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Abstract. This paper focuses on directed polymers pinned at a disordered and correlated interface. We assume that the disorder
sequence is a q-order moving average and show that the critical curve of the annealed model can be expressed in terms of the
Perron–Frobenius eigenvalue of an explicit transfer matrix, which generalizes the annealed bound of the critical curve for i.i.d.
disorder. We provide explicit values of the annealed critical curve for q = 1 and q = 2 and a weak disorder asymptotic in the
general case. Following the renewal theory approach of pinning, the processes arising in the study of the annealed model are
particular Markov renewal processes. We consider the intersection of two replicas of this process to prove a result of disorder
irrelevance (i.e. quenched and annealed critical curves as well as exponents coincide) via the method of second moment.

Résumé. Dans cet article nous étudions le modèle des polymères dirigés accrochés à une interface désordonnée et corrélée. Nous
supposons que le désordre est une moyenne mobile d’ordre q et nous montrons que la courbe critique du modèle annealed peut
s’exprimer en fonction de la valeur propre de Perron–Frobenius d’une matrice de transfert explicite, ce qui généralise la borne
annealed de la courbe critique dans le cas d’un désordre i.i.d. Nous donnons des valeurs explicites de la courbe annealed pour
q = 1 et q = 2 et un équivalent à faible désordre dans le cas général. Du point de vue de la théorie du renouvellement, les processus
qui interviennent dans l’étude du modèle annealed sont des processus de renouvellement markoviens particuliers. Nous considérons
l’intersection de deux répliques de ces processus pour prouver un résultat de non-pertinence du désordre (les courbes ainsi que les
exposants critiques annealed et quenched coïncident) via la méthode du moment d’ordre deux.
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1. Introduction

Polymers are macromolecules which are modelized by self-avoiding or directed random walks. Take for instance
S = (Sn)n≥0 a random walk on Z starting at 0 and such that |Sn+1 − Sn| ≤ 1. By polymer of dimension 1 + 1 and size
N we will mean a realization of the directed random walk {(n,Sn)}0≤n≤N , where each segment [(n,Sn), (n+1, Sn+1)]
stands for a constitutive unit, called monomer.

Suppose now that a reward h is given to a configuration {(n,Sn)}0≤n≤N each time it touches the interface, i.e. each
time Sn = 0. One can then consider a distribution on polymers of size N whose density with respect to the initial
distribution is equal, up to a renormalizing constant, to the Boltzmann factor

exp
(
h × Card

{
n ∈ {1, . . . ,N} | Sn = 0

})
.

Depending on the sign of h, this distribution favorizes or penalizes polymers pinned to the interface, and letting N go
to infinity, the model, called homogeneous pinning model, undergoes a localization/delocalization transition.
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Pinning models can also be used to study the interaction between two polymers, since the difference of two random
walks is still a random walk. One can think for example of the two complementary strands of a DNA molecule: in
this case, the values of n for which Sn = 0 are the sites where the two strands are pinned, and the delocalization
transition corresponds to DNA denaturation (or melting). One could argue that the binding strength between the two
strands actually depends on the base pair, which is A–T or G–C. This corresponds to looking at a disordered model,
i.e. a model in which the reward is n-dependent. An assumption usually made is that the reward at site n writes

hn = h + βωn,

where h ∈ R, β ≥ 0 and ω = (ωn)n≥0 is a frozen realization of a sequence of independent standard Gaussian random
variables. The space of parameters is then partitioned in localized and delocalized phases, separated by a critical curve
β �→ hc(β). The presence of disorder has important consequences on the model. For example, one can show that there
is localization for h < 0 provided that disorder is strong enough (i.e. β large enough). If we consider the annealed
model (i.e. the model in which the Boltzmann factor is averaged over disorder), we have the following lower bound:

hc(β) ≥ − logP(τ1 < +∞) − β2

2
, (1)

where τ1 is the first return time of S to 0. In the last few years, many rigorous results were given on relevance of
disorder, which in particular answer the following question: when is (1) an equality? For these questions, as well as
classical results on homogeneous and disordered pinning models, we refer to [10,11,19] and references therein.

In this paper we remove the independence assumption on ω and study the effect of correlations on the right-hand
side of (1), i.e. on the annealed critical curve. This is partly motivated by the long-range correlations in DNA sequence,
see [5] and [14] on this topic. We also mention [2] and [12] where the effect of sequence correlation is investigated, in
somewhat different contexts. In [2], the authors study the effect of a pulling force applied to the extremity of a DNA
strand on the number of broken base pairs (unzipping of DNA) in two correlated scenarii: integrable and nonintegrable
correlations. In [12], the authors consider the effect of sequence correlation on the bubble size distribution: by bubbles
we mean broken base pairs, and if we keep in mind the analogy with pinning models, it corresponds to the excursions
of the directed random walk between two visits at 0.

The disorder sequence in our model is a finite-order moving average of an i.i.d. sequence, which is the simplest
correlated sequence one can look at, and the reason for this choice will be clearer further in the text. This will be
defined in Section 2, as well as the renewal sequence τ = (τn)n≥0 (the contact points) and the polymer measures.
In Section 3, we introduce classical notions for these models: the free energy, the phase diagram and the (quenched
and annealed) critical curve of the model. In the proof of Theorem 3.1, a new homogeneous model emerges, whose
hamiltonian does not only depends on the number of renewal points but also on their mutual distances. In Section 4
we are interested in the annealed critical curve. The main results are Theorem 4.1, which states that the difference
between the annealed critical curve in the correlated case and the annealed critical curve in the i.i.d. case can be
expressed in terms of the Perron–Frobenius eigenvalue of an explicit transfer matrix, and Proposition 4.2, which gives
a weak disorder asymptotic of the annealed critical curve. Note that the appearance of Perron–Frobenius eigenvalues
is reminiscent of results on periodic copolymers, see [4]. In a second part of the paper (Section 5, Theorem 5.1),
we show that under certain conditions (the same as i.i.d. disorder actually) quenched and critical curves (as well as
exponents) coincide at high temperatures (small β). This is the regime of disorder irrelevance. We use the second
moment method, which will lead us to study the exponential moments of two replicas of a certain Markov renewal
process.

2. The model

2.1. Contact points between the polymer and the line

We follow the renewal theory approach of pinning. Let τ be a discrete renewal process such that τ0 = 0 and τn =∑n
k=1 Tk , where the inter-arrival times (or jumps) Tk are i.i.d. random variables taking values in N

∗. Furthermore,
K(n) = P(T1 = n) = L(n)

n1+α where α ≥ 0 and L is a slowly varying function. Without losing in generality, we can
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assume that
∑

n≥1 K(n) = 1, i.e. τ is recurrent. We distinguish between positive recurrence (α > 1 or α = 1 and L

is such that
∑

n≥1 L(n)/n < +∞) and null recurrence (α ∈ [0,1) or α = 1 and L is such that
∑

n≥1 L(n)/n = +∞).
We will denote by δn the indicator of the event {n ∈ τ } = ⋃

k≥0{τk = n} so that if ıN := sup{k ≥ 0 | τk ≤ N} is the

number of renewal points before N , then ıN = ∑N
n=1 δn. The letter E will denote expectation with respect to the

renewal process.
We also suppose that for all n ≥ 1, K(n) > 0 (which implies aperiodicity). This assumption seems quite restrictive,

but will be necessary in Section 4.2. If this condition on K were not fulfilled, we would simply have to reduce the
state space of the matrices defined in Section 4 to {n ≥ 1 | K(n) > 0}q and to assume that K is aperiodic.

2.2. Finite range correlations

Let (εn)n∈Z be a collection of independent standard Gaussian random variables (independent from τ ), q ≥ 1 a fixed
integer, and (a0, . . . , aq) ∈ R

q+1 such that a2
0 + · · · + a2

q = 1. Define the disorder sequence ω = (ωn)n≥0 by the q-
order moving average ωn = a0εn + · · · + aqεn−q . Then ω is a stationary centered Gaussian process and its covariance
function ρn := Cov(ω0,ωn) satisfies ρ0 = 1 and n > q ⇒ ρn = 0. The reverse is true: if ω is a stationary Gaussian
process with finite range correlations, its spectral distribution is absolutely continuous (w.r.t. Lebesgue measure), so
ω can be represented as a moving average (see [8], Chapter X, paragraph 8, on this subject). Therefore, assuming that
ω is a stationary Gaussian process with finite range correlations is the same as assuming it is a finite order Gaussian
moving average. From now, the notations P and E will be associated to disorder.

2.3. The quenched and annealed polymer measures

We define the (constraint) quenched polymer measures, which depend on two parameters, the averaged pinning reward
h ∈ R and the amplitude of disorder β ≥ 0:

dPN,β,h,ω

dP
= 1

ZN,β,h,ω

exp

(
N∑

n=1

(βωn + h)δn

)
δN , (2)

where

ZN,β,h,ω = E

(
exp

(
N∑

n=1

(βωn + h)δn

)
δN

)
(3)

is the partition function. We also define its annealed counterpart:

d(P ⊗ P)N,β,h

d(P ⊗ P)
= 1

Za
N,β,h

exp

(
N∑

n=1

(βωn + h)δn

)
δN , (4)

where

Za
N,β,h = EZN,β,h,ω.

