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Abstract. We study a spin system with both mixed even-spin Sherrington–Kirkpatrick (SK) couplings and Curie–Weiss (CW)
interaction. Our main results are: (i) The thermodynamic limit of the free energy is given by a variational formula involving the
free energy of the SK model with a change in the external field. (ii) In the presence of a centered Gaussian external field, the
positivity of the overlap and the extended Ghirlanda–Guerra identities hold on a dense subset of the temperature parameters.
(iii) We establish a general inequality between the magnetization and overlap. (iv) We construct a temperature region in which
the magnetization can be quantitatively controlled and deduce different senses of convergence for the magnetization depending on
whether the external field is present or not. Our approach is based on techniques from the study of the CW and SK models and
results in convex analysis.

Résumé. Nous étudions un système dont les spins ont à la fois des couplages du type Sherrington–Kirkpatrick (SK) et des inter-
actions du type Curie–Weiss (CW). Nos principaux résultats sont les suivants : (i) la limite thermodynamique de l’énergie libre
est donnée par une formule variationnelle impliquant l’énergie libre du modèle SK avec un changement dans le champ magné-
tique externe. (ii) En présence d’un champ extérieur Gaussien centré, le recouvrement est positif et les identités généralisées de
Ghirlanda–Guerra sont valides pour un sous ensemble dense des paramètres de température. (iii) Nous établissons une inégalité gé-
nérale entre l’aimantation et le recouvrement. (iv) Nous identifions un domaine de températures où l’aimantation peut être contrôlée
quantitativement et nous déduisons plusieurs types de convergences pour l’aimantation en présence ou non d’un champ extérieur.
Notre approche repose sur des méthodes développées pour l’étude des modèles CW et SK et sur des résultats d’analyse convexe.
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1. Introduction

The Sherrington–Kirkpatrick (SK) model formulated by Sherrington and Kirkpatrick [17] is one of the most impor-
tant mean field spin glasses with the aim of understanding strange magnetic properties of certain alloys. In the recent
decades, many essential conjectures proposed by physicists have been intensively studied in the mathematical commu-
nity, including the validity of the Parisi formula and the ultrametricity of the overlap. In this paper, we are interested in
the SK model coupled with the familiar Curie–Weiss (CW) ferromagnetic interaction. There have been a few studies
of this model so far [3,6,24] (one may also refer to [7] for a much more difficult coupling, the SK model with Ising
interaction). However, rigorous results are very limited and mainly restricted to the high temperature regime. The
main reason is that in this case, the effect of the (nonrandom) ferromagnetic interaction can be linearly approximated.
The model then becomes essentially the SK model with a slight perturbation on the external field. Therefore as one
might expect, in the high temperature region, many properties of the SK model are also valid in our model. Indeed,
following the same arguments as [22] or [23], one can prove (see [3]) that for this model, the thermodynamic limit of
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the free energy exists, the magnetization and overlap in the limit concentrate on a singleton, the central limit theorem
for the free energy holds, and the Thouless–Anderson–Palmer system of equations is valid.

We will be concerned with the more general mean field model with both the mixed even-spin SK couplings and
ferromagnetic interaction (SKFI) and address the following questions: (i) How can one compute the thermodynamic
limit of the free energy of the SKFI model? (ii) Which properties does the SKFI model inherit from the CW and SK
models? (iii) Is there any general relation between the magnetization and overlap? (iv) Can one give a quantitative
control on the magnetization or the overlap in general? Our answers to these problems will be stated in Section 2 and
will also cover the situation in the low temperature regime.

Let us now give the description of the SKFI model, which depends on two quantities: the (inverse) temperature
parameter (β,β) ∈ B and external field h, where B = {(β, (βp)p≥1): β ≥ 0,

∑
p≥1 2pβ2

p < ∞} and h is a Gaussian
random variable (possibly degenerate). One may think of β as the temperature for the CW interaction and β as the
temperature for the SK couplings. Let us emphasize that βp may take negative values, while since we are concerned
with the ferromagnetic interaction, the CW temperature β only takes nonnegative values. For each positive integer N,

set the configuration space ΣN = {−1,+1}N. Let (hi)i≤N be i.i.d. copies of h. For a given temperature (β,β) ∈ B
and external field h, the SKFI model has Hamiltonian

HN(σ ) = βN

2
m(σ )2 + H SK

N (σ ) +
∑
i≤N

hiσi, (1.1)

where the quantity m = m(σ ) := N−1 ∑
i≤N σi is called the magnetization per site. Here, H SK

N is the mixed even
p-spin interactions for the SK model, that is,

H SK
N (σ ) =

∑
p≥1

βp

Np−1/2

∑
1≤i1,...,i2p≤N

gi1,...,i2p
σi1 · · ·σi2p

, (1.2)

where g = (gi1,...,i2p
: 1 ≤ i1, . . . , i2p ≤ N,p ≥ 1) are i.i.d. standard Gaussian r.v.s independent of (hi)i≤N . One may

see easily that the covariance of H SK
N is a function of the overlap R1,2 = R(σ 1,σ 2) := N−1 ∑

i≤N σ 1
i σ 2

i through
EH SK

N (σ 1)H SK
N (σ 2) = Nξ(R1,2), where ξ(x) := ∑

p≥1 β2
px2p.

We define the partition function, Gibbs measure, and free energy for the SKFI model, respectively, by ZN =
ZN(β,β, h) = ∑

σ∈ΣN
expHN(σ ), GN(σ ) = expHN(σ )/ZN , and FN = FN(β,β, h) = N−1

E lnZN. We will use

σ 1,σ 2, etc. to denote the replicas sampled independently from GN. For any real-valued function f on Σn
N , we define

its Gibbs average corresponding to the Gibbs measure GN as

〈f 〉 =
∑

σ 1,...,σ n∈ΣN

f
(
σ 1, . . . ,σ n

)
GN

(
σ 1) · · ·GN

(
σ n

)
.

In the case of β = 0, our model is known as the mixed even p-spin SK model (see [23]) and we will use ZSK
N , GSK

N ,
F SK

N , and 〈·〉SK to denote its partition function, Gibbs measure, free energy, and Gibbs average, respectively. On the
other hand, if β = 0, our model reduces to the Curie–Weiss (CW) model and ZCW

N , GCW
N , F CW

N , and 〈·〉CW are also
defined in the same manner.

2. Main results

Our main results will be stated in this section. Proofs are deferred to Section 3. Throughout the paper, we will use
I (E) to denote the indicator function for the event E.
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2.1. The thermodynamic limit of the free energy

Let us begin by illustrating the different natures of the SKFI, CW, and SK models. The SK model has been widely
studied, see, for example, [17] and [18] for details. By an application of the Gaussian interpolation technique, Guerra
and Toninelli proved [9] that {E lnZSK

N }N≥1 is superadditive and as a consequence

F SK(β, h) := lim
N→∞F SK

N (β, h) (2.1)

exists. Using Jensen’s inequality, it is easy to see that {E lnZCW
N }N≥1 is subadditive, which ensures the existence of

the thermodynamic limit of the free energy for the CW model. However, if β 	= 0 and β 	= 0, neither superadditivity
nor subadditivity obviously holds for {E lnZN }N≥1 in the SKFI model. The existence of the thermodynamic limit
of the free energy for the SKFI model was firstly shown in [10]. Our first main result regarding the formula of the
thermodynamic limit of the free energy for the SKFI model is stated as follows:

Theorem 1. For any (β,β) ∈ B, we have

F(β,β, h) := lim
N→∞FN(β,β, h) = max

μ∈[−1,1]

{
F SK(β, βμ + h) − βμ2

2

}
. (2.2)

For any given (β,β) and h, we set

Ω = Ω(β,β, h) = Argmax
μ∈[−1,1]

{
F SK(β, βμ + h) − βμ2

2

}
. (2.3)

The following proposition says that the magnetization is essentially supported on Ω(β,β, h).

