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Abstract. The limit distributions of the charged-polymer Hamiltonian of Kantor and Kardar [Bernoulli case] and Derrida, Griffiths
and Higgs [Gaussian case] are considered. Two sources of randomness enter in the definition: a random field q = (qi)i≥1 of i.i.d.
random variables, which is called the random charges, and a random walk S = (Sn)n∈N evolving in Z

d , independent of the charges.
The energy or Hamiltonian K = (Kn)n≥2 is then defined as

Kn :=
∑

1≤i<j≤n

qiqj 1{Si=Sj }.

The law of K under the joint law of q and S is called “annealed,” and the conditional law given q is called “quenched.” Recently,
strong approximations under the annealed law were proved for K . In this paper we consider the limit distributions of K under the
quenched law.

Résumé. Les lois limites de l’hamiltonien dans le modèle de polymère chargé introduit par Kantor et Kardar dans le cas Bernoulli
et par Derrida, Griffiths et Higgs dans le cas gaussien sont considérées. Deux aléas interviennent dans la définition : un champ
aléatoire q = (qi)i≥1 de variables aléatoires i.i.d., appelées charges et une marche aléatoire S = (Sn)n∈N dans Zd , indépendante
des charges. L’énergie ou hamiltonien K = (Kn)n≥2 est définie par

Kn :=
∑

1≤i<j≤n

qiqj 1{Si=Sj }.

La loi de K sous la loi conjointe de q et S est appelée « annealed » et la loi conditionnelle sachant q est appelée « quenched ».
Récemment, des approximations fortes sous la loi annealed ont été prouvées pour K . Dans ce papier, nous considérons les lois
limites de K sous la loi quenched.
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1. Introduction

Let d ≥ 1 and q = (qi)i≥1 be a collection of i.i.d. real random variables, hereafter referred to as charges, and S =
(Sn)n≥0 be a random walk in Z

d starting at 0, i.e., S0 = 0 and (Sn − Sn−1)n≥1 is a sequence of i.i.d. Zd -valued
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random variables, independent of q . We are interested in the limit distributions of the sequence K := (Kn)n≥1 defined
by setting K1 := 0 and, for n ≥ 2,

Kn :=
∑

1≤i<j≤n

qiqj 1{Si=Sj }. (1)

In the physics literature this sum is known as the Hamiltonian of the so-called charged polymer model; see Kantor and
Kardar [14] in the case of Bernoulli random charges and Derrida, Griffiths and Higgs [5] in the Gaussian case. This
model has been largely studied by physicists since it is believed that a protein molecule looks like a random walk with
random charges attached at the vertices of the walk; these charges are interacting through local interactions mimicking
chemical reactions [17].

Results were first established under the annealed measure, that is when one averages at the same time over the
charges and the random walk. Chen [3], Chen and Khoshnevisan [4] proved that the one-dimensional limiting distribu-
tions are closely related to the model of Random walk in random scenery. Hu and Khoshnevisan [12] then established
that in dimension one the limit process of the (correctly renormalized) Hamiltonian Kn is strongly approximated by
a Brownian motion, time-changed by the self-intersection local time process of an independent Brownian motion.
Especially, it differs from the so-called Kesten and Spitzer’s process [15] obtained as the continuous limit process of
the one-dimensional random walk in random scenery.

To our knowledge, distributional limit theorems for quenched charges (that is, conditionally given the charges) are
not known. Let us note that in the physicists’ usual setting the charges are usually quenched: a typical realization of
the charges is fixed, and the average is over the walk. In the case of dimension one, we determine the quenched weak
limits of Kn by applying Strassen’s [21] functional law of the iterated logarithm. As a consequence, conditionally on
the random charges, the Hamiltonian Kn does not converge in law. In contrast with the one-dimensional setting, we
show that the quenched central limit theorem holds for random walks in dimensions d ≥ 2 with finite non-singular
covariance matrix and centered, reduced charges. In d ≥ 3 we obtain convergence to Brownian motion under the
standard scaling

√
n, while in d = 2 we are only able to show convergence of the finite-dimensional distributions

under the unusual
√

n logn-scaling and an additional condition on the charges, namely a moment of order strictly
larger than 2. We also provide in the Appendix a proof of a functional central limit theorem under the conditional
law given the random walk. In particular, our results imply annealed functional central limit theorems under weaker
assumptions on the charges than the ones in [4,12].

2. Case of dimension one

2.1. Results

In this section we study the case of the dimension one, S = (Sk, k ≥ 0) is the simple one-dimensional random walk.
Moreover we assume that

E(q1) = 0, E
(
q2

1

) = 1 and E
(|q1|6

)
< ∞.

We prove that under these assumptions, there is no quenched distributional limit theorem for K . In the sequel, for
0 < b ≤ ∞, we will denote by AC([0, b] → R) the set of absolutely continuous functions defined on the interval
[0, b] with values in R. Recall that if f ∈ AC([0, b] → R), then the derivative of f (denoted by ḟ ) exists almost
everywhere and is Lebesgue integrable on [0, b]. Define

K∗ :=
{
f ∈AC(R+ → R): f (0) = 0,

∫ ∞

0

(
ḟ (x)

)2 dx ≤ 1

}
. (2)

Theorem 2.1. For P-a.e. q , under the quenched probability P(·|q), the process

K̃n := Kn

(n3/2 log logn)1/2
, n > ee,
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does not converge in law. More precisely, for P-a.e. q , under the quenched probability P(·|q), the limit points of the
law of K̃n, as n → ∞, under the topology of weak convergence of measures, are equal to the set of the laws of random
variables in ΘB , with

ΘB := {
f (V1): f ∈K∗}, (3)

where V1 denotes the self-intersection local time at time 1 of a one-dimensional Brownian motion B starting from 0.
The set ΘB is closed for the topology of weak convergence of measures, and is a compact subset of L2((Bt )t∈[0,1]).

Instead of Theorem 2.1, we shall prove that there is no quenched limit theorem for the continuous analogue of K

introduced by Hu and Khoshnevisan [12] and deduce Theorem 2.1 by using a strong approximation. Let us define this
continuous analogue: Assume that B := (B(t))t≥0, W := (W(t))t≥0 are two real Brownian motions starting from 0,
defined on the same probability space and independent of each other. We denote by PB , PW the law of these processes.
We will also denote by (Lt (x))t≥0,x∈R a continuous version with compact support of the local time of the process B ,
and (Vt )t≥0 its self-intersection local time up to time t , that is

Vt :=
∫
R

Lt(x)2 dx.

We define the continuous version of the sequence Kn as

Zt := W(Vt ), t ≥ 0.

In dimension one, under the annealed measure, Hu and Khoshnevisan [12] proved that the process (n−3/4K([nt]))t≥0
weakly converges in the space of continuous functions to the continuous process Z = (2−1/2Zt)t≥0. They gave a
stronger version of this result, more precisely, they proved that there is a coupling of q , S, B and W such that (q,W)

is independent of (S,B) and for any ε ∈ (0,1/24), almost surely,

Kn = 2−1/2Zn + o
(
n3/4−ε

)
, n → +∞. (4)

Theorem 2.1 will follow from this strong approximation and the following result.

Theorem 2.2. PW -almost surely, under the quenched probability P(·|W), the limit points of the law of

Z̃t := Zt

(2t3/2 log log t)1/2
, t → ∞,

under the topology of weak convergence of measures, are equal to the set of the laws of random variables in ΘB

defined in Theorem 2.1. Consequently, under P(·|W), as t → ∞, Z̃t does not converge in law.

To prove Theorem 2.2, we shall apply Strassen’s [21] functional law of the iterated logarithm applied to the Brow-
nian motion W .

2.2. Proofs

For a one-dimensional Brownian motion (W(t), t ≥ 0) starting from 0, let us define for any λ > ee,

Wλ(t) := W(λt)

(2λ log logλ)1/2
, t ≥ 0.