3. Generalities

3.1. Free energy, phase diagram, and critical curve

We give some results which are well-known for i.i.d. disorder, and which can be generalized to ergodic disorder (see
[10], Theorem 46, p. 96).
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Proposition 3.1. For all h ∈ R and all β ≥ 0, there exists a nonnegative constant F(β,h) such that,

F(β,h) = lim
N→+∞

1

N
logZN,β,h,ω

P-almost surely and in L1(P).

Proof. We use the Markov property as in [10], Proposition 42, p. 91, or [11], Eq. (3.1), p. 12, to write

logZN+M,β,h,ω ≥ logZM,β,h,ω + logZN,β,h,θMω,

where θ is the shift operator. We then use Kingman’s subadditive theorem (see [17]). In our case, ω is ergodic because

ρn
n→∞→ 0 (see [6], Chapter 14, Section 2, Theorem 2). �

The phase diagram R+ × R is then divided into a localized phase

L = {
(β,h) | F(β,h) > 0

}
and a delocalized one

D = {
(β,h) | F(β,h) = 0

}
.

For all β , define the critical point hc(β) := sup{h ∈ R | F(β,h) = 0}. By convexity of F (as the limit of convex
functions), D is convex so the critical curve β �→ hc(β) is concave. Moreover, it is nonincreasing and hc(0) = 0. For
detailed arguments, we refer to [10].

3.2. Annealed free energy and annealed bound

We now define the annealed free energy. As we shall see below (in (6)), the first difference that occurs when dealing
with correlated disorder is that integrating on ω the Boltzmann factor does not yield a classical homogeneous model.

Theorem 3.1. For all h ∈ R and all β ≥ 0, there exists a nonnegative constant Fa(β,h) such that,

Fa(β,h) = lim
N→+∞

1

N
logZa

N,β,h.

Moreover, if ha
c (β) := sup{h ∈ R | Fa(β,h) = 0} then

hc(β) ≥ ha
c (β). (5)

Proof. First, we compute the variance (with respect to ω) of
∑N

n=1 ωnδn. For every realization of τ , we have:

Var

(
N∑

n=1

ωnδn

)
=

N∑
i,j=1

Cov(ωi,ωj )δiδj =
N∑

n=1

δn + 2
∑

1≤i<j≤N

ρj−iδiδj . (6)

Then,

Za
N,β,h = E

(
exp

((
h + β2

2

) N∑
n=1

δn + β2
N−1∑
i=1

N−i∑
k=1

ρkδiδi+k

)
δN

)
.

Now, we want some sort of superadditivity for the annealed partition function. For a polymer of size N + M , observe
that ∑

1≤i<j≤N+M

ρj−iδiδj =
∑

1≤i<j≤N

ρj−iδiδj +
∑

N+1≤i<j≤N+M

ρj−iδiδj +
∑

1≤i≤N<j≤N+M

ρj−iδiδj .
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Conditioned on the event {N ∈ τ }, the second term has the same law as
∑

1≤i<j≤M ρj−iδiδj . Moreover, the third term
is greater than a constant C only depending only ρ and q . We can then write

Za
N+M,β,h ≥ E

(
exp

((
h + β2

2

)N+M∑
n=1

δn + β2
∑

1≤i<j≤N+M

ρj−iδiδj

)
δNδN+M

)
≥ eCβ2

Za
N,β,hZ

a
M,β,h.

Multiplying both sides by eCβ2
, taking the logarithm and using standard subadditive arguments, we get the conver-

gence of the sequence ( 1
N

logZa
N,β,h)N≥1. As in [10], Proposition 51, we use Jensen’s inequality to prove that

F(β,h) ≤ Fa(β,h), (7)

which in turn yields the annealed bound (5). �

When disorder is i.i.d., (5) becomes hc(β) ≥ hc(0) − β2/2 := ha
c (β) and the question of knowing whether this is

an equality was studied in several papers and monographs (for example, [10,11,19] and references therein) where we
learn that the answer depends on the values of α and β .

In the next subsection, the effect of correlations on ha
c will be studied.

4. The annealed critical curve

4.1. The result for q = 1 and the reason why the technique used does not apply to q > 1

Proposition 4.1. If q = 1 then we have

ha
c (β) = −β2

2
− log

(
1 + K(1)

(
eρ1β

2 − 1
))

.

Proof. If q = 1, equality (6) gives:

Za
N,β,h = E

(
exp

((
h + β2

2

)
ıN + ρ1β

2
N−1∑
n=1

δnδn+1

)
δN

)
.

The energetic contribution of a jump can only take two values: h+ (2ρ1 + 1)β2/2 if the jump has size 1 and h+β2/2
otherwise. The rest of the proof is a slight modification of the proof of [10], Proposition 11, except we must consider
K(q=1) with K(q=1)(1) := eρ1β

2
K(1) and K(q=1)(n) := K(n) if n > 1. �

If q ≥ 2, the situation is more complicated because in this case we must consider the energetic contribution of a
q-tuple of jumps instead of one of a single jump. For example, if q = 2, the energetic contribution of a jump of size 1
can be h + (1 + 2ρ1)β

2/2 or h + (1 + 2ρ1 + 2ρ2)β
2/2, depending on the value of the jump just before. This idea of

looking at the sequence of q-tuples of consecutive inter-arrival times is developed in the next section.

4.2. An auxiliary Markov chain and the transfer matrix

From now we assume q ≥ 2. We will denote by t = (t1, . . . , tq) a q-tuple in (N∗)q and if (tn)n≥1 is a sequence
of integers, then tn := (tn, . . . , tn+q−1). The projection on the first coordinate t �→ t1 will be denoted by π1. Let G

be a function defined on such q-tuples by G(t) = ∑q

k=1 ρt1+···+tk , and which should be interpreted like this: if t is
the q-tuple of the inter-arrival times of q + 1 consecutive renewal points on the interface, then G(t) gives the total
contribution of correlations between disorder at theses points.

Notice that when we compute the value of G for some q-tuple of inter-arrival times, any inter arrival time strictly
greater than q “does not count.” To put it more precisely, we can consider a “cemetery state,” denoted by �, and define
for all t ∈ N

∗ and t ∈ (N∗)q , t∗ := t1{t≤q} + �1{t>q} and t∗ = (t∗1 , . . . , t∗q ). Then G can be considered as a function of
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t∗ instead of t , if we adopt the following natural conventions: ρ� = 0 and for all t ∈ {1, . . . , q, �}, � + t = t + � = �.
From now we will use the following notations: E = {1, . . . , q, �} and K(�) = ∑

n>q K(n).
In the following we will write s � t (resp. s∗ � t∗) if for all i ∈ {2, . . . , q}, si = ti−1 (resp. s∗

i = t∗i−1). We now
make the following remark: the sequence of q-tuples (T n)n≥1 is a Markov chain on a countable state space, and its
transition probability from state s = (s1, . . . , sq) to state t = (t1, . . . , tq) writes

Q(s, t) := K(tq)1{s�t}.

Note that Q is irreducible because of the positiveness of the K(n)’s. We now define the nonnegative matrices Qβ and
Q∗

β ,which will play the role of transfer matrices, by

Qβ(s, t) = eβ2G(t)K(tq)1{s�t}

and

Q∗
β

(
s∗, t∗

) = eβ2G(t∗)K
(
t∗q

)
1{s∗�t∗}.

We will write Q∗ instead of Q∗
0. Since Q∗

β is an irreducible nonnegative matrix on the finite state space Eq , we
know by the Perron–Frobenius theorem that there exists a Perron–Frobenius eigenvalue λ(β) and an associated right
eigenvector ν∗

β = (ν∗
β(x))x∈Eq with positive components (see [15]).

4.3. Statement of the results

We are now ready to state our main results. The first one expresses the annealed critical curve in terms of the Perron–
Frobenius eigenvalue of the transfer matrix Q∗

β .

Theorem 4.1. For all α ≥ 0, for all β ≥ 0,

ha
c (β) = −β2

2
− logλ(β).

It seems difficult to give a nice explicit expression of λ(β), since it is the Perron–Frobenius eigenvalue of a matrix
of size (q + 1)q . For q = 2, we have computed

ha
c (β) = −β2

2
− logφ(β) − log

(
1 + √

1 − ψ(β)/φ(β)2

2

)
,

where

φ(β) = 1 + K(1)
(
e(ρ1+ρ2)β

2 − 1
) + K(2)

(
eρ2β

2 − 1
)
,

ψ(β) = 4K(1)
(
1 − K(1)

)
eρ1β

2(
eρ2β

2 − 1
)(

1 + K(2)

1 − K(1)

(
eρ2β

2 − 1
))

.

In the general case, the asymptotic behaviour of the annealed critical curve for weak disorder can be explicited:

Proposition 4.2. We have

ha
c (β)

β→0∼ −
(

1 + 2
q∑

n=1

ρnP (n ∈ τ)

)
β2

2
.

Before going into details, we outline the proof of Theorem 4.1. First, we introduce in Lemma 4.1 new Markov
transition kernels built from the transfer matrices and an eigenvector associated to λ(β). From these we give a new
law for the sequence of q-tuples of consecutive inter-arrival times, to which we associate what could be called a “q-
correlated” renewal process. This process is in fact a particular Markov renewal process (these are processes in which
the return times are not necessarily i.i.d., but driven by a Markov chain, see [3] on this subject). With Lemma 4.4, we
link the annealed free energy of our initial model to the homogeneous free energy of the new “q-correlated” renewal
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process. This will be the starting point of the proof of Theorem 4.1. Note that for positive recurrent renewal processes
we give a shorter proof than in the general case.

