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Abstract. Under the key assumption of finite p-variation, p € [1, 2), of the covariance of the underlying Gaussian process, sharp
a.s. convergence rates for approximations of Gaussian rough paths are established. When applied to Brownian resp. fractional
Brownian motion (fBM), p =1 resp. p = 1/(2H), we recover and extend the respective results of (Trans. Amer. Math. Soc.
361 (2009) 2689-2718) and (Ann. Inst. Henri Poincasé Probab. Stat. 48 (2012) 518-550). In particular, we establish an a.s. rate
k—1/p=1/2—¢) any ¢ > 0, for Wong—Zakai and Milstein-type approximations with mesh-size 1/k. When applied to fBM this
answers a conjecture in the afore-mentioned references.

Résumé. Nous établissons des vitesses fines de convergence presque siire pour les approximations des chemins rugueux Gaussiens,
sous I’hypothese que la fonction de covariance du processus Gaussien sous-jacent ait une p-variation finie, p € [1, 2). Dans le cas
du mouvement Brownien, respectivement du Brownien fractionnaire (fBM), pour lesquels p = 1 resp. p = 1/(2H), ce résultat
généralise les résultats respectifs de (Trans. Amer. Math. Soc. 361 (2009) 2689-2718) et (Ann. Inst. Henri Poincasé Probab. Stat.
48 (2012) 518-550).

Notamment, nous établissons le taux de convergence presque sure k—1/p=1/2=6) out & > 0, pour les approximations de
Wong-Zakai et de type Milstein avec pas de discrétisation 1/k. Dans le cas du fBM, ce résultat résout une conjecture posée par les
références ci-dessus.
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1. Introduction

Recall that rough path theory [7,14,15] is a general framework that allows to establish existence, uniqueness and
stability of differential equations driven by multi-dimensional continuous signals x : [0, 7] — R of low regularity.
Formally, a rough differential equation (RDE) is of the form

d
dy =Y Viondxl =V(de:  yoeRY, (1.1

i=1
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where (V;)i=1... 4 1s a family of vector fields in R°. When x has finite p-variation, p < 2, such differential equa-
tions can be handled by Young integration theory. Of course, this point of view does not allow to handle differential
equations driven by Brownian motion, indeed

sup Z |By — Bt, =+00 as.,
DC0.T], o1

leave alone differential equations driven by stochastic processes with less sample path regularity than Brownian mo-
tion (such as fractional Brownian motion (fBM) with Hurst parameter H < 1/2). Lyons’ key insight was that low
regularity of x, say p-variation or 1/p-Holder for some p € [1,00), can be compensated by including “enough”
higher order information of x such as all increments

X!, Ef dx,, ® - ®dx,, (1.2)
s<t]<..<tp <t

Z (/ dx,il1 -~~dx,i;’)el~1 ® Qe € (Rd)®n, (1.3)
s<t]<--<t, <t

]Sil ,...,l'nfd

where “enough” means n < [p] ({ey, ..., eq} denotes just the usual Euclidean basis in R? here). Subject to some
generalized p-variation (or 1/p-Holder) regularity, the ensemble (x!, ..., xIP) then constitutes what is known as a
rough path.? In particular, no higher order information is necessary in the Young case; whereas the regime relevant
for Brownian motion requires second order — or level 2 — information (“Lévy’s area”), and so on. Note that the
iterated integral on the r.h.s. of (1.2) is not — in general — a well-defined Riemann—Stieltjes integral. Instead one
typically proceeds by mollification — given a multi-dimensional sample path x = X (w), consider piecewise linear
approximations or convolution with a smooth kernel, compute the iterated integrals and then pass, if possible, to a
limit in probability. Following this strategy one can often construct a “canonical” enhancement of some stochastic
process to a (random) rough path. Stochastic integration and differential equations are then discussed in a (rough)
pathwise fashion; even in the complete absence of a semi-martingale structure.

It should be emphasized that rough path theory was — from the very beginning — closely related to higher order
Euler schemes. Let D ={0=1y < --- <t D_1 = 1} be a partition of the unit interval.* Considering the solution y of

(1.1), the step-N Euler approximation yEuer":2 ig given by
EulerV:D
Yo =)o,

Euler¥;D __ _EulerV Euler™; D
i+l = + Vi ( )

EulerV DN\ _i1,ip
z, i+l +Vll Vlz( )th’tjwtl

4.4 Vil VlN | VzN (yfuler D)Xil_"',"iN

1j.lj+1

at the points ¢; € D where we use the Einstein summation convention, V; stands for the differential operator
Yoy Vo and (= [, _,dx!---dx;”. An extension of the work of A. M. Davie (cf. [3,7]) shows
that the step-N Euler scheme> for an RDE driven by a 1/ p -Holder rough path with step size 1/k (i.e. D = Dy =
{ J=0,...,k}) and N > [p] will converge with rate O(y LY(N+D/p=1_Of course, in a probabilistic context, simu-
latlon of the 1terated (stochastic) integrals xt St is not an easy matter. A natural simplification of the step-N Euler
scheme thus amounts to replace in each step

1
{xffy,j“: ne{l,...,N}} - {E(Xflj’fm)@n: ne {1,...,N}}

3 A basic theorem of rough path theory asserts that further iterated integrals up to any level N > [p], i.e.
SN :=(x":nefl,...,N})

are then deterministically determined and the map x — Sy (x), known as Lyons lift, is continuous in rough path metrics.

4A general time horizon [0, T'] is handled by trivial reparametrization of time.

5. .. which one would call Milstein scheme when N =2...
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which leads to the simplified step-N Euler scheme

sEulerV; D _
Yo = Yo,
sEuler™ ; D _ sEuler™; D sEuler™; D\ _i 1 sEuler™; D i in
Lj+1 =Y +Vi (yfj ) e T EV” Viy (yfj )Xf./’f./+le./sf./+1
1 sEuler™; D\ _i i
N ) A S > 1 L %N
+ee 4t N!Vt] VIN—]VZN(yIj ) titjy1 th,ljJr]'

Since th_/,tj+ = X 1t (w)y=X ti (w) — X t (w) this is precisely the effect in replacing the underlying sample path
segment of X by its piecewise linear approximation, i.e.

r —

t.
{Xi(w): t€ltj tjy1]} < {X,j(a))+ Miftx,j,,w(w): te [t{,,t.,ﬂ]}.
jH T

Therefore, as pointed out in [4] in the level N = 2 Holder rough path context, it is immediate that a Wong—Zakai type
result, i.e. a.s. convergence of y*) — y for k — oo where y®) solves

k k k k
dy =v () P =y er
and x® is the piecewise linear approximation of x at the points (¢ j)l;:o = Dy, i.e.

*) =1 .
X =X+ ——=xi;.;,, iftelt,tj1l,1; € Dy,

leads to the convergence of the simplified (and implementable!) step-N Euler scheme.

While Wong—Zakai type results in rough path metrics are available for large classes of stochastic processes [7],
Chapters 13, 14, 15, 16 our focus here is on Gaussian processes which can be enhanced to rough paths. This problem
was first discussed in [2] where it was shown in particular that piecewise linear approximation to fBM are convergent
in p-variation rough path metric if and only if H > 1/4. A practical (and essentially sharp) structural condition for
the covariance, namely finite p-variation based on rectangular increments for some p < 2 of the underlying Gaussian
process was given in [6] and allowed for a unified and detailed analysis of the resulting class of Gaussian rough paths.
This framework has since proven useful in a variety of different applications ranging from non-Markovian Hérmander
theory [1] to non-linear PDEs perturbed by space—time white-noise [10]. Of course, fractional Brownian motion can
also be handled in this framework (for H > 1/4) and we shall make no attempt to survey its numerous applications in
engineering, finance and other fields.

Before describing our main result, let us recall in more detail some aspects of Gaussian rough path theory (e.g.
[6], [7], Chapter 15, [8]). The basic object is a centred, continuous Gaussian process with sample paths X (w) =
XY w),..., XU w)):[0, 1] > R where X' and X/ are independent for i # j. The law of this process is determined
by Ry :[0, 17> = R?*?_the covariance function, given by

Rx(s,t) =diag(E(X!X)),..., E(X?X)).
We need:

Definition 1. Let f = f(s,t) be a function from [0, 11% into a normed space; for s < t,u < v we define rectangular
increments as

f(s’[)=f(t,v)—f(l,u)—f(s’v)"‘f(s’”)'

u,v
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For p > 1 we then set

1/p

P

(l‘i,tz’+1 )‘
1j, lj41 ’

where the supremum is taken over all partitions D and D of the intervals [s, t] resp. [u, v]. If Vo (£, 10, 11%) < oo we
say that f has finite (2D) p-variation.

(f [s, ] x [u, v] sup Z

DCls,t] LeD
Dclu, Vi eh

The main result in this context (see e.g. [7], Theorem 15.33, [8]) now asserts that if there exists p < 2 such
that V,(Ry, [0, 113) < oo then X lifts to an enhanced Gaussian process X with sample paths in the p-variation
rough path space C%P™ ([0, 1], GI7! (RY)), any p € (2p,4). (This and other notations are introduced in Section 2.)
This lift is “natural” in the sense that for a large class of smooth approximations X® of X (say piecewise linear,
mollifier, Karhunen—Loeve) the corresponding iterated integrals of X ®) converge (in probability) to X with respect
to the p-variation rough path metric. (We recall from [7] that p,-v,r, the so-called inhomogeneous p-variation metric
for GV (R?)-valued paths, is called p-variation rough path metric when [p] = N; the It-Lyons map enjoys local
Lipschitz regularity in this p-variation rough path metric.) Moreover, this condition is sharp; indeed fBM falls into
this framework with p = 1/(2H) and we known that piecewise-linear approximations to Lévy’s area diverge when
H=1/4.

Our main result (cf. Theorem 5), when applied to (mesh-size 1/k) piecewise linear approximations X® of X,
reads as follows.

Theorem 1. Ler X = (X!,..., Xd) 10,11 —> R? be a centred Gaussian process on a probability space (2, F, P)
with continuous sample paths where X' and X/ are independent for i # j. Assume that the covariance Ry has finite
p-variation for p € [1,2) and K > V,(Rx, [0, 112). Then there is an enhanced Gaussian process X with sample paths
a.s. in COP7 ([0, 11, GIPY(R?)) for any p € 2p, 4) and

| pp-var (Stp1 (X0), X) |, — 0

for k — oo and every r > 1 (|-|rr denotes just the usual L (P)-norm for real valued random variables here). More-
over, for any y > p such that % + % > 1 and any q > 2y and N € N there is a constant C = C(q, p, Y, K, N) such
that

|£gmvar(Sw (XP), Sy X0)|,, < €V sup [xP — x| 1577

0<r<1

holds for every k € N.

As an immediate consequence we obtain (essentially) sharp a.s. convergence rates for Wong—Zakai approximations
and the simplified step-3 Euler scheme.

Corollary 1. Consider a RDE with C®°-bounded vector fields driven by a Gaussian Hélder rough path X. Then
mesh-size 1/ k Wong—Zakai approximations (i.e. solutions of ODEs driven by X®) converge uniformly with a.s. rate
k=1/p=1/2=8) "any & > 0, to the RDE solution. The same rate is valid for the simplified (and implementable) step-3
Euler scheme.

