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Abstract. We consider the hard-core lattice gas model on Z
d and investigate its phase structure in high dimensions. We prove

that when the intensity parameter exceeds Cd−1/3(logd)2, the model exhibits multiple hard-core measures, thus improving the
previous bound of Cd−1/4(logd)3/4 given by Galvin and Kahn. At the heart of our approach lies the study of a certain class of
edge cutsets in Z

d , the so-called odd cutsets, that appear naturally as the boundary between different phases in the hard-core model.
We provide a refined combinatorial analysis of the structure of these cutsets yielding a quantitative form of concentration for their
possible shapes as the dimension d tends to infinity. This analysis relies upon and improves previous results obtained by the first
author.

Résumé. Nous étudions la structure de phase, en grande dimension, d’un modèle de sphères dures sur le réseau Z
d . Nous prouvons

que le modèle présente plusieurs mesures lorsque le paramètre de densité dépasse Cd−1/3(logd)2, améliorant ainsi la borne de
Cd−1/4(logd)3/4 obtenue par Galvin et Kahn. Notre approche repose sur l’étude de certaines classes d’ensembles séparateurs
dans Z

d , constituées d’ensembles impaires, qui délimitent la frontière entre différentes phases du modèle de sphères dures. Nous
faisons une analyse combinatoire précise de la structure de ces ensembles séparateurs et obtenons une forme quantitative de la
concentration des différentes formes possibles prises par ces ensembles lorsque la dimension d tend vers l’infini. Cette analyse
repose sur des méthodes obtenues auparavant par le premier auteur, tout en les améliorant.
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1. Introduction

The hard-core model (short for hard-core lattice gas model) was originally introduced in statistical mechanics as a
simple mathematical model of a gas whose particles have non-negligible size and cannot overlap, see [3,6]. Later,
the model was rediscovered in operations research in the context of certain communication networks, see [8,9]. The
model has also attracted interest in ergodic theory where it is known by the name “the golden mean subshift” [13],
since its topological entropy on the one-dimensional lattice is the logarithm of the golden ratio (1 + √

5)/2.
Let G be a finite graph with vertex set V and let λ be a positive real. A configuration ω ∈ {0,1}V is called feasible

if it is the characteristic function of some independent set in G, i.e., if for no adjacent pair {v1, v2} of vertices of G,
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it satisfies ω(v1) = ω(v2) = 1. The hard-core model on G with activity λ is the probability measure μ on {0,1}V
defined by

μ(ω) =
{

Z−1 ∏
v∈V λω(v) if ω is feasible,

0 otherwise,

where Z is the appropriate normalizing constant (called the partition function) which makes μ a probability measure,
i.e., Z = ∑

ω

∏
v λω(v), where ω ranges over the set of all feasible configurations. In other words, μ(ω) is proportional

to λ|{v: ω(v)=1}| if ω is a feasible configuration and μ(ω) = 0 otherwise.
If G is an infinite graph, then we call a probability measure on {0,1}V a hard-core measure if for each finite

W ⊆ V , every ω1 ∈ {0,1}W , and μ-a.e. ω2 ∈ {0,1}V \W , we have

μ
(
ω|W = ω1

∣∣ ω|V \W = ω2
) =

{
Z−1

W

∏
v∈W λω(v) if ω1 � ω2 is feasible,

0 otherwise,

where ω1 � ω2 is the configuration on V that agrees with ω1 on W and with ω2 on V \ W . A standard compactness
argument shows that for any infinite but locally finite graph G and any λ, there exists at least one hard-core measure
on G with activity λ. One of the main questions in the study of the hard-core model is to decide, for given G and
λ, whether there is a unique or multiple hard-core measures on G with activity λ. An important contribution to this
problem was made by van den Berg and Steif [16], continuing previous work of van den Berg [15], who showed that
for any connected infinite graph3 G, there is a unique hard-core measure with activity λ whenever λ <

pc(G)
1−pc(G)

. Here,
pc(G) stands for the site percolation threshold for the graph G.

The most-studied case of a hard-core model is that when G is the nearest-neighbor graph of the integer lattice Z
d ,

i.e., the graph on the vertex set Z
d in which two vertices are adjacent if and only if their L1-distance is equal to 1.

See Fig. 1 below for a simulation of the model in two dimensions. The above-mentioned result of van den Berg and
Steif, combined with the simple lower bound pc(Z

d) ≥ 1
2d−1 , proves that if λ < 1

2d−2 , then there is a unique hard-
core measure with activity λ on Z

d . The seminal result of Dobrushin [3] says that when d ≥ 2 and λ is sufficiently
large (depending on d), then Z

d admits multiple hard-core measures with activity λ; Dobrushin’s result was later
rediscovered by Louth [10]. The lower bound on λ proved by Dobrushin is rather weak (see the discussion in [5]) as it
grows with d , quite in contrast with the popular belief that for a given λ, the existence of multiple hard-core measures
in dimension d should imply the existence of multiple hard-core measures in all higher dimensions. Almost 40 years
had passed since Dobrushin published his result before Galvin and Kahn [5] proved that the threshold activity that
implies the existence of multiple hard-core measures on Z

d tends to 0 as d → ∞.

Theorem 1.1 ([5]). There exist constants d0 and C such that if d ≥ d0 and λ ≥ Cd−1/4(logd)3/4, then the graph Z
d

has multiple hard-core measures with activity λ.

The bound in Theorem 1.1 is undoubtedly not best possible. It is commonly believed that multiple hard-core
measures should appear when the activity λ is either at Θ(1/d) or at Θ(logd/d). A natural question in this line of
research is that of the existence of a critical activity λc(d) such that there are multiple hard-core measures as soon as
λ > λc(d) and a unique measure if λ < λc(d). Even though it is believed that in the case of Z

d , such critical activity
exists, so far it has not been proved or disproved. Interestingly, it was shown in [2] that there are graphs for which
there is no such critical activity. Following [5], even if the hard-core model on Z

d does not have a critical activity, one
can still define a similar quantity λ(d) to be the supremum of those activities λ for which there is a unique hard-core
measure. With this notation at hand, one can rephrase Theorem 1.1 as λ(d) = O(d−1/4(logd)3/4) as d → ∞.

The aim of this paper is twofold. First, using the counting and structure theorems for odd cutsets proved by the first
author in [11], we give what we think is a shorter and possibly more transparent proof of (a slightly weaker version
of) the result of Galvin and Kahn.

Theorem 1.2. There are constants d0 and C such that if d ≥ d0, then

λ(d) ≤ Cd−1/4(logd)2.

3More precisely, a countably infinite, locally finite, connected graph.
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Second, we prove a refined version of one of the main results of [11], the so-called interior approximation theorem
for odd cutsets in Z

d and use it to improve the bound in Theorem 1.1.

Theorem 1.3. There are constants d0 and C such that if d ≥ d0, then

λ(d) ≤ Cd−1/3(logd)2.

We would like to point out that, mimicking the general strategy in [11], we try to separate the probabilistic and ge-
ometric parts of the argument as much as possible. First of all, we hope that this makes our argument better structured
and more easily comprehensible. Secondly, we aim to stress our belief that a further refinement of the geometric part
will improve the bound on λ(d). Last but not least, this separation allows us to reuse most of the proof of Theorem 1.2
in the proof of Theorem 1.3. Finally, we remark that the ideas of using cutsets with the “odd” property and approx-
imating them have been used in several previous works, e.g., in [1,4,5,12]. Moreover, the general strategy which we
use in the proof of Theorems 1.2 and 1.3 closely follows that of Galvin and Kahn [5], see the more detailed discussion
in Section 3.

2. Preliminaries

2.1. Notation

General
For a set X, we will denote the power set (the set of all subsets) of X by P (X) and for a positive integer k, we will
abbreviate {1, . . . , k} by [k]. We always write log for the natural logarithm.

Graph theory
Given a graph H , we will denote its vertex and edge sets by V (H) and E(H), respectively. For the sake of clarity,
for two vertices v,w ∈ V (H), we will sometimes write vw for the unordered pair {v,w}. If W ⊆ V (H), then we
will write H [W ] for the graph induced by H on W and H \ W for H [V (H) \ W ]. If F ⊆ E(H), then we will write
H \ F for the graph obtained from H by removing from it all edges in F . For every v ∈ V (H), the neighborhood
of v, denoted N(v), is the set of all vertices that are adjacent to v; for a set S ⊆ V (H), we let NH (S) = ⋃

v∈S N(v).
The distance between two vertices v,w ∈ V (H), denoted distH (v,w), is the length of the shortest path connecting v

and w in H or ∞ if there is no such path. A set W ⊆ V (H) is connected if each pair of vertices in W is connected
by a path, i.e., if distH (v,w) < ∞ for every v,w ∈ W . Sometimes we will drop the subscript H to keep things less
cluttered, provided that the graph H is clear from the context. The connected component of a vertex v (a connected
set W ) is the largest connected subset of V (H) that contains the vertex v (the set W ). For a positive integer k, the kth
power of H , denoted Hk , is the graph on the vertex set V (H) whose two vertices v and w are adjacent if and only if
distH (v,w) ≤ k. Finally, we will write �(H) for the maximum degree of H .

The graph Z
d

Since this graph is clearly connected and bipartite, it is natural to refer to its two color classes as the even and the odd
vertices, denoted V even and V odd respectively. The set V even (V odd) consists of those lattice points whose coordinates
sum up to an even (odd) number. Recall that two vertices v,w ∈ Z

d are adjacent if and only if w = v + f for some
f ∈ Z

d whose L1-norm is equal to 1. It is therefore convenient to denote all such vectors f , i.e., all {−1,0,1}-vectors
with exactly one non-zero coordinate, by f1, . . . , f2d . For example, observe that N(v) = {v + fj : j ∈ [2d]} for every

v ∈ Z
d . Finally, when a feasible configuration ω ∈ {0,1}Z

d
is clear from the context, V vac will denote the set of all

vacant vertices, i.e., V vac = {v ∈ Z
d : ω(v) = 0}. If a vertex is not vacant, then we say that it is occupied.

2.2. Finitized version of the problem

As observed by Galvin and Kahn [5], the problem of showing the existence of multiple hard-core measures can be
finitized as follows. Let Gn be the subgraph of Z

d induced on the set of lattice points in [−n,n]d and define the
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boundary Bn of this subgraph by Bn = [−n,n]d \ [−(n − 1), n − 1]d . Let μn be the (unique) hard-core measure
on Gn with activity λ, let μeven

n be μn conditioned on the event ω(v) = 1 for all v ∈ Bn ∩ V even, and define μodd
n

accordingly. As shown in [5], there are positive constants c and C such that the following holds. If for every fixed
x ∈ Z

d and sufficiently large n,

μeven
n

(
ω(x) = 1

)
< c/d if x ∈ V odd and

μodd
n

(
ω(x) = 1

)
< c/d if x ∈ V even,

then there are multiple hard-core measures on Z
d with activity λ, provided that λ > C/d . In view of the above,

Theorem 1.3 will be a direct consequence of the next theorem, whose proof is the main part of this paper.