4.4. A “q-correlated” renewal process related to the model

For all q-tuples t , define νβ(t) = ν∗
β(t∗).

Lemma 4.1. Q̃β(s, t) := Qβ(s,t)νβ (t)

λ(β)νβ(s)
and Q̃∗

β(s∗, t∗) := Q∗
β(s∗,t∗)ν∗

β(t∗)
λ(β)ν∗

β(s∗) are Markov transition kernels.

Proof. For Q̃∗
β , the result is a direct consequence of the relation Q∗

βν∗
β = λ(β)ν∗

β and of the positiveness of λ(β) and

νβ . For Q̃β , we write for all s = (s1, . . . , sq),∑
t

Qβ(s, t)νβ(t) =
∑
t≥1

eβ2G(s2,...,sq ,t)K(t)νβ(s2, . . . , sq, t) =
∑
t≥1

eβ2G(s∗
2 ,...,s∗

q ,t∗)K(t)ν∗
β

(
s∗

2 , . . . , s∗
q , t∗

)

=
∑
t∗∈E

eβ2G(s∗
2 ,...,s∗

q ,t∗)K
(
t∗

)
ν∗
β

(
s∗

2 , . . . , s∗
q , t∗

)
= λ(β)ν∗

β

(
s∗)

= λ(β)νβ(s).

The result follows in the same way as for Q̃∗
β . �

Since Q̃∗
β is a finite irreducible transition matrix (it has the same incidence matrix as Q∗

β , which is irreducible), it
has a unique invariant probability measure that we denote by μ∗

β . If we define μβ a measure on (N∗)q by μβ(t) =
K(t1)
K(t∗1 )

· · · K(tq )

K(t∗q )
μ∗

β(t∗), then

Lemma 4.2. μβ is the invariant probability of Q̃β .

Proof. By a direct computation, μβ is a probability. Now we prove that it is invariant. For all t ∈ (N∗)q , we have

∑
s

μβ(s)Q̃β(s, t) = λ(β)−1eβ2G(t)νβ(t)K(tq)
∑
s≥1

μβ(s, t1, . . . , tq−1)

νβ(s, t1, . . . , tq−1)

= λ(β)−1eβ2G(t∗)ν∗
β

(
t∗

)
K(tq)

∑
s≥1

K(s)K(t1) · · ·K(tq−1)

K(s∗)K(t∗1 ) · · ·K(t∗q−1)

μ∗
β(s∗, t∗1 , . . . , t∗q−1)

ν∗
β(s∗, t∗1 , . . . , t∗q−1)

= λ(β)−1eβ2G(t∗)ν∗
β

(
t∗

)
K

(
t∗q

) μβ(t)

μ∗
β(t∗)

∑
s≥1

K(s)

K(s∗)
μ∗

β(s∗, t∗1 , . . . , t∗q−1)

ν∗
β(s∗, t∗1 , . . . , t∗q−1)

= λ(β)−1eβ2G(t∗)ν∗
β

(
t∗

)
K

(
t∗q

) μβ(t)

μ∗
β(t∗)

∑
s∗∈Eq

μ∗
β(s∗, t∗1 , . . . , t∗q−1)

ν∗
β(s∗, t∗1 , . . . , t∗q−1)

= μβ(t),

where for the last equality we use the fact that μ∗
β is the invariant probability of Q̃∗

β . �

We define a new law on the interarrival times (Tn)n≥1, denoted by Pβ , by the following relations:

Pβ(T1 = t1, . . . , Tq = tq) =
q∏

k=1

K(tk)
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and for all k ≥ 0

Pβ(Tk+q+1 = tq+1|Tk+1 = t1, . . . , Tk+q = tq) = Q̃β

(
(t1, . . . , tq), (t2, . . . , tq+1)

)
.

To determine Tk+q+1 conditionnally to the past, only T ∗
k+1 is relevant (and not T k+1) since it can be checked that

Pβ(Tk+q+1 = tq+1|Tk+1 = t1, . . . , Tk+q = tq) = Q̃β

((
t∗1 , . . . , t∗q

)
,
(
t∗2 , . . . , t∗q+1

)) × K(tq+1)

K(t∗q+1)

= Pβ

(
Tk+q+1 = tq+1|T ∗

k+1 = t∗1 , . . . , T ∗
k+q = t∗q

)
.

Under Pβ , (τn)n≥0 is then a (delayed) Markov renewal process with Markov modulating chain (T ∗
k−q)k≥q+1, and with

the following semi-Markov kernel: for all n ≥ 1, x, y ∈ Eq ,

Pβ

(
Tk+q+1 = n,T ∗

k+2 = y|T ∗
k+1 = x

) = Q̃∗
β(x, y)

K(n)

K(yq)
1{n∗=yq }.

In the few lines above, we have used the terms “delayed” and “semi-Markov kernel,” that we clarify now. First, if τ =
(τn)n≥0 is a Markov renewal process starting at τ0 = 0, m a fixed positive integer and T1, . . . , Tm N

∗-valued random
variables, then we call the sequence τ̂ = (τ̂n)n≥0 defined by τ̂0 = 0 and for n ≥ 1, τ̂n = ∑min(n,m)

k=1 Tk + τn−m1{n≥m},
a delayed Markov renewal process. In our case, the delay is the sum of the q first interarrival times. We also use the
term “semi-Markov kernel,” as in [3], Part B, chapter VII, Paragraph 4, to refer to the kernel of a Markov renewal
process, i.e. the joint probabilities of modulating chain transitions and interarrival times.

Lemma 4.3. For all h ∈ R and all β ≥ 0,

Fa(β,h) = lim
N→+∞

1

N
logE

(
e(h+β2/2)ıN+β2 ∑ıN

n=1 G(T n)δN

)
.

Proof. On one hand, we have by integrating over disorder the partition function:

Za
N,β,h = E

(
exp

(
ıN

(
h + β2

2

)
+ β2

∑
1≤i<j≤N

ρj−iδiδj

))

= E

(
exp

(
ıN

(
h + β2

2

)
+ β2

N−1∑
i=1

N−i∑
k=1

ρkδiδi+k

))
.

On the other hand,
∑ıN

n=1 G(T n) = ∑N
i=1

∑q

k=1 ρkδiδi+k . We prove the lemma by showing that there exists a constant
C(ρ,q) such that∣∣∣∣∣

ıN∑
n=1

G(T n) −
N−1∑
i=1

N−i∑
k=1

ρkδiδi+k

∣∣∣∣∣ ≤ C(ρ,q).

Indeed,

N∑
i=1

q∑
k=1

ρkδiδi+k =
N−1∑
i=1

q∑
k=1

ρkδiδi+k +
q∑

k=1

ρkδNδN+k

=
N−1∑
i=1

N−i∑
k=1

ρkδiδi+k +
q∑

k=1

ρkδNδN+k +
N−1∑

i=N−q+1

q∑
k=N−i+1

ρkδiδi+k,

where the second term is bounded in absolute value by q × maxi=1,...,q |ρi | and the third term by q(q+1)
2 ×

maxi=1,...,q |ρi |. �
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Lemma 4.4. For all h ∈ R and all β ≥ 0,

Fa(β,h) = lim
N→+∞

1

N
logEβ

(
e(h+β2/2+logλ(β))ıN δN

)
.

Proof. By decomposing on the possible values of ıN , we have on one hand:

E
(
e(h+β2/2)ıN+β2 ∑ıN

n=1 G(T n)δN

)
=

N∑
n=1

e(h+β2/2)n
∑

t1,...,tn
t1+···+tn=N

eβ2 ∑n
k=1 G(tk)Q(t1, t2) · · ·Q(tn−1, tn)K

⊗q(t1)

=
N∑

n=1

e(h+β2/2+logλ(β))n

λ(β)n

∑
t1,...,tn

t1+···+tn=N

Qβ(t1, t2) · · ·Qβ(tn−1, tn)K
⊗q(t1)

=
N∑

n=1

e(h+β2/2+logλ(β))n
∑

t1,...,tn
t1+···+tn=N

νβ(t1)

νβ(tn)
Q̃β(t1, t2) · · · Q̃β(tn−1, tn)K

⊗q(t1)

and on the other hand,

Eβ

(
e(h+β2/2+logλ(β))ıN δN

) =
N∑

n=1

e(h+β2/2+logλ(β))n
∑

t1,...,tn
t1+···+tn=N

Q̃β(t1, t2) · · · Q̃β(tn−1, tn)K
⊗q(t1).

Since νβ(t) = ν∗
β(t∗) and ν∗ is a finite vector with positive components, there exists c and C two positive constants

such that for all t1, tn, c ≤ νβ(t1)

νβ(tn)
≤ C. We conclude by using this remark and Lemma 4.3. �

4.5. A short proof of Theorem 4.1 in the positive recurrent case

In accordance with Lemma 4.4, we will work on the homogeneous pinning model of the process τ under Pβ . In the
positive recurrent case, a renewal-type lemma is obtained, which allows us to conclude.

Lemma 4.5. If α > 1, or if α = 1 and L is such that
∑

n≥1 L(n)/n < ∞ then ıN
N

tends Pβ -almost surely and in
L1(Pβ) to a positive constant.