Proof. See Corollary 8 and Corollary 9. (|

Several remarks are in order.
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e Rough path analysis usually dictates that N = 2 (resp. N = 3) levels need to be considered when p € [1, 3/2) resp.
p € [3/2,2). Interestingly, the situation for the Wong—Zakai error is quite different here — referring to Theorem 1,
when p = 1 we can and will take y arbitrarily large in order to obtain the optimal convergence rate. Since Og-var is
a rough path metric only in the case N = [¢g] > [2y], we see that we need to consider all levels N which is what
Theorem 1 allows us to do. On the other hand, as p approaches 2, there is not so much room left for taking y > p.
Even so, we can always find y with [y] =2 such that 1/y + 1/p > 1. Picking ¢ > 2y small enough shows that we
need N = [g] =4.

e The assumption of C°°-bounded vector fields in the corollary was for simplicity only. In the proof we employ
local Lipschitz continuity of the Ito—Lyons map for g-variation rough paths (involving N = [¢] levels). As is well-
known, this requires Lip?*+¢-regularity of the vector fields.® Curiously again, we need C*°-bounded vector fields
when p = 1 but only Lip**¢ as p approaches the critical value 2.

e Brownian motion falls in this framework with p = 1. While the a.s. (Wong—Zakai) rate k~(1/27) is part of the
folklore of the subject (e.g. [9]) the C*°-boundedness assumption appears unnecessarily strong. Our explanation
here is that our rates are universal (i.e. valid away from one universal null-set, not dependent on starting points,
coefficients etc). In particular, the (Wong—Zakai) rates are valid on the level of stochastic flows of diffeomorphisms;
we previously discussed these issues in the Brownian context in [5].

e A surprising aspect appears in the proof of Theorem 1. The strategy is to give sharp estimates for the levels n =
1,...,4 first, then performing an induction similar to the one used in Lyon’s extension theorem [14] for the higher
levels. This is in contrast to the usual considerations of level 1 to 3 only (without level 4!) which is typical for
Gaussian rough paths. (Recall that we deal with Gaussian processes which have sample paths of finite p-variation,
p € (2p,4), hence [p] < 3 which indicates that we would need to control the first 3 levels only before using the
extension theorem.)

e Although Theorem 1 was stated here for (step-size 1/k) piecewise linear approximations {X ¥}, the estimate holds
in great generality for (Gaussian) approximations whose covariance satisfies a uniform p-variation bound. The
statements of Theorem 5 and Theorem 6 reflect this generality.

e Wong—Zakai rates for the Brownian rough path (level 2) were first discussed in [12]. They prove that Wong—Zakai
approximations converge (in y-Holder metric) with rate k~(1/2=7=#) (in fact, a logarithmic sharpening thereof
without €) provided y € (1/3, 1/2). This restriction on y is serious (for they fully rely on “level 2” rough path the-
ory); in particular, the best “uniform” Wong—Zakai convergence rate implied is k~(1/271/378) = =(1/6=¢) Jeaying
a significant gap to the well-known Brownian a.s. Wong—Zakai rate.

e Wong—Zakai (and Milstein) rates for the fractional Brownian rough path (level 2 only, Hurst parameter H > 1/3)
were first discussed in [4]. They prove that Wong—Zakai approximations converge (in y-Holder metric) with rate
k=H=Y=# (again, in fact, a logarithmic sharpening thereof without &) provided y € (1/3, H). Again, the restriction
on y is serious and the best “uniform” Wong—Zakai convergence rate — and the resulting rate for the Milstein scheme
—is k~(H=1/3=) This should be compared to the rate k~>#~1/2=8) obtained from our corollary. In fact, this rate
was conjectured in [4] and is sharp as may be seen from a precise result concerning Levy’s stochastic area for fBM,
see [16].

The remainder of the article is structured as follows: In Section 2, we repeat the basic notions of (Gaussian) rough
paths theory. Section 3 recalls the connection between the shuffle algebra and iterated integrals. In particular, we
will use the shuffle structure to see that in order to show the desired estimates, we can concentrate on some iterated
integrals which somehow generate all the others. Our main tool for showing L? estimates on the lower levels is
multidimensional Young integration which we present in Section 4. The main work, namely showing the desired L?-
estimates for the difference of high-order iterated integrals, is done in Section 5. After some preliminary lemmas in
Section 5.1, we show the estimates for the lower levels, namely for n = 1, 2, 3, 4 in Section 5.2 , then give an induction
argument in Section 5.3 for the higher levels n > 4. Section 6 contains our main result, namely sharp a.s. convergence
rates for a class of Wong—Zakai approximations, including piecewise-linear and mollifier approximations. We further
show in Section 6.3 how to use these results in order to obtain sharp convergence rates for the simplified Euler scheme.

6_..in the sense of E. Stein; cf. [7,15] for instance.
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2. Notations and basic definitions

For N € N we define
N
YRY) =RoR'® R @R) @ & (R)®" = PR
n=0

and write 7, : TV (R?) — (R?)®" for the projection on the nth Tensor level. It is clear that TV (R?) is a (finite-
dimensional) vector space. For elements g, & € TV (R?), we define g®he TV (R9) by

Ta(@@h) =) i(g) ®mi(h).
i=0

One can easily check that ( TN (Rd ), +, ®) is an associative algebra with unit element 1 = exp(0) = 1+04+0+---+0.
We call it the truncated tensor algebra of level N. A norm is defined by

1gl7n Ry = ,max |7 (9)]

,,,,,

which turns TV (R?) into a Banach space.
For s < t, we define

A;”t:{(ul,...,u,,)e[s,t]";ul <~--<un}

which is the n-simplex on the square [s, #]". We will use A = A% | for the 2-simplex over [0, 112 . A continuous

map x: A — TN (Rd) is called multiplicative functional if for all s <u <t one has X;; = X;,, ® X,,;. For a path
x = (xl, oo, x?):00, 11 > RY and s < ¢, we will use the notation X5t = X; — Xg. If x has finite variation, we define
its nth iterated integral by

x;{tzf dx®-- ® dx

= Z dxl.. ~dxi"ei1 ®---RQej, € (Rd)gm,

n
1<ip,in=d ¥ A5t

where {ey, ..., eq} denotes the Euclidean basis in R? and (s, ¢) € A. The canonical lift Sy (x): A — TN (RY) is
defined by

X!, ifnefl,..., N},

JTn(SN(X)x,t)Z { 1 ifn=0.

It is well know (as a consequence of Chen’s theorem) that Sy (x) is a multiplicative functional. Actually, one can show
that Sy (x) takes values in the smaller set GV (R?) c TV (R?) defined by

GY(RY) = {Sn(x)o,1: x € C'7" ([0, 1], RY)}

which is still a group with ®. If x,y: A — TV (R?) are multiplicative functionals and p > 1 we set

pp-var(xvY) = maX sup <Z| filigl yfz li+1 |P/”>

""" N (1)€l0,1]

This generalizes the p-variation distance induced by the usual p-variation semi-norm

1/p
|x|p-var;[s,t]=( sup Z|xt1+1 X | >

(#)Cls, ]
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for paths x : [0, 1] — R?. The Lie group GV (R?) admits a natural norm ||, called the Carnot-Caratheodory norm
(cf. [7], Chapter 7). If x: A — GN(Rd), we set

1/p
||x||p-w;[s,t]=( sup an,,.,z,-ﬂnf’) .

(#)Cls,t] i

Definition 2. The space CS""V‘”([O, 11, GY (RY)) is defined as the set of continuous paths X: A — GN(Rd)for which
there exists a sequence of smooth paths xi :[0, 1] — R4 such that Pp-var(X, Sy (xr)) = 0 for k — oc0. If N =[p] =
max{n € N: n < p} we call this the space of (geometric) p-rough paths.

It is clear by definition that every p-rough path is also a multiplicative functional. By Lyon’s First Theorem (or
Extension Theorem, see [14], Theorem 2.2.1 or [7], Theorem 9.5) every p-rough path x has a unique lift to a path in
GN R?) for N > [p]. We denote this lift by Sy (x) and call it the Lyons lift. For a p-rough path x, we will also use
the notation

X!, = (S (%)5.1)

for N > n. Note that this is consistent with our former definition in the case where x had finite variation. We will
always use small letters for paths x and capital letters for stochastic processes X. The same notation introduced here
will also be used for stochastic processes.

Definition 3. A function w: A — R* is called a (1D) control if it is continuous and superadditive, i.e. if for all
s <u <t one has

o(s,u) +ou,t) <o(s,?).
If x: [0, 1] — R is a continuous path with finite p-variation, one can show that

(5,0) = Vp(x, [s,11)" = ¥ 1P
is continuous and superadditive, hence defines a 1 D-control function. Unfortunately, this is not the case for higher
dimensions. Recall Definition 1. If f: [0, 1]2 — R has finite p-variation,

(s,0), (u,v) > Vp(f, [s. 1] x [u, v])”

in general fails to be superadditive (cf. [8]). Therefore, we will need a second definition. If A = [s,¢] x [u, v] is a
rectangle in [0, 1]?, we will use the notation f(A) := f (; fj ) We call two rectangles essentially disjoint if their
intersection is empty or degenerate. A partition /7 of a rectangle R C [0, 1]? is a finite set of essentially disjoint
rectangles whose union is R. The family of all such partitions is denoted by P(R).

Definition 4. A function w: A x A — R7T is called a (2D) control if it is continuous, zero on degenerate rectangles
and super-additive in the sense that for all rectangles R C [0, 112,

Y o(R) <o(R)
i=1

whenever {R; :i =1, ...,n} € P(R). w is called symmetric if w([s, t] X [u, v]) = w([u, v] X [s, t]) holds for all s <t
andu < v.If f:[0, 11> = B is a continuous function, we say that its p-variation is controlled by w if | f (R)|” < w(R)
holds for all rectangles R C [0, 1]%.

It is easy to see that if w is a 2D control, (s, t) — w([s, t1%) defines a 1 D-control.
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Definition 5. For f:[0,1]> = R, R C [0, 11 a rectangle and p > 1 we define

1/p
|| pvars = sup (Zl.f(A)V’) :

TeP(R) \pcp

1S povarjo,12 < 00 we say that [ has finite controlled p-variation.

The difference of 2D p-variation introduced in Definition 1 and controlled p-variation is that in the former, one
only takes the supremum over grid-like partitions whereas in the latter, one takes the supremum over all partitions
of the rectangle. By superadditivity, the existence of a control w which controls the p-variation of f implies that
S has finite controlled p-variation and | f|p-yar;r < w(R)YP . In this case, we can always assume w.l.o.g. that w is
symmetric, otherwise we just substitute w by its symmetrization wsyr, given by

wsym (s, 1] % [u, v]) = o([s, 1] x [u, v]) + o([u, v] x [s,1]).
The connection between finite variation and finite controlled p-variation is summarized in the following theorem.

Theorem 2. Let f:[0, 11? = R be continuous and R C [0, 1]2 be a rectangle.
(1) We have

Vl(f» R) = |f|1-var;R'

(2) Forany p > 1 and € > 0 there is a constant C = C(p, €) such that

1
E|f|(p+s)—var;R =< Vp-var(f’ R) < |f|p-var;R~
(3) If f has finite controlled p-variation, then

p
R |f|p—var;R

is a 2D-control. In particular, there exists a 2D-control w such that for all rectangles R C [0, 11> we have
| f(R)|P <w(R), i.e. w controls the p-variation of f.

Proof. [8], Theorem 1. O

In the following, unless mentioned otherwise, X will always be a Gaussian process as in Theorem 1 and X denotes
the natural Gaussian rough path. We will need the following Proposition:

Proposition 1. Let X be as in Theorem 1 and assume that o controls the p-variation of the covariance of X, p € [1,2).
Then for every n € N there is a constant C (n) = C(n, p) such that
X¢

2 < cono(ls, 1)

foranys <t.

Proof. For n = 1,2,3 this is proven in [7], Proposition 15.28. For n > 4 and fixed s < t, we set X, =

WXHW—S)- Then |R)~(|£_V ar[0.1] = 1 =: K and by the standard (deterministic) estimates for the Lyons
lift,

ﬂ <c|$. X <, p)|IX|
a)([s,t]2)1/(2/0) =C1|®n p-var;[0,1] = €2 » P p-var;[0,1]
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for any p € (2p,4). Now we take the L?-norm on both sides. From [7], Theorem 15.33, we know that
|||X|| p-var;[0,11 2 is bounded by a constant only depending on p, o and K which shows the claim.

Alternatively (and more in the spirit of the forthcoming arguments), one performs an induction similar (but easier)
as in the proof of Proposition 8. ]

3. Iterated integrals and the shuffle algebra

Letx=(x",...,x%):[0,1] > R%be a path of finite variation. Forming finite linear combinations of iterated integrals
of the form

dxit-..dx™, iy,....ipe{l,....,d},neN
A"
0,1

defines a vector space over R. In this section, we will see that this vector space is also an algebra where the product is
given simply by taking the usual multiplication. Moreover, we will describe precisely how the product of two iterated
integrals looks like.

3.1. The shuffle algebra

Let A be a set which we will call from now on the alphabet. In the following, we will only consider the finite alphabet
A={a,b,..}={a,a2,...,a4} ={1,...,d}. We denote by A* the set of words composed by the letters of A, hence
w = a;ai, -+ dj,, a;; € A. The empty word is denoted by e. AT is the set of non-empty words. The length of the
word is denoted by |w| and |w|, denotes the number of occurrences of the letter a. We denote by R(A) the vector
space of noncommutative polynomials on A over R, hence every P € R(A) is a linear combination of words in A*
with coefficients in R. (P, w) denotes the coefficient in P of the word w. Hence every polynomial P can be written
as

P = Z (P, w)w
weA*

and the sum is finite since the (P, w) are non-zero only for a finite set of words w. We define the degree of P as
deg(P) = max{|wl; (P, w) #0}.

A polynomial is called homogeneous if all monomials have the same degree. We want to define a product on R(A).
Since a polynomial is determined by its coefficients on each word, we can define the product P Q of P and Q by

(PQ,w)= Y (P,u)(Q,v).

w=uv

Note that this definition coincides with the usual multiplication in a (noncommutative) polynomial ring. We call this
product the concatenation product and the algebra R(A) endowed with this product the concatenation algebra.

There is another product on R(A) which will be of special interest for us. We need some notation first. Given a word
w = a;,aj, - - - a;, and a subsequence U = (ji, jo, ..., ji) of (i1,..., i), we denote by w(U) the word a;,aj, ---aj,
and we call w(U) a subword of w. If w, u, v are words and if w has length n, we denote by (uw v) the number of
subsequences U of (1,...,n) such that w(U) =u and w(U¢) = v.