Theorem 2.1. There exist constants d0 and C such that if d ≥ d0, λ ≥ Cd−1/3(logd)2, n ≥ 2, and x is an arbitrary
even vertex of Gn, then

μodd
n

(
ω(x) = 1

)
< c/d.

Moreover, the same result holds when the roles of even and odd vertices are reversed.

Remark. We will first prove Theorem 2.1 under the stronger assumption that λ ≥ Cd−1/4(logd)2, which implies
Theorem 1.2. Later, we will refine our approach and prove it for the stated regime.

2.3. Tools

In this section, we collect two auxiliary lemmas that will be used in the proof of our main result. Both are fairly
standard and can be surely found in the literature. The proofs are given only for the sake of completeness.

Lemma 2.2. Let M be an integer, let H be an arbitrary graph, and let v ∈ V (H). The number of connected sets
E ⊆ V (H) such that v ∈ E and |E| = M does not exceed (�(H))2M−2.

Proof. For every such E, we fix an arbitrary spanning tree TE of E. Starting from v, we perform a depth-first search
on TE , starting and ending at v and passing through every edge exactly twice. Since every spanning tree of E has
exactly M − 1 edges, the number of possibilities for such a walk (and hence for E) is not larger than the number of
walks of length 2M − 2 in H that start at v. �

Our second lemma formalizes the following intuition. If an event A in some discrete probability space (X,μ)

admits an expanding transformation T : A → P (X), i.e., a map for which μ(T (a)) is much larger than μ(a) for every
a ∈ A, then μ(A) is small, provided that no x ∈ X appears in the image of T too many times.

Lemma 2.3. Let X be a finite set, let A ⊆ X, and let μ be a probability measure on X. Suppose that there are positive
numbers p and q and a mapping T : A → P (X) such that for each a ∈ A and each x ∈ X,

μ
(
T (a)

) ≥ q · μ(a) and
∣∣{b ∈ A: x ∈ T (b)

}∣∣ ≤ p.

Then μ(A) ≤ p/q .

Proof. Our assumptions easily imply that

μ(A) =
∑
a∈A

μ(a) ≤ 1

q
·
∑
a∈A

μ
(
T (a)

) = 1

q
·
∑
a∈A

∑
x∈T (a)

μ(x)

= 1

q
·
∑
x∈X

∣∣{a ∈ A: x ∈ T (a)
}∣∣ · μ(x) ≤ p

q
·
∑
x∈X

μ(x) = p

q
.

�
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Fig. 1. Typical configurations with odd boundary conditions for n = 20, d = 2, and activities λ = 1 and λ = 5, respectively. Odd and even occupied
nodes are represented by black and gray circles, respectively. Even occupied nodes are surrounded by their corresponding Breaks. Simulated using
coupling from the past [7].

3. Outline of the argument

Fix integers n and d and recall that Gn is the subgraph of Z
d induced on the set of lattice points in [−n,n]d . We start

by observing that if the odd boundary vertices of Gn are occupied, and x is an even vertex which is occupied, there
must be an “outermost” surface in Gn in which the pattern “flips” from odd/occupied to even/occupied (see Fig. 1).
Formally, this surface is defined in Section 4.1 as a set of edges Γ having the following properties:

(i) Γ forms a minimal cutset separating Bn from x. In other words, Γ partitions Gn into two connected components,
the component of the boundary, denoted by A0(Γ ), and the component of x, denoted by A1(Γ ).

(ii) The vertices on the outer boundary of Γ are even and vacant and the vertices on the inner boundary of Γ are odd
and vacant.

Edge cutsets with the above properties play a prominent role in our analysis and we term them OMCut (for odd
minimal edge cutsets). We remark that the idea of considering such cutsets also lies at the heart of the approach taken
by Galvin and Kahn [5].

In what follows, let x be a fixed even vertex of Gn and let Ω be our “bad” event, i.e., the set of all feasible
configurations with all odd boundary vertices (i.e., the vertices in the set V odd ∩ Bn) and x occupied. For a given
configuration ω ∈ Ω we term the above Γ as Break(ω). A simple consequence of the above properties and the fact
that x is even is that |Break(ω)| ≥ 2d(2d − 1) (Proposition 4.5).

Our next observation is that applying the following “shift transformation” to ω ∈ Ω yields a feasible configuration
(see Fig. 2):

Shiftj (ω)(v) =
{

ω(v + fj ) if v ∈ A1
(
Break(ω)

)
,

ω(v) otherwise.

A similar transformation was used by Galvin and Kahn [5]. The key properties of this transformation are:

(i) Shiftj is measure preserving, i.e., μodd(Shiftj (ω)) = μodd(ω).
(ii) Denoting ω′ = Shiftj (ω), every vertex in the set {v ∈ A1(Break(Γ )): (v, v + fj ) ∈ Break(ω)} is surrounded by

vacant vertices in ω′. Thus an arbitrary modification of ω′ on these vertices yields a feasible configuration.
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Fig. 2. The shift transformation. Odd and even occupied nodes are represented by black and gray circles, respectively. The transformation T1
shifts the occupied nodes inside the cutset Break(ω) to the left. In the new configuration all vertices having an edge of Break(ω) on their right
(represented by white circles) necessarily have no occupied neighbors and can thus be set occupied or vacant arbitrarily.

Fig. 3. Odd cutsets approximating the boundary of a cube. On the left, every second boundary vertex can be “pushed out” independently of other

vertices, yielding 2( 1
2d

−od (1))L odd cutsets with L edges, as L → ∞. On the right, for every odd cutset obtained in such way, we have the additional
option of independently “pushing out” vertices all of whose 2d − 2 neighbors were “pushed out” in the first stage. Combining these two stages

shows that as L → ∞ (along a subsequence) there are at least 2( 1
2d

+cd−od (1))L odd cutsets with L edges for some cd > 0.

These two properties and an application of Lemma 2.3 imply that for every fixed Γ ∈ OMCut,

μodd(Break(ω) = Γ
) ≤ (1 + λ)−|Γ |/2d . (1)

At this point one is tempted to conclude the proof of Theorem 2.1 by the union bound over all possible Γ ∈ OMCut.
This approach unfortunately fails since the number of Γ ∈ OMCut with a given size turns out to be too large. Indeed,

if we let OMCutL = {Γ ∈ OMCut: |Γ | = L} then |OMCutL| ≥ 2( 1
2d

+cd )L for some cd > 0, at least on a subsequence
of Ls. This can be seen by counting those cutsets which approximate closely the boundary of a large cube with sides
parallel to the axes of Z

d (see Fig. 3), but we neither prove nor use this fact in our work.
Instead, we introduce a (very coarse) measure of regularity on OMCut (the quantity RΓ (E1(Γ )) defined in Sec-

tion 4.3) and partition all cutsets into “regular” and “irregular” ones. Theorem 4.7 shows that the set of irregular
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cutsets is fairly small and hence the union bound (with the above estimate (1)) is sufficient to bound the probability
that Break(ω) is irregular (see Theorem 4.15).

In order to bound the probability that Break(ω) is regular, we partition the set of all regular cutsets into a (rela-
tively) small number of classes and give an estimate on the probability of Break(ω) belonging to each such class that is
strong enough to facilitate a union bound over all classes. We obtain this partition by exploiting a certain concentration
of shape phenomenon. It is shown in Theorems 4.8 and 4.9 that, informally, for sufficiently large d there is a set of
“shapes” which contain a good “approximation” to every cutset in OMCutL, with the number of such shapes signifi-
cantly smaller than |OMCutL|. Adapting the shift transformation to this notion of approximation (see Section 4.4.2),
we are able to bound the probability that Break(ω) belongs to the set of cutsets with a given shape. The bound we get
is only strong enough for cutsets which are regular (see Theorems 4.16 and 4.17), necessitating the separate treatment
of irregular cutsets given above. This last part of the argument, i.e., separate treatment of regular and irregular cutsets
is the main novelty in our approach.

4. The argument

4.1. Locating the cutset

Let d,n ≥ 2 and let x be an arbitrary even vertex of Gn. Let F odd
n be the set of all feasible configurations with

ω(v) = 1 for all v ∈ Bn ∩ V odd and let Ωn denote the “bad” event, i.e., the set of all ω ∈ F odd
n with ω(x) = 1. For the

sake of clarity of the presentation, most of the time we will drop the subscript n from Gn, Bn, μodd
n , F odd

n , and Ωn.
Fix an arbitrary “bad” configuration ω ∈ Ω . Observe that all odd boundary vertices are occupied and all even

boundary vertices are vacant, whereas x is an even vertex that is occupied and all its neighbors are odd and vacant. We
are going to associate with ω an edge cutset in G that will mark the outermost break in the above boundary pattern, i.e.,
the outermost contour separating vertices that are odd and occupied from vertices that are even and occupied. More
precisely, we let X be the set of all vacant odd vertices, i.e., X = V odd ∩ V vac, let A′

0 be the connected component of
B in the graph G \ X (note that B is connected in G and disjoint from X), and note that x /∈ A′

0 as N(x) ⊆ X. Finally,
let A1 be the connected component of x in the graph G \ A′

0 and let Γ be the set of all edges with one endpoint in
A′

0 and one endpoint in A1. By definition, every path from x to B must use an edge of Γ and no strict subset Γ ′ ⊆ Γ

has this property. In other words, we may say that Γ is a minimal edge cutset separating x from B . To summarize, we
have defined a mapping Break: Ω → P (E(G)) that assigns to each configuration in Ω an edge cutset separating x

from B . Below, we establish some crucial properties of this cutset.
Let Γ = Break(ω). For an arbitrary vertex v ∈ V (G), let PΓ (v) be the number of edges of Γ that are incident to v

and let

E0 = {
v ∈ A′

0: PΓ (v) > 0
} = {

v /∈ A1: PΓ (v) > 0
}

and E1 = {
v ∈ A1: PΓ (v) > 0

}
.

Proposition 4.1. E0 ⊆ V even ∩ V vac and E1 ⊆ V odd ∩ V vac.

Proof. Fix some v ∈ E1 and let w be an arbitrary vertex with {v,w} ∈ Γ ; at least one such vertex exists since
PΓ (v) > 0. Clearly, w ∈ A′

0 and hence v ∈ X or otherwise v would also belong to A′
0 (recall that A′

0 is a maximal
connected subset of vertices in G \ X). It follows that E1 ⊆ X = V odd ∩ V vac. Since each vertex in E0 is adjacent to a
vertex in E1, it immediately follows that E0 ⊆ V even. Finally, fix an arbitrary w ∈ E0. It remains to be shown that w

is vacant. Since w ∈ A′
0, then there is a path in A′

0 connecting w to B ∩ V odd. The immediate neighbor of w on this
path is an odd vertex that does not belong to X and hence it is occupied. Therefore, w must be vacant. �

Before we proceed, we have to take a little detour and introduce some terminology that will help us deal with
cutsets arising in the procedure described above. Following [11], we let MCut be the set of all minimal edge cutsets
separating x and B , i.e., the set of all Γ ⊆ E(G) such that any path from x to B must cross an edge of Γ and no strict
subset Γ ′ ⊆ Γ shares this property. For every Γ ∈ MCut, let A0(Γ ) and A1(Γ ) denote the connected components of
B and x in G\Γ , respectively. By minimality of Γ , every edge of Γ must have an endpoint in A0(Γ ) and an endpoint
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in A1(Γ ). It follows that A0(Γ ) and A1(Γ ) form a partition of the vertex set of G. For every vertex v ∈ V (G), let
PΓ (v) be the number of edges in Γ that are incident to v, and let

E0(Γ ) = {
v ∈ A0(Γ ): PΓ (v) > 0

}
and E1(Γ ) = {

v ∈ A1(Γ ): PΓ (v) > 0
}
.

