussed in [13] by J.-D. Deuschel and T. Funaki.

As far as we know the only reference that applies to the system of stochastic differential equations (1.3) is [15].
By means of a suitable choice of the coefficients the system of equations given by [15], (II.1), coincides with (1.3),
but amongst others the drift part is also assumed to be Lipschitz continuous and boundend. For this reason, it is not
possible to apply the results of [15] to the setting invenstigated by J.-D. Deuschel and T. Funaki, since the potential V
naturally causes an unbounded drift. Moreover, neither properties of the corresponding L2-semigroup are worked out
nor the invariant measure, Dirichlet form or generator are provided. Such tools are very useful for analyzing scaling
limits of the considered system, see, e.g., [16] and [26]. These we plan to investigate in a follow-up article.

The theory of Dirichlet forms provides appropiate techniques in order to construct and analyze solutions to (1.4)
for a large class of potentials. Indeed, we obtain a weak solution to (1.4) with sticky boundary behavior under rather
mild assumption on the underlying probability density. Note that in view of the results provided in [8], this notion
of solution is the only reasonable one. That the boundary behavior of the constructed weak solution to (1.4) indeed
is sticky, we obtain by proving an ergodicity result (see Theorem 5.6 below). From this we can conclude, that the
occupation time on the boundary of the constructed process increases asymptotically linear, whenever the process
starts in a point with positive density o connected with the boundary, see Corollary 5.7 below.

A Skorokhod decomposition for reflected diffusions on bounded Lipschitz domains with singular non-reflection
part was provided by G. Trutnau in [24]. Here we consider the case of the Wentzell type boundary condition. Dirichlet
form methods in the context of Wentzell boundary condition were introduced in, e.g., [25]. Here, however, in view
of our application we construct via the underlying bilinear form a dynamics even on the boundary. In [25] a static
boundary behavior is realized. An overview of the state of the art in the framework of interface models is presented
in, e.g., [13,14].

Our paper is organized as follows. In Section 2 we provide the functional analytic background to apply Dirichlet
form methods in order to tackle the problem of sticky reflected distorted Brownian motion. We analyze the bilinear
form (2.3) below and show in Theorem 2.12 and in the proof of Lemma 5.4 that (£, D(£)) is a recurrent, hence
in particular conservative, strongly local, strongly regular, symmetric Dirichlet form on the underlying L>-space.
In Section 3 we present the probabilistic counterpart of Section 2. The main result of this section is obtained in
Theorem 3.1, where we show that (£, D(E)) has an associated conservative diffusion process M, i.e., an associated
strong Markov process with continuous sample paths and infinite life time. The diffusion process M is analyzed in
Section 4. Here we provide in Corollary 4.18 a Skorokhod decomposition of M. This proves that M is a weak solution
to (1.4). In Section 5 we show in Theorem 5.6 that the constructed process M is ergodic. Moreover, we present
the consequences of the ergodicity result for the occupation time on the boundary of the constructed process, see
Corollary 5.7 below. Finally, we apply our results to the problem of the dynamical wetting model, see Theorems 6.6,
6.10, 6.11 and Corollary 6.12 below.

The following list of main results summarizes the progress achieved in this paper:

(1) We construct conservative diffusion processes in [0, 00)", n € N, with the competing effects of reflection and
pinning at the boundary (sticky reflected distorted Brownian motion) under mild assumptions on the drift part,
see Theorems 3.1 and 3.2 below.

(i) We provide a Skorokhod decomposition of the constructed processes and thereby prove that the processes solve
the underlying stochastic differential equations weakly for quasi all starting points, see Corollary 4.18 below.

(iii) We show ergodicity of the constructed processes, see Theorem 5.6 below. Using this ergodicity result, we illus-
trate the behavior of the processes at the boundary by studying the occupation times on specified parts of the
boundary by the constructed processes, see Corollary 5.7 below.

(iv) Our general considerations apply to the construction of the dynamical wetting model in finite volume and all
dimensions d € N for a large class of pair interaction potentials, see Theorems 6.10, 6.11 and Corollary 6.12
below.
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2. The functional analytic background

LetneN,I:=1,:={l,...,n} and E := E, := [0, 00)". We have that E= (0, 00)" and we denote by JF the
boundary of E. For each x = (xq, ..., x,) € E we set

Io(x):={iellx;=0} and I (x):={i€l|x; >0},
and define for A, B C I,

Eo(A):={x € E|lp(x)=A} and EL(B):={x € E|l(x)= B},
respectively.

Remark 2.1. We have the decomposition

E= U Eo(A) = U E.(B).

AcCl BclI

In particular,

JE=E\E= U EO(A):UE+(B).

@£ACI BCI

On (E,B(E)) with B(E) being the trace o-algebra of the Borel o-algebra B(R") on E we define for fixed
B € (0, co) the measures

mupi= AP with AP = gAY and AY) =Taxl [T a8, 2.1)
BCI icB jel\B

where #S denotes the number of elements in a set S, dxﬂr is the Lebesgue measure on ([0, c0), B([0, c0))) and 85
denotes the Dirac measure on ([0, co), B([O, oo)))'at 0. The indices i, j € I give reference to the component of
x =(x1,...,x,) € E being integrated by dxj_ and 86, respectively.

Condition 2.2. ¢ is a m, g-a.e. positive function on E such that ¢ € LY(E; my.g).

Remark 2.3. In particular, o can be chosen to be a probability density.

Under Condition 2.2 we define on (E, B(E)) the measure ji, g, := om, g and hence, the space of square inte-
grable functions on E with respect to w, g o, denoted by L%(E; iy, B,0)-

Remark 2.4. Note that the measure |1, g, on (E,B(E)) is a Baire measure. In our setting this means i, g o is a
Borel measure with the additional property that

Mn,g,0(K) < oo  forall compact sets K C E. 2.2)
(2.2) is fulfilled, since o € L'(E; my g.0). Obviously, E is locally compact and countable at infinity.
We set

CY(E):={f:E — R|f is continuous on E with supp(f) C E compact},
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where supp denotes the support of the corresponding function and for k € N we define

Cf(E )= { f:E — R|f is k-times continuously differentiable on E
with supp(f) C E compact and

9! f extends continuously to E for |/] < k}.
Here and below 8’ f denotes the partial derivative of f to the multi index [ € N7, i.e.,
I=(,...,1y) e N}, =1+ +1,
o fi=alor .ol f, 8 fi=dlf 0 fi=f el
We write 9; instead of 81'1' Furthermore, C°(E) := ﬂkeNo Cé‘(E).
Remark 2.5. Under Condition 2.2 we have that C°(E) is dense in L2(E; n,B,0)-
2.1. Dirichlet forms

Let n € N be fixed and denote by {ey, ..., e,} the canonical basis of R". For 8 € (0, co) and g fulfilling Condition 2.2
we define on L2(E; Mn,g,o) the bilinear form

E(f.9)=E"PC(f.9):= Y Ep(f.8). f.geD:=CLE), 2.3)

@+#BCI

with

E5(f.q) = EVPR(f g) = fE SR oBer
+

where ,u%’"’ﬂ = rigﬂ (see (2.1)), (-, -) denotes the euclidean inner product and VBf = ZieB d; fe; for f €D.

Remark 2.6. Suppose that Condition 2.2 is satisfied. Then (£, D) is a symmetric, positive definite bilinear form which
is densely defined on L*(E; Hn,B,0)-

To prove closability of the underlying bilinear form, we have to put an additional restriction on the density o. For
& # B C I we define

Ry(E+(B)) := {x GE.;,_(B)‘/ Q_ld)\’;’ﬂ < oo for SOII168>0},
e (X)

where B.(x) :={y € E;(B)||x — y| < ¢} and for & # B C I, E(B) is the closure of E(B) with respectto |- |.

Condition 2.7. For @ # B C I we have that o =0 )»';ﬁ-a.e. on E(B)\ Ry(EL(B)).