Proposition 1. For any open subset U of [−1,1] with

inf
{|x − y|: x ∈ U,y ∈ Ω

}
> 0,

we have for every N,

E
〈
I (m ∈ U)

〉 ≤ K exp

(
−N

K

)
, (2.4)

where K is a constant independent of N. In particular,

lim
N→∞

〈
I (m ∈ U)

〉 = 0 a.s. (2.5)

2.2. Positivity of the overlap

In the SK model with external field, Talagrand [23] proved that the overlap is essentially greater than a positive
constant with high probability, and deduced from this fact that the extended Ghirlanda–Guerra identities hold. In this
section, we prove that these results are “typically” valid in the SKFI model.

Before we state our main results, let us recall the formulation of the Parisi formula and some known results regard-
ing the differentiability of the Parisi measure. Let M0 be the collection of probability measures on [0,1] that consist
of a finite number of point masses. For each ν ∈ M0, we consider a function Φν(x, q) defined on R × [0,1] with
Φν(x,1) = ln cosh(x) and satisfying the PDE

∂Φν

∂q
= −1

2
ξ ′′(q)

(
∂2Φν

∂x2
+ ν

([0, q])
(

∂Φν

∂x

)2)
. (2.6)
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The Parisi formula states that the thermodynamic limit of the free energy of the SK model with temperature β and
external field h can be represented as

F SK(β, h) = inf
ν∈M0

P (β, h, ν), (2.7)

where

P (β, h, ν) := ln 2 + EΦν(h,0) − 1

2
θ(1) + 1

2

∫ 1

0
θ(q)ν(dq), ν ∈ M0

and θ(q) := qξ ′(q) − ξ(q). The validity of this formula was firstly verified in the work of Talagrand [19] and was
later extended to the general mixed p-spin SK model [14] and the spherical SK model [4,21]. Let M be the space of
all probability measures on [0,1] endowed with the weak topology. Since P (β, h, ·) is Lipschitz with respect to the
metric (see [8] and [20]):

d(ν1, ν2) :=
∫ 1

0

∣∣ν1
([0, q]) − ν2

([0, q])∣∣dq, ν1, ν2 ∈ M0, (2.8)

P can be extended continuously to M. From the compactness of M, the infimum (2.7) is achieved and any ν ∈ M
that achieves the infimum is called a Parisi measure. Arguments of [11] and [20] imply the differentiability of the
Parisi formula

∂

∂βp

F SK(β, h) = βp

(
1 −

∫ 1

0
q2pνβ,h(dq)

)
(2.9)

and give the moment computation for |R1,2| via

lim
N→∞ E

〈
R

2p

1,2

〉SK =
∫ 1

0
q2pνβ,h(dq) (2.10)

provided βp 	= 0, where νβ,h is a Parisi measure. In the case of βp 	= 0 for all p ≥ 1, (2.10) implies that νβ,h is
the limiting distribution of |R1,2|; if, in addition, h is nondegenerate, it is well-known that the Parisi measure takes
nonnegative values and, again, from (2.10), the Parisi measure is the limiting distribution of the overlap R1,2 (see
Chapter 14 of [23] for detailed discussions).

Recall the set Ω from (2.3). Let us denote by Bd the collection of all (β,β) ∈ B that satisfy β > 0 and

either
∣∣Ω(β,β, h)

∣∣ = 1 or Ω(β,β, h) = {μ,−μ} for some 0 < μ < 1. (2.11)

The following proposition gives the connection between the set Bd and the differentiability of F(β,β, h) with respect
to β .

Proposition 2. Suppose that (β,β) ∈ B with β > 0. Then ∂F
∂β

(β,β, h) exists if and only if (β,β) ∈ Bd .

Note that (β,β) �→ F(β,β, h) is a continuous convex function on the space of all (β,β) ∈ B with β > 0. Such
space is obviously open in the separable Banach space {(β,β): β2 + ∑

p≥1 2pβ2
p < ∞} endowed with the norm

|(β,β)| = (β2 + ∑
p≥1 2pβ2

p)1/2. It follows, by Mazur’s theorem (Theorem 1.20 in [15]), that the set where F(·, ·, h)

is Gâteaux-differentiable (in the sense that the directional derivative exists in all directions) is a dense Gδ set in B
contained in Bd . This means that typically the magnetization concentrates either on a singleton or two distinct values,
which are symmetric with respect to the origin. This property coincides with the behavior of the CW model.

We prove that analogues of (2.9) and (2.10) also hold for the SKFI model in certain temperature region. For
technical purposes, we assume that h is centered. Let us denote by B′ the collection of all (β,β) ∈ B with β > 0 and
βp 	= 0 for all p ≥ 1. Set B′

d = Bd ∩ B′. Notice that B′
d is a Gδ subset in B′ and that, concluding from the convexity of

F(·,β, h) for every fixed (β, h), F(·,β, h) is differentiable for all but countably many β. Thus, using Proposition 2,
B′

d forms a dense Gδ subset in B′.
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Theorem 2. If (β,β) ∈ B′
d , then for every p ≥ 1, we have

∂F

∂βp

(β,β, h) = βp

(
1 −

∫ 1

0
q2pνβ,βμ+h(dq)

)
(2.12)

and

lim
N→∞ E

〈
R

2p

1,2

〉 =
∫ 1

0
q2pνβ,βμ+h(dq), (2.13)

where νβ,βμ+h is the unique Parisi measure for the SK model with temperature β , external field βμ + h, and μ ∈
Ω(β,β, h).

From (2.12), it means that the limiting distribution of |R1,2| is determined by the Parisi measure νβ,βμ+h. If
Eh2 	= 0, we will prove that νβ,βμ+h gives the limiting distribution of the overlap R1,2 relying on Talagrand’s positivity
of the overlap in the SK model. The precise statement of the latter is described as follows: Let Eh2 	= 0. Consider a
Parisi measure ν and the smallest point c in the support of ν. Then c > 0 and for any c′ < c, there exists some constant
K independent of N such that

E
〈
I
(
R1,2 ≤ c′)〉SK ≤ K exp

(
−N

K

)
. (2.14)

As for the SKFI model, we have a weaker version of Talagrand’s positivity.

Theorem 3. Suppose that Eh2 	= 0. Let (β,β) ∈ B′
d and νβ,βμ+h be the Parisi measure of the SK model stated in

Theorem 2. Suppose that c is the smallest value in the support of νβ,βμ+h. Then c > 0 and for every 0 < c′ < c, we
have

lim
N→∞ E

〈
I
(
R1,2 ≤ c′)〉 = 0 (2.15)

and for every continuous function f on [−1,1],

lim
N→∞ E

〈
f (R1,2)

〉 =
∫ 1

0
f (q)νβ,βμ+h(dq). (2.16)

The equation (2.15) implies that in our model the overlap is greater than or equal to a positive constant c with
high probability, mirroring the same phenomenon in the SK model with Gaussian external field. More importantly,
(2.16) means that the limiting law of the overlap of the SKFI model is the same as that of the SK model with a shifted
external field βμ + h.

Proposition 3. Let (β,β) ∈ B′
d . If Eh2 	= 0, then the sequence (GN) of Gibbs measures of the SKFI model satisfies

the extended Ghirlanda–Guerra (EGG) identities, that is, for each n and each continuous function ψ on R, we have

lim
N→∞ sup

f

∣∣∣∣nE
〈
ψ(R1,n+1)f

〉 − E
〈
ψ(R1,2)

〉
E〈f 〉 −

∑
2≤l≤n

E
〈
ψ(R1,l)f

〉∣∣∣∣ = 0, (2.17)

where the supremum is taken over all (nonrandom) functions f on Σn
N with |f | ≤ 1.