Finally, we define OMCut, the set of odd minimal edge cutsets (or simply odd cutsets) to be the set of all Γ ∈ MCut
that satisfy E1(Γ ) ⊆ V odd.

Since the new definitions of A1, E0, and E1 coincide with the old ones (more precisely, if Γ = Break(ω) for some
ω ∈ Ω and the procedure described at the beginning of this section defines sets A1, E0, and E1, then A1 = A1(Γ ),
E0 = E0(Γ ), and E1 = E1(Γ )), then it is easy to see that the mapping Break assigns to each configuration in Ω an
odd cutset Γ = Break(ω) ∈ OMCut satisfying Proposition 4.1.

We need to establish one more crucial property of the mapping Break. To this end, with Γ ∈ OMCut fixed, we
say that a configuration ω′ is an interior modification of another configuration ω if they agree everywhere but at most
on the set A1(Γ ) \ E1(Γ ), i.e., if ω(v) = ω′(v) for all v /∈ A1(Γ ) \ E1(Γ ). A moment of thought assures us that the
following is true about the map Break.

Proposition 4.2. Let Γ ∈ OMCut and assume that Γ = Break(ω) for some configuration ω ∈ Ω . Then Γ =
Break(ω′) for every ω′ that is an interior modification of ω.

Proof. Let X = {v ∈ V odd: ω(v) = 0} and let X′ = {v ∈ V odd: ω′(v) = 0}. Since ω′ is an interior modification of ω, it
follows that X′ \A1(Γ ) = X \A1(Γ ) and Proposition 4.1 implies that X,X′ ⊇ E1(Γ ). By definition, every path from
B to A1(Γ ) has a vertex in E1(Γ ). It follows that the connected components of B in G \ X and G \ X′ are identical
and hence Break(ω) = Break(ω′). To see this, recall that Break(ω) depends solely on the connected component of B

in the graph G \ {v ∈ V odd: ω(v) = 0}, which we denoted by A′
0 at the beginning of this section. �

4.2. Minimal edge cutsets

In this section, we give basic definitions and properties of minimal edge cutsets that will be used throughout the paper.
The following property of the sets E0(Γ ) and E1(Γ ), which is a direct consequence of the results proved by Timár
[14], will be crucial in our considerations.

Proposition 4.3. For every Γ ∈ MCut, the sets E0(Γ ) and E1(Γ ) are connected in the graph G2.

Proof. Following [14], for a graph H , any C ⊆ V (H), and a v ∈ V (H), define the outer boundary of C visible from
v, denoted ∂vis

H (v,C), to be the set of all y ∈ NH (C) that are connected to v in the graph H \ C. It follows from [14],
Lemma 2, that for any connected subset C ⊆ V (G) such that B ⊆ C or B ∩ C = ∅ and any v ∈ V (G) \ C, the set
∂vis
G (v,C) is connected in G2. The reason for the assumption that C either contains B or is disjoint from B is that

such set C, when viewed as a subset in the graph Z
d , satisfies ∂vis

G (v,C) = ∂vis
Zd (v,C) for every v ∈ V (G) \ C ⊆ Z

d .
To conclude, we simply note that the sets A0(Γ ) and A1(Γ ) are connected, B ⊆ A0(Γ ), B ∩ A1(Γ ) = ∅, E1(Γ ) =
∂vis
G (x,A0(Γ )), and E0(Γ ) = ∂vis

G (b,A1(Γ )) for every b ∈ B . �

For every j ∈ [2d], we let

E1,j (Γ ) = {
v ∈ E1(Γ ): {v, v + fj } ∈ Γ

}
.

We also define

E1,e(Γ ) = {
v ∈ E1(Γ ): PΓ (v) ≥ 2d − √

d
}

and

E1,j,x(Γ ) = {
v ∈ E1,e(Γ ): v + fj ∈ A1(Γ )

} = {
v ∈ E1,e(Γ ): {v, v + fj } /∈ Γ

}
.
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The letter e stands for exposed as vertices in E1,e(Γ ) are exposed to Γ from many directions. The sets E1,j , E1,e ,
and E1,j,x will play an important role in our considerations. We also let

Γr = {
vw ∈ Γ : v ∈ E1(Γ ) \ E1,e(Γ )

}
,

for every j ∈ [2d], let

Γ j = {
vw ∈ Γ : v ∈ E1(Γ ) and w = v + fj

}
and Γ

j
r = Γr ∩ Γ j .

Additionally, note that for each j ∈ [2d], we have that |E1,j | = |Γ j |, and |E1,j \E1,e| = |Γ j
r |. We will repeatedly use

the following simple facts.

Proposition 4.4. Let Γ ∈ OMCut, let δ ∈ {0,1}, and let v ∈ Eδ(Γ ). For every j ∈ [2d], if v + fj ∈ Aδ(Γ ) (or,
equivalently, {v, v + fj } /∈ Γ ), then N(v + fj ) ⊆ Aδ(Γ ).

Proof. Assume first that δ = 1. Let v ∈ E1(Γ ) and let j ∈ [2d] be such that v + fj ∈ A1(Γ ). Since E1(Γ ) ⊆ V odd,
then v + fj ∈ V even. Since N(w) ⊆ A1(Γ ) ∪ E0(Γ ) for every w ∈ A1(Γ ), N(v + fj ) ⊆ V odd, and E0(Γ ) ⊆ V even, it
follows that N(v + fj ) ⊆ A1(Γ ). The case δ = 0 follows similarly. �

Proposition 4.5. For every Γ ∈ OMCut, |Γ | ≥ 2d(2d − 1).

Proof. For every j ∈ [2d] and i ∈ [2d] \ {j}, consider the path x, x − fj , x − fj + fi, . . . , x − fj + 
fi , where 
 is
the smallest integer such that x − fj + 
fi ∈ B . Since Γ separates x from B , at least one edge on each such path must
belong to Γ and this edge is certainly not {x, x − fj } as x ∈ V even ∩ A1(Γ ) ⊆ A1(Γ ) \ E1(Γ ) and hence both x and
x − fj belong to A1(Γ ). Moreover, the edges of the form {x, x − fj } are the only edges belonging to more than one
of these 2d(2d − 1) paths. It follows that |Γ | ≥ 2d(2d − 1). �

Proposition 4.6. For every Γ ∈ OMCut and v ∈ V (G), PΓ (v) ≤ 2d − 1.

Proof. Suppose that PΓ (v) = 2d for some v ∈ V (G). Assume first that v ∈ A1(Γ ). Since A1(Γ ) is connected in
G \Γ , x ∈ A1(Γ ), and all 2d edges incident to v belong to Γ , it must be that A1(Γ ) = E1(Γ ) = {v} = {x}. But recall
that x ∈ V even, which contradicts the fact that E1(Γ ) ⊆ V odd (Γ is an odd cutset). Finally, as B ⊆ A0(Γ ) and A0(Γ )

is connected, one can quickly rule out the other possibility that v ∈ A0(Γ ) and all 2d edges incident to v are in Γ . �

4.3. Counting odd cutsets

In this section, which borrows heavily from [11], we shall state three theorems that estimate the number of odd
cutsets in various settings. Before we do that, we need to introduce some more notation. Following [11], for every
Γ ∈ OMCut, v ∈ V (G), and E ⊆ V (G), we define

RΓ (v) = min
{
PΓ (v),2d − PΓ (v)

}
and

RΓ (E) =
∑
v∈E

RΓ (v).

For integers M and R, we let

OMCut(M,R) = {
Γ ∈ OMCut: |E1(Γ )| = M and RΓ

(
E1(Γ )

) = R
}
.

A key observation that may elucidate the above definitions is that, since

(
2d

k

)
=

(
2d

2d − k

)
≤ (2d)min{k,2d−k} for every k with 0 ≤ k ≤ 2d ,
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then for every v ∈ V (G), there are at most (2d)RΓ (v) ways to choose PΓ (v) out of the 2d edges incident to v. One
might think of the parameter RΓ (E1(Γ )) as a measure of the regularity of Γ . Note that RΓ (E1(Γ )) ≤ |Γ | and that a
value of RΓ (E1(Γ )) significantly smaller than |Γ | indicates that most vertices v in E1(Γ ) have PΓ (v) close to 2d ; this
can be interpreted as some roughness of Γ . The following result is a straightforward corollary of [11, Theorem 4.5].

Theorem 4.7. There exist constants C and d0 such that for all integers M , R, and d with d ≥ d0,

∣∣OMCut(M,R)
∣∣ ≤ exp

(
C(logd)2

d
R

)
.

Recalling the definition of E1,e(Γ ), we say that a set E ⊆ V (G) is an interior approximation to Γ if

E1(Γ ) \ E1,e(Γ ) ⊆ E ⊆ A1(Γ ). (2)

The following result is a straightforward corollary of [11, Theorem 4.13].

Theorem 4.8. There exist constants C and d0 such that for all integers L and d with d ≥ d0, there exists a family E
of subsets of V (G) satisfying

|E | ≤ exp

(
C(logd)2

d3/2
L

)

and such that for every Γ ∈ OMCut with |Γ | = L, there is an E ∈ E that is an interior approximation of Γ .

Remark. Theorems 4.7 and 4.8 were proved in [11] for an alternative definition of OMCut. There, OMCut was defined
as the set of odd minimal cutsets separating two points (or a set and a point) in a discrete torus. However, the theorems
apply to our setting, since we can think that Gn is embedded naturally in the discrete torus Z

d
4n and note that then

OMCut (in our definition) is a subset of the set of odd minimal cutsets separating x from a “far away” point in this
torus. In addition, in [11], the upper bound on |E | in Theorem 4.8 had an additional factor of 2. In our application,
this factor can be absorbed in the constant C by Proposition 4.5.

One of the main ingredients in our proof of Theorem 1.3 that will allow us to improve the bound on λ(d) given
by Theorem 1.2 is a refined version of Theorem 4.8. The main idea behind this improved interior approximation
theorem is specializing the family E from the statement of Theorem 4.8 to work only for odd cutsets with a particular
distribution of edges adjacent to exposed and non-exposed vertices (i.e., the vertices in E1,e and the vertices in E1 \
E1,e). To be more precise, for any ε with d−1/3 ≤ ε ≤ 1/2, recalling the definition of Γr , we let

OMCut(ε) = {
Γ ∈ OMCut: ε|Γ | < |Γr | ≤ 2ε|Γ |}.