Lemma 2.8. Let Condition 2.7 be satisfied. For @ # B C I let ¢ € C°(R,(E(B))) and f € L*(E, Hon,p)-
(i) There exists C1(¢, B) € (0, 00) such that

np
‘LQ(E+(B)) fodrig"| < Ci(p, B) ||f||Lz(m;M%mﬂ)~

Here L>(E,(B); ,u%’"’ﬂ) denotes the spaces of square integrable functions on E_(B) with respect to u%’n’ﬂ.
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(i1) There exists C(p, B) € (0, 00) such that
B
fodoy?| < Cale, B) - I fll L2k W g)?
‘ /8RQ(E+(B)) (Eionp)

np._ n,p
where oy '_ZBQB 5

Proof.

(i) See, e.g., [19], Chapter 2, Lemma 2.2.
(i) Let d# B C 1,9 e CP(Ry(E4(B))) and f € L*(E, Mo,n,p)- By a multiple application of part (i) we obtain

‘/ _ fedopf| <Y /  fedaf
R, (E+(B) | Jor, (E(B) B

<D C@ B Il ety < C2@ B I 120
BCB ’ O

Proposition 2.9. Suppose that Conditions 2.2 and 2.7 are satisfied. Then (€, D) is closable on L*(E; MHon,p)- Its
closure we denote by (£, D(E)).

Proof. Let (fr)reny be a Cauchy sequence in D with respect to &, i.e., E(fx — fi1, f — fi) > 0 as k,l — oo.
Furthermore, we suppose that f; — 0 in L*(E; Mon,p) as k — oo, ie., (fi, fk)Lz(E;Mg.n,ﬂ) — 0 as k —> oc0. We
have to check whether £(fi, fx) — 0 as k —> oo. Let @ # B C I. We know that for fixed i € B, (9; fi)keN
converges to some h; in L2(E+(B); u%’"’ﬂ), since (9; fr)ren is a Cauchy sequence in L2(E+(B);,u%’""3) and

(L2(E+(B); /L%’”’ﬁ), Il - ||L2(m.'ug,n,ﬁ)) is complete. Let ¢ € C2°(R,(E+(B))). Using Lemma 2.8(i) we obtain that
Hp

‘ / hipdi? — f 3 frp diy”
Ro(E+(B)) Ro(E+(B))

_ ‘ f (hi — 3 f)p di
Ro(E5(B))

<Ci(p,B) - |lhi — aifk”Lz(m;H%n,ﬁ) —0 ask— oo.

This, together with an integration by parts, triangle inequality, Lemma 2.8(ii) and the fact that (fx, fi)2(g. fomp) 0
as k — oo implies:

/ hip dk%’ﬂ
Ro(E+(B))

— lim / 3 frpdsP
k—oco|JR,(E;(B))

/ Sro dﬁg’ﬁ - /
k=00 )y (R, (E5 (B))) Ro(E4(B))

< lim f fk(pdag’ﬁ‘—i— lim / fedipdns?
k—00|J3 (R, (E+(B))) k=00l R, (E+(B))

Thus #; =01in LZ(RQ (E+(B)); )\'l;’ﬁ) and therefore #; = 0 in L2(E+(B); rigﬂ) by Condition 2.7. Forall @ # B C I
this yields #; = 0 in L>(E,(B); M%’”’ﬁ) for all i € B. Moreover,

— lim fedipdsP

=0 ask— oo.

Efe fo= ) L(B)|v3fk|2du%”'ﬂ= Yo Y laifi—hil? —~0 ask— oo
+

L2(E+ By ™)
@#BCl @#BCl icB

and closability is shown. U
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Remark 2.10. Since (£, D) is closable on L*(E; Wo.n,p) by Proposition 2.9 we have that D(E) is complete with
e = ECL V2 4 (- )2

respect to the norm || - ||lg, :==E(, )/~ + (., )Lz(E;ug.,l,ﬁ)'

Proposition 2.11. Suppose that Conditions 2.2 and 2.7 are satisfied. Then (£, D(£)) is a symmetric, regular, strongly

local and recurrent, hence in particular conservative, Dirichlet form.

Proof. The Markov property is clear, see, e.g., [9], Theorem 1.4.1. Regularity can be shown as follows. The extended
Stone—Weierstraf} theorem, see, e.g., [21], Chapter 7, Section 38, yields that C2°(E) is dense in C?(E ) with respect
to || - ||sup. Furthermore, D is dense in D (&) with respect to || - ||g,. Since CZ°(E) C D C D(E) N C?(E), we obtain
that (£, D(E)) is regular. Using [9], Theorem 3.1.1, and [9], Exercise 3.1.1, it is sufficient to show the strong local
property for elements in D. Therefore, let f, g € D with supp(f), supp(g) compact and let g be constant on some
open (in the trace topology of E) neighborhood U of supp(f). Then

cro= Y [ (VAR

oxBcl? E+(B)

/E (VBf, VBg) du%’n’ﬂ =0.

(VBf, VBg) du%’n’/3 +
\_f" +(B)\supp(f) ‘:/0‘“

/E+(B)ﬁsupp(f)

D#BCI D#BCI

Hence (£, D(&)) is strongly local.

In order to deduce recurrence of (£, D(£)), it is enough to show that there exists a sequence (fx)xen C D(E)
such that limg_eo fi =1 Won p-a.e. and limg_ oo E(fi, fi) = 0 by [9], Theorem 1.6.3. This we do next. 1g €
L2(E; to,n,) by Condition 2.2. We show that 1 € D(E). Set A :=[—1,00)" and K := [0, k]", k € N. Then there
exist cutoff functions f; € C°(A), k € N, such that 0 < f; < fiy1 <1, fix =1 on Ky, supp(fx) C B1(Kx) and
|0; fx| < C3 < oc0. C3 independent of k € N. Here B1(Ky), k € N, denotes the 1-neighborhood of the set Kj. Hence

e = sy, = [ U = f0 g

= / (Lg — fi)* dptonp < tonp(E\Kr) — 0 ask — oco. (2.4)
E\Kj
Furthermore,

2
Efi fo=Y / V2 fiel? dn$™? <nCluomp(E\Ki) >0 ask — . (2.5)
o£Bc? E+(B)

Using (2.4) and (2.5) we easily obtain by applying the Cauchy—Schwarz inequality that ( f)zen is £1-Cauchy. Hence
1g € D(E) with

E(1g,1p) = lim E(fk, fi) =0.
k—o00
Therefore, (£, D(E)) is recurrent and, hence in particular, conservative. U
Finally, we end up with the following result.
Theorem 2.12. For fixed n € N, B € (0, 00) and density function o we have that under Conditions 2.2 and 2.7

.= ). E(f.8), [fgeD=CUE),

@#BCI

with

Ep(f.8) = / (VEf VB dul™P, @£ BcCl,
E4(B)
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and ,u%’n’ﬂ = an’ﬂ, is a densely defined, positive definite, symmetric bilinear form, which is closable on L*(E;

Won,p)- Its closure (£, D(E)) is a recurrent, hence in particular conservative, strongly local, regular, symmetric
Dirichlet form on L*>(E; Mo,n,p)-

Proof. See Remark 2.6 and Propositions 2.9 and 2.11. ]
2.2. Generators

By Friedrichs representation theorem we have the existence of the self-adjoint generator (H, D(H)) corresponding to

(€, D(©)).

Proposition 2.13. Suppose that Conditions 2.2 and 2.7 are satisfied. There exists a unique, positive, self-adjoint,
linear operator (H, D(H)) on L*(E; Wo,n,p) such that

DH)C D(E) and E(f, g)=(Hf, g2 forall f € D(H), g € D(E).

(E§Mg,n./3)

Proof. Using Proposition 2.9 this is a direct application of [9], Coro. 1.3.1. (]

We need additional assumptions on the density function o in order to derive an explicit formula for the generator
H on a subset of its domain D(H), dense in L2(E; Hon.B)-

Condition 2.14. ¢ is a m, g-a.e. positive function on E such that

1) ole.) € H'“2(E,(B)) forall @ # B C I, where H""*(E_,(B)) denotes the Sobolev space of weakly differen-
tiable functions on E(B), square integrable together with their derivative.
(ii) o € C'(E), where C'(E) denotes the space of continuously differentiable functions on E.