Proof. From Lemma 4.2, under Pβ , the sequence of q-tuples (Tk, . . . , Tk+q−1)k≥0 is a positive recurrent Markov
chain, with invariant probability measure μβ . If the previous conditions on α are satisfied, π1 : t → t1 (the projection
on the first coordinate) is μβ -integrable. Indeed,

∑
t

π1(t)μβ(t) =
∑

t1,...,tq≥1

t1μβ(t1, . . . , tq) =
∑

t1,...,tq≥1

t1
K(t1)

K(t∗1 )
· · · K(tq)

K(t∗q )
μ∗

β

(
t∗

) ≤ C
∑
t≥1

tK(t) < ∞,

where C := maxt∗∈Eq

μ∗
β(t∗)

K(t∗1 )···K(t∗q )
. As a consequence,

τN

N
= 1

N

N∑
k=1

π1(Tk, . . . , Tk+q−1)
Pβ-a.s.→ c :=

∑
t

π1(t)μβ(t) < ∞.
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We deduce from this that ıN
N

Pβ-a.s.→ 1
c

> 0 by using the inequality τıN ≤ N ≤ τıN+1. The convergence in L1 follows
from the Dominated Convergence Theorem. �

From Lemma 4.4, h ≤ −β2

2 − logλ(β) implies that Fa(β,h) = 0. Suppose now that h = −β2

2 − logλ(β) + ε with
ε > 0. By Jensen’s inequality, we have that

1

N
logEβ

(
eεıN

) ≥ ε
Eβ(ıN )

N
.

We conclude that Fa(β,h) > 0 by using Lemmas 4.4 and 4.5.

4.6. Proof of Theorem 4.1 in the general case

We now give a proof without any assumption on α. The starting point is Lemma 4.4 and we will actually identify the
free energy of the pinning model associated to the law Pβ . Let’s fix ε > 0. We introduce the matrices

Q̃β,F (s, t) = e−F tq Q̃β(s, t)

and

Q̃∗
β,F

(
s∗, t∗

) = e−FφF (t∗q )Q̃∗
β

(
s∗, t∗

)
,

where φF (s∗) = s∗ if s∗ ∈ {1, . . . , q} and

φF (�) = − 1

F
log

∑
t>q e−F tK(t)

K(�)

i.e. φF (�) verifies

e−FφF (�)K(�) =
∑
t>q

e−F tK(t). (8)

We will denote by Λ(β,F ) the Perron–Frobenius eigenvalue of the irreducible matrix Q̃∗
β,F .

Lemma 4.6. There is a unique positive real denoted by Fβ(ε) such that

Λ
(
β,Fβ(ε)

) = exp(−ε).

Proof. Componentwise, Q̃∗
β,F is smooth and strictly decreasing with respect to F . Since Λ(β,F ) is a simple root of

the characteristic equation of Q̃∗
β,F (see [15], Theorem 11), Λ(β,F ) is also a smooth function of F by the Implicit

Function Theorem. From the formula (see [15])

Λ(β,F ) = max
v≥0∑

Eq vi=1

min
j :vj >0

(Q̃∗
β,F v)j

vj

one also obtains (see [10], Appendix A.8) that Λ(β,F ) is strictly decreasing in F and that Λ(β,F ) → 0 as F → ∞.
Since Λ(β,0) = 1 > exp(−ε), the result follows. �

Let ν̃∗ be a Perron–Frobenius right eigenvector of Q̃∗
β,Fβ(ε). We define ν̃ by

ν̃(t) = ν̃∗(t∗). (9)
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Lemma 4.7. The matrices

PF (s, t) := Q̃β,Fβ(ε)(s, t)
ν̃(t)

ν̃(s)
(10)

and

P ∗
F

(
s∗, t∗

) := Q̃∗
β,Fβ(ε)

(
s∗, t∗

) ν̃∗(t∗)
ν̃∗(s∗)

(11)

are stochastic and irreducible matrices. Furthermore, if we denote by l∗ the invariant probability measure of P ∗
F , then

l defined by

l(s) := l∗
(
s∗) q∏

j=1

K(sj )e−Fβ(ε)sj

K(s∗
j )e−Fβ(ε)φFβ (ε)(s

∗
j )

(12)

is the invariant probability measure of PF .

Proof. The proof is left to the reader. It consists in straightforward computations very similar to Lemmas 4.1 and 4.2.
We use Lemma 4.6 to prove (11), and (8), (9), (11) to prove (10). �

Note that, like Qβ and Q̃β , PF satisfies the “consistancy” condition

PF (s, t) �= 0 ⇔ s � t .

This allows us to define a new law P (F) on τ , the law for which (T n)n≥1 is a Markov chain with transition kernel PF

and initial distribution l.

Lemma 4.8. There exists two constants C ≥ c > 0 such that

ceFβ(ε)NP (F)(N ∈ τ) ≤ Eβ

(
exp(εıN )δN

) ≤ CeFβ(ε)NP (F)(N ∈ τ).

Proof. Decomposing the partition function and using (10) we get

Eβ

(
exp(εıN )δN

) =
N∑

n=1

∑
t1,...,tn−q+1

t1+···+tn=N

eεnQ̃β(t1, t2) · · · Q̃β(tn−q, tn−q+1)K
⊗q(t1)

= eFβ(ε)N
N∑

n=1

∑
t1,...,tn−q+1

t1+···+tn=N

PF (t1, t2) · · ·PF (tn−q, tn−q+1)l(t1)

×
(

ν̃(t1)

ν̃(tn−q+1)

K⊗q(t1)e−F̃ (ε)(t1+...+tq )

l(t1)
eεq

)

and, from (9), (12) and the finiteness of Eq , the term in parenthesis is uniformly bounded by two positive constants C

and c. �

From this we deduce:

Lemma 4.9. For all ε > 0,

lim
1

N
Eβ

(
exp(εıN )δN

) = Fβ(ε) > 0.
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This lemma (combined with Lemma 4.4) tells us that

Fa

(
β,−β2

2
− logλ(β) + ε

)
= Fβ(ε).

Proof. Since P (F)(N ∈ τ) ≤ 1, it will be sufficient to prove that

lim inf
N→∞ P (F)(N ∈ τ) > 0.

We use an argument that has been already used in the study of Markov renewal processes arising in the study of
periodic pinning (see [3], Chapter VII.4, [4] or [10], Chapter 3). We choose arbitrarily the state 1 = (1, . . . ,1) ∈ (N∗)q .
Consider (θn)n≥0 the following sequence of stopping times:

θ0 = inf{n ≥ 1 | T n = 1},

θk+1 = inf{n > θk | T n = 1}.

Since (T n)n≥0 is positive recurrent under P (F), these stopping times are finite almost surely. If we now define the
process τ θ by τ θ

n := τθn then it is clear that

P (F)(N ∈ τ) ≥ P (F)
(
N ∈ τ θ

)
.

By the strong Markov property, τ θ is a (delayed) renewal process whose inter-arrival times are on average equal to

m := E
(F)
1 (T1 + · · · + Tθ0−1) = E

(F)
1

∞∑
n=1

π1(T n)1{θ0>n} =
∑

t

π1(t)E
(F)
1

∞∑
n=1

1{T n=t,θ0>n}

=
∑

t

π1(t)
l(t)

l(1)

=
∑

k≥1 k(l ◦ π−1
1 )(k)

l(1)
< ∞.

By the Renewal Theorem, we have

P (F)
(
N ∈ τ θ

) N→∞→ 1/m > 0

and the proof is complete. �

Theorem 4.1 is now a direct consequence of Lemma 4.4 combined with Lemma 4.9.

4.7. The weak disorder asymptotic: Proof of Proposition 4.2

We now give some lemmas which will be useful for the proof of Proposition 4.2. If I ⊂ Eq and x, y ∈ Eq then we
will denote by Q∗,I the matrix with entries Q∗,I (x, y) = Q∗(x, y)1{y∈I }. If M is an n by n matrix then Com(M)

is the matrix of the cofactors of M , i.e. Com(M)(i, j) = (−1)i+j detMi,j where Mi,j is the n − 1 by n − 1 matrix
obtained by deleting the ith line and the j th column of M . Moreover, if the components of M are nonnegative and if
there is a positive integer k such that all the components of Mk are positive, M is said to be primitive.

Lemma 4.10. Q∗ is primitive and its invariant probability measure is K⊗q(s∗) = K(s∗
1 ) · · ·K(s∗

q ).
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Proof. For all t∗ ∈ Eq ,(
K⊗qQ∗

0

)(
t∗

) =
∑

s∗∈Eq

K⊗q
(
s∗)Q∗

0

(
s∗, t∗

) =
∑
s∗∈E

K⊗q
(
s∗, t∗1 , . . . , t∗q−1

)
K

(
t∗q

)

=
∑
s∗∈E

K
(
s∗)K(

t∗1
) · · ·K(

t∗q−1

)
K

(
t∗q

)
= K⊗q

(
t∗

)
so K⊗q is the invariant probability measure of Q∗

0. Moreover,

(
Q∗)q(

s∗, t∗
) = P

(
T ∗

q+1 = t∗1 , . . . , T ∗
2q = t∗q |T ∗

1 = s∗
1 , . . . , T ∗

q = s∗
q

)
= P

(
T ∗

q+1 = t∗1 , . . . , T ∗
2q = t∗q

)
= K⊗q

(
t∗

)
which is positive under the assumptions of Section 2.1. Since (Q∗

0)
q > 0, Q∗

0 is primitive. �

Lemma 4.11. Tr(Com(Id − Q∗)) �= 0 and for all x ∈ Eq

Tr(tCom(Id−Q∗)Q∗,{x})
Tr(tCom(Id − Q∗))

= K⊗q(x).