In other words, OMCut(ε) consists of those odd cutsets whose only about ε-fraction of edges are adjacent to non-
exposed vertices. Since interior approximations “detect” only non-exposed vertices, it should not come at a surprise
that as ε gets smaller, approximating cutsets in OMCut(ε) becomes easier. We show that the following statement is
true.

Theorem 4.9. There exist constants C and d0 such that for all integers L and d with d ≥ d0, and every ε with
d−1/2 ≤ ε ≤ 1/2, there exists a family E of subsets of V (G) satisfying

|E | ≤ exp

(
C

√
ε(logd)2

d3/2
L

)

and such that for every Γ ∈ OMCut(ε) with |Γ | = L, there is an E ∈ E that is an interior approximation to Γ .

Remark. In fact, our proof of Theorem 4.9 yields a somewhat stronger property of the family E . We show that for
every Γ ∈ OMCut(ε) with |Γ | = L, there is an E ∈ E such that {v ∈ E1(Γ ): PΓ (v) < 2d − √

εd} ⊆ E ⊆ A1(Γ ), see
Proposition 5.6.
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As we remarked in the Introduction, the proof of our main result, Theorem 1.3, has been split up into the geometric
part, which was presented in this section, and the probabilistic part, which we will present in the next few sections.
Since these parts are almost completely independent, we will postpone the proof of Theorem 4.9 to Section 5 and use
it as a “black box” when we derive the main result.

4.4. Definition of the transformations

In this section, we define the mapping that we alluded to in Section 3 and establish its key properties. Recall the
definitions of Ω and F odd from Section 4.1. Throughout this section, we fix some ω ∈ Ω , let Γ = Break(ω), A1 =
A1(Γ ), E0 = E0(Γ ), E1 = E1(Γ ), E1,e = E1,e(Γ ), and E1,j = E1,j (Γ ) and E1,j,x = E1,j,x(Γ ) for every j ∈ [2d].
Our transformation will take one of two possible forms, depending on the shape of Γ .

As a preparatory step, for every j ∈ [2d], we define the j th shift transformation Shiftj : Ω → F odd (see Fig. 2) by

Shiftj (ω)(v) =
{

ω(v + fj ) if v ∈ A1,
ω(v) otherwise.

We remark that such a transformation already appeared in [5].

Proposition 4.10. The configuration Shiftj (ω) is indeed feasible with the odd boundary vertices occupied. In other
words, Shiftj (ω) ∈ F odd.

Proof. Since Γ ∈ OMCut, then B∩A1 = ∅ and therefore Shiftj (ω)(v) = ω(v) = 1 for every v ∈ B∩V odd. It remains
to check that Shiftj (ω) is feasible, i.e., for no v ∈ V (G) and i ∈ [2d], both v and v + fi are occupied. If both v and
v + fi belong to A1 or both v and v + fi are not in A1, then this follows from the fact that ω is feasible. Otherwise,
assume WLOG that v /∈ A1 and v +fi ∈ A1. It follows that v ∈ E0, so Shiftj (ω)(v) = ω(v) = 0 by Proposition 4.1. �

Proposition 4.11. For all v ∈ E1,j and i ∈ [2d], we have Shiftj (ω)(v + fi) = 0.

Proof. Fix some v ∈ E1,j and i ∈ [2d]. By definition, v + fj ∈ E0. If v + fi ∈ E0, then Shiftj (ω)(v + fi) = ω(v +
fi) = 0 by Proposition 4.1. If v + fi /∈ E0, then v + fi + fj ∈ E1 (since v + fi + fj ∈ A1 and it is adjacent to
v + fj /∈ A1). It follows that Shiftj (ω)(v + fi) = ω(v + fi + fj ) = 0, where the last equality again follows from
Proposition 4.1. �

Proposition 4.12. The shift transformation is preserves μodd, i.e., μodd(Shiftj (ω)) = μodd(ω).

Proof. Since Shiftj (ω)(v) = ω(v) for all v /∈ A1, it suffices to show that |{v ∈ A1: Shiftj (ω)(v) = 1}| = |{v ∈
A1: ω(v) = 1}|. To see this, note that if v ∈ A1 and Shiftj (ω)(v) = 1, then ω(v + fj ) = 1 and hence v + fj ∈ A1

since otherwise v + fj ∈ E0 and ω(v + fj ) = 0 by Proposition 4.1. Conversely, if v + fj ∈ A1 and ω(v + fj ) = 1,
then v + fj /∈ E1 by Proposition 4.1 and hence v ∈ A1 and Shiftj (ω)(v) = ω(v + fj ) = 1. �

4.4.1. The shift transformation
We are now ready to define the first expanding transformation T1: Ω → P (F odd). First, for every j ∈ [2d], we define
the transformation T1,j : Ω → P (F odd) by letting T1,j (ω) be the set of all configurations ω′ of the form

ω′(v) =
{

Shiftj (ω)(v) if v /∈ E1,j ,
εv otherwise,

where (εv)v is an arbitrary {0,1}-sequence indexed by E1,j . Propositions 4.10 and 4.11 imply that each such ω′ indeed
belongs to F odd whereas Proposition 4.12 implies that

μodd(T1,j (ω)
) = (1 + λ)|E1,j |μodd(ω).
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Next, observe that |Γ | = ∑2d
j=1 |Γ j | and hence |Γ j | ≥ |Γ |/(2d) for some j ; in fact, since Γ ∈ OMCut, we have that

|Γ j | = |Γ |/(2d) for all j , see [11], but we will not need this. We define the transformation T1 by T1(ω) = T1,j (ω),
where j = j (Γ ) = j (Break(ω)) is the smallest index j satisfying |Γ j | ≥ |Γ |/(2d). It follows that

μodd(T1(ω)
) = (1 + λ)|E1,j |μodd(ω) = (1 + λ)|Γ j |μodd(ω) ≥ (1 + λ)|Γ |/(2d)μodd(ω). (3)

Finally, we show that we can “invert” T1 if we know Break(ω).

Proposition 4.13. For every Γ ∈ OMCut, and ω′ ∈ F odd, there is at most one ω ∈ Ω satisfying Γ = Break(ω) and
ω′ ∈ T1(ω).

Proof. With Γ ∈ OMCut fixed, let A1 = A1(Γ ), E1 = E1(Γ ), and j = j (Γ ). Let ω ∈ Ω satisfy Γ = Break(ω) and
ω′ ∈ T1(ω) = T1,j (ω). We show that we can recover ω from ω′. By the definition of T1,j , we have ω(v) = ω′(v) for
all v /∈ A1 and ω(v) = ω′(v −fj ) for all v ∈ A1 such that v −fj ∈ A1. Finally, if v ∈ A1 but v −fj /∈ A1, then v ∈ E1
and ω(v) = 0 by Proposition 4.1. �

4.4.2. The shift + erase transformations
Next, we define the second expanding transformation T2: Ω → P (F odd). First, for every j ∈ [2d] we define the
transformation T2,j : Ω → P (F odd) by letting T2,j (ω) be the set of all configurations ω′ of the form

ω′(v) =
⎧⎨
⎩

Shiftj (ω)(v) if v /∈ E1,j ∪ E1,e,
εv if v ∈ E1,j \ E1,e,
0 if v ∈ E1,e,

where (εv)v is an arbitrary {0,1}-sequence indexed by E1,j \ E1,e. Again, Propositions 4.10 and 4.11 imply that
each such ω′ indeed belongs to F odd. With the aim of computing μodd(T2,j (ω)), first let Xj(ω) denote the set of
exposed vertices that are occupied in Shiftj (ω), but T2,j (ω) forces them to be vacant, i.e., Xj(ω) = {v ∈ E1,e: ω(v +
fj ) = 1}, and observe that Xj(ω) ⊆ E1,j,x since if v ∈ E1,e \ E1,j,x , then v + fj ∈ E0 and hence ω(v + fj ) = 0 by
Proposition 4.1. Now it is not hard to see that

μodd(T2,j (ω)
) = (1 + λ)|E1,j \E1,e|λ−|Xj (ω)|μodd(ω).

The transformation T2 is defined by T2(ω) = T2,j (ω), where j = j (Γ ) = j (Break(ω)) is the smallest index j that

maximizes the quantity |Γ j
r | − 8|E1,j,x |. It follows that

μodd(T2(ω)
) = (1 + λ)|E1,j \E1,e|λ−|Xj (ω)|μodd(ω) = (1 + λ)|Γ

j
r |λ−|Xj (ω)|μodd(ω). (4)

We close this section by showing how we can “invert” T2 if we know an interior approximation E to Break(ω) (recall
the definition of an interior approximation given in (2)) and the set X(ω) = Xj(Break(ω))(ω). More precisely, we first
prove that given E and an ω′ ∈ T2(ω), we can reconstruct Break(ω) and then, if we additionally specify the set X(ω),
then ω is uniquely determined.

Proposition 4.14. For every E ⊆ V (G) and ω′ ∈ F odd, there is at most one Γ ∈ OMCut such that the following
holds:

(i) If ω′ ∈ T2(ω) for some ω ∈ Ω such that E is an interior approximation to Break(ω), then Break(ω) = Γ .
(ii) For every X ⊆ V (G), there is at most one ω ∈ Ω such that ω′ ∈ T2(ω), E is an interior approximation to

Break(ω), and Xj(Γ )(ω) = X.

Proof. Let ω ∈ Ω be any configuration such that ω′ ∈ T2(ω). We first show (i), i.e., that we can recover Break(ω) if
we know that E is an interior approximation to it. To see this, define a configuration ω′′ by

ω′′(v) =
{

ω′(v) if v /∈ E,
0 if v ∈ E,
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and note that, letting A0 = A0(Break(ω)), A1 = A1(Break(ω)), E1 = E1(Break(ω)), and E1,e = E1,e(Break(ω)),

ω′′|A0 = ω′|A0 = ω|A0 and ω′′|E1 = 0 = ω|E1 . (5)

The first identity in (5) follows from the fact that E ⊆ A1; the second identity in (5) follows since ω′(v) = 0 for every
v ∈ E1,e by the definition of T2(ω) and since E1 \E1,e ⊆ E. The identities (5) imply that ω′′ is an interior modification
of ω (recall the definition of an interior modification given in Section 4.1) and hence Break(ω) = Break(ω′′) by
Proposition 4.2.