These identities were firstly discovered by Ghirlanda and Guerra in the context of the SK model with ψ(x) = x.
Later, they were generalized to the mixed p-spin SK models and also mixed p-spin spherical SK models, see Chap-
ter 12 in [23] for details. The importance of the EGG identities are due to the conjecture that they yield the ultrametric
property of the overlaps, that is, under the Gibbs measure, the event

R1,2 ≥ min(R1,3,R2,3) (2.18)
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has probability nearly one. This conjecture was recently confirmed by Panchenko [13]. Thus, from the Baffionni–
Rosati theorem, the limiting behavior of the Gibbs measure can be characterized by the Poisson–Dirichlet cascades,
which is closely related to the replica symmetry breaking scheme in the computation of the Parisi formula, see Chap-
ter 15 [23]. For the applications of the EGG identities, the readers are referred to [5] and [12].

In the same fashion, Proposition 3 implies the ultrametric structure (2.18) of the overlap in the SKFI model. The
proof of Proposition 3 is based on the concentration of the Hamiltonian and the positivity of the overlap. As the
argument has been explained in great detail in Chapter 12 in [23], the proof will be omitted in this paper. We will
present an immediate application of the EGG identities in Theorem 4 below that yields a general inequality between
the magnetization and overlap.

2.3. An inequality between the magnetization and overlap

In this section, we present an inequality between the magnetization and overlap. Again, for technical purposes, we
assume that the external field h is centered throughout this section. Let us first motivate our idea by considering
the original SK model (βp = 0 for every p ≥ 2) with ferromagnetic interaction. It is well known that in this case
the magnetization and overlap of the SKFI model in the high temperature regime (β1 and β are very small) are
concentrated essentially at single values in the sense that

E
〈
(m − μ)2k

〉 ≤ K

Nk
,

E
〈
(R1,2 − q)2k

〉 ≤ K

Nk

for every k ≥ 1, where K is a constant independent of N and (μ,q) is the unique solution to

μ = E tanh(β1z
√

2q + βμ + h),

q = E tanh2(β1z
√

2q + βμ + h)

for some standard Gaussian r.v. z independent of h. For the proof, one may follow the same argument as [3]. As
one can see immediately from the Cauchy–Schwarz inequality, μ2 ≤ q, that is, the overlap is essentially bounded
from below by the square of the magnetization. It is natural to ask whether in general a similar relation between the
magnetization and overlap holds or not. Using the fundamental property (2.11) of the magnetization and the EGG
identities for the overlaps, we will prove that the answer is in the affirmative. Recall that B′

d is a dense Gδ set in B′
and from (2.4) and (2.11), if (β,β) ∈ B′

d , there exists some 0 ≤ μ < 1 such that

lim
N→∞ E

〈
I
(∣∣|m| − μ

∣∣ ≤ ε
)〉 = 1 (2.19)

for all ε > 0. Our main result is stated as follows.

Theorem 4. Let (β,β) ∈ B′
d . We have that:

1. if Eh2 = 0, limN→∞ E〈I (μ2 − ε ≤ |R1,2|)〉 = 1 for every ε > 0;
2. if Eh2 	= 0, limN→∞ E〈I (μ2 − ε ≤ R1,2)〉 = 1 for every ε > 0.

In other words, μ2 provides a lower bound for the support of the Parisi measure νβ,βμ+h. From (2.19), Theorem 4
also means that for (σ ,σ 1,σ 2) sampled from EG⊗3

N , essentially m(σ )2 ≤ |R1,2(σ
1,σ 2)| if Eh2 = 0 and m(σ )2 ≤

R1,2(σ
1,σ 2) if Eh2 	= 0.

2.4. A quantitative control on the magnetization

We will construct a temperature region where the effect of the ferromagnetic interaction is much stronger than the
effect of the mixed even p-spin interactions. In this region, we can control the magnetization quantitatively away from
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the origin and deduce different senses of convergence of the magnetization depending on whether the external field is
present or not. Suppose, throughout this section, that the external field h is centered satisfying

Ee2|h| < 1

maxβ≥0(β/cosh2 β)
. (2.20)

Notice that maxβ≥0 β/ cosh2 β < 1. This ensures the existence of h. The assumption (2.20) is just for technical pur-
poses that might possibly be omitted (see the remark right after Lemma 6 below). The description of the temperature
region involves the function f in the variational formula for the thermodynamic limit of the free energy of the CW
model,

f (μ,β) := F SK(0, βμ + h) − βμ2

2
= ln 2 + E ln cosh(βμ + h) − βμ2

2
(2.21)

for μ ∈ [−1,1] and β ∈ (α,∞), where α satisfies αE1/ cosh2 h = 1. Some basic properties of f can be summarized
in the following technical proposition.

Proposition 4. For each fixed β ∈ (α,∞), the global maximum of f (·, β) over [0,1] is uniquely achieved at some
μ(β) ∈ (0,1). As functions of β, μ(β) and f (μ(β),β) are strictly increasing, continuous, and differentiable such
that

lim
β→α+μ(β) = 0, lim

β→∞μ(β) = 1, and lim
β→∞f

(
μ(β),β

) = ∞. (2.22)

Suppose that u is any number satisfying 0 < u < 1. From Proposition 4, there exists a unique βu ∈ (α,∞) such
that μ(βu) = u. Define δu : [βu,∞) → [0,∞) by

δu(β) = f
(
μ(β),β

) − f (u,β). (2.23)

Proposition 5. δu is strictly increasing and limβ→∞ δu(β) = ∞.

Recall the definition of B′
d from (2.11) and also ξ(x) = ∑

p≥1 β2
px2p. Suppose that u is any number satisfying

0 < u < 1. We define a temperature region,

Ru = {
(β,β) ∈ B′

d : β > βu and ξ(1) < 2δu(β)
}
. (2.24)

Recall μ from (2.11). Notice that νβ,βμ+h is the limiting distribution of the overlap in the SKFI model with tempera-
ture (β,β) and external field h and also in the SK model with temperature β and external field βμ + h. In the case of
the original SK model (βp = 0 for all p ≥ 2) with external field βμ + h, if (β,β) satisfies β > βu and ξ(1) < 2δu(β),
one sees, from Proposition 5, the definition (2.11) of μ, and our main results in Theorem 5 below, that β > βu can be
arbitrary large and β1 lies very likely inside the conjectured high temperature region (below the Almeida–Thouless
line) of the original SK model, that is,

E
2β2

1

cosh4(β1z
√

2q + βμ + h)
< 1,

which means that νβ,βμ+h is expected to present essentially high temperature behavior, that is, νβ,βμ+h consists
of a single point mass, where z is a standard Gaussian r.v. independent of h and q is the unique solution to q =
E tanh2(β1z

√
2q + βμ + h). Therefore, heuristically in the region Ru, the SKFI model has low CW and high SK

temperatures. The idea of the region Ru comes from the observation that since ξ(1) is very small comparing to β ,
the magnetization in the SKFI model behaves very much the same as in the CW model. Thus, if the magnetization in
the CW model is away from the origin, it will also be the case in the SKFI model. Now our main result is stated as
follows. Recall Ω from (2.3).
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Theorem 5. For 0 < u < 1, we have Ω(β,β, h) ⊂ [−1,−u) ∪ (u,1] for all (β,β) ∈ Ru.

In other words, from Proposition 1, the magnetization is basically bounded away from the set [−u,u]. As an
immediate consequence of the symmetry of the magnetization and the positivity of the overlap, we have the following
proposition.

Proposition 6. The following statements hold:

1. Let 0 < u < 1 and Eh2 = 0. For (β,β) ∈ Ru, there exists some μ ∈ (u,1) such that 〈I (|m−μ| ≤ ε)〉 and 〈I (|m+
μ| ≤ ε)〉 converge to 1/2 a.s. for all 0 < ε < μ.

2. Let 0 < u < 1/2 and Eh2 	= 0. For (β,β) ∈ Ru, there exists some μ ∈ (u,1) such that 〈I (|m − μ| ≤ ε)〉 and
〈I (|m + μ| ≤ ε)〉 converge to Bernoulli(1/2) r.v.s for all 0 < ε < μ.