Remark 2.15.

(1) Note that the additional assumptions collected in Condition 2.14 are not necessary for the existence of the
generator (H, D(H)).
(ii) Condition 2.14(i) is equivalent to (3; In(0))"_, € L*(E; u®"#).

(iii) Condition 2.14(ii) implies that (9; In(0))7_, is continuous on the set {o > 0}.

@iv) If o fulfills Condition 2.14(ii), o is in particular continuous on E and therefore Condition 2.7 is implied. More-
over, Condition 2.14(i) implies Condition 2.2.

For f € D= C2(E) and B C I we define
1 1
LBf=Lm0Pf =3 " (97 f+0if i)+ Y —dif=4a%f+(VPf.VPing)+ E(VI\Bf, e),
ieB iel\B

and

Lf .= Z 1g, L2 f,

BcI

where A8 f .= YicB aff for f € D, B C I and e is a vector of length n containing only ones.

Proposition 2.16. Suppose that Condition 2.14 is satisfied. For functions f,g € D we have the representation
E(f,8) = (=Lf &) 12y -
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Remark 2.17. Let Lf = AB 4+ (VB VBIn o) and Lé\B = (VI\B ¢), Using this notation we can express L in the
form

1
Lf =) 1) (Lff + —Lé\Bf>

BcClI ‘B

1
I\B I\B
=lp,a - Lif+ 21E+<B><—L1\ f42L) f>, feD.

BCI p

The interpretation of L is that on E(B) the operator Lf describes the dynamics of the coordinates i € B by means
of a diffusive and a drift term whereas the operator %Lé\B forces the remaining coordinates i € I \ B with constant

drift % back to positive height. The operator —Lf + %LZB for B # & is called a Wentzell type boundary operator.
The associated Cauchy problem can be formulated in the form

arlte (00) = Aur(x) + (Vg (x), V(In ) (x)), t>0,x€E,
9%, (x) + 3, (x) 9; (In ) (x) — % du;(x)=0, t>0,iel,xeEN{x; =0}, (2.6)
uo(x) = f(x).

The second line of (2.6) is called Wentzell boundary condition (for the ith coordinate).

Proof of Proposition 2.16. Let f e Dand g € C Ll (E). In order to show this representation we carry out an integration
by parts. We start with B =1, i.e., #B =n:

L=y /E o f digodry” =" /E 3 fodigdry”

iel iel
:Zfo(_aizfg—3if3iQ)g(X)d)»§n)— > Z/ 3 fgodry”
iel ' E Bcl iel\BYE+(B)
#B=n—1
=2, fo(—aff—al-fa,-ln(m)g(xmdx‘,”)— DS / 3 fgodrly.
ier VE Bcl ien\B’E+B)
#B=n—1

Next we consider all B C I suchthat#B =n—1, i.e.,

Eafp) =Y /E L nfaspelad TT oy

ieB ieB jel\B

=Y (-9f -8 fan@)sopdry’

ieB Y E+(B)

- > Z/ 3 fgopdrll.
~JEL(B)

BCB ieB\B
#B=n—2

Proceeding inductively we end up with all B C [ fulfilling #B = 1, i.e., we consider

SB(ﬁg):Z/E(B)Bifaiggﬂn_lndxi l—[ déé

ieB ieB jel\B

= Z/; @) (—02f — 8 f 8 In(0))gop" ' drYy’ — g~ Zaif(o)g(o)g(o),

ieB ieB
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Combining all this yields

Efe)= Y. Es(fg)

@£BCI
=2 / (=82 f — 3 f 3 In(0)) g0 d"”
iel VE
1
+ Z / (Z(_aizf_aifai In(o)) — — Z Bif>gﬁgdkg‘)
Bci JE+B) \;cp B iel\B
#B=n—1

+ 2 /E (Z(—aff—aifailn(m)—% 3 o f)gﬂzgdkg’)

gcr VE+(B) \iep iel\B
#B=n—2

_|_

+Z/

1 n

Bcl YE+(B) \icp icl\B
#B=1
1
-> 5 il ©508"0(0). 2.7)
iel
Now using the definition of L, we obtain the desired result. |

3. The associated Markov process
Since (£, D(E)) is a regular, symmetric Dirichlet form on L*(E; Mo,n,p) Which is recurrent, hence in particular con-
servative, and possesses the strong local property, we obtain the following theorem, where (7});~o denotes the C°-

semigroup corresponding to (£, D(£)), see, e.g., [9], Chapter 4 and Chapter 7.

Theorem 3.1. Suppose that Conditions 2.2 and 2.7 are satisfied. Then there exists a conservative diffusion process
(i.e., a strong Markov process with continuous sample paths and infinite life time)

M :=M"F .= (2, F, (F))=0, Xo)i=0. (©@)r=0. (PE™F) )

with state space E which is associated with (€, D(£)), i.e., for all (ug,n, g-versions of) f € L*(E; Mon,p) and all
t > 0 the function

E3xt pf(0) =E¢"P(f(X)) = / F(X)dPE™" € [0, 00)
2
is a quasi continuous version of T . MUis up to (g », g-equivalence unique. In particular, M is i, g-symmetric, i.e.,

/ pifeditgn,p :/ fpigdugnp forallf, g: E — [0, 00) measurable and all t > 0,
E E

and has (o n,p as reversible, invariant measure, i.e.,

/ prfdugnp :f fdugnp forall f:E — [0, 00) measurable and all t > 0.
E E
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In the above theorem M is canonical, i.e., 2 = CO([O, 00), E), the space of continuous functions on [0, c0) into
E,X;(w) =w(t), w € 2. The filtration (F;),>¢ is the natural minimum completed admissible filtration obtained from

the o -algebras F? =o0{X;|0<s<t}t>0,and F:=F := \/,E[O’oo) F;. For each t > 0 we denote by @, : 2 — 2
a shift operator such that X; o @; = X, for all s > 0.

Proof of Theorem 3.1. See, e.g., [9], Theorem 7.2.2 and Exercise 4.5.1. O

Theorem 3.2. The diffusion process M from Theorem 3.1 is up to [, p-equivalence the unique diffusion process
having Lo 0, p as symmetrizing measure and solving the martingale problem for (H, D(H)), i.e., for all g € D(H)

t
FX,) — 5(Xo) + /0 (Hg)(X,)ds, 120,

is an Fy-martingale under Pﬁ’”*ﬁ for quasi all x € E. Quasi all x € E or quasi every x € E (abbreviated by q.a.
x € E or q.e. x € E, respectively) means all x € E except those contained in a set of capacity zero. (Here g denotes a
quasi-continuous version of g, see [19], Chap. 1V, Prop. 3.3. Moreover, note that in our setting the notions of capacity
in the sence of [19] and [9] coincide.)

Proof. See, e.g., [1], Theorem 3.4(i). O

4. Analysis of the stochastic process by additive functionals
Throughout this section we assume that we are given the regular, symmetric Dirichlet form (&£, D(E)) on
L*(E; Mo,n,p) Which is recurrent, hence in particular conservative, and possesses the strong local property, see Sec-

tion 2, and the associated diffusion process M from Section 3. Let g € D(E) be essentially bounded. Due to [9],
Section 3.2, there exists a unique, finite, positive Radon measure vy on (E, B(E)) satisfying

/ Fdvg =2E(gf,8) —E(¢% f) forall feD(E)NCE).
E

Remark 4.1. For an essentially bounded g € D(E) the measure v g is called the energy measure of g.
Lemma 4.2. Suppose that Condition 2.2 is satisfied and that o is additionally continuous on E. Let §2 be a relatively

compact subset of E \ {0 = 0} such that 2 C E \ {0 =0} and @ # B C I such that E (B) N 2 is non-empty. Then the
restriction map ig : g — g|g, (B)ng maps continuously from D(E) to H1’2(E+(B) N £2), i.e., there exists a constant

Cp=Cg(B,B,n,0,82) such that ||g| g12g, (yn2) < CBVE1(8, §) for g € D(E).

