
www.imstat.org/aihp

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques
2014, Vol. 50, No. 4, 1161–1164
DOI: 10.1214/13-AIHP563
© Association des Publications de l’Institut Henri Poincaré, 2014

A stationary random graph of no growth rate
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Abstract. We present a random automorphism-invariant subgraph of a Cayley graph such that with probability 1 its exponential
growth rate does not exist.

Résumé. Nous construisons un sous-graphe aléatoire invariant par automorphismes d’un groupe de Cayley qui n’a presque sûre-
ment pas un taux de croissance exponentiel bien défini.
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At the Banff workshop “Graphs, groups and stochastics” in 2011, Vadim Kaimanovich asked the following question:

Question 1. For an arbitrary (Γ, o) unimodular random rooted graph, does the exponential growth rate

lim
n→∞ log

∣∣BΓ (o,n)
∣∣/n

exist almost surely? Here BΓ (o,n) denotes the ball of radius n around o in Γ .

We give a negative answer to the question.

Theorem 2. There is a transitive unimodular graph G with a random invariant spanning subgraph Γ such that for
any point o ∈ G and almost every Γ

lim inf
n→∞ log

∣∣BΓ (o,n)
∣∣/n = 0 and

lim sup
n→∞

log
∣∣BΓ (o,n)

∣∣/n = c

with c > 0. Moreover, there exists such a Γ that is a spanning tree with one end.

Unimodular random graphs are random rooted graphs with a certain stationarity property (see the next paragraph).
Unimodular random graphs provide a common framework to examples such as automorphism-invariant random sub-
graphs of transitive unimodular graphs (e.g., Cayley graphs), augmented Galton–Watson trees, Borel equivalence
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relations. . . . Many such examples arise as the local weak limit (or Benjamini–Schramm limit) of a sequence of finite
graphs; a main open question by Aldous and Lyons is whether all of them arise this way, [1].

Suppose that the random rooted graph (G,o) has every degree bounded by d almost surely, and define a new graph
(G′, o), by adding loops to vertices of G in a way that makes it d-regular. Choose an edge uniformly of all edges in G′
incident to o, and let x be o if the chosen edge is a loop, otherwise let x be the endpoint of the edge different from o.
If the resulting distribution on the triples (G′, o, x) is the same as the distribution of the triples (G′, x, o), then we call
(G,o) unimodular. The bound on the degrees can be removed, and several alternative definitions exist, see [1].

The exponential growth rate of an infinite graph is one of the important invariants that are defined as a limit. For
other invariants, such as the speed of the random walk, the defining limit is known to exist almost surely for every
unimodular random graph, using some subadditive inequality, [1]. Hence it may be surprising that a similar argument
does not work for the existence of growth, as it does for every Cayley graph.

Proof of Theorem 2.
Construction: Let Δ be the triangular lattice, L = Z2 � Z be the Cayley graph of the lamplighter group, where we

think about each vertex of L as a pair (ξ, k), where ξ ∈ {0,1}Z of finite support is the status of lamps and k ∈ Z is
the position of the marker, and the generators defining edges are (10,0), (0,1), (0,−1) (hence a vertex is adjacent
to vertices that result from switching the lamp at the location of the marker, or from making the marker step to the
right or to the left). Define G = Δ × L × K28, where K28 is the complete graph on vertex set {1,2, . . . ,28}. Here the
product H1 × H2 of graphs H1,H2 is defined on vertex set V (H1) × V (H2) with (x1, x2) adjacent to (y1, y2) if and
only if xi = yi or xi is adjacent to yi in Hi , for i = 1,2.

Consider critical percolation on the vertices of Δ, that is, delete each vertex with probability 1/2 independently
from each other, and call the deleted vertices closed, the remaining ones open. Let C0 and C1 be the set of components
(clusters) induced by closed and open vertices respectively; C := C0 ∪ C1. From percolation theory it is known that
every component in C is finite. Furthermore, any component C in C0 is separated from infinity by a unique component
C′ in C1 to which it is adjacent to (meaning that there is a unique C′ ∈ C1 such that C is contained in a finite component
of Δ \ C′ and there is an edge between C and C′), and conversely, any component C in C1 is separated from infinity
by a unique component C′ in C0. Hence there is a naturally defined oriented tree T on C as vertex set: let there be an
edge pointing from x to y (x → y), if the cluster y separates x from infinity and they are adjacent (in particular, if one
of them is closed then the other has to be open). Call the set of leaves in the tree L1, and recursively, define Li as the
set of vertices x in T with the property that the longest path oriented towards x has length i (measured in the number
of vertices in it).