Definition 6. The (homogeneous) polynomial

=3 (", )

weA*

is called the shuffle product of u and v. By linearity we extend it to a product on R(A).
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In order to proof our main result, we want to use some sort of induction over the length of the words. Therefore,
the following definition will be useful.

Definition 7. If U is a set of words of the same length, we call a subset {w1, ..., wx} of U a generating set for U if
for every word w € U there is a polynomial R and real numbers A1, ..., Ag such that
k
w= Z )‘j w; + R,
j=1

where R is of the form R =", ,ca+ Mu,vlt * v for real numbers i, .

u,ve
Definition 8. We say that a word w is composed by a;”, e, a;d ifwelar,...,aq}" and |wl,, =n; fori=1,...,d,
hence every letter appears in the word with the given multiplicity.

The aim now is to find a (possibly small) generating set for the set of all words composed by some given letters.
The next definition introduces a special class of words which will be important for us.

Definition 9. Let A be totally ordered and put on A* the alphabetical order. If w is a word such that whenever w = uv
foru,ve AT one has u < v, then w is called a Lyndon word.

Proposition 2.

(1) For the set {words composed by a, a, b} a generating set is given by {aab}.

(2) For the set {words composed by a, a, a, b} a generating set is given by {aaab}.

(3) For the set {words composed by a, a, b, b} a generating set is given by {aabb}.

(4) For the set {words composed by a, a, b, c} a generating set is given by {aabc, aacb, baac}.

Proof. Consider the alphabet A = {a, b, c}. We choose the order a < b < c. A general theorem states that every word

w has a unique decreasing factorization into Lyndon words, i.e. w = li‘ . ~l,’;" where [] > --- > [ are Lyndon words
and iq,...,ix > 1 (see [17], Theorem 5.1 and Corollary 4.7), and the formula

l}k”*m*lzl"zw—i-Zauu

u<w

1
i1

ll_...' |

ir!

holds, where «,, are some natural integers (see again [17], Theorem 6.1). By repeatedly applying this formula for
the words in the sum on the right hand side, it follows that a generating set for each of the sets in (1) to (4) is
given exactly by the Lyndon words composed by these letters. One can easily show that indeed aab, aaab and aabb
are the only Lyndon words composed by the corresponding letters. The Lyndon words composed by a, a, b, c are
{aabc, abac, aacb} which therefore is a generating set for {words composed by a, a, b, c¢}. From the shuffle identity

abac = baac + aabc + aachb — b x aac

it follows that also {aabc, aach, baac} generates this set. O
3.2. The connection to iterated integrals

Letx = (xl,...,xd) [0, 1] = R9 be a path of finite variation and fix s < ¢ € [0, 1]. Foraword w = (a;, - - - a;,) € A*,
A=/{l1,...,d} we define
o {fA?J dxit...dxi», ifweAT,
1, ifw=e.

Let (R(A), +, *) be the shuffle algebra over the alphabet A. We define a map @ : R(A) — R by & (w) =x{’, and
extend it linearly to polynomials P € R(A). The key observation is the following:
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Theorem 3. @ is an algebra homomorphism from the shuffle algebra (R(A), 4, %) to (R, +, -).
Proof. [17], Corollary 3.5. O

The next proposition shows that we can restrict ourselves in showing the desired estimates only for the iterated
integrals which generate the others.

Proposition 3. Ler (X,Y) = (X", Y', ..., X9, Y9) be a Gaussian process on [0, 1] with paths of finite variation. Let
A ={l1,...,d} be the alphabet, let U be a set of words of length n and V = {wy, ..., w} be a generating set for U.
Let w be a control, p,y > 1 constants and s <t € [0, 1]. Assume that there are constants C = C(|w|) such that

X2, 2 = C(lwh)a(s, )V and Y

s,t’LZ = C(|w|)a)(s, t)|w|/(2,0)

s t|L2
holds for every word w € A* with |lw| < n — 1. Assume also that for some ¢ > 0

‘X;lft _ Y.l;jt}lﬂ < C(|w|)8a)(s, t)l/(ZV)w(& t)(lwl—l)/(Zp)

holds for every word w with |lw| <n — 1 and w € V . Then there is a constant C which depends on the constants C,
on n and on d such that

XY, =YY, |,2 < Cew(s, 1)/ (s, 1)1/
holds for every w € U.

Remark 1. We could account for the factor w(s,t)"/®") in & here but the present form is how we shall use this
proposition later on.

Proof. Consider a copy A of A. If a € A, we denote by a the corresponding letter in A. If w = a;, ---a;, € A¥,

we define w = a;, ---a;, € A* and in the same way we define P € R(A) for P € R(A). Now we consider R(AUA)
equipped with the usual shuffle product. Define ¥ : R(AUA) — R by

¥ (w) = / dzbin ... azbm
An

for a word w =b;, - - - b;, where

Zbi _ X%, forbj=aj,
Y“I fOI'ij&j

and extend this definition linearly. By Theorem 3, we know that ¥ is an algebra homomorphism. Take w € U. By
assumption, we know that there is a vector A = (A1, ..., Ag) such that

k
U :ij(wj —u_)j)—i—R—I?,
—r

where R is of the form R = Zu,veAUuH\vl:n My vu * v with real numbers w,, ,,. Applying ¥ and taking the L? norm
yields

=~

XY =YY, < Z)\||x ~Y, |+ | (R =B,

<crea(s, )/ (s, )"V 4 |w (R - R)|,,.
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Now,

R—R=> puoxv—iix0) =Yyt —it) % v+ it % (v = D).
u,v u,v

Applying ¥ and taking the L? norm gives then

‘l[/(R - é)‘LZ = Z |Mu,v|’(X?,t - Y?,I)X§,1|L2 + |M“’v”Y?J(X})’t N Yg’t)’Lz
u,v
< ZCZ(|X?»’ - Y?,1|L2|X§,I|L2 + |Y?,t|L2|X5,t - Y;},t|L2)
u,v

=3 ssw(s, Y@ ar(s, W=D/

u,v

< casw(s, ) /@ (s, 1)1/

where we used equivalence of L?-norms in the Wiener Chaos (cf. [7, Proposition 15.19 and Theorem D.8]). Putting
all together shows the assertion. (|

4. Multidimensional Young-integration and grid-controls

Let f:[0, 17" — R be a continuous function. If s < t1,...,s, <t, and uy, ..., u, are elements in [0, 1], we make
the following recursive definition:

S1, 0 1 S
us u us
S . =f| . |-f| . and
Un Un Up
S1, 4 S1, 4 S1, 4
Sk—1, tk—1 Sk—15 k=1 Sk—1, k-1
f ko Ik =f Iy —f Sk
Uk+1 Uk+1 Uk+1
Uy Up Up

We will also use the simpler notation

S1, 11
fR)=f

Sns In

for the rectangle R = [s1,f1] X - -+ X [s,, 1] C [0, 1]"*. Note that for n = 2 this is consistent with our initial definition

of f (‘Y' ol ) If £, g:[0, 1]" — R are continuous functions, the n-dimensional Young-integral is defined by

§2,12
1l
li li
_ : 1 .
/ FGet ) dg(xn, . x) i=  lim doofh e
[s1,21]1% X [$p, 0] lDllw,anl_}O([')cD n n
i) L2ty 1

(t7 )CDy
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if this limit exists. Take p > 1. The n-dimensional p-variation of f is defined by

1/p
1 1 p
Lt
Vo(filsiti]x o x sty = sup > |f|
DiC[s1,11] (Tl )b no.n
i) <P Li Byt
Dy Clsn,tn] .
(t} )CDn

and if V,(f,[0,1]") < oo we say that f has finite (n-dimensional) p-variation. The fundamental theorem is the
following:

Theorem 4. Assume that f has finite p-variation and g finite q-variation where % + 5 > 1. Then the joint Young-
integral below exists and there is a constant C = C(p, q) such that

S1, U1

/ f : dg(ui, ..., un)
[s1,t1]% X [sn, 1]

Sn, Un

<CVu(filsi,t1] X -+ X [sn, ta]) Vg (g, [s1, 111 X -+ X [, 1n]).

Proof. [18], Theorem 1.2(c). |

We will mainly consider the case n = 2, but we will also need n = 3 and 4 later on. In particular, the discussion of
level n = 4 will require us to work with 4D grid control functions which we now introduce. With no extra complication
we make the following general definition.

Definition 10 (n-dimensional grid control). A map &: A x --- x A — RY is called a n-D grid-control if it is con-
_/_J

n-times
tinuous and partially super-additive, i.e. for all (s1,t1), ..., (Sy,ty) € A and s; < u; <t; we have

@([s1, 1] X -+ x [si,ui] X -+ X [sn, 1a]) + @([s1, 1] X -+ X [ug, 5] X -+ X [, 1])

<@([s1, 1] % -+ X [si, 1] X -+ X [, 1n])
foreveryi=1,...,n.ois called symmetric if
([s1, 1] % -+ X [sn, ta]) = @([50.(1) to ()] X+ X [So(n)s Tom)])
holds for every o € §,,.

The point of this definition is that | f (A)|? < @(A) for every rectangle A C [0, 1]" implies that V,,(f, R)? < ®(R)
for every rectangle R C [0, 1]". Note that a 2D control in the sense of Definition 4 is automatically a 2D grid-control.
The following immediate properties will be used in Section 5.2.3 with m =n = 2.

Lemma 1.

(1) The restriction of a (m + n)-dimensional grid-control to m arguments is a m-dimensional grid-control.
(2) The product of a m- and a n-dimensional grid-control is a (m + n)-dimensional grid-control.
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4.1. Iterated 2D-integrals

In the 1-dimensional case, the classical Young-theory allows to define iterated integrals of functions with finite p-
variation where p < 2. There, the superadditivity of (s, ) — |~|Z —var:[s.1] played an essential role. We will see that
Theorem 2 can be used to define and estimate iterated 2 D-integrals. This will play an important role in Section 5
when we estimate the L?-norm of iterated integrals of Gaussian processes.

Lemma 2. Let f, g:[0,1]*> — R be continuous where f has finite p-variation and g finite controlled q-variation
with p~' 4+ ¢~ > 1. Let (s, 1) € A and assume that f(s,-) = f(-,s) =0. Define & :[s,1]*> — R by

D (u, v) =/ fdg.
[s,ulx[s,v]

Then there is a constant C = C(p, q) such that
Vq-var(¢; [s, t]z) <C(p, Q)Vp-var(f; [s, t]2)|g|q—var;[s,t]2-

Proof. Let#; <4 and 7j <17j11. Then,

¢(£i»€i+l>:/ fdg.
ljstj+1 [t I} (2.0 41]

Now let #; <u < ;41 and 7; < v < 7j41. Then one has
f <gz:)) = f(u,v) = f(ti,v) = fu, 1)) + f @, 1)).
Therefore,
(i)

<

+ V  F(,v)dg(u, v)
[tistip 11X 2,411

+ ‘/ . f@,1)dg(u,v)
[t ti11%[Ej 1411

ti,u
/ o f(;’ v) dg(u,v)
(i, tip 1 1x12j, 05411 7>

/ o f(u,tj)dg(u,v)
[t ti 11X 12,1411

For the first integral we use Young 2 D-estimates to see that

ti,u
Lo s
[t ti1 1%, 411 7

<ca(p. Vo (fi Ui, tiga] x (7, 5411) Vo (8. [t tig1] X [F, Tj41])

+

2
= (pv q)V[?(fv [S, t] )|g|q-var;[ti,l,-+1 ]X[fj,fj+1]‘

For the second, one has by a Young 1 D-estimate

‘f [, v)dg(u, v)
i ti1 1%, 411

B ‘/[ o v)d(gtis1,v) — 811, v))
Ljstj+1

=c2 sup |f(u’ ')|p-var;[s,t]|g|(1‘Vﬂri[li,l‘i+1]x[f~j»l~j+1]'
u€ls,t]

Similarly,

V  f i) dge )
[fi tip11%[2j. 15411

=2 sup |f(9 U)|p_var;[s’t]Iglq-var;[t,-,t,-+1]><[t~j,t~j+1]'
veE(s,t]
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‘f(tl,tj)}‘ (tlﬂtl+l>

Finally,

‘/ [ 1))dg(u, v)| =
[#, lt+l []7tj+l]

Putting all together, we get

q
‘j (fi,ti+1 )'
Listj+1

scz(vp(f,[s,t] )+ sup | f@ )|, sy T sup |f( O saresng T 1 oo m)

uels,t]

= |f|oo;[s,t]|g|q-var;[t,-,t,-+1]x[f,-,f,-+1]~

q
X ~ - .
|g|q -var; [[,,ti+1]><[tj,[j+1]

Take a partition D C [s, t] and u € [s, t]. Then

p
olf i) = fa ]’ =) f( o )’ <V,(fi1s,11%)"

4,1,
tieD tieD i+l
and hence
2
sup |f(u )|p var;[s,t] — =V (f’ [s.2] )
uels,t]

