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Abstract. Equivalence of the spectral gap, exponential integrability of hitting times and Lyapunov conditions is well known.
We give here the correspondence (with quantitative results) for reversible diffusion processes. As a consequence, we generalize
results of Bobkov in the one dimensional case on the value of the Poincaré constant for log-concave measures to superlinear
potentials. Finally, we study various functional inequalities under different hitting times integrability conditions (polynomial, . . .).
In particular, in the one dimensional case, ultracontractivity is equivalent to a bounded Lyapunov condition.

Résumé. L’équivalence entre le trou spectral, l’intégrabilité exponentielle des temps de retour et des conditions de Lyapunov est
bien connue pour les chaînes de Markov. Nous donnons ici cette même équivalence (quantitative) pour des diffusions réversibles.
Une des conséquences est la généralisation de résultats de Bobkov dans le cas unidimensionnel sur la valeur de la constante de
l’inégalité de Poincaré des mesures log-concaves à des potentiels super linéaires. En conclusion, nous étudions diverses inégalités
fonctionnelles sous diffŕentes conditions d’intégrabilité des temps de retour (polynomiale, . . .). En particulier, en dimension 1, nous
montrons l’équivalence entre ultracontractivité et condition de Lyapunov bornée.
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1. Introduction

During the recent years a lot of progress has been made in the understanding of functional inequalities and their links
with the long time behavior of stochastic processes. Very recently, starting with [3], the interplay between functional
inequalities and the Lyapunov functions used in the “Meyn–Tweedie” theory [20,26] has emerged (see [2,12,16] and
the recent survey [15]).

In the present paper we shall go a step further by showing the equivalence between the (usual) Poincaré inequality,
the existence of a Lyapunov function and the exponential integrability of the hitting times of open bounded subsets.

As we shall recall below, this equivalence is well known in the Markov chains setting, a key tool being the renewal
theory. We shall discuss here the diffusion process setting. In order to avoid technical intricacies, we mainly look at
“very regular” cases, i.e. hypoelliptic processes.
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Note that the question of the existence of exponential moments for hitting times when a Poincaré inequality holds
was addressed in [8] almost thirty years ago. We will precise explicit values for the constants, and add Lyapunov
functions to the picture.

The one dimensional situation was recently discussed in [24], but as it is well known, monotonicity arguments
make things easier in the one dimensional situation.

The main theorem is derived in Section 2. Actually most of the statements in the theorem are known or part
of the “folklore” but in fact not clearly (or simply) written and most importantly often not quantitative! The most
important new point is the fact that a Poincaré inequality implies the existence of exponential moments for hitting
times not only starting from the invariant measures bu also pointwise. However the proofs we shall give (even for
already known statements) are simple (in comparison with the existing ones) and constructive. Thus, they allow us
to give quantitative estimates or bounds. This is done in Section 3. In Section 4 we look at the one dimensional
setting. We show that Boltzmann–Gibbs measures with a super-linear potential at infinity satisfy a Poincaré inequality
and recover (up to the universal constant) the control of the Poincaré constant for log-concave Probability measures
obtained by Bobkov [5]. In the final Section 5 we shall discuss various statements concerning integrability of return
times: a first surprising feature is that boundedness of exponential moments is in fact equivalent to ultraboundedness
in dimension one. Such result is false in larger dimension. We then consider polynomial moments of hitting times,
instead of exponential ones, in connection with weak Poincaré inequalities. This section is reminiscent of the work
of Mathieu [25]. We shall however prove here a direct link between the existence of polynomial moments and weak
Poincaré inequalities which are new, providing thus the first (non-optimal) reciprocical implication, in the sense that
we can prove that some weak Poincaré inequality implies existence of polynomial moments.