Lemma 1.

(i) Almost surely, for any r > 0 rational numbers, (Wλ(t),0 ≤ t ≤ r) is relatively compact in the uniform topology
and the set of its limit points is K0,r , with

K0,r :=
{
f ∈ AC

([0, r] → R
)
: f (0) = 0,

∫ r

0

(
ḟ (x)

)2 dx ≤ 1

}
.
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(ii) There exists some finite random variable AW only depending on (W(x), x ≥ 0) such that for all λ ≥ e36,

sup
t>0

|Wλ(t)|√|t | log log(|t | + 1/|t | + 36)
=: AW < ∞.

The proof of this lemma can be found in [10].
Let us define for all λ > ee and n ≥ 1,

Hλ := Wλ(V1), H
(n)
λ := Wλ(V1)1{V1≤n}.

Lemma 2. There exist some positive constants c1, c2 such that for any λ > e36 and n ≥ 1, we have

EB

∣∣Hλ − H
(n)
λ

∣∣ ≤ c1e−c2n
2AW, (5)

EB

∣∣f (V1)
∣∣1{V1>n} ≤ c1e−c2n

2
, (6)

for any function f ∈K∗.

Proof. By Lemma 1(ii), EB [(Wλ(V1))
2] ≤ A2

WEB [|V1| log log(|V1| + 1
|V1| + 36)] ≤ c1A2

W , since V1 has finite mo-
ments of any order. Then by Cauchy–Schwarz’ inequality, we have that

EB

∣∣Hλ − H
(n)
λ

∣∣ = EB

[
Wλ(V1)1(V1>n)

]
≤

√
EB

[
Wλ(V1)2

]√
PB(V1 > n)

≤ c1AW e−c2n
2
,

by the fact that: PB(V1 > x) ≤ c1e−c2x
2

for any x > 0 (see Corollary 5.6 in [16]). Then we get (5).

For the other part of the lemma, let f ∈ K∗, observe that |f (x)| ≤
√

|x ∫ x

0 (ḟ (y))2 dy| ≤ √|x| for all x ∈R+. Then
by Cauchy–Schwarz’ inequality, we have that

EB

[∣∣f (V1)
∣∣1(V1>n)

] ≤
√
EB

[
f (V1)2

]√
PB(V1 > n)

≤ √
EB [V1]

√
PB(V1 > n)

≤ c1e−c2n
2
.

Then (6) follows. �

Let L1(B) be the set of real random variables which are σ(Bt , t ≥ 0)-measurable and PB -integrable. For any
X ∈ L1(B) and any subset Θ of L1(B), we denote by dL1(B)(X,Θ) the usual distance infY∈Θ EB [|X − Y |].
Lemma 3. PW -almost surely,

dL1(B)(Hλ,ΘB) → 0, as λ → ∞,

where ΘB is defined in (3). Moreover, PW -almost surely, for any ζ ∈ ΘB ,

lim inf
λ→∞ dL1(B)(Hλ, ζ ) = 0.

Proof. Let ε > 0. Choose a large n = n(ε) such that c1e−c2n
2 ≤ ε, where c1, c2 are the constants defined in

Lemma 2. By Lemma 1(i), for all large λ ≥ λ0(W,ε,n), there exists some function g = gλ,W,ε,n ∈ K0,n such that
supx∈[0,n] |Wλ(x) − g(x)| ≤ ε. We get that

EB

∣∣H(n)
λ − g(V1)1{V1≤n}

∣∣ ≤ ε.
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We extend g to R+ by letting g(x) = g(n) if x ≥ n, then g ∈K∗. By the triangular inequality, (5) and (6),

EB

∣∣Hλ − g(V1)
∣∣ ≤ (2 +AW)ε.

It follows that dL1(B)(Hλ,ΘB) ≤ (2 +AW)ε. Hence PW -a.s., lim supλ→∞ dL1(B)(Hλ,ΘB) ≤ (2 +AW)ε, showing
the first part in the lemma.

For the other part of the lemma, let h ∈ K∗ such that ζ = h(V1). For any ε > 0, we may use (6) and choose an
integer n = n(ε) such that c1e−c2n

2 ≤ ε and

dL1(B)(ζ, ζn) ≤ ε,

where ζn := h(V1)1{V1≤n}. Applying Lemma 1(i) to the restriction of h on [0, n], we may find a sequence λj =
λj (ε,W,n) → ∞ such that sup|x|≤n |Wλj

(x) − h(x)| ≤ ε, then

dL1(B)

(
H

(n)
λj

, ζn

) ≤ ε.

By (5) and the choice of n, dL1(B)(H
(n)
λj

,Hλj
) ≤ εAW for all large λj , it follows from the triangular inequality that

dL1(B)(ζ,Hλj
) ≤ (2 +AW)ε,

implying that PW -a.s., lim infλ→∞ dL1(B)(Hλ, ζ ) ≤ (2 +AW)ε → 0 as ε → 0. �

We now are ready to give the proof of Theorems 2.2 and 2.1.

Proof of Theorem 2.2. Remark that PW -a.s.,

W(Vt)
(d)= W

(
V1t

3/2) (7)

from the scaling property of the self-intersection local time of the Brownian motion B . The first part of Theorem 2.2
directly follows from Lemma 3. �

Proof of Theorem 2.1. We use the strong approximation of [12]: there exists on a suitably enlarged probability space,
a coupling of q , S, B and W such that (q,W) is independent of (S,B) and for any ε ∈ (0,1/24), almost surely,

Kn = 2−1/2Zn + o
(
n3/4−ε

)
, n → +∞.

From the independence of (q,W) and (S,B), we deduce that for P-a.e. (q,W), under the quenched probability
P(·|q,W), the limit points of the laws of K̃n and Z̃n are the same ones. Now, by adapting the proof of Theorem 2.2,
we have that for P-a.e. (q,W), under the quenched probability P(·|q,W), the limit points of the laws of Z̃n, as
n → ∞, under the topology of weak convergence of measures, are equal to the set of the laws of random variables in
ΘB . It gives that for P-a.e. (q,W), under the quenched probability P(·|q,W), the limit points of the laws of K̃n, as
n → ∞, under the topology of weak convergence of measures, are equal to the set of the laws of random variables in
ΘB and Theorem 2.1 follows.

Let (ζn)n be a sequence of random variables in ΘB , each ζn being associated to a function fn ∈ K∗. The sequence
of the (almost everywhere) derivatives of fn is then a bounded sequence in the Hilbert space L2(R+), so we can
extract a subsequence which weakly converges to a limit whose integral is in K∗. Using the definition of the weak
convergence and the fact that ζn = ∫

R+ 1[0,V1](y)ḟn(y)dy, (ζn)n converges almost surely. Since the sequence (ζn)n is

bounded in Lp(B) for any p ≥ 1, the convergence also holds in L2(B), and compactness follows. �

3. Case of dimension two

3.1. Assumptions and results

We will make the following two assumptions on the random walk and on the random scenery:
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(A1) The random walk increment S1 takes its values in Z
d and has a centered law with a finite and non-singular

covariance matrix Σ . We further suppose that the random walk is aperiodic in the sense of Spitzer [20], which
amounts to requiring that ϕ(u) = 1 if and only if u ∈ 2πZd , where ϕ is the characteristic function of S1.

(A2) E[q1] = 0, E[q2
1 ] = 1 and E[|q1|γ ] < ∞ for some γ > 2.

Our aim is to prove the following quenched central limit theorem.

Theorem 3.1. Assume (A1), (A2) and d = 2. Then, for any 0 < t1 < · · · < tN < ∞,(
K	nt1
√
n logn

, . . . ,
K	ntN 
√
n logn

)
⇒ (Bt1 , . . . ,BtN ) under P(·|q) for P-a.e. q, (8)

where “⇒” denotes convergence in distribution as n → ∞, and B is a Brownian motion with variance σ 2 =
(2π

√
detΣ)−1.