In order to see (ii), assume that ω′ ∈ T2(ω) for some ω ∈ Ω such that E is an interior approximation to Break(ω)

and X(ω) = X. We show that we can recover ω from ω′, E, and X. By (i), there is a unique Γ ∈ OMCut such that Γ =
Break(ω). Let j = j (Γ ) be such that T2(ω) = T2,j (Ω). Furthermore, let A1 = A1(Γ ), E1 = E1(Γ ), E1,e = E1,e(Γ ),
and E1,j,x = E1,j,x(Γ ). By the definition of T2,j , we have ω(v) = ω′(v) for all v /∈ A1 and ω(v) = ω′(v − fj ) for all
v ∈ A1 such that v − fj ∈ A1 \ E1,e . If v ∈ A1 but v − fj /∈ A1, then v ∈ E1 and hence ω(v) = 0 by Proposition 4.1.
Finally, if v ∈ A1 and v − fj ∈ E1,e, then ω(v) = 1 if v − fj ∈ X and ω(v) = 0 otherwise. �

4.5. Proof of Theorems 1.2 and 1.3

As remarked in the outline, we will split the bad event Ω into two parts, depending on the “regularity” of Break(ω).
A cutset Γ ∈ OMCut is “irregular” if the ratio |Γr |/|Γ | is “small,” i.e., if a vast majority of the edges of Γ are incident
to exposed vertices; otherwise, Γ is “regular.” As the precise meaning of “small” (and hence the resulting partition)
will be different in the proofs of Theorems 1.2 and 1.3, we will define a family of such partitions in what might first
seem to be unnecessary generality. We fix a non-negative real β and let

Ω
β

1 = {
ω ∈ Ω: |Γr | < 12|Γ |/dβ

}
and Ω

β

2 = Ω \ Ω
β

1 ,

where in the above definition Γ stands for Break(ω). In order to prove Theorems 1.2 and 1.3, we will find a β such
that both μodd(Ω

β

1 ) and μodd(Ω
β

2 ) are small under the appropriate assumption on λ. In particular, Theorem 1.2 will
easily follow from the following two statements when we set β = 1/4.

Theorem 4.15. There exist constants C and d0 such that for every β ∈ [1/10,1/2], if d ≥ d0 and λ ≥ Cd−β(logd)2,
then

μodd(Ωβ

1

) ≤ (1 + λ)−d/4.

Theorem 4.16. There exist constants C and d0 such that for every β ∈ [0,2/5], if d ≥ d0 and λ ≥ Cdβ−1/2(logd)2,
then

μodd(Ωβ

2

) ≤ (1 + λ)−d1−β/4.

The proofs of Theorems 4.15 and 4.16 follow in a straightforward manner from the results established so far
plus Theorems 4.7 and 4.8, which come from [11]. In order to prove Theorem 1.3, we will need the refined interior
approximation theorem, Theorem 4.9, which allows us to improve the bound on μodd(Ω

β

2 ) given by Theorem 4.16
and whose proof we postponed till Section 5. More precisely, Theorem 1.3 will follow from Theorem 4.15 and the
following statement (whose proof relies on Theorem 4.9) when we set β = 1/3.

Theorem 4.17. There exist constants C and d0 such that for every β ∈ [0,1/2], if d ≥ d0 and λ ≥ Cd(β−1)/2(logd)2,
then

μodd(Ωβ

2

) ≤ (1 + λ)−d1−β/48.
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4.5.1. Proof of Theorem 4.15
We start by further partitioning the event Ω

β

1 . Recall the definition of RΓ from Section 4.3 and for integers M and R,
let

Ω
β

1,M,R = {
ω ∈ Ω

β

1 :
∣∣E1(Γ )

∣∣ = M and RΓ

(
E1(Γ )

) = R
}
,

where, as usual, Γ = Break(ω). Since ω ∈ Ω
β

1 , we also have that

R = RΓ (E1) =
∑

v∈E1,e

RΓ (v) +
∑

v∈E1\E1,e

RΓ (v) ≤
∑

v∈E1,e

(
2d − PΓ (v)

) +
∑

v∈E1\E1,e

PΓ (v)

≤ |E1,e| ·
√

d + |Γr | ≤ |Γ |
2d − √

d
· √d + 12|Γ |/dβ ≤ 13|Γ |/dβ,

where the last inequality follows from our assumption that β ≤ 1/2. It follows that |Γ |/(4d) ≥ Rdβ−1/52 and hence,
recalling the properties of T1, namely inequality (3), for every ω ∈ Ω

β

1,M,R ,

μodd(T1(ω)
) ≥ (1 + λ)|Γ |/(4d)+Rdβ−1/52μodd(ω) ≥ (1 + λ)d/2+Rdβ−1/52μodd(ω), (6)

where the last inequality follows from the fact that |Γ | ≥ 2d2, see Proposition 4.5. On the other hand, by Proposi-
tion 4.13, for every Γ ∈ OMCut and ω′ ∈ F odd, there is at most one ω ∈ Ω satisfying Break(ω) = Γ and ω′ ∈ T1(ω).
It follows that there is a constant C such that for every ω′ ∈ F odd,

∣∣{ω ∈ Ω
β

1,M,R: ω′ ∈ T1(ω)
}∣∣ ≤ ∣∣OMCut(M,R)

∣∣ ≤ exp

(
C(logd)2

d
R

)
, (7)

where the last inequality follows from Theorem 4.7. Inequalities (6) and (7) and Lemma 2.3 imply that

μodd(Ωβ

1,M,R

) ≤ exp

(
C(logd)2

d
R

)
(1 + λ)−d/2−Rdβ−1/52.

Now we are ready to estimate μodd(Ω
β

1 ). Since RΓ (E1(Γ )) ≥ |E1(Γ )| ≥ 1 for every Γ ∈ OMCut (since 1 ≤
PΓ (v) ≤ 2d − 1 for every v ∈ E1(Γ ) by Proposition 4.6), we have that

Ω
β

1 =
∞⋃

R=1

R⋃
M=1

Ω
β

1,M,R

and hence by the union bound,

μodd(Ωβ

1

) ≤
∞∑

R=1

R∑
M=1

μodd(Ωβ

1,M,R

) ≤
∞∑

R=1

R · exp

(
C(logd)2

d
R

)
(1 + λ)−d/2−Rdβ−1/52. (8)

In order to estimate the right-hand side of (8), first observe that

(1 + λ)Rdβ−1/156 ≥ exp

(
C(logd)2

d
R

)

provided that d is sufficiently large and λ ≥ C′d−β(logd)2 for some large positive constant C′. It follows that

μodd(Ωβ

1

) ≤
∞∑

R=1

R(1 + λ)−d/2−Rdβ−1/78 ≤ 2(1 + λ)−d/3, (9)
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provided that d is sufficiently large and λ ≥ C′d−β(logd)2. To see that the last inequality in (9) holds, one might split
the above sum into ranges R ≤ d2 and R > d2 and estimate each of the parts separately. We conclude that if d is
sufficiently large and λ ≥ C′d−β(logd)2 for some large positive constant C′, then μodd(Ω

β

1 ) ≤ (1 + λ)−d/4.

4.5.2. Proof of Theorem 4.16
Fix an ω ∈ Ω

β

2 . As usual, we let Γ = Break(ω), let E1 = E1(Γ ), E1,e = E1,e(Γ ), and for each j ∈ [2d], let E1,j =
E1,j (Γ ) and E1,j,x = E1,j,x(Γ ). Recall that each exposed vertex is adjacent to at most

√
d vertices that are in A1(Γ )

and hence

2d∑
j=1

|E1,j,x | ≤ |E1,e| ·
√

d ≤ |Γ |
2d − √

d
· √d ≤ |Γ |√

d
. (10)

Moreover, since |Γr | ≥ 12|Γ |/dβ ≥ 12|Γ |/√d by our assumption on β , then (10) implies that

2d∑
j=1

(∣∣Γ j
r

∣∣ − 8|E1,j,x |
) = |Γr | − 8

2d∑
j=1

|E1,j,x | ≥ |Γr |/3 ≥ 4|Γ |/dβ.

Recall from the definition of T2 that j (Γ ) is the smallest index that maximizes the quantity |Γ j
r |−8|E1,j,x |. It follows

that
∣∣Γ j(Γ )

r

∣∣ − 8|E1,j (Γ ),x | ≥ |Γr |/(6d) ≥ 2L/d1+β. (11)

Next, we further partition the event Ω
β

2 . For integers L, r , and x, let

Ω
β

2,L,r,x = {
ω ∈ Ω

β

2 : |Γ | = L,
∣∣Γ j(Γ )

r

∣∣ = r, and
∣∣Xj(Γ )(ω)

∣∣ = x
}
,

where Γ = Break(ω). Now assume that ω ∈ Ω
β

2,L,r,x . Recalling the properties of T2, namely (4), note that since
T2(ω) = T2,j (Γ )(ω), then we have

μodd(T2(ω)
) ≥ (1 + λ)|E1,j (Ω)\E1,e|λ−|X(ω)|μodd(ω) = (1 + λ)rλ−xμodd(ω).

Since Xj(ω) ⊆ E1,j,x , then r ≥ 8x + 2L/d1+β by (11) and therefore

μodd(T2(ω)
) ≥ (1 + λ)r/2+4x+L/d1+β

λ−xμodd(ω). (12)

On the other hand, by Proposition 4.14(i), for every E ⊆ V (G) and ω′ ∈ F odd, there is at most one Γ ∈ OMCut
such that E is an interior approximation to Γ and Γ = Break(ω) for every ω ∈ Ω satisfying ω′ ∈ T2(ω). More-
over, by Proposition 4.14(ii), if we additionally specify X ⊆ V (G) and require that Xj(Γ )(ω) = X, then ω is
uniquely determined. Crucially, since Xj(ω) ⊆ E1,j,x(Γ ), then we can assume that X ⊆ E1,j,x(Γ ). Finally, since
|E1,j (Γ ),x(Γ )| ≤ r/8, then Theorem 4.8 implies that there is a constant C such that for every ω′ ∈ F odd,

∣∣{ω ∈ Ω
β

2,L,r,x : ω′ ∈ T2(ω)
}∣∣ ≤ exp

(
C(logd)2

d3/2
L

)(�r/8�
x

)
. (13)

Inequalities (12) and (13) and Lemma 2.3 imply that

μodd(Ωβ

2,L,r,x

) ≤ exp

(
C(logd)2

d3/2
L

)(�r/8�
x

)
λx(1 + λ)−r/2−4x−L/d1+β

. (14)

Next, note that if λ ≥ 1, then

(1 + λ)−4xλx ≤ 1 and

(�r/8�
x

)
(1 + λ)−r/2 ≤ 2r/8 · 2−r/2 ≤ 1
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and if λ < 1, then (noting that the function x �→ (y/x)x attains its maximum when x = y/e)

(1 + λ)−r/2
(�r/8�

x

)
λx ≤ e−λr/4

(
λer

8x

)x

≤ e−λr/4+λr/8 ≤ 1.

Crucially, if d is sufficiently large and λ ≥ C′dβ−1/2(logd)2 for a large positive constant C′, then

exp

(
C(logd)2

d3/2
L

)
≤ (1 + λ)L/(2d1+β).

Putting all of the above together, if d is sufficiently large and λ ≥ C′dβ−1/2(logd)2, then it follows from (14) that

μodd(Ωβ

2,L,r,x

) ≤ (1 + λ)−L/(2d1+β). (15)

We are now ready to estimate μodd(Ω
β

2 ). Since for every Γ ∈ OMCut, we have |Γr | ≤ |Γ | and |Γ | ≥ 2d2 by
Proposition 4.5, then

Ω
β

2 =
∞⋃

L=2d2

L⋃
r=0

r/8⋃
x=0

Ω
β

2,L,r,x

and hence by the union bound and (15),

μodd(Ωβ

2

) ≤
∞∑

L=2d2

∑
r≤L

∑
x≤r/8

μodd(Ωβ

2,L,r,x

) ≤
∞∑

L=2d2

L2 · (1 + λ)−L/(2d1+β).