The first statement is well known in the CW model without external field. The proof follows immediately from
the symmetry of the magnetization under the Gibbs measure. When Eh2 	= 0 this symmetry does not hold, which
leads to a different sense of convergence. One may also refer to [1] for the conditional self-averaging property of the
magnetization that naturally leads to a similar result as the second statement of Proposition 6 in the case of the CW
model with random external field. However, since the SKFI model contains SK couplings, it seems not applicable to
deduce the second statement of Proposition 6 in the same approach as [1]. As will be seen in the proof, we control the
magnetization using the overlap and conclude the announced result via the positivity of the overlap.

3. Proofs

In Section 3.1, we prove the main results in Section 2.1 via the usual approach in the CW model. We proceed to study
the differentiability of the thermodynamic limit of the free energy of the SKFI model in Section 3.2 and conclude the
results in Section 2.2. Section 3.3 is devoted to proving Theorem 4 using the EGG identities. Finally, in Section 3.4,
we demonstrate how to control the magnetization quantitatively on the temperature region Ru and deduce Theorem 5
and Proposition 6. For convenience, throughout the paper, for any given a, b ∈ R, we define δa,b = 1 if a = b and
δa,b = 0 if a 	= b; for any given set P, |P | denotes the cardinality of P .

3.1. Approaches from the Curie–Weiss model

We will prove Theorem 1 and Proposition 1 by the usual approaches in the CW model. Lemma 1 is a consequence of
a classical result in convex analysis, while Lemma 2 is a standard application of Gaussian concentration of measure,
see [18]. These will play essential roles in our proofs.

Lemma 1. For fixed (β,β) ∈ B, {F SK
N (β, β ·+h)}N≥1 is a sequence of convex functions converging to F SK(β, β ·+h)

uniformly on [−1,1] and F SK(β, β · +h) is continuous and convex.

Proof. Define p(μ) = F SK(β, βμ + h) and pN(μ) = F SK
N (β, βμ + h) on R for each N ≥ 1. Since

p′′
N = Nβ2(

E
〈
m2〉SK − (

E〈m〉SK)2) ≥ 0,

{pN } is a sequence of convex functions on R and converges pointwise from (2.1). Note that here 〈·〉SK is the Gibbs
average of the SK model with temperature β and external field βμ + h. A classical result in convex analysis, which
can be found in [16], finishes our proof: Let {pN }N≥1 be a sequence of convex functions on R converging to p

pointwise. Then p is a continuous and convex function and the convergence of {pN }N≥1 to p is uniform on any
bounded interval. �

The proof of Lemma 2 is left to the reader.
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Lemma 2. For each N , we set ΘN = {−1,−1 + 2
N

, . . . ,1 − 2
N

,1} and

Δμ = 1

N
lnZSK

N (β, βμ + h) − 1

N
E lnZSK

N (β, βμ + h)

for μ ∈ [−1,1]. Then for every N ≥ 1,

P
(

max
μ∈ΘN

|Δμ| ≥ t
)

≤ K exp

(
− t2N

K

)
, t ≥ 0 (3.1)

and

E max
μ∈ΘN

|Δμ| ≤ K

N1/4
, (3.2)

where K is a constant independent of N.

Proof of Theorem 1. Let μ be any real number. Since m2 ≥ 2μm − μ2, it is easy to see

ZN(β,β, h) ≥ ZSK
N (β, βμ + h) exp

(
−Nμ2β

2

)
(3.3)

and this implies

lim inf
N→∞ FN(β,β, h) ≥ max

μ∈[−1,1]

{
F SK(β, βμ + h) − μ2β

2

}
.

On the other hand, let us observe that m ∈ ΘN can take only N + 1 distinct values. Write 1 = ∑
μ∈ΘN

δμ,m. If m = μ,

then m2 = 2μm − μ2. So by exchanging the order of summations,

ZN(β,β, h) =
∑

μ∈ΘN

exp

(
−Nβμ2

2

)∑
σ

δμ,m exp

(
H SK

N (σ ) +
∑
i≤N

(βμ + hi)σi

)

≤
∑

μ∈ΘN

exp

(
−Nβμ2

2

)∑
σ

exp

(
H SK

N (σ ) +
∑
i≤N

(βμ + hi)σi

)

=
∑

μ∈ΘN

exp

(
−Nβμ2

2
+ ZSK

N (β, βμ + h)

)
.

Therefore,

FN(β,β, h) ≤ ln(N + 1)

N
+ E

[
max
μ∈ΘN

{
−βμ2

2
+ 1

N
lnZSK

N (β, βμ + h)

}]

≤ ln(N + 1)

N
+ max

μ∈ΘN

{
−βμ2

2
+ F SK

N (β, βμ + h)

}
+ E max

μ∈ΘN

|Δμ|.

From (3.2), we obtain

lim sup
N→∞

FN(β,β, h) ≤ max
μ∈[−1,1]

{
F SK(β, βμ + h) − βμ2

2

}
+ lim sup

N→∞
E max

μ∈ΘN

|Δμ|

and by using Lemma 2, we are done. �
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Proof of Proposition 1. It is easy to see that if (2.4) holds, then using the exponential bound of (2.4), (2.5) follows
immediately. So we only prove (2.4). As in Theorem 1, by exchanging the order of summations, we obtain

〈
I (m ∈ U)

〉
ZN(β,β, h)

=
∑

μ∈ΘN

I (μ ∈ U) exp

(
−Nβμ2

2

) ∑
σ∈ΣN

δμ,m exp

(
−H SK

N (σ ) +
∑
i≤N

(βμ + hi)σi

)

≤
∑

μ∈ΘN

I (μ ∈ U) exp

(
−Nβμ2

2

)
ZSK

N (β, βμ + h)

≤ (N + 1) exp

(
N sup

μ∈ΘN∩U

{
1

N
lnZSK

N (β, βμ + h) − βμ2

2

})
.

From (3.3),

〈
I (m ∈ U)

〉 ≤ (N + 1) expN
(

max
μ∈ΘN∩U

Wμ − max
μ∈ΘN

Wμ

)
, (3.4)

where

Wμ := 1

N
lnZSK

N (β, βμ + h) − βμ2

2
.

We claim that limN→∞ supμ∈ΘN∩O Wμ = supμ∈O{F SK(β, βμ + h) − βμ2/2} for every open subset O of [−1,1].
For convenience, we set

Γμ = F SK
N (β, βμ + h) − βμ2

2
,

Fμ = F SK(β, βμ + h) − βμ2

2
.

For any μ, observe that −|Δμ| + Γμ ≤ Wμ = Δμ + Γμ ≤ |Δμ| + Γμ and thus,

− max
μ∈ΘN∩O

|Δμ| + max
μ∈ΘN∩O

Γμ ≤ max
μ∈ΘN∩O

Wμ ≤ max
μ∈ΘN∩O

|Δμ| + max
μ∈ΘN∩O

Γμ. (3.5)

Using Lemma 1 and 2, this completes the proof of our claim since

sup
μ∈O

Fμ = lim inf
N→∞ max

μ∈ΘN∩O
Γμ ≤ lim inf

N→∞ max
μ∈ΘN∩U

|Wμ|

and

sup
μ∈O

Fμ = lim sup
N→∞

max
μ∈ΘN∩O

Γμ ≥ lim sup
N→∞

max
μ∈ΘN∩U

|Wμ|.

To obtain (2.4), we write from (3.4),

E
〈
I (m ∈ U)

〉 ≤ (N + 1)P(AN) + (N + 1) exp(−Nε)P
(
Ac

N

)
,

where

ε = 2
(

max
[−1,1]

Fμ − sup
U

Fμ

)
> 0,

AN =
{

max
ΘN∩U

Wμ − max
ΘN

Wμ ≤ −ε
}
.
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Since

max
ΘN

Γμ − max
ΘN∩U

Γμ → max
[−1,1]

Fμ − sup
U

Fμ = ε

2
,

it follows that for sufficiently large N,

max
ΘN

Γμ − max
ΘN∩U

Γμ ≤ 3ε

4
.