Remark 1. The conclusion of this theorem still holds if, alternatively, the assumptions (A1) and d = 2 are replaced
by the following:

(A1′) The sequence S = (Sn)n≥0 is an aperiodic random walk in Z starting from 0 such that the sequence ( Sn

n
)n

converges in distribution to a random variable with characteristic function given by t 
→ exp(−a|t |) with a > 0,
in that case σ 2 is given by (2πa)−1.

Indeed, the proof of Theorem 3.1 depends on S through properties of the self-intersection local time and of the
intersection local time of the random walk S which are known to be the same under assumptions (A1) in d = 2 or
(A1′) in d = 1.

Remark 2. Theorem 3.1 implies convergence of finite-dimensional distributions of K	nt
/
√

n logn under the quenched
law in any countable set of times t . If additionally tightness in Skorohod space can be established, this will imply
functional convergence to Brownian motion.

An ingredient in the proof of Theorem 3.1 is the following functional central limit theorem under P(·|S), which
is of independent interest. Indeed, it implies the same result under the annealed law, improving the previously known
assumptions for such a theorem to hold (see [12]).

Let

s2
n :=

{
n logn if d = 2,

n if d ≥ 3,
(9)

and

σ 2 :=
{

(2π
√

detΣ)−1 if d = 2,∑∞
n=1 P(Sn = 0) if d ≥ 3.

(10)

Theorem 3.2. Under conditions (A1)–(A2) and d ≥ 2, or (A1′)–(A2), for a.e. realization of S, the process

B
(n)
t := s−1

n K	nt
, t ≥ 0, (11)

converges weakly under P(·|S) in the Skorohod topology as n → ∞ to a Brownian motion with variance σ 2.

The proof of Theorem 3.2 is an application of the martingale CLT, and is given in the Appendix.
The proof of Theorem 3.1 will be given in two steps as follows. Define the subsequence

τn := ⌈
expnα

⌉
,

1

2
∨ 2

γ
< α < 1. (12)

Then the following two propositions directly imply Theorem 3.1. Both assume d = 2 and (A1)–(A2).
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Proposition 4. For any 0 < t1 < · · · < tN < ∞,(
K	τnt1
√
τn log τn

, . . . ,
K	τntN 
√
τn log τn

)
⇒ (Bt1 , . . . ,BtN ) under P(·|q) for P-a.e. q. (13)

Proposition 5. Define i(n) ∈ N by τi(n) ≤ n < τi(n)+1. Then, for any t > 0,

K	nt
√
n logn

− K	τi(n)t
√
τi(n) log τi(n)

(14)

converges in probability to 0 as n → ∞ under P(·|q) for P-a.e. q .

Propositions 4 and 5 are proved in Sections 3.3 and 3.4, respectively. First, we recall in Section 3.2 some results
about two-dimensional random walks.

3.2. Two-dimensional random walks

We gather here some useful facts concerning the local times of two-dimensional random walks. In the following we
always assume (A1) and d = 2. Analogous results hold under the alternative assumption (A1′).

3.2.1. Maximum local times
Let Nn(x) := ∑n

i=1 1{Si=x} be the local times of the random walk S up to time n and

N∗
n := sup

x∈Z2
Nn(x) (15)

be the maximum among them.

Lemma 6.

(i) For all k ∈ N, there exists a K := K(k) > 0 such that

E
[(

N∗
n

)k] ≤ K(logn)2k ∀n ≥ 2. (16)

(ii) There exists a K > 0 such that

P
(
N∗

n > K(logn)2) ≤ n−2 ∀n ≥ 1. (17)

Proof. The two statements follow from Lemma 18(b) in [8]. �

3.2.2. Self-intersection local times
For p ∈ N, the p-fold self-intersection local time I

[p]
n of S up to time n is defined by

I
[p]
n :=

∑
x∈Zd

N
p
n (x) =

∑
1≤i1,...,ip≤n

1{Si1=···=Sip }. (18)

When p = 2 we will omit the superscript and write In.

Lemma 7. When d = 2, for all p ≥ 2 and k ∈ N there exists a K > 0 such that

E
[(

I
[p]
n

)k] ≤ Knk(logn)k(p−1) ∀n ≥ 2. (19)

Proof. The statement can be found in [9] (Proposition 2.3). �

We will also need the following lemma about the self-intersection local times of higher-dimensional random walks.
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Lemma 8. Let S̃ be a random walk with a finite, non-singular covariance matrix in dimension d ≥ 3, and let Ĩ
[p]
n

denote its p-fold self-intersection local time up to time n. Then, for all p ≥ 2 and k ∈ N, there exists a K > 0 such
that

E
[(

Ĩ
[p]
n

)k] ≤ Knk ∀n ≥ 2. (20)

Proof. We can follow the proof of item (i) of Proposition 2.3 in [9], using the fact that, for all k ∈ N,
supn E[Ñn(0)k] = E[Ñ∞(0)k] < ∞ since Ñ∞(0) := ∑∞

n=1 1{S̃n=0} follows a geometric law with parameter P(S̃n �= 0
∀n ≥ 1) > 0. �

3.3. Proof of Proposition 4

3.3.1. Truncation
Fix β ∈ (0,1/4). For n ≥ 1, set bn := nβ , define q(n) ∈R

N
∗

by

q
(n)
i := qi1{|qi |≤bn} −E[qi1{|qi |≤bn}], i ≥ 1, (21)

and K(n) by

K
(n)
k :=

∑
1≤i<j≤k

q
(n)
i q

(n)
j 1{Si=Sj }, k ≥ 2. (22)

The following proposition shows that, in order to prove Proposition 4 for Kn, it is enough to prove the same
statement for K

(n)
n .

Proposition 9 (Comparison between K and K(n)). For any T > 0,

lim
n→∞ sup

2≤k≤	τnT 

|Kk − K

(τn)
k |√

τn log τn

= 0 P-a.s. (23)

Proof. Let

q
(n)>
i := qi1{|qi |>bn} −E[qi1{|qi |>bn}] (24)

and note that, since q1 is centered,

qiqj − q
(n)
i q

(n)
j = −q

(n)>
i q

(n)>
j + qiq

(n)>
j + q

(n)>
i qj . (25)

Write

Kk − K
(n)
k = −E (n,1)

k + E (n,2)
k + E (n,3)

k , (26)

where

E (n,1)
k :=

∑
1≤i<j≤k

q
(n)>
i q

(n)>
j 1{Si=Sj } (27)

and E (n,2)
k , E (n,3)

k are defined analogously from the corresponding terms in (25). Let us focus for the moment on E (n,1)
k .

Note that it is a martingale under P. Therefore, by Doob’s maximal inequality,

E

[
sup

2≤k≤	nT 


∣∣E (n,1)
k

∣∣2
]

≤ E
[∣∣E (n,1)

	nT 

∣∣2] ≤ E

[∣∣q(n)>
1

∣∣2]2
E[I	nT 
]. (28)
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Since

E
[∣∣q(n)>

1

∣∣2] ≤ 2E
[|q1|21{|q1|>bn}

] ≤ C

b
γ−2
n

, (29)

by (27)–(29) and Lemma 7 we get

E

[
sup

2≤k≤	nT 

|E (n,1)

k |2
n logn

]
≤ C

n2β(γ−2)
(30)

which is summable along τn since γ > 2. Analogously, we can show a similar inequality for E (n,2) and E (n,3) with the
bound Cn−β(γ−2) instead, which is also summable along τn. The proof is concluded by applying the Borel–Cantelli
lemma. �

3.3.2. Decomposition of quenched moments
From now on, we will work with the truncated and recentered version K(n) of the energy. In fact, for convenience we
will work with

2K
(n)
k =

∑
i �=ı̈∈[k]

q
(n)
i q

(n)
ı̈ 1{Si=Sı̈ }, (31)

where [t] := {1, . . . , 	t
}.
Fix �p = (p1, . . . , pN) ∈ (N∗)N , and put p := | �p|1 = p1 + · · · + pN . Since the q

(n)
i are bounded, the quenched

moments

m
( �p)
n :=

∑
i1
1 �=ı̈1

1 ,...,i1
p1

�=ı̈1
p1

∈[nt1]
· · ·

∑
iN1 �=ı̈N1 ,...,iNpN

�=ı̈NpN
∈[ntN ]

N∏
k=1

pk∏

=1

q
(n)

ik

q

(n)

ı̈k

P

(
N⋂

k=1

pk⋂

=1

{Sik

= Sı̈k


}
)

(32)

are all well defined and satisfy

m
( �p)
n = E

[
N∏

k=1

(
2K

(n)
	ntk


)pk

∣∣∣q]
P-a.s. (33)

We aim to prove that the m
( �p)
n when properly normalized converge a.s. along τn to the corresponding moments of

a Gaussian process. In order to do that, we will first show how they can be decomposed into sums of terms that are
easier to control.