The same way one obtains

sup |f( v)|p -var; st]— p(f’[s’t]z)'

vels,t]

Finally, for u, v € [s, ¢],

|f(u,v)|='f<§:Z)

and therefore | f|oo; (5,01 < Vp(f, [s, t]?). Putting everything together, we end up with

q
o (i)
i tj+1

Hence for every partition D, D C [s,t] one gets, using superadditivity of | g|3_m,,

q
ti, ti1 2\q § q
§ @ <~. z. > ‘ = C4Vp(f’ [S, t] ) |g|q -var;[ti,tiy11x [t ,l‘~_,‘+1]

< Vp(f. Is.11%)

<caVp(f.ls, 11%) 1817

q-var;[ti,tip11x[1,Fj41]°

~ Ljslj+1 .
tieD,tjeD t,'GD,tjED
q
<caVy(f.ls, 117)? 181y var 5.2
Passing to the supremum over all partitions shows the assertion. |

This lemma allows us to define iterated 2 D-integrals. Let f, g1, ..., g, :[0, 11> - R. An iterated 2 D-integral is
givenby [ fdgi= f[s xis'.) S s v)dgi(u, v) for n =1 and recursively defined by
5.t st s Sy

/ fdgi---dgn :=/ </ fdg1-~-dgn1)dgn(u,v)
Af  x A" o [s,t]1x[s’,t'] A?,;legfvl

forn > 2.
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Proposition 4. Let f, g1, 8>, ... :[0, 11> - Rand p,q1, g2, . .. be real numbers such that p~! +ql_1 > 1 and qi_l +
qi:_ll > 1 for every i > 1. Assume that f has finite p-variation and g; has finite g;-variation for i = 1,2, ... and that
for (s, t) € A we have f(s,-) = f(-,s) =0. Then for every n € N there is a constant C = C(p, q1, - . ., qn) such that

/A L 98 den| = OV (£l 1) Vi (g1 5. 117) - Ve (0[5 1T7):

Proof. Define & (u, v) = fA,! wan Jdgi--- dgn. We will show a stronger result; namely that for every n € N and
q), > qn there is a constant C =’C(p,'q1, .+ qn,q,) such that

Vg (@[5, 117) < CV, (£, [s, 117) Vi, (81, [5, 117) -+ Vi (8n, [, 117).

To do so, let g1, G2, . . . be a sequence of real numbers such that g; > ¢; and q% + q—l, > 1 forevery j =1,2,... where
J= J

we set go = p. We make an induction over n. For n = 1, we have ¢ > ¢ and % + t}% > 1, hence from Theorem 2 we
know that g; has finite controlled g;-variation and Lemma 2 gives us

Vi (@0 [5.11%) < 1V (f1 [s.11) 18115, 5.2 < 2V (f5 5. 117) Vi, (813 [ 117).

W.Lo.g, we may assume that ¢| > §; > ¢1, otherwise we choose ¢ smaller in the beginning. From Vg (@ W [s, 113 <
Vi, (45(1); [s, t]z) the assertion follows for n = 1. Now take n € N. Note that

@™ (u, v) =/ " Dyg,
[s,u]lx[s,v]

and clearly @D (s, .) = @~ (. 5) = 0. We can use Lemma 2 again to see that

Vi, (@, 15,11) < e3Vg, (V3 15, 1) Il

Gu-var;[s,t]?
<c4Vg, ((D("_l); [s, t]z) Van (g,,; [s, t]z).

Using our induction hypothesis shows the result for ¢,,. By choosing g, smaller in the beginning if necessary, we may
assume that ¢, > g, and the assertion follows. ([

5. The main estimates

In the following section, (X, Y) = (X Lyl . x4y d) will always denote a centred continuous Gaussian process
where (X', Y') and (X/, Y/) are independent for i # j. We will also assume that the p-variation of R(x y) is finite
for a p < 2 and controlled by a symmetric 2 D-control w (this in particular implies that the p-variation of Rx, Ry and
Rx_y is controlled by w, see [7], Section 15.3.2). Let y > p such that % + % > 1. The aim of this section is to show

that for every n € N there are constants C(n) such that’

, 1/(2 -1/

X, = Y2 | 2 mayen, < COea(ls, 1) 1@ (15, 112) "V for every s <1, (5.1)
where €2 = Voo (Rx—y, [s, 1*)!~P/7 (see Definition 11 below for the exact definition of V). Equivalently, we might
show (5.1) coordinate-wise, i.e. proving that the same estimate holds for [X* —Y"|, 2, for every word w formed by
the alphabet A = {1, ..., d}. In some special cases, i.e. if a word w has a very simple structure, we can do this directly

using multidimensional Young integration. This is done in Section 5.1. Section 5.2 shows (5.1) forn =1,2,3,4

TWe prefer to write it in this notation instead of writing w ([s, 12V @+0=1/2p) 1o empbhasize the different roles of the two terms. The first term
will play no particular role and just comes from interpolation whereas the second one will be crucial when doing the induction step from lower to
higher levels in Proposition 8.
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coordinate-wise, using the shuffle algebra structure for iterated integrals and multidimensional Young integration. In
Section 5.3, we show (5.1) coordinate-free for all n > 4, using an induction argument very similar to the one Lyon’s
used for proving the Extension Theorem (cf. [14]).

We start with giving a 2-dimensional analogue for the one-dimensional interpolation inequality.

Definition 11. If f:[0, 11> — B is a continuous function in a Banach space and (s, t) x (u, v) € A x A we set

Voo (f.Is, 2] x [u,v]) =  sup ]|f(A)!.

AC[s,t]x[u,v
Lemma 3. For y > p > 1 we have the interpolation inequality

Vyevar (2 15,81 % [, 1) < Vi (2 I, 21 X [t 01) ™7 Vs (£, I, 21 ¢ [, v1)P77
forall (s,1), (u,v) € A.

Proof. Exactly as 1D-interpolation, see [7], Proposition 5.5. (]
5.1. Some special cases

If Z:10, 1] — R is a process with smooth sample paths, we will use the notation
z" =/ dz..-dz
oAy,
fors <t.

Lemma 4. Let X :[0, 1] = R be a centred Gaussian process with continuous paths of finite variation and assume
that the p-variation of the covariance Ry is controlled by a 2D-control w. For fixed s < t, define
fu,v)=EX"X™).

S, xS, v

Then there is a constant C = C(p, n) such that
Vo (f. Is, 11%) < Coo(Is, 117)"".

Proof. Lett < titl, lTj < t~j+1. Then
listiv1 ) _ () (n) (n) (n)
/ (f/’a fj+l) = Bl X”")(XSJHI B ijj)).

We know that X = £ From the identity

n!

bn_anz(b_a)(anf] +an72b_’_“.+abn72+bn7])

we deduce that

n—1

L, tiq1 1 —1—k k —1-1 I

f(tf, : )= —= Y EXn Xi iy Koo)X ) K, )" T X))
jrlj+l nH= =,

We want to apply Wick’s formula now (cf. [13], Theorem 1.28). If Z, Ze {(Xs,ti0> Xsty» Xs»fj+1’ XS’;J,} we know that

|E(X4y.4, 2)|” < o([ti, ti41] x 5. 11),

|E(Xz,-,ti+1xfj,f_,+,)|p <o([ti, tis1] % [}, Tj3+1]).

|E22)|” < o(ls,117)
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and the same holds for X P Now take two partitions D, De [0, 1]. Then, by Wick’s formula and the estimates
above,

4 P
f (f“ fi+1 ) ‘ < Cl(,OJl)w([S,t]z)n_2 Z o([ti. tiv1] X [s, D)o (£}, 7j41] ¥ [, 1])

Z tj, lj41

tiED,ijD tiED,ijf)

+C2(/0Jl)w([s,l]z)n_1 Z o([ti, tig1] x [F, Tj11])

tieD,fjeﬁ
< C3a)([s, t]z)n. (Il

Lemma 5. Let (X,Y) be a centred Gaussian process in R* with continuous paths of finite variation. Assume that
the p-variation of Rx y) is controlled by a 2D-control w for p <2 and take y > p. Then for every n € N there is a
constant C = C(n) such that

1/(2 -1/
X" — YW, < Cmyeo(ls, 117) /P w(s, 7))
for any s <t where €> = Voo (Rx_y, [s, 11 =P/7.
Proof. By induction. For n = 1 we simply have from Lemma 3
Xso = Youljn = E[(Xys = Vo) Xt = Vo)) < Vymsar(Rx—y, [, 1)
s 2 s,t s,t s,t s,;t) ] = Vy-var\NX-Y L5,
< ™ Vpar(Rx—y. [s, 1) < 2o (ls,11%) 7.
For n € N we use the identity
1 _ —
X =V = = (XX = v vETY)
and hence
-1 -1 -1
|Xs(~i,lz) - Y§71)|L2 = Cl(|Xs,t - Ys,t|L2|X§~f’t )|L2 + |X§nt ' Ygl,ql )|L2|YS~’|L2)

< cyeor(ls, 112) /P wo([s, 112) "7V CP. .

Assume that (Z', Z?) is a centred, continuous Gaussian process in R? with smooth sample paths and that both
components are independent. Then (at least formally, cf. [6]),

1 2
1 2
/0 Zy, 42,

1 2
L= E[(/O Z., dzg) ] = E|:/[O . Zy,25.,d2* dzg} (5.2)

:/[0 HZE[Z&MZ(%’U]dE[Z,fZ,%]:/ Ry <8 :) dR 2, (5.3)

[0,112

where the integrals in the second row are 2D Young-integrals (to make this rigorous, one uses that the integrals are a.s.
limits of Riemann sums and that a.s. convergence implies convergence in L in the (inhomogeneous) Wiener chaos).
These kinds of computations together with our estimates for 2D Young-integrals will be heavily used from now on.

Lemma6. Let (X,Y)=(X Lyl . x4y d) be a centred Gaussian process with continuous paths of finite variation
where (X', Y)and (X!, Y7) are independent for i # j. Assume that the p-variation of Rx,y) is controlled by a 2D-
control w for p < 2. Let w be a word of the form w =iy - - -i,, where i1, ... i, € {1,...,d} are all distinct. Take y > p
such that % + % > 1. Then there is a constant C = C(p, y, n) such that

‘Xlgljt _ Y;ljt|L2 < C(H)SCU([S, t]z)l/(%/)w([s’ t]2)(n—1)/(2p)
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forany s < t where €2 = Voo (Rx_y, [s, 111 =P/7 .

Proof. By the triangle inequality,

X?,—Yi"z}LF’/ dxil---dxin—/ dy’ ... dy'
‘ ’ A, Ay,

<Z

From independence, Proposition 4 and Lemma 3

L2

/ dyit... dyi— d(X”‘ Yik) dXik+ ... dxin
AYy

L2

2

/ dYi ... dyi- d(Xik _ Yik)dXik+1 oo dXin
n L2

=/ dRyi; -+- dRyiy_; ARy _yi dRyigyy -+ ARy
AQ XA

<c1Vo(Ryi [, 117) - Vo (Ryiy s [s. 117V (Rygis _yic » [, 1)
X VP(RXik+1 , s, 1]2) s Vp(inn » [s, t]z)
<aVy (Rx_y, Is, 11P)eo(Is, 1) "7 < c1620([s, 117) 7 (15, 117) " V7.

The first inequality above is an immediate generalization of the calculations made in (5.2) and (5.3). Note that the
respective random terms are not only pairwise but mutually independent here since we are dealing with a Gaussian
process (X, Y). Interchanging the limits is allowed since convergence in probability implies convergence in L”, any
p > 0, in the Wiener chaos. |

5.2. Lower levels

52.1. n=1,2
Proposition 5. Ler (X,Y), w, p and y as in Lemma 6. Then there are constants C (1), C(2) which depend on p and
y such that

n n
Xy, —Y

holds for n = 1,2 and every (s, 1) € A where €2 = Voo (Rx—y, [s, 1)} =P/7

Proof. The coordinate-wise estimates are just special cases of Lemma 5 and Lemma 6. (|
522. n=3

Proposition 6. Let (X,Y), w, p and y as in Lemma 6. Then there is a constant C (3) which depends on p and y such
that

1/2 2/(2
X3, = Y3, |, < COa(ls, (1) w(is, 1)
holds for every (s, t) € A where €2 = Voo (Rx—y, [s, 111 =P/7 .

Proof. We have to show the estimate for X’/ — Y*-/:K where i, j, k € {1, ..., d}. From Proposition 3 and 2 it follows
that it is enough to show the estimate for X" — Y* where

w e [iii,ijk,iij: i, jk € {l,...,d) distinct}.
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The cases w = iii and w = ijk are special cases of Lemma 5 and Lemma 6. The rest of this section is devoted to
show the estimate for w = iij. (]

Lemma 7. Let (X,Y):[0,1] — R2 be a centred Gaussian process and consider
Sfu,v) = E((Xu - Yu)Xv)-

Assume that the p-variation of Rx y) is controlled by a 2D-control w where p > 1. Let s < t and consider a rectangle
[o,t]1 x [0/, 71 C [s,t]>. Let y > p. Then

p 1/2(1/p—1 1
V}/‘Vd?‘(f? [07 T] X [0/’ T ]) S SCU([S, t]2) / ( /p /y)a)([o—a T] X [0/9 T/]) /ya

where €2 = Voo (Rx_y, [s, 11)1=P/7 .