We conclude that if d is sufficiently large and λ ≥ C′dβ−1/2(logd)2 for some large positive constant C′, then
μodd(Ω

β

2 ) ≤ (1 + λ)−d1−β/4.

4.5.3. Proof of Theorem 4.17
We will closely follow the proof of Theorem 4.16. The main difference is that we will now further partition the set
Ω

β

2 . To this end, recalling the definition of OMCut(ε) from Section 4.3, for k ∈ N, let

Ω
β,k

2 = {
ω ∈ Ω

β

2 : Break(ω) ∈ OMCut
(
2−k

)}

and note that Ω
β

2 = ⋃{Ωβ,k

2 : 1 ≤ k ≤ β log2 d}. Next, for integers L, r , x, and k, let

Ω
β,k

2,L,r,x = {
ω ∈ Ω

β,k

2 : |Γ | = L,
∣∣Γ j

r

∣∣ = r, and
∣∣Xj(ω)

∣∣ = x
}
,

where Γ = Break(ω) and j = j (Γ ) ∈ [2d] is such that T2(ω) = T2,j (ω). Fix some k and let ε = 2−k . The first crucial

observation that enables us to improve our bound on λ is that by the definition of OMCut(ε), if ω ∈ Ω
β,k

2,L,r,x , then
(11) implies that r ≥ 8x + εL/(6d) and therefore as in (12),

μodd(T2(ω)
) ≥ (1 + λ)r/2+4x+εL/(12d)λ−xμodd(ω). (16)

On the other hand, an argument identical to the one explaining (13), but now using Theorem 4.9 and the fact that
Break(ω) ∈ OMCut(ε) for every ω ∈ Ω

β,k

2 , implies that there is a positive constant C such that for every ω′ ∈ F odd,

∣∣{ω ∈ Ω
β,k

2,L,r,x : ω′ ∈ T2(ω)
}∣∣ ≤ exp

(
C

√
ε(logd)2

d3/2
L

)(�r/8�
x

)
. (17)
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Inequalities (16) and (17) and Lemma 2.3 imply that

μodd(Ωβ,k

2,L,r,x

) ≤ exp

(
C

√
ε(logd)2

d3/2
L

)(�r/8�
x

)
λx(1 + λ)−r/2−4x−εL/(12d).

Crucially, if d is sufficiently large and λ ≥ C′(logd)2/
√

εd for a large positive constant C′, then

exp

(
C

√
ε(logd)2

d3/2
L

)
≤ (1 + λ)εL/(24d)

and, as was shown in the proof of Theorem 4.16,
(�r/8�

x

)
λx(1 + λ)−r/2−4x ≤ 1.

It follows that if d is sufficiently large and λ ≥ C′(logd)2/
√

εd , then

μodd(Ωβ,k

2,L,r,x

) ≤ (1 + λ)−εL/(24d).

Since ε ≥ d−β , a computation similar to the one done in the proof of Theorem 4.16 implies that whenever d is
sufficiently large and λ ≥ C′(logd)2d(β−1)/2, then

μodd(Ωβ

2

) ≤ (1 + λ)−d1−β/48.

5. Odd cutsets

Throughout this section, we fix an ε ∈ [d−1/2,1/2] and assume that d is sufficiently large. Since it will be convenient
for us to work with a regular graph, we will consider the graph Gn as a subgraph of the infinite graph Z

d . In particular,
we will assume that every vertex of G has exactly 2d neighbors. As usual, every time we consider a Γ ∈ OMCut, we
let E0 = E0(Γ ), E1 = E1(Γ ), E1,e = E1,e(Γ ), A1 = A1(Γ ), and A0 = A0(Γ ) = V (G) \ A1. Given a δ ∈ {0,1} and
a condition c: [2d] → {0,1}, we will also write

Eδ,c(·) = {
v ∈ Eδ: c

(
PΓ (v)

) = 1
}
.

For example, E1,·≥2d−√
d = E1,e . Finally, for δ ∈ {0,1} and v ∈ Eδ , following [11], we let

U1(v) = {
v′ ∈ Eδ: vu,uv′ ∈ E(G) for some u ∈ Aδ

}
,

U2(v) = {
u ∈ N(v) ∩ Aδ:

∣∣N(u) ∩ Eδ

∣∣ <
√

εd
}

and

U3(v) = (
N

(
U2(v)

) ∩ Eδ

) \ {v}.
We proceed by establishing a few properties of odd cutsets that will be useful in our further considerations.

Proposition 5.1. If vw ∈ Γ for some v,w ∈ V (G), then PΓ (v) + PΓ (w) ≥ 2d .

Proof. Assume WLOG that v ∈ A1, write w = v + fj , and note that w ∈ A0. Let I be the set of those indices i such
that v+fi ∈ A1 and note that |I | = 2d −PΓ (v). Since for every i ∈ I , w is adjacent to v+fi +fj and v+fi +fj ∈ A1
by Proposition 4.4, it follows that PΓ (w) ≥ |I |. �

Proposition 5.2. For each δ ∈ {0,1} and each v ∈ Eδ , we have that

|U1(v)| ≥ PΓ (v)
(
2d − PΓ (v)

) − min
{
PΓ (v),2d − PΓ (v)

}
.
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Proof. Let J ⊆ [2d] be the set of those indices j such that v + fj ∈ Aδ and note that |J | = 2d − PΓ (v). Then for
all j ∈ J and i ∈ [2d] \ J such that fj �= −fi , we have that v + fj + fi ∈ U1(v) by Proposition 4.4 and the fact that
v + fi ∈ A1−δ . Finally, the number of such pairs of i and j is at least |J |(2d − |J |) − min{|J |,2d − |J |}. �

Proposition 5.3. For each δ ∈ {0,1}, each v ∈ Eδ , and all w ∈ U3(v), we have that PΓ (w) <
√

εd .

Proof. Let j ∈ [2d] be such that w + fj ∈ U2(v), let I ⊆ [2d] be the set of those indices i such that w + fi ∈ A1−δ ,
and note that |I | = PΓ (w). We deduce from Proposition 4.4 that w + fj + fi ∈ Eδ ∩ N(w + fj ) for every i ∈ I , and
hence |I | < √

εd by the definition of U2(v). �

5.1. The dominating set proposition

The
√

ε-factor improvement of the upper bound on log |E | in Theorem 4.9 as compared to the bound in Theorem 4.8
comes solely from the following refined version of the “dominating set” proposition [11, Proposition 4.15]. Proposi-
tion 5.4, which is the driving force behind the d1/12-factor improvement of the upper bound on λ(d), is one of the main
novelties in this paper. Recall the definitions of U1, U2, and U3 from the beginning of this section and the definition
of RΓ from Section 4.3.

Proposition 5.4. There exists a constant C such that for all Γ ∈ OMCut(ε), there exist Et
0 ⊆ E0(Γ ) and Et

1 ⊆ E1(Γ )

satisfying for both δ ∈ {0,1}:
(a) RΓ (Et

δ) ≤ C
√

ε logd

d3/2 |Γ |.
(b) If v ∈ E1 and |U1(v)| ≥ √

εd3/2/2, then U1(v) ∩ Et
1 �= ∅.

(c) If v ∈ Eδ,·≥d , then |N(v) ∩ E1−δ ∩ N(Et
δ)| ≥

√
εd .

(d) If v ∈ Eδ,·≤√
d and |U2(v)| ≥ d/2, then U3(v) ∩ N(Et

1−δ) �= ∅.

Proof. Fix a Γ ∈ OMCut(ε) and recall that PΓ (v) ≤ 2d−1 for all v ∈ V (G) by Proposition 4.6. For each v ∈ E0 ∪E1,
we let

pv =
⎧⎨
⎩

30 logd
(2d−PΓ (v))

· 1√
εd

if v ∈ E1 \ E1,e,

30 logd
(2d−PΓ (v))

·
√

ε
d

otherwise.

Since ε ≥ d−1/2, if d is sufficiently large, then pv ∈ (0,1] for all v. Now, for δ ∈ {0,1}, we choose Es
δ ⊆ Eδ randomly

by adding each v ∈ Eδ to Es
δ with probability pv independently of all other vertices. We first claim that for each

δ ∈ {0,1},

E
[
RΓ

(
Es

δ ∩ Eδ,·<d

)] =
∑

v∈Eδ,·<d

pv · RΓ (v) =
∑

v∈Eδ,·<d

pv · PΓ (v) ≤ 60
√

ε logd

d3/2
|Γ |. (18)

To see that the last inequality, note that because 1/(2d − PΓ (v)) ≤ 1/d if PΓ (v) < d , we have

∑
v∈E0,·<d

pv · PΓ (v) ≤ 30
√

ε logd

d3/2
·
∑
v∈E0

PΓ (v) = 30
√

ε logd

d3/2
|Γ |,

whereas since Γ ∈ OMCut(ε), then
∑

v∈E1\E1,e
PΓ (v) ≤ 2ε|Γ | and hence

∑
v∈E1,·<d

pv · PΓ (v) ≤ 30 logd√
εd3/2

·
∑

v∈E1\E1,e

PΓ (v) ≤ 30 logd√
εd3/2

· 2ε|Γ |.

Moreover,

E
[
RΓ

(
Es

δ ∩ Eδ,·≥d

)] =
∑

v∈Eδ,·≥d

pv · RΓ (v) =
∑

v∈Eδ,·≥d

pv · (2d − PΓ (v)
) ≤ 90

√
ε logd

d3/2
|Γ |, (19)
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where the last inequality follows because

∑
v∈E0,·≥d

pv · (2d − PΓ (v)
) = |E0,·≥d | · 30

√
ε logd√
d

≤ 30
√

ε logd

d3/2
|Γ |,

whereas since Γ ∈ OMCut(ε), then |E1,·≥d \ E1,e| ≤ 2ε|Γ |/d and hence

∑
v∈E1,·≥d

pv · (2d − PΓ (v)
) = 30 logd√

d

(|E1,·≥d \ E1,e|/√ε + |E1,e| · √ε
) ≤ 30 logd

d3/2
(2ε/

√
ε + √

ε)|Γ |.

Since Eδ = Eδ,·<d ∪ Eδ,·≥d , it follows that RΓ (Es
δ ) = RΓ (Es

δ ∩ Eδ,·<d) + RΓ (Es
δ ∩ Eδ,·≥d) and hence by (18) and

(19),

E
[
RΓ

(
Es

δ

)] ≤ 150
√

ε logd

d3/2
|Γ |.