Now use (3.5) to obtain

P(AN) ≤ P

(
max

ΘN∩U
Γμ − max

ΘN

Γμ ≤ −ε + max
ΘN∩U

|Δμ| + max
ΘN

|Δμ|
)

≤ P

(
max
ΘN

|Δμ| ≥ 1

2

(
ε + max

ΘN∩U
Γμ − max

ΘN

ΓN

))

≤ P

(
max
ΘN

|Δμ| ≥ ε

8

)
.

So for large enough N and from Eq. (3.1), we get

E
〈
I (m ∈ U)

〉 ≤ (N + 1)

(
K exp

(
− ε2N

64K

)
+ exp(−Nε)

)

and this establishes (2.4). �

3.2. The differentiability of F(β,β, h) in (β,β)

We will study the differentiability of F(β,β, h) with respect to β and βp for every p ≥ 1 in this section using the
standard results in convex analysis. From this, we deduce the main results in Section 2.2. First let us recall that the
thermodynamic limit F SK(β, h) of the free energy in the mixed even p-spin SK model can be characterized by the
Parisi formula for any β with

∑
p≥1 2pβ2

p < ∞ and Gaussian r.v. h (possibly degenerate). Using this variational
formula and the usual trick concerning the differentiability of the convex functions, it is well known [11,20] that
F SK(β, h) is differentiable with respect to βp for every p ≥ 1. For each x ∈ R, we consider the mixed even p-spin
SK model with temperature β and external field x + h. One may see that following a similar argument as [11,20], the
function F SK(β, x + h) is differentiable with respect to x. More precisely, the following statement holds.

Proposition 7. Let {Wt }t≥0 be a standard Brownian motion. For every fixed β and h, F SK(β, x + h) is differentiable
in x and

∂F SK

∂x
(β, x + h) = E

[
tanh(x + h + Wξ ′(1)) expS(x)

]
, (3.6)

where S(x) is some r.v. depending only on the Parisi measure νβ,x+h and ξ such that E expS(x) = 1 for every x ∈ R.

Now let us turn to the study of the differentiability of F(β,β, h) in (β,β). Recall from (2.2) that the thermodynamic
limit of the free energy of the SKFI model, F(β,β, h), is obtained by maximizing

f (μ,β,β) := F SK(β, βμ + h) − βμ2

2
(3.7)

over all μ ∈ [−1,1]. Let us observe that for fixed μ, f is convex in β and βp for each p ≥ 1. Such an optimization
problem is of great importance in the analysis of convex optimization. The differentiability of F(β,β, h) in β and βp

for each p ≥ 1 relies on the following classical theorem in convex analysis.
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Theorem 6 (Danskin [2]). Let I1 be an open interval and I2 be a compact interval. Suppose that g is a continuous
function defined from I1 × I2 to R such that for every fixed y, g(·, y) is convex and ∂g

∂x
(x, y) exists for every (x, y) ∈

I1 × I2. Define G : I1 → R by G(x) = maxy∈I2 g(x, y). Then

dG

dx+ (x) = max
y∈Ωg(x)

∂g

∂x
(x, y)

and

dG

dx− (x) = min
y∈Ωg(x)

∂g

∂x
(x, y),

where dG
dx+ and dG

dx− are the right and left partial derivatives of G with respect to x, respectively, and Ωg(x) is the
argmax of g(x, ·) on I2 for each x ∈ I1. In particular, if Ωg(x) consists of a single element, then G is differentiable
at x.

Before turning to the proof of our main results, we need two technical lemmas.

Lemma 3 (Griffith). Suppose that {gn} is a sequence of differentiable convex functions defined on an open interval I .
If {gn} converges pointwise to g and g is differentiable at x, then limn→∞ g′

n(x) = g′(x).

Lemma 4. Let (β,β) ∈ B. If β > 0, then Ω(β,β, h) ⊂ (−1,1).

Proof. Notice that for fixed (β,β) ∈ B, f (·, β,β) is a well-defined function on R. Since |m(σ )| ≤ 1 for every σ ∈
ΣN , this implies

F SK(β, βμ + h) = lim
N→∞

1

N
E

[
ln

∑
σ∈ΣN

exp

(
−H SK

N (σ ) +
∑
i≤N

hiσi + βμ
∑
i≤N

σi

)]

≤ F SK(β, h) + β|μ|
and f (μ,β,β) → −∞ as |μ| → ∞. So the global maximum of f (·, β,β) is achieved. Suppose that μ is any maxi-
mizer. Then ∂f

∂μ
(μ,β,β) = 0 and (3.6) together yield

E
[
tanh(βμ + h + Wξ ′(1)) expS(βμ)

] = μ,

where S is defined in Proposition 7. Since | tanh | < 1 and E[expS(βμ)] = 1, it means μ ∈ (−1,1). So

Ω(β,β, h) = Argmax
μ∈[−1,1]

f (μ,β,β) = Argmax
μ∈R

f (μ,β,β) ⊂ (−1,1).
�

Proof of Proposition 2. For fixed μ and β, since F SK(β, βμ + h) − βμ2/2 is convex and differentiable in β, it
follows by Danskin’s theorem that

∂F

∂β+ (β,β, h) = max
μ∈Ω(β,β,h)

(
μ

∂F SK

∂y
(β, y + h)

∣∣∣∣
y=βμ

− μ2

2

)
(3.8)

and

∂F

∂β− (β,β, h) = min
μ∈Ω(β,β,h)

(
μ

∂F SK

∂y
(β, y + h)

∣∣∣∣
y=βμ

− μ2

2

)
. (3.9)

Suppose that F(β,β, h) is differentiable at β . If |Ω(β,β, h)| ≥ 3, then from Proposition 7 and Lemma 4, there exist
some μ1,μ2 ∈ Ω(β,β, h) ⊂ (−1,1) with |μ1| < |μ2| such that

μ1 = ∂F SK

∂y
(β, y + h)

∣∣∣∣
y=βμ1

and μ2 = ∂F SK

∂y
(β, y + h)

∣∣∣∣
y=βμ2

.
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From these two equations, (3.8), and (3.9), we obtain

∂F

∂β+ (β,β, h) ≥ 1

2
μ2

2 >
1

2
μ2

1 ≥ ∂F

∂β− (β,β, h), (3.10)

which contradicts to our assumption that F is differentiable. Hence, |Ω(β,β, h)| ≤ 2 and if μ1,μ2 ∈ Ω(β,β, h) are
distinct, then μ1 = −μ2. So (β,β) ∈ Bd . Conversely, suppose that (β,β) ∈ Bd . If |Ω(β,β, h)| = 1, then we are done.
If |Ω(β,β, h)| = 2 and μ1,μ2 ∈ Ω(β,β, h) with μ1 = −μ2, then from Lemma 4, (3.8), (3.9), and (3.10), we have
∂F
∂β+ (β,β, h) = ∂F

∂β− (β,β, h). So F(β,β, h) is differentiable at β and this completes the proof. �

Proof of Theorem 2. For any (β,β) ∈ B′
d, since h is centered, f (μ,β,β) is symmetric in μ and we may represent

F(β,β, h) as

F(β,β, h) = max
μ∈[0,1]

f (μ,β,β).

Let (β,β) ∈ B′
d . Then either Ω(β,β, h) = {0} or Ω(β,β, h) = {μ,−μ} for some μ 	= 0. This means that Ω(β,β, h)∩

[0,1] consists of a single element, say μ. By Danskin’s theorem we obtain

∂F

∂βp+ (β,β, h) = ∂F SK

∂βp

(β, βμ + h) = ∂F

∂βp− (β,β, h).

This proves that F(β,β, h) is differentiable with respect to every βp and from (2.9) Eq. (2.12) follows. Using Gaussian
integration by parts, we have

∂

∂βp

1

N
E lnZN(β,β, h) = βp

(
1 − E

〈
R

2p

1,2

〉)
.