Proof. Letu <v and u’ < v’ € [s, t]. Then

‘E((Xu,v - Yu,v)Xu’,v’)

=< |Xu,v - u,U|L2|Xu/,U’|L2

1/2 1/2
< Voo(Rx—v, [, 1) > Vporar (Rex. v, 5, 117)
and hence

sup | E((Xuw = Yu) Xur )| < Voo (Rx—v, [s, 112) Vo (I, 117) /7.

u<v,u’ <v’
Now take a partition D of [0, 7] and a partition D of [¢’, /]. Then
Y
Z |E((Xtiqti+l - Yti»t1+1)Xt~j,t~j+l)|
t,’ED,ijD

= sup |E((Xu,v - Yu,v)Xu’,v’)

u<v,u’ <v’

rr Z iE((Xti’ti+l_Yti’ti+1)Xt~j,fj+1)|p
tiED,ijf)

1/2(y— 1/2(y/p—1
< Voo(RX—y, [S’t]z) /2(y p)Cl)([S,t]2) [2(r/p )a)([a,r] « [U/J/])
and taking the supremum over all partitions shows the result. O

Lemma 8. Let (X, Y):[0, 1] — R? be a centred Gaussian process with continuous paths of finite variation. Assume
that the p-variation of Rx y) is controlled by a 2D-control w where p > 1. Consider the function

g, v) = E[(XZ) - YE) (X2 - Y2)]-
Then for every y > p there is a constant C = C(p, y) such that
Vy—var(g» [s. t]2) < Csza)([s, t]2)1/y+1/ﬂ
holds for every (s, t) € A where €> = Voo (Rx—y, s, t]1) ' 7P/7.
Proof. Letu < v and u’ <v’. Then
() = ELOKE X2 — (Y2 ¥~ X2) ~ (42— )]

1
= ?E[((stv - st,u) - (Ysz,v - Ysz,u))((xiv’ - X?,u/) - (Ysz,v’ - szu’))]
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Now,

(Xf,u - Xgu) - (ng - szu) = Xu,v(Xs,u + Xs,v) - Yu,v(Ys,u + Ys,v)
= Xu,v(Xs,u - Yvu) + (Xu,v - u,v)Ys,u
+ Xu,v(Xs,v - s,v) + (Xu,v - u,v)Ys,v~

The same way one gets
(st,v/ - X.sz',u/) - (Ysz,v/ - Ysz,u/) = Xy v (Xsw — Ysu) + X v — Y ) Ysur
+ Xu’,v’(Xs,v’ - Ys,v’) + (Xu’,v’ - Yu’,v’)Ys,v’-

Now we expand the product of both sums and take expectation. For the first term we obtain, using the Wick formula
and Lemma 7,

|E(Xuw X = Ysu) Xur o K — Yeu))|
< |EKuwXu ) E[(Xsu = Ysu) X — Ysu)]|
+ | E[Xuw Xsr = Yo u) JE[ Xt v X5 — Ys) ]|
+ E[Xur o X = Ysu) JE[Xuo Xsu = Ys.) ]|
< Vpvar(Rix.vy. [, 0] 5 [t 0']) Vyerar(Rx -y . [, 117)
+ 2Vyvar (Rox, x vy, [, v] X [5, 11) Vyevar(Rx x =1y, [, v'] x [s,1])
< &%o([u, v] x [, v']) (s, %)

+2820)([S, t]2)]/p71/ya)([u, v] x [s, t])l/ya)([u’, V'] x [, t])l/y.
Now take two partitions D, D of [s, t]. With our calculations above,

Do EXn KXo = Yo Xi 5 (X5 = Y )|

tl‘ED,ijD

<ce?o(ls. 1) Y ol il x [, 5a0)"”

tiED,ijD

+ee?o(ls. )7 3 (Ut tipal % [s. ) ([ 411 % [5. 1])

tieD,i;eD
<38 (w([s, t]z)a)([s, t]z)y/p + a)([s, t]Z)y/p_la)([s, t]z)z).
The other terms are treated exactly the same way. Taking the supremum over all partitions shows the result. (]
The next corollary completes the proof of Proposition 6.
Corollary 2. Let (X,Y), w, p and y as in Lemma 6. Then there is a constant C = C(p, y) such that
|X§l[] _ Ylslzj ’L2 < ng([s’ t]z)l/(2y)w([s, t]2)2/(2p)

holds for every (s, t) € A and i # j where > = Voo (Rx_y, [s, 1)1 P/7 .
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Proof. From the triangle inequality,

i,i,] ll]
Xs,t - |L2 u

(Xt — de

‘/ Yo d(x/ —v7) |
[s.7] L?

For the first integral, we use independence to move the expectation inside the integral as seen in the proof of Lemma 6,
then we use 2D Young integration and Lemma 8 to obtain the desired estimate. The second integral is estimated in

[s.1]

the same way using Lemma 4. (]
523. n=4

Proposition 7. Let (X,Y), w, p and y as in Lemma 6. Then there is a constant C (4) which depends on p and y such
that

X4, =Y, | < C@ea(ls, 1) w(ls, 7)Y

holds for every (s, t) € A where €> = Voo (Rx_y, [s, t]1) ' 7P/7 .

Proof. From Propositions 3 and 2 one sees that it is enough to show the estimate for X" — Y* where
w e {iiii,ijkl,iijj, iiij, iijk, jiik: i, j, k,l€{l,...,d} distinct}.

The cases w =iiii and w = ijkl are special cases of Lemma 5 and Lemma 6. Hence it remains to show the estimate
for

eliijj.iiij,iijk, jiik: i, j,k €{1,...,d} pairwise distinct}.
This is the content of the remaining section. ]
Lemma9. Let (X,Y), w, p and y as in Lemma 6. Then there is a constant C = C(p, y) such that

|X: tl ik Yl i,j.k < ng([s’ t]2)1/(2)/)a)([s7 t]2)3/(2:0)

|12
holds for every (s,t) € A where i, j, k are distinct and g2 = Voo (Rx_v, [s, t]2)17p/”.

Proof. From the triangle inequality,

i,i,].k i,i,j,k
X J =Y

= ’ / X0l dX) dxk - / Yl dy] dyk
{s<u<v<t} {s<u<v<t}
<

<[ - v axdaxd
{s<u<v<t}

L2

+ ‘ / Y5 d(x7 —v7), dx}
L2 (s<u<v<t}

L2

+

[ viarept-v,)
{s<u<v<t} L2

For the first integral, we use Proposition 4 and Lemma 8§ to obtain

2

[ e vyaxdaxt| = [ B - Vi) - i) aRy Ry
S<u<v<t As X AL,

L2
]2)1/)/+1//0w([ 2)2//7'

< cleza)([s,t s, t]

For the other two integrals we also use Proposition 4 together with Lemma 4 to obtain the same estimate. (|
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Lemma 10. Ler (X, Y):[0, 11— R? be a centred Gaussian process with continuous paths of finite variation. Assume
that the p-variation of R(x y) is controlled by a 2D-control w where p > 1. Consider the function

gu.v) = E[(X{ — Y3 (X3 - Y)].
Then for every y > p there is a constant C = C(p, y) such that

Vyorar (g, [5, 117) < C&%0([s, 112) /727
holds for every (s, t) € A where €2 = Voo (Rx—y, [s, 1)1 =P/7).
Proof. Similar to the one of Lemma 8 applying again Wick’s formula. ]
Corollary 3. Let (X,Y), w, p and y as in Lemma 6. Then there is a constant C = C(p, y) such that

|X’ ii,J Y’ i, /|L2 - Csa)([s,t]z)l/(z”)w([s, 112)3/(2;7)

holds for every (s, t) € A and i # j where € = Voo (Rx—_y, [s, 1151 =P/7).

Proof. The triangle inequality gives

X§’7",’i’j—Y”’J|L2=‘/[ ]Xg’u’dxf f[]Yi:f;idYuj
s,t s,t

/ (Xi,il Ylll dXJ ‘/ letd Yj)u )
[s,] [5.1] L2

For the first integral, we move the expectation inside the integral, use 2D Young integration and Lemma 10 to conclude
the estimate. The second integral is estimated the same way applying Lemma 4. ]

=<

It remains to show the estimates for X" — Y™ where w € {iijj, jiik}. We need to be a bit careful here for the
following reason: It is clear that Xo i =Jon X’ dX;. One might expect that also X0 1’ = Jio.1; X J dX% holds, but
this is not true in general. Indeed, just take f (u) g(u) =u. Then

1 u 1 1
/f(ma(f g(v)dg(v)>=l/ ud(u2)=/ Pu= L
0 0 2 Jo 0 3

1
/ S (u)dg(u)dg(v) =/ duy duy duz = —
2, ; 6

AO,I

but

One the other hand, if g is smooth, we can use Fubini to see that

/ f () dg(u)dg(v) =/ Fw)g' w)g' (v)1y<pydudv
A%, [0,1]2
1
= E/ f(u)g/(u)g/(v)l{u<v}du dv
0,112

1
+ 5/ f(v)g/(v)gl(u)l{v«z} dudv
]2

1
5/ (f(u)l{u<v} + f(v)l{v<u})g/(u)g/(v) dudv
[0,172
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1
= Ffunv)g g (v)dudy
2 [0’1]2

1

= 5/ fuAv)d(gwg®)),
(0,112

where the last integral is a 2D Young integral. Hence we have seen that an iterated 1D-integral can be transformed
into a usual 2 D-integral. We will use this trick for the remaining estimates.

Lemma 11. Ler f:[0, 11> — R be a continuous function. Set
Flur,ug, v, v) = fuy Aug,vr Ava).
(1) Letuy <uy,up <itp,vy < 01,0y <0 beallin[0,1]. Then
uy, iy
| ur,u u,
f v?,ﬁlz =f<v
V2, V2

where we set

[, ii] = { [y, ] N [uz, uzl,  if [y, ur] N [uz, uz] # 2,
’ [0, 01, iflur, ur] N uz, u2] = 2,

[, 5] = { v, 011N w2, 021, i [vr, 011N [v2, V2] # 9,
’ [0, 0], if[vi, 011N [v2, V2] = @.

(2) Fors <t,o <tand p > 1 we have
V(£ [s, ] x [0, T1) = Vp(f, [s, 11> x [0, T1?).

Proof.

(1) By definition of the higher dimensional increments,

ui, g i i ui ui

= | u2, iz = w2 = u2 =| U2 = u2
- - - +

f " f v f o f o f o

1153 V2 V2 v2 v2

= f(uy ANz, v1 Av2) — fiig Auz, vy Avy)
— flur Nia, v1 Av2) + f(ug Aua, v Avg).

By a case distinction, one sees that this is equal to f (i, vi A v2) — f(u, vi A v2). One goes on with

uy, i uy, il uy, i uy, i uy, i
2| u2, i = u2, i 2| u2, i 2| u2, iz = u2, i
~ = ~ —_ - p— +
! V1, V1 ! V] ! V] ! V] ! V]
V2, U2 U2 () ) V2
=h(U] AVp) —h(U1 Av2) —h(v A V2) +h(v) Av2)
=h@) — h(v),

where h(-) = f(u,-) — f(u,-). Hence

S

)

h(ﬁ)—h(v)Zf(ft,ﬁ)—f(u,ﬁ)—f(ﬂ,v)+f(u,v)=f<3’

).
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Dl
‘ | | | ‘
1 1 1
S tl| ti\+1 ti\+2 t
DZ
| | | |
s (5 (o t
D
‘ | | | | | ‘
‘ T T T T T ‘
S RO TR THUR liva by t
Fig. 1. The union of 2 partitions
(2) Let D be a partition of [s, ] and Da partition of [o, t]. Then by 1,
tistiv1 \ P
NTA GRS TS DN LN | IOV o o)t
< |7 \j. 141 P E72ETRS T | ’ ’
tieD,teD tieD,teD i‘ ;
jolj+1

hence V,(f, [s,t] x [0,7]) < Vp(f, [s,1]? x [0, T]?). Now let Dy, D; be partitions of [s, ] and 131, l~)2 be par-
titions of [o, t]. Set D = D1 U D>, D= 51 U 52. Then D is a partition of [s, t] and Da partition of [o, ] (see

Fig. 1).
By (1),
1 41 p
i 4
tz%’tizer] tistiv1 \|” p
2 (laat = X )] = We(flsxie)
1} €Dy €Dy ;le’fg“ wepich 7
A ep 2P J2? "+l
tjleDl’tjzeDz

and we also get V,(f, [s,1]* x [0, T1?) < V, (. [s. 1] x [0, T]).
|

Lemma 12. Ler (X,Y):[0, 1] = R? be a centred Gaussian process with continuous paths of finite variation and
assume that w is a symmetric control which controls the p-variation of R(x yy where p > 1. Take (s,t1) € A, y > p
and set &2 = Voo (Rx—y, [s, t1)1=P/7.