By Markov’s inequality,

P

(
RΓ

(
Es

δ

) ≥ 450
√

ε logd

d3/2
|Γ |

)
≤ 1

3
. (20)

Having part (b) in mind, let v ∈ E1 be such that |U1(v)| ≥ √
εd3/2/2. If |U1(v) ∩ E1,e| ≥ √

εd3/2/6, then

P
(
Es

1 ∩ U1(v) = ∅
) ≤

∏
w∈U1(v)∩E1,e

(1 − pw) ≤
(

1 − 30
√

ε logd√
d · √d

)√
εd3/2/6

≤ e−5ε
√

d logd ≤ 1

d5
,

since ε ≥ 1/
√

d . Otherwise, |U1(v) \ E1,e| ≥ √
εd3/2/3 and

P
(
Es

1 ∩ U1(v) = ∅
) ≤

∏
w∈U1(v)\E1,e

(1 − pw) ≤
(

1 − 30 logd

2d · √εd

)√
εd3/2/3

≤ e−15 logd/3 = 1

d5
.

Either way,

P
(
Es

1 ∩ U1(v) = ∅
) ≤ d−5. (21)

Fix a δ ∈ {0,1} and let v ∈ Eδ,·≥d . Having part (c) in mind, we estimate P(|N(v) ∩ E1−δ ∩ N(Es
δ )| <

√
εd). We

first let B(v) = N(v) ∩ E1−δ,·≥2 and then for each w ∈ B(v), we let E(w) = (N(w) ∩ Eδ) \ {v}.

Claim. |B(v)| ≥ d − 1 and each v′ ∈ Eδ belongs to at most 2 of the E(w)s.

Proof. To see the first part, recall that PΓ (v) ≤ 2d − 1 by Proposition 4.6 and hence there exists a j ∈ [2d] such that
v + fj ∈ Aδ . By Proposition 4.4, v + fj + fi ∈ Aδ for all i ∈ [2d]. Thus each i ∈ [2d] for which v + fi /∈ Aδ and
fi �= −fj satisfies v + fi ∈ B(v) since v + fi is adjacent to both v and v + fj + fi and hence PΓ (v + fi) ≥ 2. The
second part is a simple consequence of the fact that |N(w) ∩ N(w′)| ≤ 2 for every two distinct w,w′ ∈ V (G). �

Now, for each w ∈ B(v), define a random set E(w)s by taking each v′ ∈ E(w) into E(w)s with probability pv′/2.
It follows from the second part of the above claim that

⋃
w∈B(v)

E(w)s is stochastically dominated by Es
δ . (22)



994 R. Peled and W. Samotij

Noting that PΓ (w) ≥ 2 for all w ∈ B(v) by the definition of B(v), |E(w)| = PΓ (w) − 1 by the definition of E(w),
and 2d − PΓ (v′) ≤ PΓ (w) for all v′ ∈ E(w) by Proposition 5.1, we obtain that for sufficiently large d ,

P
(
E(w)s = ∅

) ≤
∏

v′∈E(w)

(
1 − 15

√
ε logd

(2d − PΓ (v′))
√

d

)
≤

(
1 − 15

√
ε logd

PΓ (w)
√

d

)PΓ (w)−1

≤ 1 − 15

√
ε

d
.

Finally, letting Zv = |{w ∈ B(v): E(w)s �= ∅}|, it follows that Zv stochastically dominates a Bin(|B(v)|,15
√

ε/d)

random variable. On the other hand, it follows from (22) that Zv is stochastically dominated by |{N(v) ∩ E1−δ ∩
N(Es

δ)}|. By our claim and Chernoff’s inequality, we deduce that for sufficiently large d ,

P
(∣∣{N(v) ∩ E1−δ ∩ N

(
Es

δ

)}∣∣ <
√

εd
) ≤ P(Zv <

√
εd) ≤ e−√

εd ≤ d−5. (23)

Fix a δ ∈ {0,1} and let v ∈ Eδ,·≤√
d satisfy |U2(v)| ≥ d/2. Having part (d) in mind, for each w ∈ U3(v), we let

F(w) = (N(w) ∩ E1−δ) \ N(v) and let U ′
3(v) = {w ∈ U3(v): F(w) �= ∅}.

Claim. For every w ∈ U3(v), |F(w)| ≥ PΓ (w) − 1 and |U ′
3(v)| ≥ |U3(v)| − PΓ (v) ≥ d/5.

Proof. To see the first part, observe that for each w ∈ U3(v), since w ∈ Eδ , then we have |N(w)∩E1−δ| = PΓ (w) ≥ 1.
Moreover, since N(w) ∩ N(v) contains a vertex of U2(v) ⊆ Aδ and |N(w) ∩ N(v)| ≤ 2 since w �= v, then |N(w) ∩
E1−δ ∩ N(v)| ≤ 1. To see the second part, note first that since each w ∈ U3(v) has at most 2 common neighbors with
v and at least one of them belongs to U2(v), then |U3(v)|−PΓ (v) ≥ |U2(v)|/2 −√

d ≥ d/5, where the last inequality
follows from the assumption that |U2(v)| ≥ d/2. Next, recall that PΓ (u) ≤ 2d −1 for every vertex u by Proposition 4.6
and let j ∈ [2d] be such that v + fj ∈ E1−δ . By the first part of this claim, it suffices to prove that there is at most one
w ∈ U3(v) with N(w)∩E1−δ = {v+fj }. Since PΓ (v+fj ) ≤ 2d −1, there is an i ∈ [2d] such that v+fj +fi ∈ A1−δ .
Assume that some w ∈ U3(v) satisfies N(w) ∩ E1−δ = {v + fj }. Then clearly, w = v + fj + fk for some k ∈ [2d]. If
fk �= −fi , then PΓ (w) ≥ 2 as w + fi ∈ N(v + fj + fi) ⊆ A1−δ by Proposition 4.4 and w + fi �= v + fj . Hence, if
N(w) ∩ E1−δ = {v + fj }, then w = v + fj − fi . �

Now, for each w ∈ U ′
3(v), define a random set F(w)s by independently taking each v′ ∈ F(w) into F(w)s with

probability pv′/3. Since each w ∈ U ′
3(v) is in distance 2 from v and each F(w) consists only of vertices in distance 3

from v, it follows that each v′ ∈ E1−δ belongs to at most 3 different F(w)s and hence

⋃
w∈U ′

3(v)

F (w)s is stochastically dominated by Es
1−δ. (24)

Noting that |F(w)| ≥ max{PΓ (w) − 1,1} (by the above Claim) and 2d − PΓ (v′) ≤ PΓ (w) (by Proposition 5.1) for
all w ∈ U ′

3(v) and v′ ∈ F(w), we obtain that for sufficiently large d ,

P
(
F(w)s = ∅

) ≤
∏

v′∈F(w)

(
1 − 10

√
ε logd

(2d − PΓ (v′))
√

d

)
≤

(
1 − 10

√
ε logd

PΓ (w)
√

d

)|F(w)|
≤ 1 − 10

√
ε

d
.

Finally, letting Zv = |{w ∈ U ′
3(v): F(w)s �= ∅}|, it follows from (24) that Zv is stochastically dominated by |{w ∈

U3(v): N(v) ∩ Es
1−δ �= ∅}|. We deduce that for sufficiently large d , by the above Claim,

P
(
U3(v) ∩ N

(
Es

1−δ

) = ∅
) ≤ P(Zv = 0) ≤ (1 − 10

√
ε/d)|U ′

3(v)| ≤ (1 − 10
√

ε/d)d/5 ≤ d−5, (25)

where the last inequality follows from the assumption that ε ≥ d−1/2.
We now aim to enlarge the sets Es

δ slightly to create new sets Et
δ that will satisfy the requirements of the proposition.

Defining for each δ ∈ {0,1},
EB

1,1 = {
v ∈ E1:

∣∣U1(v)
∣∣ ≥ √

εd3/2/2 and U1(v) ∩ Es
1 = ∅

}
,



Odd cutsets and the hard-core model on Z
d 995

EB
δ,2 = {

v ∈ Eδ,·≥d :
∣∣N(v) ∩ E1−δ ∩ N

(
Es

δ

)∣∣ <
√

εd
}
,

EB
δ,3 = {

v ∈ Eδ,·≤√
d :

∣∣U2(v)
∣∣ ≥ d/2 and U3(v) ∩ N

(
Es

1−δ

) = ∅
}

and using the three probabilistic estimates (21), (23), and (25), we see that

max
{
E

[∣∣EB
1,1

∣∣],E
[∣∣EB

δ,2

∣∣],E
[∣∣EB

δ,3

∣∣]} ≤ max
{|E0|, |E1|

}
/d5 ≤ |Γ |/d5. (26)

In order to guarantee that parts (b), (c), and (d) of the proposition will be satisfied, for each δ ∈ {0,1}, we let Ec
δ,3 be

an arbitrary set of size at most |EB
1−δ,3| containing a vertex from N(U3(v)) ∩ Eδ for every v ∈ EB

1−δ,3 and let

Et
0 = Es

0 ∪ EB
0,2 ∪ Ec

0,3 and Et
1 = Es

1 ∪ EB
1,1 ∪ EB

1,2 ∪ Ec
1,3.

Since v ∈ U1(v) for every v ∈ E1 and |N(v) ∩ E1−δ ∩ N(Et
δ)| = PΓ (v) if v ∈ Et

δ , then by definition, Et
0 and Et

1
satisfy parts (b), (c), and (d) of this proposition. Moreover, if we let M = maxδ,i{|EB

δ,i |}, then for each δ ∈ {0,1},
RΓ

(
Et

δ

) ≤ RΓ

(
Es

δ

) + 3dM.

Hence, in order to guarantee that part (a) holds, it is sufficient to show that with positive probability maxδ RΓ (Es
δ ) ≤

(C
√

ε logd/d3/2) · |Γ | and M ≤ C|Γ |/d5 for some positive constant C. By Markov’s inequality and (26), we have
that

P
(
M > 15|Γ |/d5) ≤ P

(∑
δ,i

∣∣EB
δ,i

∣∣ > 15|Γ |/d5
)

< 1/3.

Combined with (20) and the union bound, this completes the proof. �

Proposition 5.5. Let Γ ∈ OMCut and assume that two sets Et
0 ⊆ E0 and Et

1 ⊆ E1 satisfy part (c) of Proposition 5.4.
Then for every v ∈ E1, the set {v} ∪ Et

0 ∪ Et
1 is connected in the graph G8.