In the following we will use the notation ı̃ = (ı̃k1 , . . . , ı̃kpk
)Nk=1, ∼ ∈ {·, ··}, and we will write ı̇ �= ı̈ to mean that

ı̇k
 �= ı̈k
 for all k ∈ [N ] and 
 ∈ [pk].
Let

I �p := {
(k, 
,∼): k ∈ [N ], 
 ∈ [pk],∼ ∈ {·, ··}}. (34)

Note that |I �p| = 2p. For Q ⊂ I �p , let

kQ := inf
{
k ∈ [N ]: (k, 
,∼) ∈ Q for some 
 ∈ [pk],∼ ∈ {·, ··}} (35)

and, for a collection Q of subsets of I �p , let

DQ
n := {

b = (bQ)Q∈Q: bQ ∈ [ntkQ
] and bQ �= bP ∀Q �= P ∈Q

}
. (36)

For a given pair ı̇ �= ı̈, we define a graph structure on I �p as follows. We say that

(k1, 
1,∼) �= (k2, 
2,−) ∈ I �p are adjacent if and only if ı̃
k1

1

= ı̄
k2

2

. (37)
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Let P be the resulting partition of I �p into connected components according to the graph structure given above. Then
P belongs to

P �p := {
partitions Q of I �p:

∣∣{(k, 
, ·), (k, 
, ··)} ∩ Q
∣∣ ≤ 1 ∀k ∈ [N ], 
 ∈ [pk] and Q ∈ Q

}
. (38)

Define a = (aP )P∈P ∈ DP
n by setting

aP = ı̃k
 for any (k, 
,∼) ∈ P. (39)

Using t1 < · · · < tN , it is straightforward to verify that the map (ı̇, ı̈) 
→ (P, a) is a bijection. Thus we obtain the
decomposition

m
( �p)
n =

∑
P∈P �p

∑
a∈DP

n

∏
P∈P

(
q(n)
aP

)|P |
P

(
N⋂

k=1

pk⋂

=1

{Sik

= Sı̈k


}
)

, (40)

where in the above ı̇, ı̈ are seen as functions of P and a.
Next we define another graph structure, this time on P , as follows. We say that

Q �= P ∈P are adjacent if and only if ∃k ∈ [N ], 
 ∈ [pk]:
{
(k, 
, ·), (k, 
, ··)} ⊂ P ∪ Q. (41)

Let S denote the partition of P into connected components according to the graph structure above. We call S the
superpartition of ı̇, ı̈. Note that |S| ≥ 2 for all S ∈ S.

We will now show that a consequence of the previous definitions is that

N⋂
k=1

pk⋂

=1

{Sik

= Sı̈k


} =
⋂
S∈S

⋂
P,Q∈S

{SaP
= SaQ

}

=
⋂
S∈S

⋃
x∈Z2

⋂
P∈S

{SaP
= x}. (42)

To see this, first note that

N⋂
k=1

pk⋂

=1

{Sik

= Sı̈k


} =
⋂
S∈S

⋂
P∈S

⋂
k,
: (k,
,·)∈P

{SaP
= Sı̈k


}

=
⋂
S∈S

⋂
P∈S

⋂
Q adj. P

{SaP
= SaQ

}. (43)

Thus (42) will follow once we show that, for all S ∈ S,

ES :=
⋂
P∈S

⋂
Q adj. P

{SaP
= SaQ

} ⊂
⋂

P,Q∈S
{SaP

= SaQ
}. (44)

Indeed, for P,Q ∈ S , there exist Q0, . . . ,QJ ∈ S such that Q0 = P , QJ = Q and Qm is adjacent to Qm−1 for all
m ∈ [J ]. We will prove that ES ⊂ {SaP

= SaQm
} for all m ∈ [J ] by induction on m. Since ES ⊂ {SaQm

= SaQm−1
}

by definition, the case m = 1 is covered and, supposing that ES ⊂ {SaQm−1
= SaP

}, we get ES ⊂ {SaQm
= SaQm−1

} ∩
{SaQm−1

= SaP
} ⊂ {SaQm

= SaP
}, proving the induction step. Hence (44) is verified, and (42) follows.

Thus we see that we may decompose m
( �p)
n in the following manner:

m
( �p)
n =

∑
P∈P �p

m
( �p)
n (P), (45)
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where

m
( �p)
n (P) :=

∑
a∈DP

n

∏
P∈P

(
q(n)
aP

)|P |
P

( ⋂
S∈S

⋂
P,Q∈S

{SaP
= SaQ

}
)

. (46)

Next, using the identity∏
P∈P

(cP + dP ) =
∑
A⊂P

∏
P∈A

cP

∏
P /∈A

dP , (47)

we see that we may further decompose m
( �p)
n (P) as

m
( �p)
n (P) =

∑
A⊂P

m
( �p)
n (P,A), (48)

where

m
( �p)
n (P,A) :=

∑
a∈DP

n

∏
P∈A

E
[(

q(n)
aP

)|P |] ∏
P /∈A

{(
q(n)
aP

)|P | −E
[(

q(n)
aP

)|P |]}
P

( ⋂
S∈S

⋂
P,Q∈S

{SaP
= SaQ

}
)

. (49)

Let

N := {
P ∈P : |P | > 1

}
. (50)

Since m
( �p)
n (P,A) = 0 if A∩N c �=∅ and m

( �p)
n (P,P) = E[m( �p)

n (P)],

m
( �p)
n (P) −E

[
m

( �p)
n (P)

] =
∑

A⊂N : Ac �=∅

m
( �p)
n (P,A). (51)

Moreover, when Ac �=∅ we may write

m
( �p)
n (P,A) =

∑
(aP )P /∈A∈DAc

n

∏
P /∈A

{(
q(n)
aP

)|P | −E
[(

q(n)
aP

)|P |]}Wn

(
(aP )P /∈A,P,A

)
, (52)

where

Wn

(
(aP )P /∈A,P,A

) :=
∑

(aP )P∈A∈DA
n

∏
P∈A

E
[(

q(n)
aP

)|P |]
P

( ⋂
S∈S

⋂
P,Q∈S

{SaP
= SaQ

}
)

1{(aP )P∈P∈DP
n }. (53)

3.3.3. Analysis of the terms

We begin with the terms in which Ac =∅, i.e., the ones corresponding to E[m( �p)
n (P)].

Proposition 10. For all �p ∈ (N∗)N , there exists a constant K ∈ (0,∞) such that∣∣E[
m

( �p)
n (P)

]∣∣ ≤ K(n logn)p/2 ∀n ≥ 2, (54)

where p := | �p|1 = p1 + · · · + pN .