Proof. Let @ # B C I such that E1 (B) N §2 # @. By assumption 2 is compact and contained in {¢ > 0}. Therefore,
there exist constants o™, 0~ € (0, 00) and such that o~ < ¢ < 0" on £2. Let g € D. Note that g € D is (weakly)
differentiable on E (B) with gradient VBg := ", _p 3;ge;. We have

/ g2 dkg) —|—/ |VBg|2dAgl)
EL(B)NS2 E(B)NR
1 </ 2 4,018 f B_|2 4, 0np
S grdup " + VZg|"du ™
B *8o= \Je, (B)ne B E4(B)NQ | [y

1 (/ 24,0018 / B_|2 4, onpB
<— g duz " + Vg duz
pn—#B o= E,(B) B E+(B)’ ’ B

< W&(u, u) < oo.
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Hence, ig:D — H 1’2(E+(B) N £2) is well-defined and continuous. Therefore, i g admits a continuous extension to
D(E). Let g € D(E) and (gx)ken be a sequence in D converging to g with respect to the Sll/z-norm. Then ig(gx) =
gklE, (BN — v=1ip(g) in HI'Z(E+(B) N £2). In particular, the same holds true with respect to the L2(E+(B) N
$2; Ag))-norm. Certainly, the convergence of (gx)xeN to g implies convergence in L2(E ; Mo,n,p) Which in turn implies

that gklg, (B)n2 — &lE . (B)ns2 In L2(E+ (B) N £2; kg’)) due to the boundedness of o on §2. Hence, we can conclude
that ig(g) = glE, (B)ns2 by the uniqueness of the limit. Thus, the map

ig:DE)— H"2(EL(B)YNR), g+ gle,B)ne

is well-defined and continuous. Set Cp := ﬁ. g
n—#B o

Proposition 4.3. Suppose that Conditions 2.2 is satisfied and that o is additionally continuous on E. Let g €
D) N C?(S). Then g is weakly differentiable on E(B) \ {0 = 0} for each @ # B C I with gradient VBg e

L*(E(B); ,u%’nﬂ) and its energy measure v(g) is given by

g =2 Z ’VBg|2 @nﬂ'
@#BCI

In particular, for g € D holds

=2 > > @ uy"’.

O#BCIieB
Proof. Firstlet f, g € D. We have

26(sf, 8) — E(g% f)

=2 Zf Tten) s an" - Z/E &) 0 £ dug"”

@#BCE )ieB oxBcl? E+B) jcp
=2 Z/ D (i +guif)ogdug"’ —2 Z/ D ghigdfdu"”
D#BCI )ieB D#BCI )ieB
/ S (@)% f +gdigdi f)dul™’ 2 / Y goigoifduf"’
o+BclVE+(B) icp o+Bc1 Y E+(B) jcp
=2 > / Z(&g) fausm? = /f2 3o Y @g)?dug™
D#<BCI 1€B g#BCl ieB

This shows the assertion for g € D, since D is dense in CB(E) with respect to || - ||sup. Now let g € D(E) N C?(E) and
f € D. Moreover, let (gi)ken C D such that g¢ — g in (D(E), | - llg,)- By [9], p. 123, it holds

12 1/2 1/2
‘(f fdv(g>> - ([ de<gk>) < </ fdv<g—gk>> < \/2||f||supg(g — 8k> & — 8k)-
E E E

Hence

/Efdv<g>=k1ij;o/ de<gk>=kliﬂgo(25(fgk,gk)—5(g£,f))

- lim/fZ 3 > @i dug™”.

k— o0
I#BClieB
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It remains to show that g possesses on each set £ (B) \ {o = 0} a square-integrable weak gradient (with respect to
1%" Py and that VB g, — VBg in L2(EL (B); u%"") as k — oc.

Define G; :=[0, j)"N(E \W) and Gf :=E(B)NG; for j € N. Then each G fulfills the assumptions
of Lemma 4.2 and Gf t EL(B)\ {0 =0} as jtoo. This yields a weak gradient V2 g of g on each set Gf and therefore
a weak gradient in L (EL(B)\ {o=0}). Additionally, it holds

loc

/ IV2e|?dug™? 51iminf/ 16,[VPe[*au§"’ < €% (g, 0),
E+(B) 170 JE(B)

o]

since the last inequality holds for fixed j € N. This shows that VB¢ € L>(E(B); u%"’ﬁ ) and furthermore, applying
the above inequality to g — gi finishes the proof. ]

Proposition 4.4. Suppose that Condition 2.14 is satisfied. Let f,g € D C D(E). Then

E(f,9)=(vr,8) :=/Engf
with

n 1 n
vpi= Y (Al f— (VB £V In(g))ag™" - 3 (VB £ e)ag™m

BCI BCI
Proof. This representation is valid due to the integration by parts carried out in the proof of Proposition 2.16. ]
Next we recall the definition of a positive, continuous, additive functional (see, e.g., [9], Appendices A.2, A.3).

Definition 4.5 (Additive functional). A family (A;);=0 of extended real valued functions A;:§2 — R, with R :=
R U {—00, 00}, is called additive functional (AF in abbreviation) of M if it satisfies the following conditions:

(A1) A; is Fy-measurable for each t > 0.

(A2) There exists A € Fog with PSP (A) =1 forallx € E, @,A C A forall t > 0 and for each o € A, t > A,(®)
is right continuous and has left limit on [0, 00) satisfying
(1) Ap(w) =0, and
(1) Aips(w) = Ai(w) + Ag(Ow) forall t,s > 0.

The set A in the above is called a defining set for (A;)i>0. An (A;)i>0 is said to be finite if |A;(w)| < oo for all
t €[0,00) and each w in a defining set. An (A;)i>0 is said to be continuous if [0,00) >t — A;(w) € R is con-
tinuous for each w in a defining set. A continuous AF (A;);>0 consisting of a family of [0, oo]-valued functions
A; 182 — [0, o0] is called a positive continuous AF (PCAF in abbreviation). The set of all PCAF's we denote by Aj'.
Moreover, we call an AF which is also a square integrable martingale with respect to (F;);>0 a martingale AF (MAF
in abbreviation).

Remark 4.6. Suppose that Conditions 2.2 and 2.7 are satisfied. Let 0 < g € CO(E) and M € B(E). Then A := (Af)r>0
with

t
A (w) :=/0 g(Xs(w))JlM(Xs(w))ds, w € $2,

isa PCAF,ie., A e Aj’. If g is bounded, A is even finite. Compare, e.g., [9], Example 5.1.1.

Given M and a positive measure p on (E, B(E)) we define a positive measure P, on (£2, F) by

P,(I') ;=/EP£~”’5(1“)dM(x), I eF.
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Now we want to assign to the measures vy from Proposition 4.3 and vy from Proposition 4.4 the corresponding
additive functionals (AFs). In order to do this we make use of [9], Theorem 5.1.3.
We consider the following classes of measures.
Definition 4.7 (Smooth measure, measure of finite energy integral). We denote by S the family of smooth measures,
i.e., all positive Borel measures (v on B(E) such that  charges no set of capacity zero and there exists an increasing
sequence (Fy)ren of closed sets in E such that u(Fy) < oo for all k € N and limg_, oo cap(K \ Fi) = 0 for any

compact set K C E. Here cap(S) denotes the capacity of a set S C E.
A positive Radon measure . on B(E) is said to be of finite energy integral if

fE |fldu < Ca/EI(f, ), feDE)NCYUE,

for some C4 € (0, 00). We denote by Sy the set of all positive Radon measures of finite energy integral.

Remark 4.8. A positive Radon measure . on B(E) is of finite energy integral if and only if there exists for each o > 0
a unique Uy € D(E) such that

EaUalt, f) =/ fdu forall f € DENCE),
E
where £y (-, ) == E(, ) +a(, ')LZ(EWQMS)'

Definition 4.9 (a-potential). We call Uy from Remark 4.8 an «-potential and denote by Soo the set of all finite
w € So such that ||Ui ull Lo (E:pu,,.5) < 0-

Remark 4.10. Let n € Soo be a finite measure and g: E — [0, 00) measurable and bounded. Applying [9], Theo-
rem 2.2.1, we obtain that jLg 1= g € Soo.