Proof. In this proof we will use the properties of the Perron–Frobenius eigenvalue of a primitive matrix, that one can
find for example in [15].

We define for all x ∈ Eq :

p
(
x∗) := Tr(tCom(Id − Q∗)Q∗,{x})

Tr(tCom(Id − Q∗))
.

By Lemma 4.10, we only need to prove that p is the invariant probability measure of Q∗.
Since Q∗ is stochastic, 1 is clearly a right eigenvalue of Q∗ with associated eigenvector 1 (the vector with 1 on all

its components). Moreover, Q∗ is primitive (Lemma 4.10) so the Perron–Frobenius eigenvalue exists and all we have
to prove is that |λ| ≤ 1 for every (possibly complex) eigenvalue of Q∗. Indeed, if v is an eigenvector associated with
such an eigenvalue, and x ∈ Eq is such that v(x) = maxy∈Eq |v(y)| then

λv(x) =
∑
y∈Eq

Q∗(x, y)v(y)

so |λ||v(x)| ≤ |v(x)|, i.e. |λ| ≤ 1. This proves that 1 is the Perron–Frobenius eigenvalue of Q∗, with associated
eigenspace R1.

Now, from [15], Chapter 1, Corollary 2, we have that the rows of tCom(Id − Q∗) are all equal to the same left
eigenvector (for the eigenvalue 1) of Q∗, that we will denote by L. A first consequence is that Tr(Com(Id − Q∗)) �= 0
because the entries of L are either all positive or all negative. Another consequence is that if we define

m = (
m(x)

)
x∈Eq = (

Tr
(
tCom

(
Id − Q∗)Q∗,{x∗}))

x∈Eq

then m(x) = L(x) for all x ∈ Eq . Moreover, from the relation(
Id − Q∗)tCom

(
Id − Q∗) = 0

we deduce that
∑

x∈Eq m(x) = Tr(tCom(Id − Q∗)). Since p is simply m renormalized by
∑

x∈Eq m(x), it is the
invariant probability of Q∗. �
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Proof of Proposition 4.2. In what follows, we will use the notations Q′
0 and Q′′

0 as shortcuts for
∂Q∗

β

∂β
(0) and

∂2Q∗
β

∂β2 (0).

First we will show that β �→ λ(β) is infinitely differentiable (C 2 would be enough). Let’s define φ(β,λ) = det(λId −
Q∗

β) so that φ(β,X) is the characteristic polynomial of Q∗
β , and φ(β,λ(β)) = 0 for all β . The Perron–Frobenius

eigenvalue of a nonnegative primitive matrix being a simple root of its characteristic equation, ∂φ
∂λ

(β,λ(β)) �= 0 for all
β ≥ 0. Since φ is infinitely differentiable, the same holds for λ by the Implicit Function Theorem.

Now, a straightforward computation shows that (we use that λ(0) = 1)

∂

∂β
logλ(β)

∣∣∣∣
β=0

= λ′(0),

∂2

∂β2
logλ(β)

∣∣∣∣
β=0

= λ′′(0) − λ′(0)2.

All we need to show then is

λ′(0) = 0, (13)

λ′′(0) = 2
q∑

n=1

ρnP(n ∈ τ). (14)

By derivating the relation φ(β,λ(β)) = 0 we obtain

∂φ

∂β
(0,1) + λ′(0)

∂φ

∂λ
(0,1) = 0.

We already know that ∂φ
∂λ

(0,1) �= 0 and since Q′
0 = 0 then ∂φ

∂β
(0,1) = 0, which leads to (13).

All we have to do now is to prove (14). A Taylor expansion of det(λ(β)Id − Q∗
β) gives:

det
(
λ(β)Id − Q∗

β

) = det

(
Id − Q∗ + (

λ′′(0)Id − Q′′
0

)β2

2
+ o

(
β2))

= Tr
(
tCom

(
Id − Q∗)(λ′′(0)Id − Q′′

0

))β2

2
+ o

(
β2),

where we have used the differential of the determinant: det(A + H) = det(A) + Tr(tCom(A)H) + o(‖H‖). But since
det(Q∗

β − λ(β)Id) = 0 we have

Tr
(
tCom

(
Id − Q∗)(λ′′(0)Id − Q′′

0

)) = 0

which yields

λ′′(0) = Tr(tCom(Id − Q∗)Q′′
0)

Tr(tCom(Id − Q∗))
.

Note that Tr(tCom(Id − Q∗)) �= 0 (Lemma 4.10).
Let’s now consider Q′′

0 as a function of (ρn)1≤n≤q . Observe that

Q′′
0

(
s∗, t∗

) = 2G
(
t∗

)
Q∗

0

(
s∗, t∗

)
so Q′′

0 linearly depends on (ρn)1≤n≤q . We have then

Q′′
0(ρ1, . . . , ρq) = Q′′

0(0, . . . ,0, ρq) + Q′′
0(ρ1, . . . , ρq−1,0).
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The result of the theorem is clearly true for q = 1 (remember that we have an explicit expression of ha
c (β) in this case,

see Proposition 4.1) so we can suppose that it is true for a (q −1)-order moving average and show that the result holds
for q . The induction hypothesis then implies

Tr(tCom(Id − Q∗)Q′′
0(ρ1, . . . , ρq−1,0))

Tr(tCom(Id−Q∗))
= 2

q−1∑
n=1

ρnP (n ∈ τ)

so the only thing left to prove is that

Tr(tCom(Id − Q∗)Q′′
0(0, . . . ,0, ρq))

Tr(tCom(Id − Q∗))
= 2ρqP (q ∈ τ). (15)

Let’s define Iq = {s∗ ∈ Eq s.t. ρq appears in G(s∗)} and notice that

Q′′
0(0, . . . ,0, ρq) = 2ρqQ∗,Iq .

We obtain from Lemma 4.11:

Tr(tCom(Id − Q∗)Q∗,Iq )

Tr(tCom(Id−Q∗))
=

∑
t∗∈Iq

K⊗q
(
t∗

) = P(q ∈ τ)

which proves (15). �

5. The irrelevance regime

In this section we will work with free partition functions (remove the δN in definitions (2), (3) and (4)). This has no
incidence on the free energy.

5.1. Introduction and statement of the result

The following result states that under some assumptions on K and β , quenched and annealed critical curves and
exponents are the same. This is the irrelevance regime.

Theorem 5.1. If ω is a Gaussian moving average of finite order q and if α ∈ (0,1/2) or if α = 1/2 and L is such that

∞∑
n=1

1

nL(n)2
< ∞

then there exists β0 > 0 such that for β ≤ β0, hc(β) = ha
c (β) and

lim
h→ha

c (β)+
log(F (β,h))

log(h − ha
c (β))

= 1

α
. (16)

Disorder irrelevance has been proved by several authors, with different methods, in the case of i.i.d. disorder (see
[1,13] and [18]). A key element is the control of the second moment of the partition function at the annealed critical
point, which is linked to the exponential moments of the number of intersections between two replicas of the initial
renewal process τ . As in [13], we will establish (16) by proving separately the lim inf and the lim sup parts. The
lim inf part is just a consequence of Jensen’s inequality F(β,h) ≤ Fa(β,h) and of the behaviour of Fa(β,h) near the
annealed critical point. The lim sup part relies on the control of the second moment. In our case, additional difficulties
arise from the presence of a Markov renewal process instead of a classical renewal process at the annealed critical
point. Moreover the law of this Markov renewal process depends on β , so we will tackle a problem of continuity in
β (see end of Section 5.3.1). Once the second moment is controlled, we use arguments from [13] to conclude. Unlike
what the title of [13] suggests, there is no martingale involved in our problem.

Henceforth, we assume α satisfies the assumption of Theorem 5.1.
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5.2. The lim inf part

The following proposition tells us that at the neighbourhood of the annealed critical point, the annealed free energy
has the same behaviour as the homogeneous one.

Proposition 5.1. There exists a slowly varying function L′ such that

Fa
(
β,ha

c (β) + Δ
) Δ↘0∼ L′(Δ)Δ1/α.

Proof. The annealed free energy is defined by the implicit equation

Λ
(
β,F a

(
β,ha

c (β) + Δ
)) = e−Δ,

where Λ(β,F ) is the Perron–Frobenius eigenvalue of Q̃∗
β,F (see Lemmas 4.6 and 4.9). This can be rewritten as:

1 − Λ
(
β,Fa

(
β,ha

c (β) + Δ
)) = 1 − e−Δ

and since the right-hand term is of the order of Δ when Δ goes to 0, it is enough to prove that the left-hand term is of
the order of (F a(β,ha

c (β) + Δ))α . Indeed, if t∗ is such that t∗q ∈ {1, . . . , q} then

Q̃∗
β,F

(
s∗, t∗

) − Q̃∗
β

(
s∗, t∗

) = Q̃∗
β

(
s∗, t∗

)(
e−F t∗q − 1

) F↘0∼ −Q̃∗
β

(
s∗, t∗

)
F t∗q

but if t∗q = �, we have by Abelian arguments

Q̃∗
β,F

(
s∗, t∗

) − Q̃∗
β

(
s∗, t∗

) = Q̃∗
β

(
s∗, t∗

)
K(�)

(∑
t>q

K(t)e−F t − K(�)

)
= −Q̃∗

β

(
s∗, t∗

)
L�(1/F )Fα,

where L� is a slowly varying function. We conclude the proof by writing

Λ(β,F ) − 1 = Λ
(
Q̃∗

β,F

) − Λ
(
Q̃∗

β

)
F↘0∼ DΛ

Q̃∗
β

(
Q̃∗

β,F − Q̃∗
β

)
= −csteL�(1/F )Fα,

where Λ is a differentiable function of the (q + 1)2q entries of positive matrices. �

5.3. The lim sup part

We adopt the following notations:

Kβ,x,y(n) = Pβ

(
Tk = n,T ∗

k−q+1 = y|T ∗
k−q = x

)
and

Pβ,x,y(n ∈ τ) =
∑
k≥0

Pβ

(
τk = n,T ∗

k−q+1 = y|T ∗
1−q = x

)
.