Proof. Integrating (46) we get

E
[
m

( �p)
n (P)

] =
∏
P∈P

E
[(

q
(n)
1

)|P |] ∑
a∈DP

n

P

( ⋂
S∈S

⋂
P,Q∈S

{SaP
= SaQ

}
)

. (55)
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We may suppose that |P | ≥ 2 for all P ∈P since otherwise E[m( �p)
n (P)] = 0. In particular, |P| ≤ p. Estimating

E
[∣∣q(n)

1

∣∣|P |] ≤ 2|P |
E

[|q11{|q1|≤bn}||P |] ≤ 2|P |
E

[|q11{|q1|≤bn}||P |−2q2
1

] ≤ 2|P |b|P |−2
n , (56)

we see that the absolute value of the first term with the product in (55) is at most Cb
2(p−|P |)
n . On the other hand, the

second term is smaller than∑
a∈[ntN ]P

E

[ ∏
S∈S

∑
x∈Z2

∏
P∈S

1{SaP
=x}

]
= E

[ ∏
S∈S

∑
x∈Z2

N
|S|
	ntN 
(x)

]

= E

[ ∏
S∈S

I
[|S|]
	ntN 


]
≤ Cn|S|(logn)|P |−|S|, (57)

where we used Hölder’s inequality and Lemma 7.
Combining (55)–(57) we obtain∣∣E[

m
( �p)
n (P)

]∣∣ ≤ Cb
2(p−|P |)
n n|S|(logn)|P |−|S|. (58)

We now split into different cases. Note that |S| ≤ |P|/2 ≤ p/2. If |P| = p and |S| = p/2, then (54) holds by (58). If
|P| = p and |S| < p/2, then (58) divided by (n logn)p/2 goes to zero as n → ∞. Lastly, if |P| < p, then

(n logn)−p/2
∣∣E[

m
( �p)
n (P)

]∣∣ ≤ Cn−((p−|P |)/2)(1−4β)(logn)p/2 (59)

which goes to zero as n → ∞ since β < 1/4. �

The rest of the analysis consists in showing that all other terms with Ac �= ∅ converge to zero a.s. along τn when
normalized.

Proposition 11. For any fixed choice of �p and P , if Ac �=∅ then

lim
n→∞

m
( �p)
τn (P,A)

(τn log τn)p/2
= 0 P-a.s. (60)

Before we proceed to the proof, we need to introduce a decoupling inequality, due to de la Peña and Montgomery-
Smith, that will be important for us.

For fixed A �=P , let (q(n,P ))P /∈A be |Ac| independent copies of q(n) and put

m̂
( �p)
n (P,A) :=

∑
(aP )P /∈A∈DAc

n

∏
P /∈A

{(
q(n,P )
aP

)|P | −E
[(

q(n)
aP

)|P |]}Wn

(
(aP )P /∈A,P,A

)
, (61)

i.e., analogously to (52) but with independent copies of q for different P . Then the main theorem in [19] implies that
there exists a constant C > 0 depending on |Ac| only such that

P
(∣∣m( �p)

n (P,A)
∣∣ > u

) ≤ C P
(∣∣m̂( �p)

n (P,A)
∣∣ > u/C

)
(62)

for all u > 0. In particular, we can bound the probability in the l.h.s. of (62) using Markov’s inequality and the fact
that ∥∥m̂

( �p)
n (P,A)

∥∥2
2 =

∏
P /∈A

∥∥(
q

(n)
1

)|P | −E
[(

q
(n)
1

)|P |]∥∥2
2

∑
(aP )P /∈A∈DAc

n

W2
n

(
(aP )P /∈A,P,A

)
. (63)
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Proof of Proposition 11. We may suppose that A⊂N . Extending the sums in (53) and (63) to [ntN ]A, respectively,
[ntN ]Ac

, we may estimate∥∥m̂
( �p)
n (P,A)

∥∥2
2 ≤

∏
P /∈A

∥∥(
q

(n)
1

)|P | −E
[(

q
(n)
1

)|P |]∥∥2
2

∏
P∈A

E
[(

q
(n)
1

)|P |]2
Bn(P,A), (64)

where

Bn(P,A) :=
∑

(aP )P /∈A∈[ntN ]Ac

{ ∑
(aP )P∈A∈[ntN ]A

E

[ ∏
S∈S

∑
x∈Z2

∏
P∈S

{SaP
= x}

]}2

=
∑

(aP )P /∈A∈[ntN ]Ac

E

[ ∏
S∈S

∑
x∈Z2

N
|S∩A|
	ntN 
 (x)

∏
P∈S∩Ac

1{SaP
=x}

]2

. (65)

We proceed to bound Bn(P,A). Denoting by N̂n(x) the local times of an independent copy Ŝ of S, and by Ñn(x, y)

the local times of the 4-dimensional random walk S̃n = (Sn, Ŝn), we can rewrite (65) as∑
(aP )P /∈A∈[ntN ]Ac

E
⊗2

[ ∏
S∈S

∑
x,y∈Z2

(
N	ntN 
(x)N̂	ntN 
(y)

)|S∩A| ∏
P∈S∩Ac

1{SaP
=x,ŜaP

=y}
]

= E
⊗2

[ ∏
S∈S

∑
x,y∈Z2

(
N	ntN 
(x)N̂	ntN 
(y)

)|S∩A|
Ñ

|S∩Ac|
	ntN 
 (x, y)

]

= E
⊗2

[ ∏
S⊂A

I
[|S|]
	ntN 
Î

[|S|]
	ntN 


∏
S⊂Ac

Ĩ
[|S|]
	ntN 


∏
S: ∅ �=S∩A�=S

∑
x,y∈Z2

(
N	ntN 
(x)N̂	ntN 
(y)

)|S∩A|
Ñ

|S∩Ac|
	ntN 
 (x, y)

]

≤ E
⊗2

[ ∏
S⊂A

I
[|S|]
	ntN 
Î

[|S|]
	ntN 


∏
S⊂Ac

Ĩ
[|S|]
	ntN 


∏
S: ∅ �=S∩A�=S

(
N∗	ntN 
N̂∗	ntN 


)|S∩A|
Ĩ

[|S∩Ac|]
	ntN 


]
, (66)

where Î
[k]
n , Ĩ

[k]
n are the analogues of I

[k]
n for the corresponding random walks, and N̂∗

n = supx N̂n(x). Using Hölder’s
inequality, Lemmas 6(i), 7 and 8, and the fact that S is a partition, we see that (66) is at most

Cn|S|+|{S: S⊂A}|(logn)
2(|A|+∑

S: ∅ �=S∩A �=S |S∩A|−|{S: S⊂A}|)
. (67)

Now we note that |S| ≤ 	|P|/2
, |{S: S ⊂A}| ≤ 	|A|/2
 and 2|A| + |Ac| ≤ 2p. Therefore,

t := p − |S| − ∣∣{S: S ⊂A}∣∣ ≥ 0 (68)

and there is equality if and only if

(1) |A| and |Ac| are even;
(2) |P | = 2 ∀P ∈A and |P | = 1 ∀P ∈Ac;
(3) |S| = 2 ∀S ∈ S;
(4) for any S ∈S, either S ⊂A or S ⊂Ac .

Thus by (65)–(67)

Bn(P,A)

(n logn)p
≤

{
C(logn)−|Ac|/2 if t = 0,

Cn−t (logn)3p if t > 0.
(69)

We will consider three cases separately:

Case 1: t ≥ 1;
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Case 2: t = 0 and |Ac| ≥ 4;
Case 3: t = 0 and |Ac| = 2.

For each of these cases we will show that, for every ε > 0,

∞∑
n=1

P
(∣∣m̂( �p)

τn
(P,A)

∣∣ > ε
√

τn log τn

)
< ∞, (70)

and the result will follow by (62). To prove (70), we will use Markov’s inequality together with (64) and (69). In the
third case, the variance estimate (64) is not good enough, but we will get a better bound estimating a higher moment.