Letz>0,ueSlS,Ae Aj and f, h: E — [0, co0) measurable. Then we consider

t
Ehug_,,,,g ((fA)t) = ./_Q/(‘) f(Xs)dAs dPh'/J.QYn_ﬁ 4.1

and
t t t
[ upias= [ [ wirranas= [ [ [ 5x) " @ duas (42)
0 0 JE 0 JEJR2

Definition 4.11 (Revuz correspondence). A measure € S and a AF A € A} are said to be in Revuz correspondence
if and only if equality of (4.1) and (4.2) holds for all f,h: E — [0, c0) measurable.

Remark 4.12. Suppose that Condition 2.14 is satisfied. Using the symmetry of (p;)i=0 in (4.2) one easily checks that
the measure Ly, g is in Revuz correspondence with the PCAF (A;)i>0 := (t)s>0.

Remark 4.13. Suppose that Condition 2.14 is satisfied. Then for B C I the positive Radon measure up := M%‘Q =

Q)»gl) is an element of Soo and, by using Remark 4.12 together with [9], Lemma 5.1.3, in Revuz correspondence with
the PCAF (AtB),Zo given by

B.B ! !
AB = TP :ZW/O 1g, ) (X,) ds.

Remark 4.14. Suppose Conditions 2.2 and 2.7. Let n € C°(E) such that n > 0. Again by applying [9], Lemma 5.1.3,
and using Remark 4.10 we obtain:
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1) If u€8Sop and Ay = fot gX) 1y (X)ds, t >0, as in Remark 4.6, are in Revuz correspondence, then

t

pn=nu and A] :=f nN(Xs)g(Xs) Ly (Xs) ds
0

are in Revuz correspondence.
(ii) If, moreover, n has compact support, then i, € Sop.

Remark 4.15. If 1, na € Soo with Revuz corresponding AFs A1, Ay, respectively. Then (1 + o € Soo with Revuz
corresponding AF A given by A := A1 + A;.

Theorem 4.16. Suppose that Condition 2.14 is satisfied. Let f € D. Then
FXe) — fXo) = MEf] + Ngf], P2"P s for ge. x € E, 4.3)

where le Vis a MAF with quadratic variation
t
- 2
MU =2 3 / (VB £ (X0)| 1£, (8)(Xy) ds
o#Bc1’0

and

N1 = /0 <Z((AB £+ (V2 £. 95 10(0))) X)) LE, (8 (X))

BcCI

1
+ (Z E(V’\Bf, e) (Xaﬂmm(xs))) ds.

BcClI

Remark 4.17. Note that the decomposition (4.3) is valid Pﬁ’n’ﬁ-a.s.for q.e. x € E. This is weaker then the statement

in [9], Theorem 5.2.5, where the decomposition holds Pf;’n’ﬁ -a.s. for each x € E. This is caused by the fact that in our
setting we do not know if the absolute continuity condition is fulfilled.

Proof of Theorem 4.16. We have to check the assumptions of [9], Theorem 5.2.5. f € D C D(€) is clearly bounded
and continuous. The measure vy € Soo due to Proposition 4.3, Remarks 4.13, 4.14(ii) and 4.15 applied inductively.
In addition, these results yield that v 7y is in Revuz correspondence with the PCAF

t
2 Y / D @ X 1E, 8y (X,) ds.
o+BcI1’Y ieB

By Proposition 4.4

E(f,g)=<Vf,g>=Lngf

with
n 1 0
= (Z(—‘a?f IL 1n(g>))x% £l Z( )3 aif%% #
Bel tieh B st icl\B

for all f, g € D. We can split the densities contained in vy into positive and negative part. This yields two positive
Radon measures v}r and v; such that vy = v;f - v;. These measures belong to Sog by Remarks 4.13, 4.14 and 4.15.
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We can calculate the associated PCAFs A1 and A~ in the same way like in the case of v(s). By [9], Theorem 5.2.5,
NT= — A+ 4+ A~ and we obtain that

t
N/l = fo (Z(Z(aff + 0 f 0 1n<g))><xs)ﬂg+<3)(xs))

BClI ‘ieB
1
+ (Z(— > a,-f)(xy)ﬂwm(xx)) ds.
Bcl ’Biel\B U

Corollary 4.18. Let j € I. We denote by 7w :R" — R, x > x, the projection on the jth coordinate. Then under the

assumptions of Theorem 4.16 the coordinate processes (X{ )i>0 := (;(X;))r>0, 1 < j < n, corresponding to M is
given by

. . t ) t
X/ —Xé:ﬁ/o ]lg(XS)dBSJ +/0 9;In(0)(X;)1 5 (X;) ds

Ly {ﬁfo’ﬂEAB)(Xx)dB! + f5 9;In(0) Xy 1E, (5)(X,)ds, ifj € B,

oiper L5 Jo LE (X0 ds, ifjel\B

1 t
+ E./ 1{,...,0)) (Xs) ds, Pg’n’ﬂ—a.s.for ge. x€eE, 4.4
0

where (B,] )i>0 is a one dimensional standard Brownian motion. Moreover, (Btj),zo and (B,i)lzo are independent for
i,jelwithi#j.

Proof. We consider

xj, ifx [0, k+ 1),

; k
0. ifxe[k+2 00", l<j<n,keN, suchthatz; eD.

kepy .
T; (x):= {
Furthermore, we define
7 c=inf{r > 0|X, ¢ [0,k]"}, keN.

(Tk)keN 1S a sequence of stopping times with t; 1 oo as k — co. Now using the decomposition (4.3) we obtain for
k € N and j € I the representation

M M

XgATk - X(I) = nf(xt/\fk) - ”;'{ (Xo0) = MtArk + ijrk

]

INTE
=M, 7, +/0 9 In(@) (X)L 2.(Xy) ds

p>

{ J ™ 90X 1E, 8y (Xs)ds, if j € B,
@#BCI

%/gw 1g, (5 (Xy) ds, if jeI\ B
1 INTE
+ E / 1y,...,00)(Xs) ds, Pﬁ’n’ﬁ—a.s. forq.e. x € E.
0
Additionally we have the cross variation

k k k Ntk ,
(Mt M[”/])[Mk — 5,-j(M[”/])mk =8 Y. 2/ 1z, 3 (Xs)ds, P"Poas xcE.
o#Bcl U0



752 T. Fattler, M. Grothaus and R. Vof3hall
B ED . .
For k € N large enough M, 7, =M, ' is a continuous, local martingale and moreover, for fixed & # B C I and
i, j € B we have that

t t
(Mbl M) = 61-,-2/ 1g, ) (Xs)ds = / (8:V21E, ) (X)) ds, PY"Paas x e E.
0 0
Thus for t > 0 and j € B we obtain (perhaps after enlarging the probability space) by using [18], Theorem 18.12, that

t .
M =2 /0 g, 5 (X)dB, P¢"Feas v ek,

where (Bi/ ):>0 is a one dimensional standard Brownian motion. Moreover, (Bf )i>0 and (Bf)tzo are independent for
i,jel withi#j. O

5. Ergodicity and occupation time

Definition 5.1 (Part of a Dirichlet form). Let (G, D(G)) be an arbitrary regular Dirichlet form on some locally
compact separable metric space X, m a positive Radon measure on X with full topological support and G an open
subset of X. Then we define by GO (f, 8) :== G(f. g) for f,g € {f € D(G)|f =0 q.e. on X \ G} the part of the form
(G, D(G)) on G, where f denotes a quasi-continuous version of f. Indeed, this defines a regular Dirichlet form on
L%(G; m) and for any special standard core C of (G, D(G)), Cg :={f €C|supp[f] C G} is a core of (G, D(G)) (see
[9], Theorem 4.4.3).