2. Poincaré inequality and hitting times

2.1. The main result

Let us first recall the known situation for Markov chains. For simplicity assume that the state space E is countable,
and that Q is a Markov transition kernel on E which is irreducible and aperiodic. Denote by (Xn)n∈N the associated
Markov chain. For a ∈ E we denote by Ta the hitting time of {a} i.e. Ta = inf{n ≥ 0;Xn = a}. Then

Theorem 2.1. Under the previous assumptions, the following statements are equivalent

(1) there exist a ∈ E and ρ > 1 such that for all x ∈ E, Ex(ρ
Ta ) < +∞,

(2) there exist an invariant probability measure π and 0 < θ < 1 such that for all x ∈ E one can find C(x) with

∥∥Qn(x, ·) − π(·)∥∥TV ≤ C(x)θn,

where ‖ν − μ‖TV denotes the total variation distance between μ and ν,
(3) there exists a Lyapunov function, i.e. a function W :E → R, such that W ≥ 1, (Q− Id)W := LW ≤ αW +b1a

for some 0 < α < 1 and some b ≥ 0.

In addition if the (unique) invariant measure is symmetric, these statements are equivalent to the following two addi-
tional ones

(4) there exists a constant CP such that the Poincaré inequality

Varπ (f ) ≤ CP

〈(
Id − Q2)f,f

〉

holds for all f ∈ l2(π) (〈·, ·〉 being the scalar product in l2(π)),
(5) there exists some 0 < λ < 1 such that Varπ (Qnf ) ≤ Varπ (f )λ2n.

The equivalence between (1) and (3) is an exercise, while (3) implies (2) can be nicely shown as remarked by
M. Hairer and J. C. Mattingly [22] even in a stronger form. The converse (2) implies (1) is more intricate, and
usual proofs call upon Kendall’s renewal theorem and an argument of analytic continuation (see e.g. S. Meyn and



Poincaré and hitting times 97

R. Tweedie’s monograph [26]). In particular we can give explicit expressions for the constants for all implications,
except this one (i.e. if (2) holds, we only know that (1) holds for some non-explicit ρ).

The equivalence between (4) and (5) is well known, while (5) clearly implies (2). Finally, (3) implies that (2)
holds for Q hence for Q2 changing θ . Hence (3) holds for Q2, and this implies that the Poincaré inequality (4) holds
according to an argument due to Mu-Fa Chen ([18], pp. 221–235).

The aim of this section is to extend this result to some continuous time diffusion processes on Rd (or a finite
dimensional Riemannian manifold). We also want to get bounds for all the constants, as precisely as possible. Actually,
as we said in the Introduction, an accurate study of the literature provides (in possibly more general situations) almost
all the results we shall state. One possible way is to use some skeleton chain and Theorem 2.1 (with some loss for the
constants). Our approach will be more direct and elementary.

For simplicity we shall consider Rn valued diffusion processes (Xt )t>0 with generator

L =
∑
i,j

aij ∂
2
ij +

∑
i

bi∂i ,

where a = σ ∗σ , σij and bi being smooth enough (C∞ for instance). We introduce the “carré du champ” operator

Γ (f,g) = 1

2

(
L(fg) − f Lg − gLf

) = 〈σ∇f,σ∇g〉.

In addition we assume that μ(dx) = e−V (x) dx is a symmetric probability measure for the process, where the potential
V is also assumed to be smooth. Thus L generates a μ-symmetric semi-group Pt and the L2 ergodic theorem (in the
symmetric case) tells us that for all f ∈ L2(μ),

lim
t→+∞

∥∥∥∥Ptf −
∫

f dμ

∥∥∥∥
L2(μ)

= 0.

If U is an open subset of Rd we define

TU = inf{t > 0;Xt ∈ U}.
Consider the following statements:

(H1) There exists a Lyapunov function W , i.e. there exist a smooth function W : Rn → R, s.t. W ≥ 1, a constant
λ > 0 and an open connected bounded subset U such that

LW ≤ −λW on (Ū)c.

(H2) There exist an open connected bounded subset U and a constant θ > 0 such that for all x,

Ex

(
eθTU

)
< +∞,

and x �→ Ex(eθTU ) is locally bounded.
(H2μ) There exist an open connected bounded subset U and a constant θ > 0 such that,

Eμ

(
eθTU

)
< +∞.

(H3) There exist constants β > 0 and C > 0 and a function W ≥ 1 belonging to L1(μ) such that for all x

∥∥Pt(x, ·) − μ
∥∥

TV ≤ CW(x)e−βt .