Case 1 (t ≥ 1). For P ∈A, we have

E
[(

q
(n)
1

)|P |]2 ≤ 22|P |b2(|P |−2)
n (71)

as in (56) and, for P /∈A, we can estimate in a similar fashion∥∥(
q

(n)
1

)|P | −E
[(

q
(n)
1

)|P |]∥∥2
2 ≤ 22|P |

E
[
(q11{|q1|≤bn})2|P |]

≤ 22|P |
E

[
(q11{|q1|≤bn})2(|P |−1)q2

1

]
≤ 22|P |b2(|P |−1)

n . (72)

Using (64), (69) and |S| + |{S: S ⊂A}| ≤ |A| + |Ac|/2, we get

‖m̂( �p)
n (P,A)‖2

2

(n logn)p
≤ Cb

4(p−|A|−|Ac|/2)
n n−t (logn)3p ≤ C

(
b4
n

n

)t

(logn)3p

= Cn−t (1−4β)(logn)3p (73)

which is summable along τn since β < 1/4.
Case 2 (t = 0, |Ac| ≥ 4). As mentioned above, in this case |P | = 2 for P ∈ A and |P | = 1 for P /∈ A. Using

E[|q(n)
1 |2] ≤ E[|q1|2] = 1, we get from (64) and (69) that

‖m̂( �p)
n (P,A)‖2

2

(n logn)p
≤ C(logn)−2 (74)

which is summable along τn since α > 1/2.
Case 3 (t = 0, |Ac| = 2). In this case, (64) is not enough to prove (70). However, since |Ac| = 2 and t = 0, by (52)

and the discussion after (68) these terms are of the form

m̂
( �p)
n (P,A) =

∑
aP1 �=aP2∈[ntN ]

q(n,P1)
aP1

q(n,P2)
aP2

Wn(aP1 , aP2), (75)

where P1,P2 ∈P are such that Ac = {P1,P2} ∈S and

Wn(aP1 , aP2) = E
[(

q
(n)
1

)2](|P |−2)
∑

(aP )P∈A∈DA
n

P

( ⋂
S∈S

⋂
P,Q∈S

{SaP
= SaQ

}
)

1{a∈DP
n }. (76)

Rewrite

m̂
( �p)
n (P,A) =

∑
i �=j∈[ntN ]

q
(n)
i q̂

(n)
j Wn(i, j), (77)
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where q̂ is an independent copy of q . Since Wn(i, j) is symmetric and

k 
→
∑

i �=j∈[k]
q

(n)
i q̂

(n)
j Wn(i, j) (78)

is a centered martingale, by Burkholder’s and Minkowski’s inequalities we have

∥∥m̂
( �p)
n (P,A)

∥∥2
γ

≤ C

	ntN 
∑
j=1

∥∥∥∥q
(n)
j

∑
i∈[ntN ]\{j}

q̂
(n)
i Wn(i, j)

∥∥∥∥2

γ

= CE
[∣∣q(n)

1

∣∣γ ]2/γ
	ntN 
∑
j=1

∥∥∥∥ ∑
i∈[ntN ]\{j}

q
(n)
i Wn(i, j)

∥∥∥∥2

γ

. (79)

By the Marcinkiewicz–Zygmund and Minkowski inequalities, (79) is at most

C
∑

i �=j∈[ntN ]
W2

n(i, j) ≤ CBn(P,A) ≤ Cnp(logn)p−1, (80)

where we used (65) and (69). Combining (79)–(80) we get

‖m̂( �p)
n (P,A)‖γ

γ

(n logn)p
≤ C(logn)−γ /2 (81)

which is summable along τn since α > 2/γ . �

3.3.4. Conclusion
From the results of Section 3.3.3 we obtain the following two propositions. Together with Proposition 9, they will
allow us to finish the proof of Proposition 4.

Proposition 12 (Convergence of annealed moments). For every �p ∈ (N∗)N ,

lim
n→∞E

[
N∏

k=1

(
K

(n)
	ntk
√

n logn

)pk

]
= E

[
N∏

k=1

B
pk
tk

]
, (82)

where B is a Brownian motion with variance σ 2.

Proof. First we note that, because of the annealed functional CLT for K (see the Appendix) and Proposition 9, K(n)

satisfies a functional CLT with variance σ 2 under P. Integrating (45) and applying Proposition 10, we see that, for all
�p ∈ (N∗)N ,

sup
n≥2

∣∣∣∣∣E
[

N∏
k=1

(
K

(n)
	ntk
√

n logn

)pk

]∣∣∣∣∣ = 2−p sup
n≥2

|E[m( �p)
n ]|

(n logn)p/2
< ∞, (83)

and hence
∏N

k=1(K
(n)
	ntk
/

√
n logn)pk is uniformly integrable for all �p ∈ (N∗)N . �

Proposition 13 (Convergence of quenched moments). For every �p ∈ (N∗)N ,

lim
n→∞E

[
N∏

k=1

(
K

(τn)
	τntk
√

τn log τn

)pk ∣∣∣q]
−E

[
N∏

k=1

(
K

(τn)
	τntk
√

τn log τn

)pk
]

= 0 P-a.s. (84)
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Proof. Combining (45) and (51), we see that

2p

{
E

[
N∏

k=1

(
K

(n)
	ntk


)pk

∣∣∣q]
−E

[(
K

(n)
	ntk


)pk
]} = m

( �p)
n −E

[
m

( �p)
n

]
is a sum of terms m

( �p)
n (P,A) with A⊂N , Ac �=∅, so the result follows from Proposition 11. �

Proof of Proposition 4. The conclusion is now straightforward: Propositions 12–13 give us (13) with K(n) in place
of K by the Cramér–Wold device and the method of moments, and this is passed to K by Proposition 9. �

3.4. Proof of Proposition 5

Before we start, we note some properties of the subsequence τn that will be used in the sequel: there exist positive
constants K1, K2 such that

(p1) lim
n→∞ τn+1/τn = 1;

(p2) K1 exp
(
nα/2

) ≤ τn+1 − τn ≤ K2τn/n1−α ∀n ∈N
∗; (85)

(p3) τn ≤ K2 exp
(
nα

) ∀n ∈ N
∗.

Proof. For integers b ≥ a ≥ 2, let

Ka,b := Kb − Ka. (86)

Once we show that

lim
n→∞ sup

	τnt
≤k≤	τn+1t

|K	τnt
,k|√
τn log τn

= 0 P-a.s., (87)

Proposition 5 will follow by noting that∣∣∣∣ K	nt
√
n logn

− K	τi(n)t
√
τi(n) log τi(n)

∣∣∣∣ ≤ |K	nt
 − K	τi(n)t
|√
n logn

+ |K	τi(n)t
|√
τi(n) log τi(n)

(
1 −

√
τi(n) log τi(n)

n logn

)
. (88)

Then, by (87) and since limn→∞ n−1τi(n) = 1, the first term in the r.h.s. of (88) converges a.s. to 0. Moreover, the
second term converges for P-a.e. q in P(·|q)-probability to 0 since, by Proposition 4, K	τnt
/

√
τn log τn is a.s. tight

under P(·|q). Therefore, we only need to show (87). By Proposition 9, it is enough to prove (87) for the sequence
q

(τn+1)

i , i ≥ 1, i.e.

lim
n→∞ sup

	τnt
≤k≤	τn+1t


|K(τn+1)

	τnt
,k|√
τn log τn

= 0 P-a.s. (89)

To this end, we will make use of a maximal inequality for demimartingales due to Newman and Wright [18], as well
as Bernstein’s inequality.