By Griffith’s lemma, this implies that

∂F

∂βp

(β,β, h) = βp

(
1 − lim

N→∞ E
〈
R

2p

1,2

〉)

and from (2.12), we get (2.13). �

Proof of Theorem 3. Note that by Talagrand’s positivity, c > 0. From (2.13) and a continuity argument, for every
continuous function f on [0,1],

lim
N→∞ E

〈
f

(|R1,2|
)〉 =

∫ 1

0
f (q)νβ,βμ+h(dq). (3.11)

In particular, let f0 : [0,1] → R be the continuous function satisfying f0(x) = 1 if 0 ≤ x ≤ c′, f0(x) = (c − c′)−1(c −
x) if c′ < x < c, and f0(x) = 0 if c ≤ x ≤ 1. Then from (3.11),

lim
N→∞ E

〈
I
(|R1,2| ≤ c′)〉 ≤ lim

N→∞ E
〈
f0

(|R1,2|
)〉 ≤ νβ,βμ+h

([0, c)
) = 0. (3.12)

Define F(t) = F(β,β, th) and F SK(t) = F(β, th) for t ∈ R. Recall that since h is centered Gaussian, F SK(t) is
differentiable in t by [11]. Thus, the same argument as Theorem 2 implies that F(t) is differentiable at t = 1 and
so

lim
N→∞ E〈R1,2〉 =

∫ 1

0
qνβ,βμ+h(dq).
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On the other hand, letting f (x) = x and using (3.11),

lim
N→∞ E

〈
R−

1,2

〉 = 1

2

(
lim

N→∞ E
〈|R1,2|

〉 − lim
N→∞ E〈R1,2〉

)

= 1

2

(∫ 1

0
q dνβ,βμ+h(q) −

∫ 1

0
q dνβ,βμ+h(q)

)

= 0. (3.13)

Thus, from (3.12) and (3.13) and applying the Markov inequality, we obtain (2.15) since

lim
N→∞ E

〈
I
(
R1,2 ≤ c′)〉 ≤ lim sup

N→∞
E

〈
I
(|R1,2| ≤ c′)〉 + lim sup

N→∞
E

〈
I
(
R−

1,2 > c′)〉

≤ lim sup
N→∞

1

c′ E
〈
R−

1,2

〉

= 0.

From this and (3.11), we conclude (2.16) since for any continuous function f on [0,1],
lim

N→∞ E
〈
f

(|R1,2|
)〉 = lim

N→∞ E
〈
f (−R1,2)I (R1,2 < 0)

〉 + E
〈
f (R1,2)I (R1,2 ≥ 0)

〉

= lim
N→∞ E

〈
f (R1,2)I (R1,2 ≥ 0)

〉

= lim
N→∞ E

〈
f (R1,2)I (R1,2 < 0)

〉 + E
〈
f (R1,2)I (R1,2 ≥ 0)

〉

= lim
N→∞ E

〈
f (R1,2)

〉

for every continuous function f on [−1,1]. �

3.3. An application of the extended Ghirlanda–Guerra identities

This section is devoted to proving Theorem 4 using the EGG identities. Let (β,β) ∈ B′
d . Recall that from Proposition 3,

the EGG identities (2.17) hold under the assumption Eh2 	= 0. In the case of Eh2 = 0, we have the following weaker
identities that can be derived in the same way as Proposition 3: for each n and each continuous function ψ on R,

lim
N→∞ sup

f

∣∣∣∣nE
〈
ψ

(|R1,n+1|f
)〉 − E

〈
ψ

(|R1,2|
)〉

E〈f 〉 −
∑

2≤�≤n

E
〈
ψ

(|R1,�|
)
f

〉∣∣∣∣ = 0, (3.14)

where the supremum is taken over all (nonrandom) functions f on Σn
N with |f | ≤ 1. Let us remark that (2.17)

obviously implies (3.14).
Recall from Theorems 2 and 3 that the Parisi measure νβ,βμ+h is a probability measure defined [0,1] that describes

the limiting distribution of |R1,2| for both cases Eh2 = 0 and Eh2 	= 0. Let νN be the distribution of the array of all
overlaps (|R�,�′ |)�,�′≥1 under the Gibbs average E〈·〉. By compactness, the sequence (νN) converges weakly over
subsequences but, for simplicity of notation, we will assume that νN converges weakly to the limit ν. We will still
use the notations (|R�,�′ |)�,�′≥1 to denote the elements of the overlap array in the limit and, again, for simplicity of
notations we will denote by E the expectation with respect to the measure ν. Using these notations, (3.14) implies

Eψ
(|R1,n+1|

)
f = 1

n
Eψ

(|R1,2|
)
Ef + 1

n

n∑
�=2

Eψ
(|R1,�|

)
f (3.15)

for all bounded measurable functions f of the overlaps on n replicas and bounded measurable function ψ on R. We
will need the following essential lemma.



Mixed even-spin SK model with ferromagnetic interaction 77

Lemma 5. Let (β,β) ∈ B′
d . Suppose that A is any measurable subset of [0,1]. Set An = {|R�,�′ | ∈ A,∀� 	= �′ ≤ n}.

Then ν(An) ≥ νβ,βμ+h(A)n.

Proof. For any n ≥ 1, observe that

IAn+1 ≥ IAn −
∑
�≤n

I
(|R�,n+1| /∈ A

)
IAn. (3.16)

For all 1 ≤ � ≤ n, applying (3.15) and using symmetry of the overlaps,

EI
(|R�,n+1| /∈ A

)
IAn = 1

n
νβ,βμ+h

(
Ac

)
ν(An) + 1

n

n∑
�′ 	=�

EI
(|R�,�′ | /∈ A

)
IAn

= 1

n
νβ,βμ+h

(
Ac

)
ν(An)

and, therefore, from (3.16), ν(An+1) ≥ νβ,βμ+h(A)ν(An). Thus, an induction argument yields the result. �

Proof of Theorem 4. If Eh2 	= 0, then from the positivity of the overlap and the first statement, the second statement
follows immediately. So we only need to prove the first statement. If ε ≥ μ2, we are obviously done. Suppose that
ε < μ2 and the announced result fails. Then lim infN→∞ E〈I (|R1,2| ≥ μ2 − ε)〉 < 1 for some ε > 0 or equivalently,
0 < lim supN→∞ E〈I (|R1,2| < μ2 − ε)〉. Without loss of generality, we may assume that νβ,βμ+h is continuous at
μ2 −ε. Then νβ,βμ+h([0,μ2 −ε)) > 0 and from Lemma 5, ν(An) > 0 for every n, where An is defined in the statement
of Lemma 5 using A = [0,μ2 − ε). Let σ 1, . . . ,σ n be n replicas and a1, . . . , an ∈ {−1,1} such that a�m(σ �) =
|m(σ �)| for 1 ≤ � ≤ n. From the Cauchy–Schwarz inequality,

N
∑
�≤n

∣∣m(
σ �

)∣∣ = N
∑
�≤n

m
(
a�σ

�
) = 1 ·

∑
�≤n

a�σ
� ≤ √

N

∥∥∥∥
∑
�≤n

a�σ
�

∥∥∥∥, (3.17)

where ‖ · ‖ is the Euclidean distance in R
N. Notice that

∥∥∥∥
∑
�≤n

a�σ
�

∥∥∥∥
2

= nN +
∑

�	=�′≤n

a�a�′σ � · σ �′ ≤ Nn + N
∑

�	=�′≤n

|R�,�′ |. (3.18)

Combining (3.17) and (3.18),

∑
�≤n

∣∣m(
σ �

)∣∣ ≤
(

n +
∑

�	=�′≤n

|R�,�′ |
)1/2

. (3.19)

From this inequality, applying ν(An) > 0 together with the openness of An, we obtain

lim inf
N→∞ E

〈
I
(∣∣m(

σ 1)∣∣ + · · · + ∣∣m(
σ n

)∣∣ <
(
n + (

μ2 − ε
)
n(n − 1)

)1/2)〉
> 0. (3.20)

On the other hand, let us pick 0 < ε′ < ε and notice that for each 1 ≤ � ≤ n,

lim
N→∞ E

〈
I
(∣∣∣∣m(

σ �
)∣∣ − μ

∣∣ < μ − (
μ2 − ε′)1/2)〉 = 1.