Throughout this section, suppose Condition 2.14 is satisfied and denote by

M = MQJl,ﬂ = (91 F’ (Fl)fz()’ (XI)IZ()s (@I)IZOa (Pgﬁn‘ﬂ)er)

the process constructed in Theorem 3.1. Furthermore, for an open subset G of E

MO = (2,F, (F)i=0. (X0),_o. (©)rz0. (") ;)

is called the part of the process M on G, where X?(a)) results from X, (w) by killing the path upon leaving G for
w € 2. Here G := G U {A}, where A denotes the cemetery, see, e.g., [9], Chap. A.2. By [9], Theorem 4.4.2, the
process MY is associated to (£¢, D(£9)).

In (2.3) we defined the form £p for @ # B C I and functions f, g € D. We can extend the definition to func-
tionsin f, g € Ccz(E+(B)). Denote the closure of the pre-Dirichlet form (Ep, CE(E+(B))) on L2(E(B); ,u%”’ﬁ) by
(B, D(Ep)) and by (TtB )¢=0 the corresponding semigroup. It is known that this yields for each B a strongly local,
recurrent, regular Dirichlet form.

Let A;, i €Z, be the connected components of E := E \ {o = 0} for some index set Z and Af = A;NEL(B). We
suppose an additional condition:

Condition 5.2. T is finite, each A;, i € L, is convex and the density o fulfills
/ dug,nﬁSCrz asr —0
Br({o=0})

with a constant C < 0.

For the following lemma we need the notion of a strongly regular Dirichlet form (see also [22], Section 4.2, and
[23]):
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Definition 5.3 (Strong regularity). A regular Dirichlet form (G, D(G)) on L*(E; Wo.n,p) is called strongly regular, if
the topology induced by the intrinsic metric

1
d(x,y):= sup{f(x) — f»)|f € DG) OC?(E) with Ev(f) < Hg,n,ﬁ}v x,yeE,

coincides with the topology generated by the euclidean metric on E. Here %w ) < Won,p means that the energy
measure of f is absolutely continuous w.r.t. o, g and its Radon—Nikodym derivative is almost everywhere less or
equal than two.

Lemma 5.4.

(1) {0 =0} is of capacity zero and {0 = 0} N EL (B) is of capacity zero for every & # B C I.
(i) A; is open and T;-invariant for every i € I.
(iii) AlB is openin E4(B) and TtB—invariantfor everyie€eZland & # B C 1.

Proof.

(1) We only show the first statement for the Dirichlet form (£, D(E)). The second statement follows for the same
reasons. By [23], Theorem 3, and Condition 5.2 it is enough to show strong regularity of (£, D(£)). Let f €
DN C?(E ). Then the energy measure of f has the form

1
SN = > |VBf|2M%'”’ﬁ=< > |VBf|21E+(B)>Ma,n,ﬂ

@#BCI G#BCI
by Proposition 4.3. Thus,
d(x,y) = sup{f(x) — fO|f € D(E) N C(E) with Z |va|2]15+(B) <1lae.on E}
@#BCI
= sup{ f(x) — fF()|f € D) N C(E) with |va|2 <lae.on E{(B),@#BCI}

for x, y € E. Since E is convex, we have by the fundamental theorem of calculus

lx —yl=d(x,y).

This proves the assertion.

(i) Clearly, each A; is open in E, since g is continuous. In order to show T;-invariance, it is sufficient to prove that
A; is quasi open and quasi closed simultaneously by [9], Corollary 4.6.3. Since each open set is quasi open, it is
left to show that A; is quasi closed or equivalently that E \ A; is quasi open. Thus, let ¢ > 0. Since {0 = 0} is of
capacity zero by (i), there exists an open set B containing {o = 0} with cap(B) < €. The set G := U#I- A;jUB
is open, contains E \ A; and it holds

cap(G \ (E\ A,-)) <cap(B) <e.

Hence E \ A; is quasi closed. Thus A; is T;-invariant.
(iii) Follows by the same arguments.

Remark 5.5.

(1) Due to [9], Lemma 4.6.3, T;-invariance of A; implies that there exists a properly exceptional set N; such that
A; \ N; is M-invariant in the sense that

PP (X, € (A; \ N)) forallt >0) =1 forall x € A; \ N;.
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(ii) Fix some set AlB and define Gy := {x € Afld(x, {fo=0}NEL(B)) > %} N [0, k)"*. This yields a sequence
of bounded open subsets of AlB increasing to AIB. Since o € C'(E) by Condition 2.14, it follows that yj :=
essinfyeg, 0 >0,k =1,2, ... (with respect to the measure Agl)).

(iii) By a similar argument, L”-norms on K with respect to the measures ,u%’"’ﬂ and )ng) respectively are equivalent
for some compact set K contained in some A f.

(iv) In the case that o(x) > 0 for all x € E, E = E is already connected. Moreover, in Condition 5.2 instead of
assuming convexity it suffices to require that L is finite and the intersection of some A; with E;(B) is either
empty or connected.

Theorem 5.6. Leti € Z. Forall f € L' (A;; o p) holds

fA,- fdionp

5.1
Ho,n,p(A}) G-

1 t
lim —/ F(Xy)ds =
t—oo t Jo

Pﬁ’""g-a.s.for g.e. x €A;.

Proof. Fix i € Z. Due to [9], Theorem 4.7.3(iii), the definition of M% and Remark 5.5(i) it is sufficient to show that
(EAi, D(E41)) is irreducible recurrent. Recurrence has already been shown in Proposition 2.11. In particular, we have
that 1z € D(E) and E(1g, 1g) = 0. Since A; is T;-invariant, we have 14, = 14,1 € D(£) and

0=EE,1g) =Ea;, 1a;) + EAE\a;» LEVA;)

by [9], Theorem 1.6.1. Hence, 14, € D(E4iY and 4 (14,,14;) = 0 which implies recurrence of (E4i D(EAY).
Taking into account that the considered form is recurrent, irreducibility is equivalent to the condition that every
f e DEAY with E4 (f, f) =0 is Wo,n,p-a.€. constant (on A;) by [4], Theorem 2.1.11. Denote by (&L, D(5§)) the
part of the form (£, D(Ep)) on AIB. This is the closure of (g, Ccz(AlB)) by [9], Theorem 4.4.3, and thus, it is
irreducible. Indeed, the closure of the pre-Dirichlet form

Z/AB aifigdry,  f.geC(AB),

ieB

on LZ(A_lB; Ag')) yields reflecting Brownian motion on E which is irreducible (see [4], p. 128) and hence the closure
of the form defined for functions in C?(AIB ) on LZ(AIB ; Ag)) is also irreducible in view of [4], Theorem 2.1.11.
Hence, it follows by [9], Corollary 4.6.4, and Remark 5.5(ii) that (£5, D(é'g)) is irreducible. Let f € D(E4) and

choose a seqeunce (fi)kenN in Cf,(A,-) such that fy — f with respect to ,/SIA". Then the restriction to E(B) is by

definition £p-Cauchy and converges to the restriction of f in L*(E.(B); u%’"’ﬂ ). Therefore, the convergence holds
also in D(Ep) and

ENL N =EL )= Jim Efe. fi = Jim D7 Ep(fi fo= D Es(f. 1)
o#£BCl o#£BCI
AP+ AP+

by definition. By 7,8 -invariance

ENL N = Y Epupnfilf).
@#BCI
AP+
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Therefore, £4 (£, f) = 0 implies 52. (148 f, 148 f) =0 for each summand and hence, f = c’é /L%’"’ﬂ-a.e. on AlB for

some constant c% by [4], Theorem 2.1.11. Thus, we can conclude

f= Z Clé]lAﬁ

B
ABsy

It remains to show that there exists a constant ¢ such that c’é =c forall B. Let @ # B C I with AiB # & be arbitrary
and [ € B such that A; also intersects E (B \ {[}). We show that c% = c’é\{l} by contradiction. Then the assertion
CiB]lAi 7f

follows by applying this result successively. If c‘é #* c’é\ (1> We can assume that c% =0and c’é\ n =1 since e
D(E47). Fix a point z € Af\{”. Then, by construction there exists a (bounded) neighborhood U of z in E such that its
closure is contained in A;. Choose a C*°-cutoff function n defined on E which is constantly one near z and has support
contained in U. Then it is easy to see that nf € D(£47) and (1fi)reN is an approximation for nf whenever ( fi)xen
is a sequence of CCZ(Ai)-functions which approximates f in D(E41). Moreover, Es(Mfik,nfx) — 0 as k —> oco. By

construction we have

c
W) = i) =i+ Cen == [ 10 +rear
where x e U N E4 (B \ {I}) and C > 0 is chosen such that x + Ce; € U \ supp(n). Hence,

Infe (o) sfo |00 (nfi) (x + rep)| .