Fix sequence c1 � c2 � · · · to be defined later. Define a random variable Xi to be uniformly chosen in {1, . . . , ci}
(i = 1,2, . . .). Consider the equivalence relation Ri on Z where x and y are equivalent if for αi := ∑i

j=1 Xj

∏j−1
k=1 ck

we have [(x − αi)/c1 · · · ci] = [(y − αi)/c1 · · · ci] (where [·] denotes the floor function). That is, the sequence of Z-
invariant partitions defined by the (Ri ) is coarser and coarser, and each Ri consists of classes of c1 · · · ci consecutive
integers. This gives rise to a sequence Pi of invariant coarser and coarser partitions of L, where each class of Pi have
size c1 · · · ci2c1···ci : let points (ξ1, k1) and (ξ2, k2) be in the same class if k1 and k2 are in the same class of Ri and ξ1
and ξ2 only differ on this class.

Let Si be the set of subgraphs of G induced by the finite sets of the form δ × σ × K28, where δ ∈ Li and σ ∈ Pi .
So each element of Si has the form of the product of a percolation cluster of Δ in Li , a class of the partition of Pi and
K28. Let S0

i be the set of those elements in Si where the δ above is closed, and let S1
i be the set of those where it is

open. Hence Si = S0
i ∪ S1

i ; call the elements of
⋃

i Si cans. Cans in some S0
i will be called type 0, those in some S1

i

are type 1.
First, we will define the edges of Γ that go between two distinct cans, then those that go inside one. Suppose that

δ × σ × K28 and δ′ × σ ′ × K28 are in
⋃

Si , and such that σ ⊂ σ ′ and δ → δ′ in T . Then choose a random edge of G

between δ × σ × K28 and δ′ × σ ′ × K28 and add it to Γ . Denote the endpoint of this edge in δ × σ × K28 by v(δ, σ ).
Do it for every such pair independently. This way we have defined a tree on the set

⋃
i Si of cans.

What is left is to define edges within cans. For cans of type 1, let every edge of G induced in the can be in Γ .
The ci will be chosen so that with high probability the diameter of this induced graph in the can in logarithmic in its
size. If we wanted Γ to be a tree, we can choose uniformly a spanning tree of the can C at this point that is geodesic
with respect to some uniformly chosen point x, i.e. the distance of any y from x in C is the same as in this tree. The
diameter of the resulting spanning tree is still logarithmic in the size with high probability (as a consequence of the
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triangle inequality), and this is the only thing we will use later. For cans δ × σ × K28 of type 0, choose uniformly
a Hamiltonian path starting from v(δ, σ ) that is contained in some Hamiltonian cycle induced by δ × σ × K28 in
G, independently from all other choices. To see that such a Hamiltonian path always exists, we need to show that a
Hamiltonian cycle exists. Choose any spanning tree in δ × σ , take a closed depth-first walk v1, . . . , vm (with v1 = vm)
that visits every vertex of δ × σ at least once and at most degree (Δ × L) = 28 times, and then replace every copy
of a vertex v in v1, . . . , vm by one or more of the vertices (v,1), (v,2), . . . , (v,28) ∈ δ × σ × K28 in such a way that
each of these occur exactly once in the resulting new cycle. Note that every Hamiltonian cycle O in δ × σ × K28
gives rise to exactly two Hamiltonian paths starting from v(δ, σ ): delete one of the edges in O adjacent to v(δ, σ ).
This also shows that for any x ∈ V (δ × σ × K28), the distance between x and v(δ, σ ) in one of these paths is at least
|δ × σ × K28|/2.