(1) Set f(uy,uz, v, v2) = E[ Xy, Xy, X, Xu, 1. Then there is a constant C, = C1(p) and a symmetric 4D grid-control
w1 which controls the p-variation of f and

- 1 2
Vo (f.Is.11) < @1 (15,114 = Croo(ls. 117)7*.
(2) Set f(ul, Uz, vy, V3) = E[Xi’zL)”szi’z,),mvz]. Then there is a constant Cy = C,(p) such that

Vo (. Is, 11%) < Caoo(Is, 117) 7"
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(3) Set
g(ul , U2, V1, U2) = E[(XM1Xu2 - YM1 Yuz)(lexvz - le sz)]-

Then there is a constant C3 = C3(p, y) and a symmetric 4D grid-control @y which controls the y -variation of g
and

V, (g, Is,11%) < aa (s, 14" = C36%0(Is, 117) /77
&) Set

gur,uz, vy, v) = E[(X? - Y?) X? —y®@)

s,u|Au2( s,ulsz]'

Then there is a constant C4 = C4(p, y) such that
- 1/y+1
Vy (2.15.11%) < CaePoo(ls, 117) /77,
Proof.
(1) Letu; <uy, up < i, vy <01, V2 < V2. By the Wick-formula,
|E[XL¢1,121XM2,122XU1‘51XUZvﬁ2]|p
<3 MEX i, Xupis JELX vy, X vy 1| + 377 ENX oy iy Xy, 1 E DX i, X5,
+ 377 ElX oy iy Xy iy 1 ENX iy Xy 3,1
<3 o([ur, ii1] x [uz, @2])o([v1, 511 x [v2, B2])
+37 o(luy, i1 x [v1, 011)o([uz, d2] x [v2, 12])
+3° o ([ur, @] x [v2, B2))0([uz, 2] x [v1, B11)
=1 ([ur, 1] x [uz, d2] x [v1,01] X [v2, B2]).

It is easy to see that @; is a symmetric grid-control and that it fulfils the stated property.
(2) A direct consequence of Lemma 4 and Lemma 11.
(3) We have

Xulxuz - Yul Yuz = (Xul - Yul)Xug + Yul (Xuz - Yuz)o

Hence for u; < iy, up < iia, v1 < 01, V2 < U,

uy, iy
2| u2, i
vy, U1
v2, U2

=E[(X = V)uy ity Xuzsito X = Yoy 5, X, |

+ E[Yyy i, (X = Vuyiy (X = V) 5, X5, ]
+ E[(X = Vuy iy Xuz,ia Yor,i0 (X = Vg, ]
+ E[Yuy iy (X = Vg Yoy 50X = Vi |-
For the first term we have, using Lemma 7,
|E[(X = V)upity Xy X = Vo5 X ]|

< 3)/_1 |E[(X — Y)ul,ﬁlxuz,ﬁz]’y‘E[(X o Y)vl’alxvz’ﬁ2]’y
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+ 3 THE[(X = Vi, X = Vo, |7 ELX ., X 5,1
+ 3" ME[X = Vupiiy X )|” |E[X gy X = Vo 5]
<37 ¥ o(ls, (1) o(lur iin] x [ua, @2))o([vr, 911 % [v2, 52])
+37 ¥ oo (luy. ] x [v1, 1) (lu2, d2]  [v2, 521)7”
+37 e o (s, 117) " (T, itn] X [v2, 521)eo([ua, ia] X [v1, 1)
< 3:/7182}/@([&;]2)”/”71(a)([ul,ﬁl] x [uz, iz])o([v1, 011 x [v2, D2])
+ w([ur, 1] x [vr, 01])w([uz, d2] x [v2, 12])
+ w([ur, 1] x [v2, D2])w([uz, di2] x [v1, 011))
=:([u1, #1] x [uz, #2] X [v1, 011 x [v2, 2]).

@ is a symmetric grid-control and fulfils the stated property. The other terms are treated in the same way.
(4) Follows from Lemma 8 and Lemma 11.

Corollary 4. Let (X,Y), w, p and y as in Lemma 6. Then there is a constant C = C(p, v) such that
|X’ i,j,J Yi’fl’j’j |L2 < Csa)([s, t]z)l/(%/)w([s’ t]2)3/(2p)
holds for every (s,t) € A and i # j where 2= Voo(Rx—v, [s, t]2)1_p/V.

Proof. As seen before, we can use Fubini to obtain

X_ZY:ll’j’J Z/A le lul d}(;l dX;Z = 5/[\ ]2 XAIY’,lm/\uz d(XILXIiQ)
s,

5.t

and hence

iij.j ”J j ii J oy
Xs,t |L2 — ‘/ S ulAuz Ys,ul/\uz) d(XMIXuz) )
5,11 L

T3

'/[ Ylslu]/\uz d(X'£1X’£2 - Yujl YMJZ)
s t

L2
We use a Young 4 D-estimate and the estimates of Lemma 12 to see that

2

‘f lellu/\uz Y.ls‘lul/\uz)d(XﬁIX’{{Z)
[s,]2 L?

= [ EKE = ¥l ) (5 = ¥y )| X X, X
5clsza)([s,t]z)l/yw([s,t]2)3/p.
The second term is estimated in the same way using again Lemma 12. ([
Lemma 13. Ler f: [0, 11> > R and g0, 112 x [0, 112 — R be continuous where g is symmetric in the first and the

last two variables. Let (s, t) € A and assume that f(s,-) = f(-,s) = 0. Assume also that f has finite p-variation and
that the q-variation of g is controlled by a symmetric 4D grid-control & where % + ql > 1. Define

W(M,U)Z/ [y Auz,vp Ava)dg(ur, uz; vy, v2).
[s,u]? x[s,v]?
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Then there is a constant C = C(p, q) such that

V, (%[5, 117) < CV, (3 Is, (1) (Is, 114) V7.
Proof. Set
Fur,uz, v1,v0) = fuy Aug, vp A ).
Let u < v and ' < v'. Note that
Usop s, = Lsupxisw? = sl xisw? s up s

= 1([s,v]z\[s,ulz)><[s,v/]2 - 1([s,v]z\[s,ulz)><[s,u/]2
= L v \[s.u) x (15,0 P\ [5.0/2)-

If we take out the square [s, u]?> of the larger square [s, v]%, what is left is the union of three essentially disjoint
squares. More precisely,

[, vI2\ [s, u]? = [, v1* U ([s, u] x [u, v]) U ([u, v] x [s, u]).

The same holds for #’ and v’. Hence,

(s, P\ s, uP) x ([5 0] \ls.w'P)
= ([, v1* U (s, ul x [u, v1) U ([u, v] x [s, u))
s ([ PO ([T [ ) U (0] . ))
= (fu v x [ ') U ([, 0] x [s20'] x [/ 0']) U ([ o] ¢ [u o] x [5.0'])
) U (L5, ] x [, 0] x [5, '] x [, 0])

]

1> [s.u'])
]2

x|

[s,ul x [u,v] x [u', v

[s, u] x [u,v] x [u', v

U ([u, v] x [s, u] x [s,u’] X [u’, v’])

u,v] X [s,u] x |u',v|x|s,u
[ [s, u] ' '

U

U [
U ([, v] x [s,ul x [u', v
U [

and all these are unions of essentially disjoint sets. Using continuity and the symmetry of f and g we have then

u,v ~
W( ’ /) Z/ fdg
u,v (L5, 012\ [s,u]?) x (L5, 12\ [5,'1%)
-/ Fag+2 Fdg
[u,v]?x[u ,v']? [, v]2x[s,u'1x[u’ V']

+2/ fdg+4/ fdg.
[s,ulx[u,v]x [u’,v']2 [s,u]x[u,v]x[s,u’]x[u’,v']

For the first integral we use Young 4 D-estimates. Since f(s, )y =---= f(,-,-,5) =0, we can proceed as in the
proof of Lemma 2 and use Lemma 11 to see that

L
[u,v]?x[u’ ,v']?

<c1Vp(fils. 117) Vy(g, [u, v1* x [u, v’]z)

< V(£ ls. 1P (I v x [ v'T) 2.
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For the second integral, we have
/ fdg
[, v]2x[s,u'1x[u’ V']
=/ fuy Auz, vy Avp)dg(uy, uz; vy, v2)
[, V12 x[s,u']x[u/ V]
=/ [y Aug,v)d[g(ur, uzi v, v') — g(ur, uz; vi, u')].
[u,v])? x[s,u']
We now use a Young 3 D-estimate to see that

‘f fdg §C2Vp(f(’/\'7‘),[5,t]3)
[, 02 x [s,u' 1% [u’,v']

x Vg(g( i) = g(oi ) u ol x [s.0]).
As in Lemma 11, one can show that V,,(f(- A -, ), [s,t]*) = V,(f, [s, t]?). For g, we have
V(g (s vy =g (s mad!), T, w1 x [s,u]) < Vi (g, [, v1* x [s, '] x [u',v'])
< o (u, v1? x [s, 1] x [, v']) 9.
Hence

/ fdg‘ <V (f. s, t17) @ ([u, v1* x [s, 1] x [u, v/])l/q.
[, v12 x[s,u'1x[u,v]

Similarly, using Young 3D and 2D estimates, we get

/[s ulx[u,v]x [, v']? fdg =3 Vp(f’ s, t]z)d)([s, 11> [, v] [M/’ v/]z)l/q

and

fdgl| < C4Vp(f, [s,t]z)d)([s, t] x [u, v] x [s, 1] x [u’, v’])l/q.

/[;,a]x[u,v]x[s,u’]x[u’,v’]
Putting all together, using the symmetry of @ we have shown that

q
<esVp(f.Is, t]2)q&)([u, vl x [u',v'] x s, t]z).

Since @ ([u, v] x [u',v']) :=&([u, v] x [u’,v'] x [s,1]?) is a 2D grid-control this shows the claim.
We are now able to prove the remaining estimate.
Corollary 5. Let (X,Y), w, p and y as in Lemma 6. Then there is a constant C = C(p, y) such that
|X§;lk _ Yi,;',i,khz < Csw([s, t]2)l/(2y)a)([s, t]2)3/(2p)
holds for every (s,t) € A and i, j, k pairwise distinct where g2 = Voo (Rx—v, [s, t]2)1_"/7’.

Proof. From

. . . 1 . , .
Az X&],ul Xml41 Xml/tz = E‘/[‘ P X;v/,ul/\uz d(thlel,tz)
S, W

s,w
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we see that
Jiiik 1 ! J i i k
Xs t - Xs,u|/\u2 d(Xulxuz) de'
s [s,w]?
Hence

- -
2 2

t
/ W (w) dx¥
s

L? L?

lIll(w) :/ (Xg,ul/\uz - Ysj,ulAuz)d(XI{thIitz)’
[s,w]?

lI/Z(w):/ Ysj,ul/\uz d(XIl,{IXIl,tQ _YlilYJiz)’
[s,w]?

3 (w) = / Ys],ulAuz d(Yl,lt] Ybltz)’
[s.w]?

We start with the first integral. From independence and Young 2 D-estimates,

t 2
/lpl(w)dx’,; =/ E[w1(w) W1 (wy) | dE[ X}, X5 ]
s L? [s,2]?
<aVo(E[e1(OW O], [s, 117) Vo Ry s, 117).
Now,
E[W1(w)¥1(w2)]

= /[‘Y w12 x[s. w2 E[(ij»ul/\uz - YSj;Ml/\Mz)(XSj,levz - YSJ;vl/\vz)] dE[XliAlX'ithf)l Xi)z]'
S, w1 S, w2

ft w3 (w)d(X* —¥*)

L2

s

183

In Lemma 12 we have seen that the p-variation of E[X’ X’ X! X'] is controlled by a symmetric grid-control & . Hence

we can apply Lemma 13 to conclude that

V,(E[#1(0O%1 ()], Is, 112) < eaVy (Rx—y; [s, 11%) o (Is, 11%) /7

< c3e%o(ls. 112) " oo(1s. 112) 7"

Clearly, V,(Ry«[s, 11?) < @ ([s,¢]*)!/# and therefore

2
< c482a)([S, t]Z)I/Vw([s’ t]2)3/ﬂ'
L2

t
/ ¥ (w) dXx¥)

Now we come to the second integral. From independence,

2

t
/ W (w) dX¥)

=/ E[W(w) ¥ (wy) | dE[ X}, X5 ]
2 Jisap

< esVy (E[#20% 0], [s, t1) Vo (Ryls, t17).
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Now
E[W2(w1) ¥ (w2)]

= / E[Ys],ulAuz YA‘J,Ul/\Uz] dE[(Xlln Xll,tz - Ylil Y’/liZ)(X:JI XLZ - Yél Yéz)]
[s,w1 1> x[s,wa]?