We conclude, from this, (3.20), and the triangle inequality, that for each n ≥ 1, with nonzero probability,

n
(
μ2 − ε′)1/2 = n

(
μ − μ + (

μ2 − ε′)1/2) ≤
∑
�≤n

∣∣m(
σ �

)∣∣ <
(
n + (

μ2 − ε
)
n(n − 1)

)1/2
,

and this means ε < ε′, a contradiction. �
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3.4. Controlling the magnetization using the CW free energy

In this section, we will demonstrate how to control the magnetization quantitatively using the thermodynamic limit of
the free energy of the CW model. From this, we conclude the main results in Section 2.4. Recall that the external field
h in Section 2.4 is a centered Gaussian r.v. satisfying (2.20). First, let us establish a technical lemma that will be used
in Proposition 4.

Lemma 6. Suppose that h is centered Gaussian satisfying (2.20). Then βE1/ cosh2(β + h) < 1 for every β ≥ 0.

Let us remark that the technical condition (2.20) is only used here throughout the paper, while the inequality will
play a crucial role that ensures the validity of our main results. According to the simulation data, the inequality in
Lemma 6 should be also valid even without the assumption (2.20). However, the proof for this general case seems
much more involved and too distracted. For clarity, we will only focus on the h satisfying (2.20).

Proof of Lemma 6. Let β ≥ 0. We claim that cosh2 β/ cosh2(β + x) < exp(2|x|) for all x 	= 0. To see this, define
g(x) = 2(ln coshβ − ln cosh(β + x)). Then g(0) = 0 and g′(x) = −2 tanh(β + x). For each x, using mean value
theorem, we obtain

g(x) = g(0) + g′(x′)x = −2x tanh
(
β + x′) ≤ 2|x|

for some x′ ∈ (0, x) if x > 0 or x′ ∈ (x,0) if x < 0. This completes the proof of our claim and consequently, Lemma 6
follows from the assumption on h,

βE
1

cosh2(β + h)
= β

cosh2 β
E

cosh2 β

cosh2(β + h)
≤ β

cosh2 β
E exp

(
2|h|) < 1. �

Proof of Proposition 4. Recall from (2.21) that f (μ,β) is defined for μ ∈ [−1,1] and β ∈ (α,∞) for some α

satisfying αE1/ cosh2 h = 1. A simple computation yields the first three partial derivatives of f (μ,β) with respect to
μ:

∂f

∂μ
(μ,β) = β

(
E tanh(βμ + h) − μ

)
,

∂2f

∂μ2
(μ,β) = β

(
βE

1

cosh2(βμ + h)
− 1

)
, (3.21)

∂3f

∂μ3
(μ,β) = −2β3

E
tanh(βμ + h)

cosh2(βμ + h)
.

Let us recall a useful lemma from the proof of Proposition A.14.1 in [23]: Let φ be an increasing bounded function on
R satisfying φ(−y) = −φ(y) and φ′′(y) < 0 for y > 0. Then for every μ ≥ 0 and center Gaussian random variable z,

Eφ(z + μ)φ′(z + μ) ≥ 0.

Applying this lemma to φ(y) = tanh(y), we have ∂3f

∂μ3 < 0 for every μ > 0 from (3.21). It implies that ∂2f

∂μ2 (·, β) is

strictly decreasing on [0,1]. By the definition of α and Lemma 6, we also know that ∂2f

∂μ2 (0, β) > 0 and ∂2f

∂μ2 (1, β) < 0.

So ∂2f

∂μ2 (·, β) has a unique zero in (0,1) and so does ∂f
∂μ

(·, β) since ∂f
∂μ

(0, β) = 0 and ∂f
∂μ

(1, β) < 0. Let μ(β) ∈ (0,1)

be the zero of ∂f
∂μ

(·, β). Hence, ∂f
∂μ

(·, β) > 0 on (0,μ(β)) and ∂f
∂μ

(·, β) < 0 on (μ(β),1), which implies that in [0,1],
f (·, β) attains its unique global maximum at μ(β).

The continuity and differentiability of μ(·) follow from the implicit function theorem. It is then clear that f (μ(·), ·)
is continuous and differentiable. Since

E tanh
(
βμ(β) + h

) = μ(β), (3.22)
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by taking derivative on both sides, we obtain

(
μ(β) + βμ′(β)

)
E

1

cosh2(βμ(β) + h)
= μ′(β)

and so

μ′(β) = −βμ(β)
/(

∂2f

∂μ2

(
μ(β),β

))
E

1

cosh2(βμ(β) + h)
.

Since μ(β) is greater than the unique zero of ∂2f

∂μ2 (·, β) in (0,1), ∂2f

∂μ2 (μ(β),β) < 0 and this means that μ(·) is a
strictly increasing function. We also show the monotonicity of f (μ(·), ·) by using (3.22),

df

dβ

(
μ(β),β

) = (
μ(β) + βμ′(β)

)
E tanh

(
βμ(β) + h

) − μ(β)2

2
− βμ′(β)μ(β)

= (
μ(β) + βμ′(β)

)
μ(β) − μ(β)2

2
− βμ′(β)μ(β)

= 1

2
μ(β)2.

Finally, we check (2.22). First notice that the solution of E tanh(αx + h) = x for x ∈ [0,1] is unique and equals 0.

This can be verified by the same argument as in the first part of our proof. Thus, from (3.22),

E tanh
(
α lim

β→α+μ(β) + h
)

= lim
β→α+μ(β)

implies limβ→α+ μ(β) = 0. Since βμ(β) → ∞ as β → ∞, we obtain, by the dominated convergence theorem,

lim
β→∞μ(β) = lim

β→∞ E tanh
(
βμ(β) + h

) = 1.

Since by the monotonicity of μ(·) and the mean value theorem

f
(
μ(β),β

) − f
(
μ

(
β ′), β ′) ≥ μ(β ′)2

2

(
β − β ′)

for β > β ′ > α, this implies that limβ→∞ f (μ(β),β) = ∞ and completes our proof. �

Proof of Proposition 5. Notice that E tanh(βμ + h) is a strictly increasing function in μ since d
dμ

E tanh(βμ + h) =
βE1/ cosh2(βμ + h) > 0 and that μ(β) = E tanh(βμ(β) + h) since μ(β) ∈ (0,1) is the maximizer of f (·, β) on
[0,1]. Thus, for β > βu,

d

dβ

(
f

(
μ(β),β

) − f (u,β)
) = 1

2

(
μ(β)2 + u2) − uE tanh(βu + h)

>
1

2

(
μ(β)2 + u2) − uE tanh

(
βμ(β) + h

)

= 1

2

(
μ(β)2 + u2) − uμ(β)

= 1

2

(
μ(β) − u

)2

> 0

and this implies that δu is strictly increasing. Since μ(·) is strictly increasing, from this inequality, we can further
conclude that limβ→∞ δu(β) = ∞. �
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Proof of Theorem 5. Recall the definitions for f (μ,β) and f (μ,β,β) from (2.21) and (3.7). Then f (μ,β,0) =
f (μ,β). We claim that for every (β,β) and μ ∈ [−1,1], we have

f (μ,β) ≤ f (μ,β,β) ≤ f (μ,β) + 1

2
ξ(1).