(H4) μ satisfies a Poincaré inequality, i.e. there exists a constant CP such that for all smooth f ,

Varμ(f ) ≤ CP

∫
Γ (f,f )dμ.
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(H5) There exist constants η > 0 and C > 0 such that for all bounded f ,

Varμ(Ptf ) ≤ Ce−ηt Osc2(f ),

where Osc(f ) denotes the oscillation of f .
(H6) There exists a constant CS such that for all f ∈ L2(μ),

Varμ(Ptf ) ≤ e−CSt Varμ(f ).

Finally we also introduce the following definition

Definition 2.2. We shall say that L is strongly hypoelliptic if it can be written in Hörmander form L = ∑
j X2

j + Y

where the Xj ’s and Y are smooth vector fields such that the Lie algebra generated by the Xj ’s is full at each x ∈ Rn

(i.e. spans the tangent space at each x). Note that in this situation Γ (f,f ) = ∑
j |Xjf |2.

We shall say that L is uniformly strongly hypoelliptic if all the Xj ’s are bounded with bounded derivatives (of any
order) and there exist N ∈ N, α > 0 such that for all ξ ∈ Rn,

∑
Z∈LN(x)

〈
Z(x), ξ

〉2 ≥ α|ξ |2,

where LN(x) denotes the set of Lie brackets of length smaller or equal to N computed at x.

We may state now our main

Theorem 2.3. The following relations hold true (recall that μ is symmetric)

(1) (H1) ⇒ (H3) ⇒ (H4) ⇔ (H5) ⇔ (H6),
(2) (H1) ⇒ (H2) and (H2μ),
(3) if L is uniformly strongly hypoelliptic then (H4) ⇒ (H2) and (H2μ), and (H2) or (H2μ) ⇒ (H1).

Hence if L is uniformly strongly hypoelliptic all statements (H1) up to (H6) are equivalent.

As we said, except for the third item, all these statements are mainly known. Let us make a few remarks on the
hypotheses.

Remark 2.4 (Hypo-ellipticity). The diffusion with a gradient drift L = � − ∇V · ∇ is of course hypo-elliptic. We will
see later precise computations for the constants in this case, under the additional assumption:

LV + 1

2
Γ (V,V ) ≤ Cm < ∞. (2.5)

Of course hypoellipticity is too strong. In general what is required for a Lyapunov function in (H1) is to belong to
the domain (or the extended domain) of the generator L. In particular if the exponential moment in (H2) belongs to
L2(μ), the general theory of Dirichlet forms implies that it belongs to the domain of L and satisfies (H1). The situation
is more intricate when it is only locally square integrable. In this case one has to adapt the arguments in Remark 2.11.
Though it is certainly of big interest to study more general situations, we prefer to avoid some technicalities, and stay
at a very regular level.

Remark 2.6 (Symmetry). Actually several implications are still true without the symmetry assumption. However
symmetry is required for (H5) ⇒ (H6) (counter-examples are known in the non-symmetric situation, see e.g. [3],
Section 6, with the kinetic Fokker–Planck equation). It is also required for our proof of (H1) ⇒ (H4), but it is not for
the one in [19,20].
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Symmetry is used in the proof of (H4) ⇒ (H2), but it is not required for the first partial result i.e. the existence of
the exponential moment for μ almost all x (which holds in much more general cases according to the framework of
[13]). This result appears in the paper by Carmona and Klein [8] where the exponential integrability of hitting times
is shown under exponential rate of convergence in the ergodic theorem (hence Poincaré) and we are able to give a
precise bound for the exponent (answering the question in Remark 2 of [8]).

Note also that the implications (H1) to (H5) holds also, with additional assumptions (local Poincaré inequality and
(slight) conditions on the constants involved in (H1)) using Lyapunov–Poincaré inequalities as in [3].

Let us finally remark that Röckner–Wang [27] proves (H5) to (H6) without symmetry but assuming that L is normal
(i.e. LL∗ = L∗L).