This finishes the construction of Γ . It is easy to check that the resulting Γ is ergodic.
Verification: We sketch here why the upper and lower growth rates are different, before giving a rigorous proof

in the rest. There are radii R when the ball BR(o) := BΓ (o,R) of radius R in Γ just exits a can C of type 0, in the
direction of the can that separates it from infinity (meaning that BR(o) intersects only finite components of Γ \ C,
but BR+1 intersects the infinite component as well). Then with high probability some constant proportion of BR(o) is
within C, so it has to contain some constant proportion of the Hamiltonian path in C, which will imply that its radius
is also close to the volume of C (this gives the claim about the lower growth rate). On the other hand, there are radii
R when BR(o) just exits a can C of type 1, in which case a significant proportion of the volume of BR(o) is contained
in C with high probability. Since the growth of the ball in C is exponential, the radius increase between entering and
exiting C is at most the logarithm of the size of |C|. By the fast increase of the ci we can conclude that R is also about
logarithmic in |BR(o)| (for this, it is enough to assume that the sum of the sizes of the smaller cans that are intersected
by a minimal o–C path is of order log ci with high probability). This gives the statement about the upper growth.

Now we work out the above argument in details. For a cluster δ ∈ C let int δ be the complement of the infinite
component of Δ \ δ (that is, the union of all clusters that δ separates from infinity, including δ). Denote by πΔ the
projection from G to Δ and πH be the projection to L × K28 =: H . From now on, condition on the event E0 := {o is
in a can C ∈ S1}. Let C = C1,C2, . . . be consecutive cans that an infinite simple path from o in Γ visits (in particular,
πΔ(C1),πΔ(C2), . . . determines a simple path in T oriented from πΔ(C1) to infinity). Note that by definition if i < i′
then Ci′ separates Ci from infinity in Γ . We will now specify how the ci ’s have to be chosen. Let c1 = 1. For i > 1,
let ci be a number such that with probability at least 1 − 2−i we have

log ci ≥ 28c1 · · · ci−12c1···ci−1
∣∣intπΔ(Ci)

∣∣. (3)

Let Ei be the event that (3) holds.
Let e be the edge connecting Ci to Ci+1 in Γ , and let R be such that the ball Bo(R) of radius R around o in Γ

contains exactly one endpoint of e (the one in Ci ). Then this ball is contained in the finite component of Γ \ e. The
vertex set of the finite component of Γ \e arises as a union of the vertices in cans C′, namely, it is V (

⋃{C′: πH (C′) ⊂
πH (Ci),πΔ(C′) ⊂ intπΔ(Ci)}). In particular,

∣∣Bo(R)
∣∣ ≤

∣∣∣
⋃{

C′: πH

(
C′) ⊂ πH (Ci),πΔ

(
C′) ⊂ intπΔ(Ci)

}∣∣∣ = ∣∣intπΔ(Ci)
∣∣∣∣πH (Ci

)∣∣. (4)

Now, in the case that Ci is of type 0, the restriction Ci |Γ is a path P . By the choice of P and our remark on the
Hamiltonian paths, with probability ≥ 1/2 the ball Bo(R) contains all of the points in P , hence |P |/2 gives a lower
bound for R. We conclude that conditioned on E0 and Ei , with probability at least 1/2 there is an R such that BR(o)

has radius

R ≥ |Ci |/2 = ∣∣πΔ(Ci)
∣∣∣∣πH (Ci)

∣∣/2

and has volume
∣∣Bo(R)

∣∣ ≤ ∣∣intπΔ(Ci)
∣∣∣∣πH (Ci)

∣∣ ≤ (
diam

(
intπΔ(Ci)

) + 1
)2∣∣πH (Ci)

∣∣ ≤ ∣∣πΔ(Ci)
∣∣2∣∣πH (Ci)

∣∣,

where diam(intπΔ(Ci)) denotes the diameter of intπΔ(Ci), and the second inequality follows from the quadratic
growth of Δ. We obtain that log |Bo(R)|/R gets arbitrarily close to 0 with probability at least 1/2 (and hence, by
ergodicity, with probability 1). Obviously this remains true if we do not condition on o ∈ C ∈ S1.
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Suppose finally, that Ci is of type 1. Then the diameter of Γ |Ci
is logarithmic to its size, so conditioned on Ei we

have for some constant a that R ≤ |C1| + · · · + |Ci−1| + a log |Ci | ≤ 28c1 · · · ci−12c1···ci−1 | intπΔ(Ci)| + a log |Ci | ≤
2a log |Ci | with probability at least 1/2, using (3). On the other hand with probability at least 1/2 the volume of
Bo(R) ∩ Ci is at least |Ci |/2, since the choice of e is uniform. We obtain that with some positive constant c

log
∣∣Bo(R)

∣∣/R > c,

which holds for infinitely many R almost surely (by an argument similar to the end of last paragraph). �
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