This implies

) : (n)

i

Since we can restrict our considerations to the closure of U by construction, we have equivalence of norms by Re-
mark 5.5(iii) and hence, the left-hand side converges to a positive constant, whereas the right-hand side converges to
zero. This is a contradiction and thus c’B = ¢ for some constant ¢, all B and i. O

By the preceding ergodic theorem it follows immediately by choosing f as the indicator function of the boundary
that the occupation time of the process M on the boundary increases asymptotically linear whenever the process starts
in a component which possesses a boundary part with 11, , g positive measure. In particular, the process spends in this

ponp

case -a.s. a positive amount of time at the boundary (with respect to the Lebesgue measure).

Corollary 5.7. For all measurable I' C 0E = UBCI E_(B)andalli € T holds

1 [ I'NA;
fim & [ 1p0x,)ds = Hens TN AD (5.2)
1=t Jo /LQ,n,ﬁ(Ai)
P,Qc’n’ﬂ—a.s.for g.e. x € A;. In particular, under the condition that o, g(I' N A;) > 0 for g.e. x € A; and P,Qc’n’ﬂ-a.a.

w € 2 there exists T (w, x) € [0, 00) and c(w, x) € (0, 00) such that
t
/ ]lr(Xs(a))) ds > tc(w,x) forallt>T(w,x). 5.3)
0

Corollary 5.8. Let 0 > 0 pointwisely, j € I and B # 1. Then

1 [ . _0
lim — ]1{0}(X'S/)ds = M -
0 1o (E)

t—00 t

0 64
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and
1 [ E.(B
tim © [ 15, 5 (X, ds = et ELBD
=00t Jo MQ,n,ﬂ(E)
Pﬁ’""g-a.s.for q.e. x € E and (5.3) holds. Moreover, the right-hand side of (5.4) is increasing in 8, converges to 1 as

B — oo and converges to 0 as § — O.

Proof. The first statement follows directly from (5.2). In order to proof the latter assertion note that

Mg,n,ﬁ({xj =0}) _1_ MQ,n,ﬂ({xj > 0})
,Uvg,n,f}(E) Mg‘n,ﬂ(E)
and
ZBCI Je 3 B *Bodryy .
Honp(x;>0)  Tes T _ YioBla 55)
Honp(E) Y g Je. ) B Pe iy 2o Bb
where
aj ‘= / Qdk(") fori=0,...,n—1,
BCI E+(B)
#B=n—i,jeB
=y / Al fori =0
odip ori =0,...,n
Bci Y E+B)
#B=n—i
and a, :=0.Itholds 0 <a; <b; fori=1,...,n—1,0=a, < b, and 0 < a9 = by. Hence, (5.5) is decreasing in S,
converges to 0 as B — oo and converges to 1 as 8 — 0. ]

6. Application to the dynamical wetting model in (d + 1)-dimension

Letd € N and D, := (0, 119 c R?. For N € N we define Dy ny:=NDynN 74, where NDy := {NO|6 € D;}. Here
N stands for the scaling parameter. The discretized set Dy ny is a microscopic correspondence to the macroscopic
domain D, and given by Dy vy ={1,2,..., N }d The boundary D, n of Dy n is defined by 0Dy v :={x € 74 \
Dg,nllx — y| =1forsome y € Dy n} and the closure Dy y of Dy, y is defined by Dy y := Dy ny U 9Dy, n. Hence
Dyn=1{0,1,2,...,N + 1}¢. For fixed N € N we consider the space of interfaces

27y =10,00)PN := {¢: Dy y — [0, 00)}

on Dy n. Note that ¢(x) describes the height of an interface ¢ € .Qj N at position x € Dy y with respect to the

reference hyperplane Dy y. Therefore, ¢ (x), x € Dy n, is also called height variable. We extend ¢ € .Q A the
boundary 9 D4, y by setting ¢ (x) = 0 forall x € d Dy y. The restriction for the functions ¢ to take values in [0, o0) C R
reflects the fact that a hard wall is settled at height level O of the interface.

The potential energy of an interface ¢ € .QI w 18 given by a Hamiltonian with zero boundary condition, i.e.,

=5 1

Q30 Hiy@) =5 Y V(¢ —ok)ek 6.1
x,y€Dy N
lx—yl=1

where the pair interaction potential V fulfills Condition 6.1 below.
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Condition 6.1. The potential V:R — [—b,0), b € [0, 00), is continuously differentiable and symmetric, i.e.,
V(—r)=V(r) forall r € R and moreover, k := fR exp(—V(r))dr < oo.

A natural distribution on the space of interfaces (.QI N B (.Q;f ) is given by the probability measure ,uX”f, defined
by

1

v,
dig (@) = —ygexp(—Hy y@) [ (Bdbo() +dgs), o]y, (6.2)
Zd,N x€Dy N
with pair interaction potential V under Condition 6.1 and normalizing constant Z . Here er D dN(dSO(x) +

d¢4 (x)) denotes the product measure on [0, oo)N , where d¢ (x) is the Lebesgue measure on ([0, 00), B([0, 00)))
and 8o (x) denotes the Dirac measure on ([0, 00), B([0, 00))) at O forx € Dy y. M[‘I/’]’:}, is a finite volume Gibbs measure

conditioned on [0, 00)P4.¥ . The corresponding space of square integrable functions we denote by L2(.Q AN My, N)
Next we define the probability density

1 P
0(9) =0y k(@) =7 Fexp(—H y(@). ¢eQfy
d,N

Hence we can rewrite (6.2) as

duyipoi=dugy=0 [ (Bdso(x)+dps(x)

x€Dg N

=0 ) ﬂNd‘#B<1_[d¢+<x) I1 d50(y))=Q S N —odmyas pe2 .

BCDy N xeB y€Dg N\B BCDy, N

Condition 6.2. V'(x,-) € LZ(QZN; Ky g.o) for all x € Dy, N, where

Qi3> V)= Y V(e —9¢(0)eR

Y€Dg N
lx—y|=1

Remark 6.3. Condition 6.1 guarantees that V (0) € [—b, o0), hence flat interfaces are natural elements in the space

of interfaces 2 4N+ 1-€., occur with positive probability, see (6.2). Furthermore, Conditions 6.1 and 6.2 imply Condi-
tions 2.14 and 5.2 (see also Remark 2.15).

Remark 6.4. In [13] the authors assume that the potential V is twice continuously differentiable, symmetric and
strictly convex, i.e., it exist some constants c_, ¢4 > 0 such that c_ < V" (r) < cy for all r € R. This implies that k :=
fR exp(—V(r))dr < oo. In particular, the potentials investigated in [13] obviously fulfill Condition 6.1. In addition,
Condition 6.2 is also satisfied. Indeed, in the case d = N = 1 with ¢ := ¢ (1) it holds by integration by parts

0= /[0 )V’(l, $)” exp(—2V () (B ddy + dop)

b

= Jlim | (=2V'(@))(=2V'(¢)) exp(=2V (¢)) dg+

= hlggo —2V'(b) exp(—2V (b)) + / 2V"(¢)exp(—2V (¢)) do+

[0,00)

<2, / exp(~2V ($)) d; < oo,
[0,00)
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since V' is non-decreasing and V'(0) = 0. Similar, but more lengthy, calculations show that this result is valid for
higher dimensions and larger numbers of height variables. Therefore, the class of admissible potentials in our con-
struction includes the one considered in [13] for the dynamical wetting model.