Z:/ E[Yf{ulAuzys{v1sz]dg(”“’”2’vl’Uz)‘
[s, w1 1% x[s,w2]?

In Lemma 12 we have seen that the 4D y -variation of g is controlled by a symmetric 4D grid-control &, where
(1. 197 = cee?w(ls, 112) /7Y

Hence
V, (E[#2(0%0)], [s, 117) < 1V (Ry: [s, (1) @n (Is, 11%) 7 < ege?(ls, 117) 77 F7

This gives us

2
< 698260([5, t]z)l/yw([s, f]2)3/p'

t
f W (w) dx¥
N

L2

For the third integral we see again that

/l w3 (w)d(X* —Y*) (x* - Y")wz]

1

2
=/ E[ws(w)W3(wp) |dE[(XF - ¥F)
2 Jisap

<10V (E[ws()W ()], [s, 117) Vyy (Rx—y . [s. 117).

From

E[¥3(w)¥3(w))] = / E[Y{ i no Yo nun JAE[Y] YE YE Y]

[s, w112 x[s,w2]?

we see that we can apply Lemma 13 to obtain
Vo (E[03(-0%0)], Is, 112) < c11 Vo (Rys; [s, 1) oo (Is, 112) 7 < enoo(ls, 117)*/7 .

Clearly, V), (Rx_v, [s, 1% < 2w (s, 11%) V7 and hence

t 2
/ ) d(XE—vh) | <endo(ls, 1) o(ls, 12)”
N L2

which gives the claim.

Remark 2. Even though Propositions 5, 6 and 7 are only formulated for Gaussian processes with sample paths of
finite variation, the estimate (5.1) is valid also for general Gaussian rough paths forn = 1,2, 3, 4. Indeed, this follows

from the fact that Gaussian rough paths are just defined as L* limits of smooth paths, cf. [6].

5.3. Higher levels

Once we have shown our desired estimates for the first four levels, we can use induction to obtain also the higher

levels. This is done in the next proposition.
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Proposition 8. Ler X and Y be Gaussian processes as in Theorem 1. Let p, y be fixed and w be a control. Assume
that there are constants C = C(n) such that

a)(s’ [)"/(zﬂ)

Bn/(2p))!

holds forn =1, ...,[2p] and constants C = C(n) such that

X5

,Z‘sz Y?,r’Lz <C(n)

) (s, t)(n—l)/(Zp)

- 1@y
‘XS,Z YS,I|L2 = Cmeal(s, 1) B((n—1)/2p)!

holds forn =1,...,[2p]+ 1 and every (s, t) € A. Here, ¢ > 0 and B is a positive constant such that

> 4p<1 4 2020141)/2 <§([2p] + 1) ~ 1))
—_— 2p b

where ¢ is just the usual Riemann zeta function. Then for every n € N there is a constant C = C(n) such that

) w(s’[)(n—l)/(Zp)
B((n—1)/(2p)!

‘X?,z - Y?,t‘[} < Cew(s, l‘)l/(zy

holds for every (s, t) € A.

Proof. From Proposition 1 we know that for every n € N there are constants C(n) such that

~ w(s, t)n/(2p)

=C——F—

B(n/(2p))!
holds for all s < ¢. We will proof the assertion by induction over n. The induction basis is fulfiled by assumption.

Suppose that the statement is true for k =1, ...,n where n > [2p] + 1. We will show the statement for n + 1. Let
D ={s =ty <t <---<t; =t} be any partition of [s, ¢]. Set

X

n
J‘Lz’ YSJ|L2

X, o= (1LX],,....X7,,0) e T"TI(RY),

5,10 5,10

th = XS,Z[ ® . ®X[j—lvt

and the same for Y. We know that lim|p|_.¢ X?, = Sp+1(X)s,; a.s. and the same holds for Y (indeed, this is just the
definition of the Lyons lift, cf. [14], Theorem 2.2.1). By multiplicativity, my (Xft) = X‘];, for k < n. We will show that
for any dissection D we have

1) @ (8, 0" 0

71Xy = Y34)[ 12 = Cn + Dew(s, 1) Bn/2p)!

We use the notation (X )k =T ()_(D ). Assume that j > 2. Let D’ be the partition of [s, t] obtained by removing a
point #; of the dissection D for which

2w(s,t) S
wti-1,ti+1) <y -1 for]' >3,
w(s,t) forj=2

holds (Lemma 2.2.1 in [14] shows that there is indeed such a point). By the triangle inequality,

(X7 = ¥P)" < (P XY (0P Y (Y)Y
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We estimate the first term on the right hand side. As seen in the proof of [14, Theorem 2.2.1], (Xf, — Xf;)"“ =
Xt Xpr Ul Set R =Y/ —X!. Then

listig1 *
(X7, = X0 = (v = v

_ th, 1,4 thllﬂl (Xf[ ot Rfifl,l,')(er»] ~1 4 g l)

lisliv1 listiy1

_ n+1 l I n+1-1
Z Xll 1,4 tl Lit1 Rtl 1, tlYti,fiJrl '

By the triangle inequality, equivalence of L?-norms in the Wiener Chaos, our moment estimate for X* and Y* and the
induction hypothesis,

(%2, = X2 = (v, =¥ D)™

=cn+ DZ|XZ, 1.t |L2|RnJrl I|L2 + |Rtl 1.t |L2|Yn+1 I|L2

URUES Listiy1
=1

yoti-1,1)"%” o, 1i41) " ~HP

BU/2Zp)!  B((n—=1)/2p))!

YE=DI@P) 4y (17, 114 1) 1D/ 2P)

n
<am+1)) e, i)
=1

)1/(21/)60(&7],1‘1’

BL—1/@p)! B(n+1-D/2p))!
o1, 1)) (@, 114"/

BU/Zp)!  Bn—1/(2p))!

+ew(ti-1,t

n
<2crew(s, )/ @) Z
=0

1 o(ti—1, )P w(t;, t;41) "D/ 20)
1/Q2y)
ﬂzczg“’(s g sz 2oy (n—1D))@2p))!

Yo i1, tiy1)" %)

B2 (n/(2p))!

where we used the neo-classical inequality (cf. [11]) and superadditivity of the control function. Hence for j > 3,

=0

<4pcrew(s, 1)/

)

Yoot ti41)" %)
B*(n/(2p))!

/(2p) 2
< (i)" P 4,062860(5,1‘)1/(21/)%"/('0).
e B*(n/(2p))!

<4pcrew(s, 1)/

|(XSD,t - Xsl?;)nH - (Ysl?t - Ys[,);)nH |L2

For j =2 we get

1/Qy) (s, t)n/(2p)

D pD\n+1 D D/\n+1
|(Xs,t - Xs,t) - (Ys,t - YSJ) B2(n/(2p))!

|2 <4pcrcw(s, 1)

but then D" = {s, t} and therefore |(X£’; - Yf;)"*l |;2 = 0. Hence by successively dropping points we see that

n/(2p) n/(2p)
D \n+l 12y @08, 1)
|( -Y; ) |L2 < (1 + Z(J — 1) >4p628w(s, 1) 7}32(”/(210))!
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holds for all partitions D. Since n > [2p] + 1,

o0 n/Qp) o (20141)/2p)
Z( 2 ) - Z( 2 > < 5(201+D/2p) (;(DP“‘ 1) _ 1)
AV =AVinl - 2p

and thus

([2p1+1)/(2p) _ n/(2p)
< 4p(1 42U P ([2p]14+ 1)/ (2p)) 1))czew(s,t)l/(2y>w(s’t) P ‘
B B(n/(2p))!

By the choice of 8, we get the uniform bound

|(Xsl?t - Ysl?t)n+1|

+1 w(s, 1) 2e)
|(XA?I - Yfz)n <cew(s, t)l/(zl/)i

e B(n/(2p))!

which holds for all partitions D. Noting that a.s. convergence implies convergence in L? in the Wiener chaos, we
obtain our claim by sending |D| — 0. (I

Corollary 6. Let (X,Y), w, p and y as in Lemma 6. Then for all n € N there are constants C = C(p, y, n) such that
1/ -1/
|X?’l _ Y?J‘Lz < CSa)([S, t]2) /( }’)w([s’ t]Z)(’l )/ (2p)
holds for every (s, t) € A where €2 = Voo (Rx—y, [0, 112)1 /7 .

Proof. For n =1, 2, 3, 4 this is the content of Propositions 5, 6 and 7. By making the constants larger if necessary,
we also get

" " 172y @([s, 112) =D/ 20)
T P (] e YT Y]

with 8 chosen as in Proposition 8. We have already seen that
o ([s, 111"/
B(n/(2p))!

holds for constants ¢(n) where n = 1,2, 3. Since p < 2, we have [2p] + 1 < 4. From Proposition 8 we can conclude
that

X5

e Yol <ém)

1@y ([s, 1]%) =D/
B((n—1)/2p))!

X!, = Y2, |, <cmeo(ls, t17)
holds for every n € N and constants c(n). Setting C(n) = BG=1) /@) ((n_cl(;’/)(zp))! gives our claim. O

6. Main result

Assume that X is a Gaussian process as in Theorem 1 with paths of finite p-variation. Consider a sequence (Ag)keN
of continuous operators

Ag:CP ([0, 11,R) — €' ([0, 1], R).

If x = (x!, ..., x%) e CP™ ([0, 11, RY), we will write Ax(x) = (Ax(xD), ..., Ax(x9)). Assume that Ay fulfils the
following conditions:

(1) Ag(x) = x in the |-|so-norm if k — oo for every x € CP™9" ([0, 1], RY).
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(2) If Rx has finite controlled p-variation, then, for some C = C(p),
sup |R(/\k(X),Al(X))|p—var;[0,1]2 = C|RX|,o—var;[0,l]2'
k,leN
Our main result is the following:

Theorem 5. Let X be a Gaussian process as in Theorem 1 for p <2 and K > V,(Rx, [0, 1]2). Then there is an
enhanced Gaussian process X with sample paths in C%P™ ([0, 1], G7] (RY)) w.rt. (Ap)ken where peRp,4),ie.

| p-var (Sip1 (AK(X)). X)

L,—)O

for k — oo and every r > 1. Moreover, choose y such that y > p and % + % > 1. Then for q > 2y and every N € N
there is a constant C = C(q, p, v, K, N) such that

|I0q—var(SN (Ak(X)), Sy (X))

1—
L = CrN/2 sup |Ak(X)t - Xt ngR/;/)
0<r<1

holds for every k € N.

Proof. The first statement is a fundamental result about Gaussian rough paths, see [7], Theorem 15.33. For the second,
take § > 0 and set

Y'=(0+8y and o' =(1+8)p.

By choosing § smaller if necessary we can assume that % + % > 1land g > 2y’. Set

i, 1(A) = | R(ap(x), 4/(X)) |Z’-var;A

for a rectangle A C [0, 11 and

)1/2—,0’/(2)//) _ Voo( 1/2—,0/(2)/).

ekl = Voo (R, )— ;x5 [0, 172 Ray(x)—A1(x))5 [0, 1]2)

From Theorem 2 we know that wy ; is a 2D control function which controls the p’-variation of R4 +(X),4,(x))- From
Corollary 6 we can conclude that there is a constant ¢ such that

[ (S (AR 0),, = Sw (A1(X)), )] 2 < crewaon (s, 112) w15, 112) "~/

holds foreveryn=1,..., N, (s,t) € A and k, [ € N. Now,

-1 20’ wk’[([s,t]z) —1 20/
g (Is, 112) " D/CO0 = ( wra(10, 112) "0/

wr1([0, 112)
—-1)/@2y’ —1)/2p)—(m—1)/2y’

)(n—l)/(Zp’)

From Theorem 2 and our assumptions on the A; we know that

o1 (10, 1) < 2| Rx L ymyarpop < 3V (R, [0, 117) < ca(p, o', K)

holds uniformly over all k, /. Hence

[ (Sw (Ak(X))s,t — SN (AI(X))S,I) |2 < csevaona(ls, t]z)n/(zy/>.