The sequence (K
(n)
a,k)k≥a is a zero-mean martingale under both P and P(·|S) with respect to the filtration

σ((qi)i≤k, S). Indeed,

K
(n)
a,k+1 − K

(n)
a,k = K

(n)
k+1 − K

(n)
k = q

(n)
k+1

k∑
i=1

q
(n)
i 1{Si=Sk+1}
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and the r.v.’s q
(n)
i , i ≥ 1 are independent and centered. Therefore,

E
[(

K
(n)
a,b

)2|S] =
b∑

k=a+1

E

[(
q

(n)
k

k−1∑
i=1

q
(n)
i 1{Si=Sk}

)2∣∣∣S]

≤ C

b∑
k=a+1

k−1∑
i=1

1{Si=Sk} = C

b∑
k=a+1

Nk−1(Sk)

≤ C
∑
x∈Z2

Nb(x)Na,b(x) ≤ C
√

Ib

√
Ia,b, (90)

where Na,b(x) := ∑b
k=a+1 1{Sk=x}, Ia,b := ∑

x∈Z2 N2
a,b(x) and for the last step we used the Cauchy–Schwarz inequal-

ity. Integrating (90) and using Hölder’s inequality we get

E
[(

K
(n)
a,b

)2] ≤ CE[√Ib

√
Ia,b] ≤ C

√
E[Ib]E[Ia,b]

≤ C
√

b logb
√

(b − a) log(b − a) ≤ Cb logb, (91)

where for the third inequality we used Lemma 7 and that Ia,b has the same law as Ib−a .
Since K

(n)
a,k is in particular a demimartingale under P, by Corollary 6 in [18] we get

P

(
sup

	τnt
≤k≤	τn+1t

∣∣K(τn+1)

	τnt
,k
∣∣ ≥ 2ε

√
τn log τn

)

≤

√√√√2E[(K(τn+1)

	τnt
,	τn+1t
)
2]

ε2τn log τn

√
P
(∣∣K(τn+1)

	τnt
,	τn+1t

∣∣ ≥ ε

√
τn log τn

)
≤ C

√
P
(∣∣K(τn+1)

	τnt
,	τn+1t

∣∣ ≥ ε

√
τn log τn

)
(92)

by (91) and the properties of τn.
Now note that K

(n)
a,b can be rewritten as∑

x∈Z2

(
Λb(x) − Λa(x)

)
,

where

Λk(x) =
∑

i<j∈Lk(x)

q
(n)
i q

(n)
j , Lk(x) := {1 ≤ i ≤ k: Si = x}.

Given the random walk S, the random variables Λb(x) − Λa(x), x ∈ Z
2 are independent, centered and uniformly

bounded by (bnN
∗
b )2. Furthermore, by (90),∑

x∈Z2

E
[(

Λb(x) − Λa(x)
)2|S] ≤ C(

√
Ia,b

√
Ib). (93)

Thus we may use Bernstein’s inequality under P(·|S) to estimate the probability in the right hand side of (92), obtain-
ing that, for all u > 0,

P
(∣∣K(n)

a,b

∣∣ ≥ u|S) ≤ exp

(
−1

2

u2√
Ia,bIb + u(bnN

∗
b )2

)
.
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Integrating with respect to the random walk, we get, for every ε > 0,

P
(∣∣K(τn+1)

	τnt
,	τn+1t

∣∣ ≥ ε

√
τn log τn

)
≤ E

[
exp

(
−C

τn log τn√
I	τnt
,	τn+1t
I	τnt
 + √

τn log τn(bτn+1N
∗	τn+1t
)

2

)]
. (94)

Recall that, by Lemma 6(ii), there exists C > 0 such that

P
(
N∗

k > C(logk)2) ≤ k−2 ∀k ≥ 1. (95)

Now fix 0 < δ < 1
2 (α−1 − 1) and an integer θ > 2/(αδ). By Markov’s inequality and Lemma 7, we have

P
(
Ik > k(logk)1+δ

) ≤ E[I θ
k ]

kθ (logk)(1+δ)θ
≤ C

(logk)θδ
∀k ≥ 2. (96)

By (94)–(96), the subadditivity of
√· and the fact that e−2x/(y+z) ≤ e−x/y + e−x/z for any x, y, z > 0, we see that

(92) is at most

C1(τn+1)
−1 + C2

(
log(τn+1 − τn)

)−θδ/2 + C3(log τn)
−θδ/2 + e−C4dn/en + e−C4dn/fn, (97)

where C1–C4 are positive constants and

dn := τn log τn,

en := √
τn(τn+1 − τn)

[
log(τn+1 − τn) log(τn)

](1+δ)/2
, (98)

fn := √
τn log τn(τn+1)

2β(log τn+1)
4.

Using the properties of τn, we see that the first term of (97) is summable; by our choice of θ , so are the second and
the third. Furthermore,

dn/en ≥ Cn(1−α)/2/(log τn)
δ ≥ Cn(1−α(1+2δ))/2, (99)

and so the fourth term is summable by our choice of δ. As for the last term, note that

dn/fn ≥ C(τn)
(1/2)(1−4β)(log τn)

−7/2 (100)

so the fifth term is summable since β < 1/4. Thus, by the Borel–Cantelli lemma, (87) holds. �

4. Case of dimensions three and higher

4.1. Assumptions and results

In d ≥ 3 we can relax the condition γ > 2 used in Section 3. Here we will only assume (A1) and

E[q1] = 0, E
[
q2

1

] = 1. (101)

However, we will need to recenter Kn, since its quenched expectation is not subdiffusive as can be checked with a
simple computation.

Theorem 4.1. In d ≥ 3, under assumptions (A1) and (101), for P-a.e. q , the process

K	nt
 −E[K	nt
|q]√
n

, t ≥ 0, (102)
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converges under P(·|q) in the Skorohod topology to a Brownian motion with variance

σ 2 =
∞∑
i=1

P(Si = 0)P(Si �= 0). (103)

Remark 3. The result above remains true for any transient random walk on Z
d , d ≥ 1, as long as

∞∑
n=1

ρ−n

ρn∑
k=1

∞∑
i=k

P(Si = 0) < ∞

for some ρ > 1.

Proof of Theorem 4.1. The idea is to approximate Kn − E[Kn|q] by an additive functional of a Markov chain and
then apply known results in this setting. Let(

X(k), q(k)
)
, k ∈ Z, (104)

be an i.i.d. sequence with each term distributed as (S1, q1), and denote its law by P and its expectation by E. For a
time l ∈ N, define the sequences Xl and ql by

ql(k) := q(l + k), k ∈ Z,
(105)

Xl(k) := X(k + l), k ≤ 0,

and put

ξl := (ql,Xl ). (106)

Then ξl is a Markov chain on the state space RZ × (Rd)Z− . Moreover, the process ξl is stationary and ergodic under P.
For X ∈ (Rd)Z− and i ≤ k ≤ 0, define

Σk
i (X ) := X (i + 1) + · · · +X (k). (107)

Then, writing

Kn =
n∑

k=2

q(k)

k−1∑
i=1

q(k − i)1{Σ0−i (Xk)=0}, (108)

we see that

Kn −E[Kn|q] =
n∑

l=2

Hl(ξl), (109)

where

Hl(q,X ) := q(0)

l−1∑
i=1

q(−i)
{
1{Σ0−i (X )=0} − P(Si = 0)

}
. (110)

Since d ≥ 3,
∑∞

i=1 P(Si = 0) < ∞ and we may define

H(q,X ) := q(0)

∞∑
i=1

q(−i)
{
1{Σ0−i (X )=0} − P(Si = 0)

}
. (111)
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Lemma 14. For each T > 0,

lim
n→∞

1√
n

sup
1≤k≤nT

∣∣∣∣∣
k∑

l=2

(
Hl(ξl) − H(ξl)

)∣∣∣∣∣ = 0 P-a.s. (112)

Proof. To start, note that

k∑
l=2

(
H(ξl) − Hl(ξl)

) =
k∑

l=2

q(l)

∞∑
i=l

q(l − i)
(
1{Σ0−i (Xl )=0} − P(Si = 0)