For each ¢ € .Q;j n we denote by
d
Dﬁv(aﬁ) :={x € Dgnl¢p(x) =0} and DY (#) := {x € Danlp(x) >0},
dry regions and wet regions associated with the interface ¢, respectively, and define for A, B C Dy n,
d ST nd , —
Q;Nfg ={pe] D@ =A} and 2735 :={pec2] D)%) =B}
respectively.

Remark 6.5. The following decomposition of the state space is valid:

¥ ) +.dry _ ) +,wet
eiv="U @vi= U 235
ACDy N BCDy N

B B.o

NiBo o NUBo . _
Therefore, Knd go= ZBCDd,N “p with “p = /’LNd,ﬂ,Q|BQ;-.1:,vcé :

Theorem 6.6. Let d, N € N. For B € (0, 00) we have that under Conditions 6.1 and 6.2

. -
eV'Per 6= Y &g PUF.G). F.GeD=C}(2],) (6.3)
D#BCDg N
with

d d
&y PeF, G =) / 0, F3,Gduly P° @#BCDsy,
N

xeB B

is a densely defined, positive definite, symmetric bilinear form, which is closable on L2(.Qd+ N3 MNd g o). Its closure

d d . . . . .
(ENTBe D(EN-P-0)) is a recurrent, hence in particular conservative, strongly local, strongly regular, symmetric

Dirichlet form on LZ(QJJW KNd po)-

Remark 6.7. Note that for functions in D, | € {1,2} and x € Dy n we denote by 8)16 the partial derivative of order |
with respect to the variable ¢ (x). In particular, 0y = 3;.

Proof of Theorem 6.6. Use Remark 6.3 and apply Theorem 2.12. For strong regularity see the proof of
Lemma 5.4(i). O

For FeD:= CS(QIN) and B C Dy y we define

1
LOF = LtNeBF =Y (02F + 0, Fo,(Ing)) + Y —0F
X€EB xeDg N\B ﬂ

= APF + (VPF, VP Ino) + %(VD"»N\BF, e),

and

. B
LF = Z JIQL:/V%,C F,
BCDy N
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where VB F .= erB Ox Fec(yy with some c: Dg v — {1,. Nd} bijective and {ey, ..., ey«} being the canonical

.. d
basis in RV . Moreover, ABF := >
ones.

vep 0% 32F for F € D, B C Dy n and e is a vector of length N¢ containing only

Proposition 6.8. Suppose Conditions 6.1 and 6.2 to be satisfied. Then we have the representation EN d’ﬂ*Q(F ,G) =

(—LF.G) g, " | for F.G €D.

Proof. Use Remark 6.3 and apply Proposition 2.16. (]

Remark 6.9. Let ﬁf :=AB + (VB VB1np) and ﬁg := (VB e). Using this notation we can express L in the form

1 .p
} : B . N\B
HQ;NW% <£1 F + Eﬂz F)

BCDy, N
+wet£DdNF+ Z ]l_Q+wet< DdN\BF—i— [:DdN\B ), FeD.
d,N,B B
BC Dy N
The interpretation of L is that on Q;Zﬁ; the operator L? describes the dynamics of the height variables ¢ (x), x € B,

o . Dy N\B
by means of a diffusive and a drift term whereas the operator %52 4.8\

x € Dy .y \ B with constant drift L back to positive height. The operator —ﬁf + %Ef for B # @ is called a Wentzell
type boundary operator. The associated Cauchy problem can be formulated in the form

forces the remaining height variables ¢,

LU@) = AU@) + (VU). V(nQ)@)).  1>0.p €2y,
02U, (§) + .U ($)0:(In0) (§) — 10, Us(9) =0. 1> 0.x € Dan.¢ € 2 Nl =0}, ©4)
Uo(9) = F(@).

The second line of (6.4) is called Wentzell boundary condition (for the xth height variable).

Theorem 6.10. Suppose that Conditions 6.1 and 6.2 are satisfied. Then there exists a conservative diffusion process
(i.e., a strong Markov process with continuous sample paths and infinite life time)

d N¢ B,
MV Be — (fl, F, F)i>0, (@,)>0, (O1)>0, (P¢ b Q)¢EQIN)

. . . . . d d d . . .
with state space ‘QZN which is associated with (EN*-B-¢ D(EN"-B-2)). MN"-B-2 js up to Wy g o-equivalence unique.

. d gy . R .
In particular, MN"-P-€ is 114 B,0-Symmetric and has jLya g , as invariant and reversible measure.

Proof. Use Remark 6.3 and apply Theorem 3.1. O

Theorem 6.11. The diffusion process MY 4.0 from Theorem 6.10 is up to u Nd. B, Q—equivalence the unique diffusion
process having Mnd g o aS symmetrizing measure and solving the martingale problem for (’}-[Nd,ﬁ,g’ D(HN(I,/S,Q))’
i.e., forall G e D(?—[Nd,ﬁyg)

t
5(¢z)—5(¢o)+/ (HNPeG) (g ds, 120,
0

is an Fy-martingal d. PNd’ﬂ“Q j all QF
¢ gale under P for quasi all ¢ € N

Proof. Use Remark 6.3 and apply Theorem 3.2. ([
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Corollary 6.12. Suppose that Conditions 6.1 and 6.2 are satisfied. Let x € Dy . We denote by 7y : ‘Q;N — [0, 00),
¢ = ¢ (x), the projection on the xth coordinate. The coordinate processes (§,(x))s>0 := (7x(@;))s>0 corresponding
to MN".B-e g given by

1 1
8, = o) =2 [ g @080~ [ Vix g @)ds

V2§, 11Qme§(¢s)d33(x) - V/(x,%)]lgme; (¢,)ds, ifxeB,
éf(; Lowe () ds, ifxeDyn\B

>

@#BC Dy N
1 t

+—f L(....,00} (¢y) ds., (6.5)
B Jo

where (B;(x)):>0, X € Dq, N, are one dimensional independent standard Brownian motions and

V'(x, ¢) := Z V(p(x) — (). ¢€‘QJ_,N’
y€DaN

lx—yl|=1

with pair interaction potential V .

Proof. Use Remark 6.3 and apply Corollary 4.18. (]

Remark 6.13. (6.5) provides a weak solution to (1.4) for quasi every starting point in .Q;,’: N> even for boundary points.

Theorem 6.14. Suppose that Conditions 6.1 and 6.2 are satisfied. For all F € L' (SZ;’:N; KN g o) it holds that

Y
t1—1>r1<;lo;/0 F((bs)ds:/f2+ Fduya g o

d,N

d
Pg ’ﬂ’g—a.s.for qg.e ¢ e .QIN.

Proof. Use Remark 6.3 and apply Theorem 5.6. (]

Corollary 6.15. Under the conditions of Theorem 6.14 we have that for all measurable I' C 8% =
UBCDd Nﬂi}y’e,; it holds that

.1
lim — A 1r(¢y)ds =puya g,

t—00 t

d —_— — d
Pg ’ﬁ’g—a.s.for g.e ¢ € SZIN. In particular, under the condition that uya g ,(I") > 0 for g.e. ¢ € .QZN and Pg’ Pe_
a.a. w € R there exists T (w, ¢) € [0, 00) and c(w, @) € (0, 00) such that

t
/ 1F(¢s (w)) ds >tc(w,p) forallt>T(w, ). (6.6)
0

Corollary 6.16. Let x € Dy n and B # Dy n. Then under the Conditions of Theorem 6.14 we have that

t

1
lim — 1y (¢X(x)) ds = ,uNd’ﬂyQ({¢(x) = 0}) >0 (6.7)

=00t 0
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and

Lt
lim — | Lgeae (@) ds = juya g o(24355) > 0

=00t Jo

4 -
Pg Pe gs. for ge. ¢ € ‘Q;,N and (6.6) holds. Moreover, the right-hand side of (6.7) is increasing in 8, converges
to 1 as B — oo and converges to 0 as B — 0.

Proof. Use Remark 6.3 and apply Corollary 5.8. ]

Remark 6.17. Corollary 6.16 justifies that B is called strength of pinning.
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