This section is organized as follows: in a first part we look at the intersection between two replicas of a Markov
renewal process under the law Pβ . From this we control in a second part the second moment of the partition function
at the annealed critical point. In a last part, we exploit this result to obtain the lim sup part of Theorem 5.1.
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5.3.1. Intersection of Markov renewal processes
The main result of this part is:

Proposition 5.2. There exists β0 > 0 such that for all β ≤ β0 and for all l ∈ {0, . . . , q},

E⊗2
β

(
exp

(
β2

∑
n≥1

δ(1)
n δ

(2)
n+l

))
< ∞.

As it will be explained further in the proof, it is enough to focus on the case l = 0, when the term inside the
exponential is the number of intersections of two independent copies of a Markov renewal process with law Pβ . We
begin with the following observation:

Proposition 5.3. If τ (1) and τ (2) are two independent copies of a Markov renewal process with law Pβ , then τ (1) ∩τ (2)

is a (delayed) Markov renewal process.

The proof is left to the reader. It is a matter of writing that conditionally on the event that τ (1) and τ (2) meet at some
point n, then the future, in particular the next intersection point, only depends on the states of the Markov modulating
chains of τ (1) and τ (2) at n.

In the above proposition, the term Markov renewal process has to be understood in the large sense: it can happen
(and actually it will be the case in the range of α’s we consider) that (τ (1) ∩ τ (2))n = +∞ for some n ≥ 1. We will
denote by P ∩

β the law of this intersection Markov renewal process, with Markov modulating chain in (Eq)2, and

(K∩
β,x,y(n))n≥1,x,y∈(Eq)2 its semi-Markov (sub)kernel (by this we mean that if τ is a Markov renewal process with

law P ∩
β and modulating chain denoted by J then K∩

β,x,y(n) = P ∩
β (τk+1 − τk = n,Jk+1 = y|Jk = x) and that for all x,∑

n,y K∩
β,x,y(n) ≤ 1). Hence we have to prove that E∩

β (exp(β2 ∑
n≥1 δn)) < ∞ if β is small enough.

We define the following matrices of Laplace transforms (for λ ≥ 0):

ϕβ,x,y(λ) :=
∑
n≥1

e−λnP ∩
β,x,y(n ∈ τ),

φβ,x,y(λ) :=
∑
n≥1

e−λnK∩
β,x,y(n).

Notice that φβ(0) is the matrix of the P ∩
β,x,y(τ1 < ∞)’s for x, y ∈ (Eq)2.

Proposition 5.4. The matrix φβ(0) is irreducible and nonnegative. If we denote by θ(β) its Perron–Frobenius eigen-
value then

1. θ(0) = P ⊗2((τ (1) ∩ τ (2))1 < ∞) = 1 − (
∑

n≥0 P(n ∈ τ)2)−1 < 1.
2. For all β , there exists a constant c such that

P ∩
β

(∑
n≥1

δn ≥ N

)
≤ c × θ(β)N .

Proof. First we prove the irreducibility. Let x = (x(1), x(2)) and y = (y(1), y(2)) be in (Eq)2. We want to prove that
there exists a sequence x0 := x, x1, x2, . . . , xi = y with i ≥ 1 such that

i∏
k=0

P ∩
β,xk,yk

(τ1 < ∞) > 0.

It is enough to show that

i∏
k=0

K∩
β,xk,yk

(nk) > 0 (17)
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for some nk ≥ 1. One can find without much difficulty a path of positive probability on which τ (1) starts from x(1),
τ (2) starts from x(2) and they intersect at some point where respectively they are in states y(1) and y(2). This path
provides suitable i and (xk, nk)1≤k≤i .

For the first point, we will only prove the first part of the equality, that is θ(0) = P ⊗2((τ (1) ∩τ (2))1 < ∞). The other
part has been stated several times in the literature (see [18] for instance). Remember that at β = 0 the Markov renewal
process is in fact the initial (classical) renewal process, and so the quantities P ∩

x,y(n ∈ τ), K∩
x,y(n) and P ∩

x,y(τ1 < ∞)

do not depend on x. As a consequence, the quantity

P ⊗2((τ (1) ∩ τ (2)
)

1 < ∞) =
∑

y∈(Eq)2

P ∩
x,y(τ1 < ∞)

is an eigenvalue of φ0(0) with positive right eigenvector 1.
For the last point we have

P ∩
β

(∑
n≥1

δn ≥ N

)
≤ P ∩

β (τ1 < ∞, . . . , τN < ∞) ≤
∑

x0,...,xN∈(Eq)2

N−1∏
i=0

P ∩
β,xi ,xi+1

(τ1 < ∞)

≤
∑
x0,xN

(
φβ(0)N

)
x0,xN

≤ c × θ(β)N . �

This proposition implies that if β is such that eβ2
θ(β) < 1 then

E∩
β

(
exp

(
β2

∑
n≥1

δn

))
< ∞.

In other words, the only thing left to prove is that for β small enough, eβ2
θ(β) < 1. Actually we will prove that

θ(β) is continuous at β = 0. Since we do not have direct access to P ∩
β , we first find a formula which is analogous to

P ⊗2((τ (1) ∩ τ (2)
)

1 < ∞) = 1 −
(∑

n≥0

P(n ∈ τ)2
)−1

,

i.e. which relates θ(β) to sums of Green functions of P ∩
β .

Proposition 5.5. The matrix ϕβ(0) has finite components and is irreducible. If we denote by ϑ(β) the Perron–
Frobenius eigenvalue of ϕβ(0) then

θ(β) = 1 − ϑ(β)−1.

Before proving Proposition 5.5, we need a lemma, and for this lemma we need additional notations. We define
E

q
� = {x ∈ Eq : xq = �} and for all x, y ∈ Eq ,

K̂x,y(n) = Kβ,x,y(n)

Q̃∗
β(x, y)

which is the probability under Pβ of making a jump of size n knowing departure state x and arrival state y. The letter
β is omitted because the K̂x,y(n)’s do not depend on it: actually, if y ∈ E

q
� , then K̂x,y(n) = K(n)

K(�)
1n>q ; otherwise,

K̂x,y(n) = 1n=yq .
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Lemma 5.1. For all x0, x1, . . . , xk ∈ Eq ,

(K̂x0,x1 ∗ K̂x1,x2 ∗ · · · ∗ K̂xk−1,xk
)(n)

n→∞∼ L(n)

K(�)n1+α
× ∣∣{1 ≤ l ≤ k, xl ∈ E

q
�

}∣∣ (18)

and there exists c > 0 such that for all k, x0, x1, . . . , xk ∈ Eq and n > kq

(K̂x0,x1 ∗ K̂x1,x2 ∗ · · · ∗ K̂xk−1,xk
)(n) ≤ kc L(n)

K(�)n1+α
. (19)

Proof. Assertion (18) comes from the fact that if q(n) = L̃(n)/n1+α is a probability kernel with L̃ a slowly varying
function, then q∗k(n) ∼ kq(n) (see [10], Lemma A.5) and only the K̂x,y ’s for which y ∈ E

q
� contribute to the tail

behaviour. For k = 1, (19) is clearly true. One can adapt the induction in the proof of [10], Lemma A.5, to conclude.
�

Proof of Proposition 5.5. First we prove finiteness of the components. Let x = (x1, x2), y = (y1, y2) be in (Eq)2.
We have∑

n≥0

P ∩
β,x,y(n ∈ τ) =

∑
n≥0

Pβ,x1,y1(n ∈ τ)Pβ,x2,y2(n ∈ τ) (20)

so we have to look at the tail behaviour of the Pβ,x1,y1(n ∈ τ)’s. But for all x, y ∈ Eq we can write

Pβ,x,y(n ∈ τ) = Pβ,x(n ∈ τy),

where τy,n = τθn(y), and

θ0(y) = inf
{
k ≥ 0, T ∗

k−q+1 = y
}
,

θn+1(y) = inf
{
k > θn(y), T ∗

k−q+1 = y
}
.

By the Markov renewal property, under Pβ , for all y ∈ Eq , τy is a (delayed, because we can start at x �= y) classical
renewal process. We are then left with proving that the interarrival distribution of τy has (approximately) the same tail
behaviour as the original renewal process (which satisfies the assumptions of Theorem 5.1). We then conclude with
the result of [7] on renewal theorems with infinite mean to show that the series in (20) converges. We fix the state
y ∈ Eq , and write θ = θ0(y), which is finite almost surely ((T ∗

n)n≥1 is a recurrent Markov chain). We write Jn = T ∗
n−q

the markov modulating chain. Then

Pβ,y(T1 + · · · + Tθ = n) =
∑
k≥1

Eβ,y

(
1{θ=k}Pz(T1 + · · · + Tθ = n|J0 · · ·Jk)

)
.