Proof. Since by Proposition 4.3, the set E0 ∪ E1 is connected in G2 and {v} ∪ Et
0 ∪ Et

1 ⊆ E0 ∪ E1, it clearly suffices
to prove that distG(w,Et

0 ∪ Et
1) ≤ 3 for each w ∈ E0 ∪ E1. To see this, fix some δ ∈ {0,1} and w ∈ Eδ . If w ∈

Eδ,·≥d , then the fact that Et
δ satisfies part (c) of Proposition 5.4 implies that distG(w,Et

δ) ≤ 2. If w ∈ Eδ,·<d , then
by Proposition 5.1, we can find a w′ ∈ N(w) ∩ E1−δ,·≥d and hence distG(w,Et

1−δ) ≤ 1 + distG(w′,Et
1−δ) ≤ 3, again

using the fact that Et
1−δ satisfies part (c) of Proposition 5.4. �

5.2. Constructing an interior approximation

For Γ ∈ OMCut, v ∈ V (G), and E ⊆ E(G), define NΓ (v): [2d] → {0,1} by

NΓ (v)j =
{

1 if v + fj ∈ A1,
0 if v + fj ∈ A0,

and let NΓ (E) = (NΓ (v))v∈E . The next proposition formalizes the fact that for every Γ ∈ OMCut, knowing only Et
0

and Et
1 satisfying parts (b), (c), and (d) from Proposition 5.4 and NΓ (Et

δ) for both δ ∈ {0,1}, we can construct a set
E that is an interior approximation to Γ . Such an E is determined by the following algorithm:

(1) For δ ∈ {0,1}, let
(a) Ra

δ = {v + fj : v ∈ Et
1−δ and NΓ (v)j = δ},

(b) Rb
δ = ⋃{N(v + fj ): v ∈ Et

δ and NΓ (v)j = δ}.
(2) For δ ∈ {0,1}, let Vδ = {v ∈ V (G): |N(v) ∩ Ra

1−δ| <
√

εd} and

U = {
u ∈ V0: N(u) ∩ V1 ∩ Ra

1 �= ∅
}
.

Set E = Rb
1 ∪ N(U).
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Proposition 5.6. For any Γ ∈ OMCut, the set E obtained from the previous algorithm, taking as input sets (Et
δ)δ∈{0,1}

satisfying parts (b), (c), and (d) of Proposition 5.4 and (NΓ (Et
δ))δ∈{0,1} satisfies

E1,·<2d−√
εd ⊆ E ⊆ A1.

In particular, E is an interior approximation to Γ .

To gain some understanding of the above algorithm, note that Ra
δ and Rb

δ consist of vertices that we know are in Eδ

and Aδ , respectively, directly from the fact that Et
δ ⊆ Eδ and the definition of NΓ (Et

δ). It is relatively straightforward
to show that E1,

√
εd<·<2d−√

εd ⊆ Rb
1 and hence our main difficulty lies in showing that vertices of E1,·≤√

εd can also
be recovered. To this end, we define Vδ , which is shown to be disjoint from Eδ,·≥d . We deduce that U ⊆ A1 ∩ V even

and hence N(U) ⊆ A1 from the definition of OMCut. Finally, we are able to show that E1,·≤√
d \ Rb

1 ⊆ N(U).

Proof of Proposition 5.6. The proof is via several claims.

Claim 1. For each δ ∈ {0,1}, we have Ra
δ ⊆ Eδ and Rb

δ ⊆ Aδ .

By the definition of Ra
δ , each of its elements is of the form v + fj for some v ∈ Et

1−δ ⊆ E1−δ and j ∈ [2d] such that
NΓ (v)j = δ. Then v +fj ∈ Aδ by the definition of NΓ (v), but since v ∈ E1−δ , then in fact v +fj ∈ Eδ . Each element
of Rb

δ belongs to N(v +fj ) for some v ∈ Et
δ ⊆ Eδ and j ∈ [2d] such that NΓ (v)j = δ. Since v ∈ Eδ and v +fj ∈ Aδ ,

then N(v + fj ) ⊆ Aδ by Proposition 4.4.

Claim 2. E1,
√

εd<·<2d−√
εd ⊆ Rb

1 .

Fix a v ∈ E1,
√

εd<·<2d−√
εd and note that |U1(v)| ≥ √

εd(2d − √
εd) − √

εd ≥ √
εd3/2/2 by Proposition 5.2. Since

Et
1 satisfies part (b) of Proposition 5.4, it follows that Et

1 ∩ U1(v) �= ∅ and therefore v ∈ Rb
1 .

Claim 3. For each δ ∈ {0,1}, we have Eδ,·≥d ∩ Vδ = ∅.

Fix δ ∈ {0,1} and v ∈ Eδ,·≥d . Any vertex in N(v) ∩ E1−δ ∩ N(Et
δ) is in N(v) ∩ Ra

1−δ . The claim follows since Et
δ

satisfies part (c) of Proposition 5.4.

Claim 4. U ⊆ A1 ∩ V even.

Let u ∈ U . Since N(u) ∩ Ra
1 �= ∅ and Ra

1 ⊆ E1 ⊆ V odd by Claim 1 and the definition of OMCut, then u ∈ N(Ra
1 ) ⊆

V even. Assume for contradiction that u /∈ A1. Since Ra
1 ⊆ E1 and u ∈ N(Ra

1 ), then u ∈ E0. If PΓ (u) ≥ d , then u /∈ V0
by Claim 3, contradicting the fact that u ∈ U . If PΓ (u) < d , then by Proposition 5.1, PΓ (v) ≥ 2d − PΓ (u) ≥ d for
every v ∈ E1 ∩ N(u). It follows form Claim 3 that N(u) ∩ E1 ∩ V1 = ∅, so in particular, N(u) ∩ Ra

1 ∩ V1 = ∅, which
again contradicts the fact that u ∈ U .

Claim 5. N(U) ⊆ A1.

This follows immediately from Claim 4 since E1, the boundary of A1, is a subset of V odd.

Claim 6. E1,·≤√
d ⊆ E.

Let v ∈ E1,·≤√
d . We consider two cases.

Case 1. |U2(v)| < d/2. By the definition of U2(v), for any j ∈ [2d] such that v + fj ∈ A1 \ U2(v), we have at
least

√
εd indices i ∈ [2d] such that v + fj + fi ∈ E1. Since there are 2d − |U2(v)| − PΓ (v) such indices j and

each vertex can be represented in the form v + fj + fi in at most two ways, we have that |U1(v)| ≥ (2d − |U2(v)| −
PΓ (v))

√
εd/2 ≥ √

εd3/2/2 provided that d is sufficiently large. Since Et
1 satisfies part (b) of Proposition 5.4, it

follows that U1(v) ∩ Et
1 �= ∅ and hence v ∈ Rb

1 .
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Case 2. |U2(v)| ≥ d/2. In this case, since Et
0 satisfies part (d) of Proposition 5.4, there exist i, j ∈ [2d] such that

v + fj ∈ U2(v) and v + fj + fi ∈ U3(v) ∩ N(Et
0). In particular, v + fj + fi ∈ Ra

1 . Using that Ra
1 ⊆ E1 by Claim 1,

we have that |N(v + fj ) ∩ Ra
1 | ≤ |N(v + fj ) ∩ E1| <

√
εd and hence v + fj ∈ V0. Proposition 5.3 implies that

|N(v + fj + fi) ∩ E0| = PΓ (v + fj + fi) <
√

εd . Hence, since Ra
0 ⊆ E0 by Claim 1, we have that v + fj + fi ∈ V1.

It follows that v + fj ∈ U and hence v ∈ N(U).
Proposition 5.6 follows from Claims 1, 2, 5, and 6. �

5.3. Counting interior approximations

Given R ∈ N and E ⊆ V (G), define

N (R,E) = {
NΓ (E): Γ ∈ OMCut satisfying E ⊆ E0(Γ ) ∪ E1(Γ ) and RΓ (E) = R

}
.

Since 1 ≤ PΓ (v) ≤ 2d − 1 for every v ∈ E0(Γ ) ∪ E1(Γ ) by Proposition 4.6, then RΓ (E) ≥ |E| for every E ⊆
E0(Γ ) ∪ E1(Γ ). It follows that if |E| > R, then N (R,E) = ∅.

Proposition 5.7. For every R ∈ N and E ⊆ V (G), we have |N (R,E)| ≤ (2d)2R .

Proof. As we remarked above, WLOG we may assume that |E| ≤ R. Let

� =
{
D ∈ [2d − 1]E :

∑
v∈E

min{Dv,2d − Dv} = R

}

and note that if Γ ∈ OMCut satisfies E ⊆ E0(Γ ) ∪ E1(Γ ) and RΓ (E) = R, then (PΓ (v))v∈E ∈ �. Moreover, given
v ∈ E and PΓ (v), the number of possibilities for NΓ (v) is at most

( 2d
PΓ (v)

)
. It follows that

∣∣N (R,E)
∣∣ ≤

∑
D∈�

∏
v∈E

(
2d

Dv

)
≤

∑
D∈�

∏
v∈E

(2d)min{Dv,2d−Dv} = |�| · (2d)R ≤ (2d)|E|+R ≤ (2d)2R.
�

Proof of Theorem 4.9. Fix an integer L, ε ∈ [d−1/2,1/2], and let R′ = 2C
√

ε logd

d3/2 L, where C is the constant from
the statement of Proposition 5.4. For every Γ ∈ OMCut(ε) and each δ ∈ {0,1}, let Et

δ(Γ ) ⊆ Eδ(Γ ) be an arbitrary set
satisfying parts (a)–(d) of Proposition 5.4. Let A be the algorithm described in Section 5.2. We show that the family

E defined by

E = {
A

(
Et

0(Γ ),Et
1(Γ ),NΓ

(
Et

0(Γ )
)
,NΓ

(
Et

1(Γ )
))

: Γ ∈ OMCut(ε) and |Γ | = L
}

satisfies the assertion of Theorem 4.9. It follows from Proposition 5.6 that E contains an interior approximation to
every Γ ∈ OMCut(ε) with |Γ | = L, so in order to complete the proof, we only need to give an upper bound on the
cardinality of E . Recall that x is a fixed even vertex of Gn that is separated from Bn by every cutset in OMCut.
Hence, for every Γ as above, there is an 
Γ ∈ {0, . . . ,L} such that x + 
Γ f1 ∈ E1(Γ ). In particular, it follows from
Proposition 5.5 that {x + 
Γ f1} ∪ Et

0(Γ ) ∪ Et
1(Γ ) is connected in G8. Certainly, |E | is not larger than the number of

tuples (
,R,Et
0,E

t
1,X) such that 0 ≤ 
 ≤ L, 0 ≤ R ≤ R′, X ∈ N (R,Et

0 ∪ Et
1),

Et
0,E

t
1 ⊆ V (G),

∣∣Et
0

∣∣, ∣∣Et
1

∣∣ ≤ R, and {x + 
f1} ∪ Et
0 ∪ Et

1 is connected in G8. (27)

For non-negative 
 and R, by Lemma 2.2, the number S
,R of sets satisfying (27) can be bounded as follows

S
,R ≤
2R+1∑
M=0

2M · (�(
G8))2M−2 ≤

2R+1∑
M=0

2M · ((2d)9)2M ≤
2R∑

M=0

(2d)19M ≤ (2d)38R+1 ≤ (2d)39R.
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Now, with Et
0 and Et

1 satisfying (27) fixed, |N (R,Et
0 ∪ Et

1)| ≤ (2d)2R by Proposition 5.7. It follows that if d is
sufficiently large, then

|E | ≤
L∑


=0

R′∑
R=0

(2d)39R+2R ≤ (L + 1) ·
R′∑

R=0

(2d)41R ≤ (L + 1) · (2d)41R′+1 ≤ exp

(
C′√ε(logd)2

d3/2
L

)
,

where the last inequality follows from the fact that L ≥ 2d2 (which we may assume by Proposition 4.5) and ε ≥
d−1/2. �
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