)
(113)

is a martingale with respect to the filtration (Fk)k≥1 where Fk = σ((q(l),X(l)), l ≤ k) under P. By Doob’s maximal
inequality,

E

[
1

n
sup

1≤k≤n

∣∣∣∣∣
k∑

l=2

(
Hl(ξl) − H(ξl)

)∣∣∣∣∣
2]

≤ 1

n

n∑
l=2

∞∑
i=l

Var(1{Σ0−i (Xl )=0})

≤ 1

n

n∑
l=2

∞∑
i=l

P(Si = 0)

≤ Cn−1/2. (114)

The last step follows from the bound P(Sn = 0) ≤ Cn−d/2 (see e.g. [13], Lemma 1). Therefore, by the Borel–Cantelli
lemma, (112) holds with the sequence 2n in place of nT . The result is passed to the original sequence by considering,
for each n, kn such that 2kn−1 ≤ nT < 2kn . �

Because of Lemma 14, the theorem will follow once we show the same statement for the additive functional

Hn :=
n∑

l=2

H(ξl). (115)

Lemma 15.

sup
n≥2

E
[
E[Hn|ξ0]2] < ∞. (116)

Proof. We have

E
[
H(ξl)|ξ0

] = ql(0)

∞∑
i=1

ql(−i)
{
P
(
Σ0−i (Xl ) = 0|(Xj )j≤0

) − P(Si = 0)
}
. (117)

Since P(Σ0−i (Xl ) = 0|(Xj )j≤0) = P(Si = 0) if i ≤ l, we have

E
[
E[Hn|ξ0]2] =

n∑
l=2

∞∑
i=l+1

Var
(
P
(
Σ0−i (Xl ) = 0|(Xj )j≤0

))

≤
n∑

l=2

∞∑
i=l+1

E
[
P
(
Σ0

−i (Xl ) = 0|(Xj )j≤0
)2]

=
n∑

l=2

∞∑
k=0

P
⊗3(S(1)

l = S
(2)
l = −S

(3)
k+1

)
, (118)
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where S(j), j = 1,2,3 are independent copies of S with joint law P
⊗3. This last line is equal to

n∑
l=2

∑
x∈Zd

P
⊗2(S(1)

l = S
(2)
l = x

)
E

[
N∞(−x)

] ≤ E
[
N∞(0)

] ∞∑
l=1

P
⊗2(S(1)

l = S
(2)
l

)
< ∞ (119)

since the last sum is the total local time at 0 of the d-dimensional random walk S
(1)
l − S

(2)
l . �

Now the theorem readily follows from Lemmas 14–15 together with e.g. the main theorem in [6] (note that
E[Hn|ξ0] = ∑n

k=2 P kH(ξ0) with their notations), the fact that (q(k))k≥1 is measurable with respect to σ(ξ0), and
a straightforward calculation of the variance of Hn. �

Appendix: Functional CLT under the conditional law given S

In this appendix we prove Theorem 3.2.

Proof of Theorem 3.2. We will apply the martingale functional CLT in the Lindeberg–Feller formulation as in e.g.
[7], Theorem 7.3 on p. 411. We will tacitly use the laws of large numbers for I

[p]
n , p ≥ 0, proven in [2] for d = 2 and

[1] for d ≥ 3. Note that the result in [2] is also valid under (A1′).
Let us define K1 := 0 and

�n,k := s−1
n (Kk − Kk−1) = s−1

n qk

k−1∑
i=1

qi1{Si=Sk}, k ≥ 2. (120)

Then �n,m is a martingale difference array under P(·|S) w.r.t. the filtration Fm := σ(qi, i ≤ m). The corresponding
quadratic variations are given by

Qn,m :=
m∑

k=1

E
[
�2

n,k|S,Fk−1
]
. (121)

According to [7], the proof will be finished once we show that, for all ε > 0,

lim
n→∞

n∑
k=2

E
[
�2

n,k1{|�n,k |>ε}|S
] = 0 P-a.s. (122)

and that, for all t ≥ 0,

lim
n→∞Qn,	nt
 = σ 2t in probability under P(·|S) for P-a.e. S. (123)

In fact, the theorem in [7] concludes convergence for t ∈ [0,1], but it this then easy to extend the result to t ∈ [0, T ]
with T ∈N and thus to t ∈ [0,∞).

We proceed to verify (122)–(123), starting with the first. Write

n∑
k=2

E
[
�2

n,k1{|�n,k |>ε}|S
] ≤ C

n∑
k=2

E
[|�n,k|γ |S]

= Cs
−γ
n

n∑
k=2

E

[∣∣∣∣∣
k−1∑
i=1

qi1{Si=Sk}

∣∣∣∣∣
γ ∣∣∣S]

≤ Cs
−γ
n

n∑
k=2

(
k−1∑
i=1

1{Si=Sk}

)γ /2
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= Cs
−γ
n

∑
x∈Zd

n∑
k=2

1{Sk=x}Nγ/2
k−1(x)

≤ Cs
−γ
n I

[1+γ /2]
n , (124)

where for the third step we used the Marcinkiewicz–Zygmund and Minkowski inequalities. Since I
[1+γ /2]
n /s

γ
n goes to

0 a.s. as n → ∞, (122) follows.
Let us now verify (123). Write

Qn,m = s−2
n

(
Im − m

2
+ R(1)

m + R(2)
m

)
, (125)

where

R(1)
m :=

m∑
k=2

k−1∑
i=1

(
q2
i − 1

)
1{Si=Sk}

=
m−1∑
i=1

(
q2
i − 1

)
Ni,m(Si) (126)

with Na,b(x) := ∑b
k=a+1 1{Sk=x}, and

R(2)
m := 2

m∑
k=2

∑
1≤i<j≤k−1

qiqj 1{Si=Sj =Sk}

= 2
∑
x∈Zd

∑
1≤i<j≤m−1

qiqj 1{Si=Sj =x}Nj,m(x). (127)

Since (I	nt
 − 	nt
)/2s2
n → σ 2t a.s., we only need to show that the remaining terms in (125) converge to 0. Note that

in dimension d ≥ 3, σ 2 can be written as

σ 2 = 1

2

( ∞∑
j=1

j2χ2(1 − χ)j−1 − 1

)
,

where χ := P(Sn �= 0 ∀n ≥ 1).

Let us first deal with R
(2)
m . Note that, under P(·|S), the summands in the r.h.s. of (127) are independent and centered

for different x to write

E
[(

R(2)
m

)2|S] = 4
∑
x∈Zd

∑
1≤i<j≤m−1

1{Si=Sj =x}N2
j,m(x)

≤ C
∑
x∈Zd

N4
m(x) = CI [4]

m (128)

and conclude that R
(2)
	nt
/s2

n goes to 0 in probability under P(·|S). To control R
(1)
m , we split into two cases. If γ ≥ 4,

then reasoning as before we get

E
[(

R(1)
m

)2|S] ≤ CI [3]
m
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and we conclude as for R
(2)
m . If γ < 4, we use Theorem 1(c) in [11]. Note that

m−1∑
i=1

N
γ/2
i,m (Si) =

∑
x∈Zd

m−1∑
i=1

1{Si=x}Nγ/2
i,m (x)

≤
∑
x∈Zd

N
1+γ /2
m (x) = I

[1+γ /2]
m , (129)

and also

P
(∣∣q2 − 1

∣∣ ≥ u
) ≤ Cu−γ /2 ∀u > 0. (130)

Letting

an,i :=
{

Ni,	nt
(Si)/s
2
n if i ≤ 	nt
,

0 otherwise,
(131)

we obtain from the aforementioned theorem that, for some constant C > 0,

P
(∣∣R(1)

	nt

∣∣ > εs2

n|S) ≤ CI
[1+γ /2]
	nt
 /s

γ
n , (132)

which goes to 0 as n → ∞. �
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