Proposition 1 shows with the same argument that

[ (Sn (Ak (X)), )| 12 < cona (I, 112)" " < crop (Is. 112)" "
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for every k € N and the same holds for Sy (A;(X))s.;. From [7], Proposition 15.24 we can conclude that there is a
constant cg such that

2

| pg-var (Sv (Ax (X)), Sn (A1(X)))],, < car™Zep,

holds for all &,/ € N. In particular, we have shown that (Sy(Ax(X)))ken is a Cauchy sequence in L"and it is clear
that the limit is given by the Lyons lift Sy (X) of the enhanced Gaussian process X. Now fix k € N. For every / € N,

|Pg-var (S (Ak(X)), Sy (X))

1 = |Pgvar (Sn (Ax (X)), Sn (A1(X)))
+ |,0q-var(SN (AZ(X))s SN (X)) L
< cgr™er s + | Pgvar (Sn (A1(X)), Sn (X))

LY

L
It is easy to see that

1/2=p/(2y)

&kl — VOO(R(Ak(X)fx)a [0, 1]2) forl - o©

and since

| 0g-var (Sn (A1(X)), Sy (X))

r—>0 forl— o0
we can conclude that

| Pamvar (Sw (Ak(X)), SN (X)), < e8> Voo (R0 —x0, [0, 117) /27717

holds for every k € N. Finally, we have for [0, 7] x [¢’, t'] C [0, 112

o, T
‘R(Ak(X)—X)<U/ T/)

and hence

<4 sup |Raux)—x)(8: )| paxa
Rdxd O<s<t<l

Voo (Rar(x)=x)- [0, 1]2) <4 sup R x)—x)(s, l)|]Rd><d'

O<s<t<l

Furthermore, for any s < ¢,

2
|R(Ak(X)—X)(S7 t)|]Rd><d = |Ak(X)Y - X‘Y|L2(Rd) Ak(X)t - Xt|L2(Rd) =< sup |Ak(X)t - XI|LZ(Rd)
0<r<l1

and therefore

1/2—p/2 1—-
Voo (Riapon-x). 10 112) 7277747 < e sup | Ae(0), = X, | 5500
0<t<l

which shows the result. |

The next Theorem gives pathwise convergence rates for the Wong—Zakai error for suitable approximations of the
driving signal.

Theorem 6. Let X be as in Theorem 1 for p <2, K > V,(Rx, [0, 11%) and X® = Ay(X). Consider the SDEs

dY, =V(¥)dX,, YoeR", (6.1)
dr® =v(yP)ax®, yv® =vyer”, (6.2)
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where |V|p;,6 <v <00 forat >2p. Assume that there is a constant C and a sequence (€x)keN C U, I” such that

sup [ XX — X3, <Cie)/" forallkeN.

0<t<1
Choose n, q such that

(111 1 2p
O<np<mn{——=-, ——— and gq € ,0 ).
p 220 08 on

Then both SDEs (6.1) and (6.2) have unique solutions Y and Y &) and there is a finite random variable C and a null
set M such that
[Y® (@) — Y ()]

1 =[PP (@) - Y () < C(w)e] (6.3)

00;[0,1 q-var;[0,1] —

holds for all k € N and w € Q\ M. The random variable C depends on p,q,n,v, 0, K, Cy, the sequence (¢)ren and
the driving process X but not on the equation itself. The same holds for the set M.

Remark 3. Note that this means that we have universal rates, i.e. the set M and the random variable C are valid for
all starting points (and also vector fields subject to a uniform Lip? -bound). In particular, our convergence rates apply
to solutions viewed as Cl—diﬁ‘eomorphisms where | = [0 — q], cf. [7], Theorem 11.12 and [5].

1 1

Proof of Theorem 6. Note that y >p and 1 + > 1l is equivalentto 0 < 5~ — <, 2 . Hence there is a yp > p
such that n = 2 - % and 1 + —-—>1. Furthermore 2)/0 = 1_22'0” <q. Choose Y1 > yo such that still 2y; < ¢ and
n< % - ﬁ < % — l hence % + V— > 1 hold. Set « := % - ﬁ —n > 0. From Theorem 5 we know that for every

r>land NeN there is a constant ¢ such that

1- 1/2p)—1/(2
|0gmvar (SN (X©), Sy ()| = e1r™/? sup [X[ = X, [ 13777 < oV 2g) 2071
0<r<l1
holds for every k € N. Hence
Pg-var(Sy (X D), Sy (X)) W2y

<cpr

n
8/{ L"

for every k € N. From the Markov inequality, for any § > 0,

° (k)
ZP[Pq-var(SN(Xn ), Sn (X)) . 3] < 51r Z

k=1 8k k=1

Pq-var (Snv(X
e

Zs

By assumption, we can choose r large enough such that the series converges. With Borel-Cantelli we can conclude
that

Pg-var(Sn(X®)), Sy (X))
Ek

outside a null set M for k — oo. We set

, Pg-var(SN (X D), Sy (X))
Cy :=sup 7 <00 as.
keN &

Since C» is the supremum of F-measurable random variables it is itself F-measurable. Now set N = [¢] which turns
Pg-var into a rough path metric. Note that since 6 > 2p, (6.1) and (6.2) have indeed unique solutions Y and y®.
We substitute the driver X by Sy (X) resp. X &) by Sy (X (®)) in the above equations, now considered as RDEs in the
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q-rough paths space. Since 6 > ¢, both (RDE-) equations have again unique solutions and it is clear that they coincide
with ¥ and Y® . From

pq-var(SN (X(k))v 1) = Pq-var(SN (X(k))s SN (X)) + pq-var(SN X, 1) <Ci+ pq-var(SN(X)a 1)

we see that for every w € Q \ M the Sy (X® (w)) are uniformly bounded for all k in the topology given by the metric
Pg-var- Thus we can apply local Lipschitz-continuity of the Ito—Lyons map (see [7], Theorem 10.26) to see that there
is a random variable C3 such that

y® _y| | = C3pgar(Sy (X ). S5(X) = C3 - Ca]

q-var;[0,1

holds for every k € N outside M. Finally,

YO — v | =¥ —vo.| < [r® —v| ly® _y

<
q-var;[0,1] — q-var;[0,1]

is true for all ¢ € [0, 1] and the claim follows. O
6.1. Mollifier approximations

Let ¢ be a mollifier function with support [—1, 1],i.e. ¢ € C§° ([—1, 1]) is positive and |¢|;1 = 1. If x: [0, 1] — Riis
a continuous path, we denote by x : R — R its continuous extension to the whole real line, i.e.

xp forx € (—o00,0],
Xy =13 x, forxel0,1],
X1 forxe[l,oo).

For ¢ > 0 set
1
¢e(u) 1= g¢(u/8) and
x; ::/ P (t — u)x, du.
R

Let (ex)ken be a sequence of real numbers such that ¢, — 0 for k — co. Define

Ap(x) 1= x%.
In [7], Chapter 15.2.3 it is shown that the sequence (A )ken fulfils the conditions of Theorem 5.
Corollary 7. Let X be as in Theorem 1 and assume that there is a constant C such that V,(Rx; [s, %) < Clt —s]| 1/p
holds for all s < t. Choose (&)reN € Urz] 1" and set X® = X Then the solutions Y® of the SDE (6.2) converge

pathwise to the solution Y of (6.1) in the sense of (6.3) with rate 0(82) where 1 is chosen as in Theorem 6.

Proof. It suffices to note that for every ¢ >0, Z € {Xl, e, Xd} and t € [0, 1] we have

- 2
<f 6ot — 1) (Z4 —zt>du) }
L R
- B 2
_E (/ 6e(t —1)(Z,4 —zndu) ]
L [t—e,t+¢]

=E / Ge(t —u)pe(t — VI(Zy — Z:)(Zy — Z) du dUi|
L J[t—e,t+¢]?

E[|z; - z[]=E
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= f ¢e(t —w)Pe(t —VVE[(Zy — Z)(Zy — Z) | dudv
[t—e,t+€]?

< sup |E[(Zitn, — Z)(Zisn, — Z0)]|
tel0,1]
|hil,lha]<e

= sup E[(Zt+h - Zz)z] <cpe'/?
t€l0,1]
|h|<e

from which follows that supy, <; | X;* — X; |iz <cj 8,1/ ”. We conclude with Theorem 6. U

6.2. Piecewise linear approximations

IED={0=1t <t <---<typ_1 = 1} is a partition of [0, 1] and x : [0, 1] — R a continuous path, we denote by xP
the piecewise linear approximation of x at the points of D, i.e. x? coincides with x at the points #; and if t; <t < ;|
we have

D _.D
i T8 Xy T Xy

i

tiy1—1 liy1 — i

Let (Dy)ken be a sequence of partitions of [0, 1] such that |Dg| := max;ep,{|tix1 — |} — 0 for k — oo. If
x:[0, 1] = R is continuous, we define

Ap(x) 1= xP*.

In [7], Chapter 15.2.3 it is shown that (Ag)ien fulfils the conditions of Theorem 5. If Ry is the covariance of a
Gaussian process, we set

DIz :(maxV (Rx: [t 1 1]2))p
X,P teD 14 s Lbis bi+ .

Corollary 8. Let X be as in Theorem 1. Choose a sequence of partitions (Dy)xeN of the interval [0, 1] such that
(IDk|Ry,p)keN € Urzl I" and set X® = XPk_ Then the solutions Y ® of the SDE (6.2) converge pathwise to the

solution Y of (6.1) in the sense of (6.3) with rate 0(82) where (er)keN = (|Di|Rry,p)keN and n is chosen as in
Theorem 6.

Proof. Let D be any partition of [0, 1] and ¢ € [#;, t; 1] where t;, 1,41 € D. Take Z € (xt, ..., Xd}. Then

t—1

D —
2y — 4= Zli,ti+1 list-

tiy1— 1
Therefore

1/2 1/(2
|ZP ~ Zi|,2 <1 Zy w12 + 1 Zial 2 <2V, (R L1, 114112) 2 < 21 D0,

We conclude with Theorem 6. O

Example 1. Let X = B be the fractional Brownian motion with Hurst parameter H € (1/4,1/2]. Set p = # < 2.
Then one can show that Rx has finite p-variation and V,(Rx; [s, %) < c(H)|t — s|1/p for all (s,t) € A (see [8],
Example 1). Assume that the vector fields in (6.1) are sufficiently smooth by which we mean that 1/p — 1/2 <
1/2p) —1/0, i.e.

2p 1
6> = .
“p—-1 1/2—H
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Let (Dy)ren be the sequence of uniform partitions. By Corollary 8, for every n < 2H — 1/2 there is a random variable
C such that

]
|Y(k)—Y’oo§C<%> a.s.

hence we have a Wong—Zakai convergence rate arbitrary close to 2H — 1/2. In particular, for the Brownian motion,
we obtain a rate close to 1/2, see also [9] and [5]. For H — 1/4, the convergence rate tends to O which reflects the
fact that the Lévy area indeed diverges for H = 1/4, see [2].

6.3. The simplified step-N Euler scheme
Consider again the SDE
dy, =v({¥,)dX,, YpeR"

interpreted as a pathwise RDE driven by the lift X of a Gaussian process X which fulfils the conditions of Theorem 1.
Let D be a partition of [0, 1]. We recall the simplified step-N Euler scheme from the introduction:

N.
YsEuler ;D — YO,

0
sEulerV;D _ ysEulerV ;D sEuler™ ;D\ v i 1 sEuler™; D\ i} in
Y =Y + V"(ij )th’f./+l + Evi' Viy (Y’f )ij»fj+1ijJj+1
+~-'+LV' Y V. (YsEulerN;D)Xi| ___XiN
N! ’l IN-1 "IN\t 1 tjy1 tj,tjit1?

where ¢; € D. In this section, we will investigate the convergence rate of this scheme. For simplicity, we will assume
that

Vo (Rx; [s,117) = O(It — 51/7)
which can always be achieved at the price of a deterministic time-change based on

V,(Rx; [0, 117"

[0,1]5¢+ v, (Ry: [0, 177

e[0,1].
Set Dy ={t:i=0,....k}.
Corollary 9. Let p > 2p and assume that |V |0 < 00 for & > p. Choose 1 and N such that
111 1
n<miny— ——, — — — and N <[0].
P
Then there are random variables C1 and Cy such that

(N+1)/p—1
sEulerN;Dk 1\" 1
tljlé%xk Ytj — Ytj | <C <%> + Cy T a.s. forall k € N.
Proof. Recall the step-N Euler scheme from the introduction (or cf. [7], Chapter 10). Set X© = X Pk and let Y®) be

. N. N.
the solution of the SDE (6.2). Then Y;jEmer D (Y(k))guler *Dx for every t j € Dy and therefore, using the triangle
inequality,

N, Euler™; D
max | Yy, — ¥ < sup ¥, — Y| 4 max [y — (y®) PRk
tj €D ! rel0.1] tj€De /



194 P. Friz and S. Riedel

By the choice of Dy we have |Dy|gry,p = O(k~"). Applying Corollary 8 we obtain for the first term |Y — Y ®|, =
O(k™"). Refering to [7], Theorem 10.30 we see that the second term is of order Ok~ (N+D/p=1)y, O

2p
o—
Ok~ @/P=1/2y 4 O(k=WN+D/P=D) "any p > 2p. That means that in the case p = 1, the step-2 scheme (i.e. the
simplified Milstein scheme) gives an optimal convergence rate of (almost) 1/2. For p € (1, 2), the step-3 scheme gives
an optimal rate of (almost) 1/p — 1/2. In particular, we see that using higher order schemes does not improve the con-
vergence rate since in that case, the Wong—Zakai error persists. In the fractional Brownian motion case, the simplified
Milstein scheme gives an optimal convergence rate of (almost) 1/2 for the Brownian motion and for H € (1/4,1/2)
the step-3 scheme gives an optimal rate of (almost) 2H — 1/2. This answers a conjecture stated in [4].

Remark 4. Assume that the vector fields are sufficiently smooth, i.e. 6 > . Then we obtain an error of
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