From our previous remark on the laws K̂y,z and Lemma 5.1 we have

Pβ,y(T1 + · · · + Tk = n|J0 · · ·Jk) = (KJ0,J1 ∗ KJ1,J2 ∗ · · · ∗ KJk−1,Jk
)(n)

n→∞∼ L(n)

n1+α
× N�

k

K(�)
,

where

N�
k :=

k∑
i=1

1{Ji∈E
q
� }.

From Markov chain theory (see [3], Chapter I.3, for example),

Eβ,y

∑
k≥1

1{θ=k}N�
k = Eβ,yN

�
θ = l∗β(E

q
� )

l∗β(y)
,
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where l∗β is the invariant probability measure of Q̃∗
β . Finally we have

Pβ,y(T1 + · · · + Tθ = n) ∼ l∗β(E
q
� )

l∗β(y)K(�)
× L(n)

n1+α
, (21)

but one has to justify the interchange of the integration and the asymptotic equivalent. Indeed, from the upper bound
(19) in Lemma 5.1, one can apply the Dominated Convergence Theorem, because E(θc) < ∞ (it is not hard to see
that the tail of θ decays exponentially fast).

We prove the last point of the proposition. The following Markov renewal equation hold: for all x, y ∈ (Eq)2,

P ∩
β,x,y(n ∈ τ) = δx,y1n=0 +

∑
z∈(Eq)2

n∑
k=1

P ∩
β,x,z(n − k ∈ τ)K∩

β,z,y(k) (22)

= δx,y1n=0 +
∑

z∈(Eq)2

n∑
k=1

K∩
β,x,z(k)P ∩

β,z,y(n − k ∈ τ). (23)

Taking the Laplace transforms we get for λ > 0

ϕβ(λ) = Id + ϕβ(λ)φβ(λ) = Id + φβ(λ)ϕβ(λ).

Thanks to the first part of the proposition, that has been just proved, we can take the limit as λ goes to 0, which yields

ϕβ(0)
(
Id − φβ(0)

) = (
Id − φβ(0)

)
ϕβ(0) = Id

from which we can conclude. �

As a consequence, we will prove that ϑ(β) is continuous at β = 0, which is the same as proving that for all x, y in
(Eq)2, the series

∑
n≥0 P ∩

β,x,y(n ∈ τ) are continuous at β = 0.

It is not difficult to see that for all n ≥ 0, x, y ∈ (Eq)2, the Green function P ∩
β,x,y(n ∈ τ) is continuous in β but the

continuity of the series

∑
n≥0

P ∩
β,x,y(n ∈ τ)

is not immediate. We will see that the last quantity can be written as the L2 norm of a certain function. The continuity
will thus be proved on this L2 norm via the Dominated Convergence Theorem.

We define the following Fourier series:

φ̂β,x,y(θ) =
∑
n≥1

eiθnKβ,x,y(n),

ϕ̂β,x,y(θ) =
∑
n≥0

eiθnPβ,x,y(n ∈ τ),

ϕ̂
sym
β,x,y(θ) =

∑
n∈Z

eiθnPβ,x,y

(|n| ∈ τ
)
.

The matrix φ̂0(θ) will be written φ̂(θ). The functions φ̂β,x,y are continuous whereas ϕ̂β,x,y(θ) and ϕ̂
sym
β,x,y(θ) are in

L2(−π,π) (the space of functions which are square integrable with respect to the Lebesgue measure on (−π,π)),
because of our knowledge on the decay of the Pβ,x,y(n ∈ τ)’s (cf. previous section).



476 J. Poisat

Proposition 5.6. The matrix Id − φ̂β(θ) is θ -almost everywhere invertible, and

Pβ,x,y(n ∈ τ) = 1

2π

∫ π

−π

e−inθ
(
2 Re

((
Id − φ̂β(θ)

)−1
x,y

) − 1
)

dθ.

Furthermore there exists a positive constant C such that for β small enough, for all x, y ∈ Eq

∣∣[(Id − φ̂β(θ)
)−1]

x,y

∣∣ ≤ C sup
s,t∈Eq

∣∣[(Id − φ̂(θ)
)−1]

s,t

∣∣ (24)

θ -almost surely.

Proof. Let

φ̂
(x)
β (θ) :=

∑
n≥1

einθPβ(τx,k+1 − τx,k = n)

be the characteristic function of the interarrival times of τx under Pβ (cf. previous section) and

φ̂
(x,y)
β (θ) :=

∑
n≥1

einθPβ,x(τθ0(y) = n),

which are continuous functions (the term in the sum is bounded in absolute value by a probability). From our aperiod-
icity conditions, φ̂

(x)
β (θ) = 1 if and only if θ = 0. From [9], Lemma 311 (the proof can be found in [16], Chapter II.9),

we have θ -almost everywhere

ϕ̂
sym
β,y,y(θ) = 1

1 − φ̂
(y)
β (θ)

and more generally, for all x, y ∈ Eq , one can show by decomposing the probability (under Pβ ) starting from x that n

is in τy according to the value of τ the first time state y is reached, and by taking the Fourier transform, that

ϕ̂
sym
β,x,y(θ) = 1 + φ̂

(x,y)
β (θ)

1 − φ̂
(y)
β (θ)

.

From the Markov renewal equations (22), written for Pβ instead of P ∩
β , one can deduce that almost everywhere,

ϕ̂β(θ) = Id + ϕ̂β(θ)φ̂β(θ) = Id + φ̂β(θ)ϕ̂β(θ),

which proves the first part of the proposition. Then we can write

Pβ,x,y(n ∈ τ) = 1

2π

∫ π

−π

e−inθ ϕ̂
sym
β,x,y(θ)dθ = 1

2π

∫ π

−π

e−inθ
(
2 Re

(
ϕ̂β,x,y(θ)

) − 1
)

dθ

= 1

2π

∫ π

−π

e−inθ
(
2 Re

([
Id − φ̂β(θ)

]−1
x,y

) − 1
)

dθ,

which ends the proof of the first part.
Now we prove the second part of the proposition (equation (24)). We recall that

φ̂β,x,y(θ) = φ̂x,y(θ)
eβ2G(y)ν∗

β(y)

λ(β)ν∗
β(x)
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and φ̂β := φ̂β(θ = 0) is simply the matrix Q∗, so

λ(β) =
∑
y∈Eq

eβ2G(y)
ν∗
β(y)

ν∗
β(x)

φ̂x,y . (25)

We define the matrix Rβ(θ) = λ(β)(Id − φ̂β(θ)) − (Id − φ̂(θ)). It is enough to prove that the coefficients of
Rβ(θ)(Id − φ̂(θ))−1 decrease to 0 as β tends to 0, uniformly in θ . This is not immediate because there is a singularity
at θ = 0. Recall that

(
Id − φ̂β(θ)

)−1 =
tCom(Id − φ̂(θ))

det(Id − φ̂(θ))
.

We know that as θ goes to 0, det(Id − φ̂(θ)) is of the lowest order among the (φ̂x,y − φ̂x,y(θ))’s, for x, y ∈ Eq , so we
have to look at the elements of Rβ(θ)tCom(Id−φ̂(θ)). More precisely we have to check that

• as θ goes to 0 there are no terms of order 0,
• all terms of higher order have coefficients which go to 0 as β goes to 0.

On one hand we have(
Id − φ̂(θ)

)
x,x

= (
φ̂x,x − φ̂x,x(θ)

) +
∑
y �=x

φ̂x,y

and for x �= y,(
Id − φ̂(θ)

)
x,y

= (
φ̂x,y − φ̂x,y(θ)

) + φ̂x,y .

On the other hand, we easily compute, using (25),

Rβ(θ)x,x = εβ(x, x)
(
φ̂x,x − φ̂x,x(θ)

) +
∑
y �=x

εβ(x, y)φ̂x,y,

Rβ(θ)x,y = εβ(x, y)
(
φ̂x,y − φ̂x,y(θ)

) − εβ(x, y)φ̂x,y,

where εβ(x, y) := (eβ2G(y) ν�
β(y)

ν�
β (x)

−1) (which tends to 0 as β goes to 0). From these expressions, one can verify without

much difficulty that the second point is satisfied. For the terms of order 0 in θ of Rβ(θ)tCom(Id − φ̂(θ)), it is equal to
0; it is shown by computation, using the fact that tCom(Id − φ̂) is constant on its columns (see Section 4.2). �

We can now conclude this first part with

Proof of Proposition 5.2. We begin with l = 0, i.e. we show that

E∩
β

(
exp

(
β2

∑
n≥1

δn

))
< ∞

for β small enough. From Proposition 5.4, it is enough to show that eβ2
θ(β) < 1 for β small and as θ(0) < 1, we will

show that θ(β) → θ(0) as β → 0. From Proposition 5.5, this reduces to the continuity of ϑ(β) at β = 0 and so, to the
continuity of the series∑

n≥0

P ∩
β,x,y(n ∈ τ)
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at β = 0, for all x, y ∈ (Eq)2. From (20) one can write

∑
n≥0

P ∩
β,x,y(n ∈ τ) = 1

2

(
1 +

∑
n∈Z

Pβ,x1,y1

(|n| ∈ τ
)
Pβ,x2,y2

(|n| ∈ τ
))

,

where x = (x1, x2) and y = (y1, y2). From Proposition 5.6 and Parseval’s identity we have

∑
n≥0

P ∩
β,x,y(n ∈ τ) = 1

2

(
1 + 〈

φ̂
sym
β,x1,y1

, φ̂
sym
β,x2,y2

〉
L2(−π,π)

)
(26)

= 1

2

(
1 + 〈

2 Re
(
(Id − φ̂β)−1

x1,y1

) − 1,2 Re
(
(Id − φ̂β)−1

x2,y2

) − 1
〉
L2(−π,π)

)
. (27)

But for all s, t ∈ Eq ,

(Id − φ̂β)−1
s,t

L2→ (Id − φ̂0)
−1
s,t

because (24) in Proposition 5.6 allows the use of the Dominated Convergence Theorem. As a consequence the scalar
product in the right-hand side of (26) is continuous at β = 0.