To prove this, let Eg be the expectation on the randomness of the disorder g and Eh be the expectation on the random-
ness of (hi)i≤N. Then we can rewrite

1

N
E lnZSK

N (β,β, h) − 1

N
E lnZSK

N (β,0, h) = 1

N
EhEg ln

〈
expH SK

N (σ )
〉CW

,

where 〈·〉CW is the Gibbs average for the CW model. From Jensen’s inequality and using Eg expH SK
N (σ ) =

exp(Nξ(1)/2) and EgH
SK
N (σ ) = 0 for every σ ∈ ΣN, the proof for our claim is completed since

EhEg ln
〈
expH SK

N (σ )
〉CW ≤ Eh ln

〈
Eg expH SK

N (σ )
〉CW = 1

2
Nξ(1)

and

EhEg ln
〈
expH SK

N (σ )
〉CW ≥ EhEg

〈
H SK

N (σ )
〉CW = 0.

Now, suppose (β,β) ∈ Ru. Recall from the definition of Ru, β > βu and ξ(1) ≤ 2δu(β). From Proposition 4, since
μ(·) is strictly increasing, we have μ(β) > μ(βu) = u for every β > βu. On the other hand, since f (·, β) is strictly
increasing on [0,μ(β)], it follows that from the definition of Ru and our claim,

f (μ,β,β) ≤ f (μ,β) + 1

2
ξ(1)

< f (u,β) + 1

2
ξ(1)

= f
(
μ(β),β

) − δu(β) + 1

2
ξ(1)

≤ f
(
μ(β),β,β

) − δu(β) + 1

2
ξ(1)

< f
(
μ(β),β,β

)

for every μ ∈ [0, u]. Since h is centered, f (·, β) and f (·, β,β) are even functions on [−1,1]. Thus, we may also
conclude f (−μ,β,β) < f (−μ(β),β,β) for μ ∈ [0, u], which means

Ω(β,β, h) = Argmax
μ∈[−1,1]

f (μ,β,β) ⊂ [−1,−u) ∪ (u,1]

and we are done. �

The following fundamental lemma will be used in the proof of Proposition 6.

Lemma 7. Suppose that (XN) is a sequence of random variables with 0 ≤ XN ≤ 1 for each N. If limN→∞ EXN =
1/2 and limN→∞ EXN(1 − XN) = 0, then {XN } converges to a Bernoulli(1/2) r.v. weakly.

Proof. First we claim that EXn
N → 1/2 for each n ≥ 1 by induction. From the given condition, this holds for n = 1.

Suppose that this is true for some n ≥ 1. Then using the fact that 0 ≤ XN ≤ 1, we obtain

∣∣EXn+1
N − EXn

N

∣∣ = EXn
N(1 − XN) ≤ EXN(1 − XN) → 0.
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Therefore, limN→∞ EXn+1
N = limN→∞ EXn

N = 1/2 and this completes the proof of our claim. Now, by using the
dominated convergence theorem and our claim, the announced statement follows since

lim
N→∞ E exp(itXN) = lim

N→∞

∞∑
n=0

(it)n

n! EXn
N =

∞∑
n=0

(it)n

n! lim
N→∞ EXn

N

= 1

2
+ eit

2
= E exp(itX),

where X is Bernoulli(1/2). �

Proof of Proposition 6. From the definition of Ru, Lemma 4, and Theorem 5, there exists some μ ∈ (u,1) such that
Ω(β,β,0) = {μ,−μ}. Since (−u,u) has a positive distance to Ω(β,β, h), Proposition 1 implies

lim
N→∞

〈
I
(|m| ≥ u

)〉 = 1. (3.23)

If Eh2 = 0, then 〈I (m ∈ A)〉 = 〈I (m ∈ −A)〉 for every A ⊂ [−1,1], where −A := {−x: x ∈ A}. Thus, the first
statement follows from (3.23). Next, let Eh2 	= 0 and 1/2 < u < 1. Recall that σ 1 and σ 2 are two configurations
sampled independently from the Gibbs measure GN with respect to the same realization g. Set

m1 = m1
(
σ 1) = 1

N

∑
i≤N

σ 1
i and m2 = m2

(
σ 2) = 1

N

∑
i≤N

σ 2
i .

We claim that

{
m1 ∈ [u,1],m2 ∈ [−1,−u]} ⊂ {R1,2 ≤ 1 − 2u}. (3.24)

Set

P +
1 = {

1 ≤ i ≤ N : σ 1
i = 1

}
, P −

1 = {
1 ≤ i ≤ N : σ 1

i = −1
}
,

P +
2 = {

1 ≤ i ≤ N : σ 2
i = 1

}
, P −

2 = {
1 ≤ i ≤ N : σ 2

i = −1
}
.

Suppose m1 ∈ [u,1] and m2 ∈ [−1,−u]. Let k be the smallest integer such that u ≤ k/N. Since 2|P +
1 |−N = |P +

1 |−
|P −

1 | ≥ k and 2|P −
2 | − N = |P −

2 | − |P +
2 | ≥ k, it implies |P +

1 | ≥ (k + N)/2 and |P −
2 | ≥ (k + N)/2. Consequently,

∣∣P +
1 ∩ P −

2

∣∣ = ∣∣P +
1

∣∣ − ∣∣P +
1 ∩ P +

2

∣∣ ≥ ∣∣P +
1

∣∣ − ∣∣P +
2

∣∣
≥ k + N

2
−

(
N − k + N

2

)
≥ k

and our claim (3.24) follows from

NR1,2 =
∑
i≤N

σ 1
i σ 2

i

=
∑

P+
1 ∩P+

2

σ 1
i σ 2

i +
∑

P−
1 ∩P−

2

σ 1
i σ 2

i +
∑

P+
1 ∩P−

2

σ 1
i σ 2

i +
∑

P−
1 ∩P+

2

σ 1
i σ 2

i

= ∣∣P +
1 ∩ P +

2

∣∣ + ∣∣P −
1 ∩ P −

2

∣∣ − (∣∣P +
1 ∩ P −

2

∣∣ + ∣∣P −
1 ∩ P +

2

∣∣)
≤ ∣∣P +

2

∣∣ + ∣∣P −
1

∣∣ − ∣∣P +
1 ∩ P −

2

∣∣
≤

(
N − k + N

2

)
+

(
N − k + N

2

)
− k
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= N − 2k

≤ N(1 − 2u).

Now, set XN = 〈I (m ≥ u)〉. From the independence of m1 and m2, u > 1/2, (3.24), the positivity of the overlap, and
then (3.23), we obtain

E
[
XN(1 − XN)

] = E
[〈
I (m1 ≥ u)

〉(〈
I (m2 ≤ −u)

〉 + 〈
I
(|m2| < u

)〉)]
≤ E

[〈
I (m1 ≥ u)

〉〈
I (m2 ≤ −u)

〉] + E
[〈
I
(|m2| < u

)〉]
≤ E

〈
I (R1,2 ≤ 1 − 2u)

〉 + E
[〈
I
(|m2| < u

)〉]
→ 0.

On the other hand, since h is centered, it is easy to derive E〈I (m ≥ u)〉 = E〈I (m ≤ −u)〉 and from (3.23), we
deduce EXN → 1/2. Consequently, from Lemma 7, (XN) converges weakly to a Bernoulli(1/2) r.v. Write XN =
〈I (|m − μ| ≤ ε)〉 + YN for

YN := −〈
I
(|m − μ| ≤ ε,m < u

)〉 + 〈
I
(|m − μ| > ε,m ≥ u

)〉
.

If 0 < ε < μ, then

|YN | ≤ 〈
I (0 ≤ m ≤ u)

〉 + 〈
I
(|m − μ| > ε,m ≥ u

)〉 → 0 a.s.

and it follows that 〈I (|m − μ| ≤ ε)〉 converges weakly to a Bernoulli(1/2) r.v. Since

lim
N→∞

〈
I
(|m − μ| ≤ ε, |m + μ| ≤ ε

)〉 = 1

a.s., we also obtain that 〈I (|m + μ| ≤ ε)〉 converges weakly to a Bernoulli(1/2) r.v. and this completes the proof of
the second announced result. �
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