We now deal with the case 1 ≤ l ≤ q . Let us write τ (2) − l := {τ (2)
n − l, n ≥ 0}. Then

∞∑
l=1

δ(1)
n δ

(2)
n+l = ∣∣τ (1) ∩ (

τ (2) − l
)∣∣

and τ (1) ∩ (τ (2) − l) is a delayed renewal process with the same interarrival time distribution as τ (1) ∩ τ (2), which is
the case l = 0. �

5.3.2. Control of the second moment
We will prove in this section

Proposition 5.7. There exists β0 > 0 such that for all β ≤ β0,

sup
N

E
(
Z2

N,β,ha
c (β)

)
< ∞.

Proof. Replica method gives:

E(ZN,β,h)
2 = E⊗2(eh

∑N
n=1(δ

(1)
n +δ

(2)
n )

E
(
eβ

∑N
n=1 ωn(δ

(1)
n +δ

(2)
n )

))
= E⊗2(e

∑
i=1,2

∑N
n=1 hδ

(i)
n +(β2/2)Var(

∑
ωnδ

(i)
n )eβ2 Cov(

∑
ωnδ

(1)
n ,

∑
ωnδ

(2)
n )

)
and

Cov

(
N∑

n=1

ωnδ
(1)
n ,

N∑
n=1

ωnδ
(2)
n

)
=

N∑
n,m=1

Cov(ωn,ωm)δ(1)
n δ(2)

m

=
N∑

n=1

δ(1)
n δ(2)

n +
∑

1≤|n−m|≤q

Cov(ωn,ωm)δ(1)
n δ(2)

m .

Define

CN

(
τ (1), τ (2)

) =
N∑

n=1

δ(1)
n δ(2)

n +
q∑

k=1

ρk

N∑
n=1

(
δ(1)
n δ

(2)
n+k + δ(2)

n δ
(1)
n+k

)
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and take h = ha
c (β). Then

E(ZN,β,ha
c
)2 ≤ CβE⊗2

β

(
eβ2CN(τ (1),τ (2))

)
.

Moreover, notice that

CN

(
τ (1), τ (2)

) ≤
∞∑

n=1

δ(1)
n δ(2)

n +
q∑

k=1

ρ+
q

∞∑
n=1

(
δ(1)
n δ

(2)
n+k + δ(2)

n δ
(1)
n+k

)
,

where ρ+
q = ρq ∨ 0. By repeated use of Holder’s inequality we prove that for all β > 0, there exists nonnegative

constants Cβ, c0, c1, . . . , cq and e0, e1, . . . , eq such that

E(ZN,β,ha
c
)2 ≤ Cβ

q∏
k=0

(
E⊗2

β

(
eckβ

2 ∑∞
n=1 δ

(1)
n δ

(2)
n+k

))ek .

We conclude by using Proposition 5.2. �

5.3.3. End of lim sup part
We define:

A
γ

N = {∣∣τ ∩ [0,N ]∣∣ ≤ Nγ
}

(sometimes we will omit the superscript γ ). We will prove

Proposition 5.8. For all β ≤ β0 (with β0 as in Proposition 5.7), for all γ < α, there exists c > 0 such that

lim inf
N

P
(
PN,β,ha

c

(
A

γ

N

)
> c

)
> c.

Once this is proved, the following proposition provides the lim sup part of Theorem 5.1:

Proposition 5.9. If for all γ < α, there exists some positive constant c such that

lim inf
N

P
(
PN,β,ha

c

(
A

γ

N

)
> c

)
> c (28)

then

lim sup
h→ha

c (β)+

log(F (β,h))

log(h − ha
c (β))

≤ 1

α
.

Proposition 5.9 is proved in [13]. One can check that the independance assumption is not needed there.
To prove Proposition 5.8, we need the control of the second moment (see Proposition 5.7) and several lemmas,

such as:

Lemma 5.2 (Paley–Zygmund inequality). If Z is a nonnegative random variable with finite variance, and if 0 <

u < 1, then

P
(
Z ≥ uE(Z)

) ≥ (1 − u)2 (E(Z))2

E(Z2)
.

Lemma 5.3. For all β > 0, lim infN→+∞ EZN,β,ha
c
≥ c(β) > 0.
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Proof. In the first part of the paper it was proved that

EZN,β,ha
c (β) ≥ c1(β)Pβ(n ∈ τ)

when considering the constraint partition function. With free partition function, it is not difficult to prove that

EZN,β,ha
c (β) ≥ c1(β). �

Lemma 5.4. For all β ≤ β0 (β0 as in Proposition 5.7), there exists δ > 0, c ∈ (0,1) such that

inf
N

P(ZN,β,ha
c
≥ δ) > c.

Proof. From Lemma 5.2, we have for all u ∈ (0,1),

P
(
ZN,β,ha

c
≥ uE(ZN,β,ha

c
)
) ≥ (1 − u)2 (E(ZN,β,ha

c
))2

E(Z2
N,β,ha

c
)

.

For N large enough and β ≤ β0, we have from Lemmas 5.3 and 5.7,

P

(
ZN,β,ha

c
≥ uc(β)

2

)
≥ P

(
ZN,β,ha

c
≥ uE(ZN,β,ha

c
)
) ≥ (1 − u)2 (c(β)/2)2

supN E(Z2
N,β,ha

c
)
,

which is positive thanks to Proposition 5.7. The result follows by choosing u close enough to 1. �

Lemma 5.5. For all β > 0, there exists Cβ > 0 such that

EZN,β,ha
c
PN,β,ha

c

(
A

γ

N

) ≤ CβPβ

(
A

γ

N

)
.

Proof.

EZN,β,ha
c
PN,β,ha

c

(
A

γ

N

) = EE
(
1AN

e
∑

(βωn+ha
c (β))δn

)
= E

(
1AN

e(− logλ(β)−β2/2)
∑

δn+(β2/2)Var
∑

ωnδn
)

≤ C(β)E
(
1AN

e− logλ(β)
∑

δn+∑
δn

∑q
k=1 ρkβ

2δn+k
)

≤ C′(β)Pβ(AN). �

Lemma 5.6. For all β > 0, γ < α,

Pβ

(
A

γ

N

) N→+∞→ 0.

Proof. Let us choose arbitrarily z in Eq . Then:

Pβ

(
A

γ

N

) = Pβ

(∣∣τ ∩ [0,N ]∣∣ ≤ Nγ
) ≤ Pβ

(∣∣τz ∩ [0,N ]∣∣ ≤ Nγ
)

which tends to 0 as N tends to +∞ because the tail exponent of the return times of τz is α (see proof of Proposition 5.5,
equation (21)), so |τz ∩ [0,N ]| is of the order of Nα . �

Proof of Proposition 5.8. We first prove that for all a ∈ (0,1),

P
(
PN,β,ha

c
(AN) > a

) ≥ EPN,β,ha
c
(AN) − a.
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Indeed, this follows from

P
(
PN,β,ha

c
(AN) > a

) ≥ EPN,β,ha
c
(AN)1{PN,β,ha

c
(AN )>a}

and

EPN,β,ha
c
(AN) ≤ a + EPN,β,ha

c
(AN)1{PN,β,ha

c
(AN )>a}.

Then, from Lemma 5.5,

EPN,β,ha
c
(AN) ≤ E

(
PN,β,ha

c
(AN)1{ZN,β,ha

c
≥δ}

) + P(ZN,β,ha
c
< δ)

≤ δ−1
EZN,β,ha

c
PN,β,ha

c
(AN) + (

1 − P(ZN,β,ha
c
≥ δ)

)
≤ δ−1CβPβ(AN) + (

1 − P(ZN,β,ha
c
≥ δ)

)
.

From Lemmas 5.6 and 5.4, we have

lim inf
N

EPN,β,ha
c
(AN) ≥ c

so

lim inf
N

P
(
PN,β,ha

c
(AN) > a

) ≥ c − a

and we conclude the proof by choosing a in (0, c). �

5.4. Conclusion: Proof of Theorem 5.1

We can now conclude:

Proof of Theorem 5.1. The bound (7) and Proposition 5.1 tell us that hc(β) ≥ ha
c (β) and

lim inf
h→ha

c (β)+
logF(β,h)

log(h − ha
c (β))

≥ 1

α
,

whereas Propositions 5.8 and 5.9 tell us that

lim sup
h→ha

c (β)+

logF(β,h)

log(h − ha
c (β))

≤ 1

α

(and so that hc(β) ≤ ha
c (β)). Therefore we have all the ingredients to prove the theorem. �
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