Remark 2.7. Of course, provided W is everywhere defined and smooth, (H1) can be rewritten: there exists a Lyapunov
function W , i.e. there exist a smooth function W ≥ 1, a constant λ > 0 and an open connected bounded subset U such
that

LW ≤ −λW + b1U

with b = supU(LW + λW). This formulation is the one used in [2] yielding another bound for the Poincaré constant,
namely

CP ≤ 1

λ

(
1 + bCP (U)

)
. (2.8)

The bound we will get below (Eq. (2.16)) is not immediately comparable with this one.
In particular if (H2) holds in our strong hypoelliptic framework, x �→ Ex(eθTU ) is smooth (provided the boundary

∂U is non-characteristic) on Ū c (see again [10]) hence can be smoothly extended to the whole Rn according to
Seeley’s theorem. But an explicit bound for b is difficult to obtain.

Remark 2.9. An important ingredient in our proofs is that the measure μ satsified a Poincaré inequality restricted
on U . Indeed, as we suppose the potential V to be smooth, one has then that it is locally bounded, and as in all
assumptions (H1), (H2) or (H3), the set U is supposed to be connected and bounded, we have that μ satisfies a
local Poincaré inequality on U in particular via easy perturbation arguments from the one satisfied by the Lebesgue
measure on U when L is for example L = �−∇V ·∇ (in a quantitative way). Note that this local Poincaré inequality
is also verified by general strongly hypoelliptic generator L, see [3].

Remark 2.10. Let us emphasize that in the simple symmetric case L = � − ∇V · ∇ on Rn, condition (H1) is quite
easy to verify: for example, suppose one of the following

x · ∇V ≥ c > 0 or ∃0 < a < 1, (1 − a)|∇V |2 − �V ≥ c > 0

outside some large ball. Indeed use W(x) = ea|x| for the first condition and W(x) = eaV (x) in the second.

2.2. Proof of the main theorem

Let us begin by a small remark on (H1).

Remark 2.11 (Integrability of W ). We did not impose any integrability condition for W in (H1). Actually if W satisfies
(H1), W automatically belongs to L1(μ).

Indeed choose some smooth, non-decreasing, concave function ψ defined on R+, satisfying ψ(u) = u if u ≤ R,
ψ(u) = R+1 if u ≥ R+2 and with ψ ′(u) ≤ 1 (such a function exists). Then ψ(W) is smooth and bounded. According
to the chain rule

L
(
ψ(W)

) = ψ ′(W)LW + ψ ′′(W)Γ (W,W) ≤ −λψ ′(W)W on Ū c, (2.12)
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thanks to our assumptions. For R large enough, W ≤ R on U , so that ψ(W) = W on U . It follows

λ

∫
W1W≤R dμ ≤ λ

∫
ψ ′(W)W dμ

=
∫

L
(
ψ(W)

)
dμ + λ

∫
ψ ′(W)W dμ since

(∫
Lg dμ = 0

)

≤
∫

U

(
L

(
ψ(W)

) + λψ ′(W)W
)

dμ using (2.12)

≤
∫

U

(LW + λW)dμ = C(U),

where C(U) does not depend on R. We conclude by letting R go to ∞.

We now turn to the proof of the theorem.
(H4) ⇔ (H6). This is well known and we have in addition CS = 2/CP .
(H6) ⇔ (H5). (H6) clearly implies (H5). Since μ is symmetric the converse is proven in [27] using the spectral

resolution. For the sake of completeness we shall give below a very elementary proof of this fact based on the following

Lemma 2.13. t �→ log‖Ptf ‖L2(μ) is convex.

Indeed if n(t) = ‖Ptf ‖2
L2(μ)

, the sign of the second derivative of logn is the one of n′′n − (n′)2. But

n′(t) = 2
∫

Ptf LPtf dμ

and

n′′(t) = 2
∫

(LPtf )2 dμ + 2
∫

Ptf LPtLf dμ = 4
∫

(LPtf )2 dμ,

so that the lemma is just a consequence of Cauchy–Schwarz inequality.
This convexity is a key argument in the proof of the following

Lemma 2.14. Let C be a dense subset of L2(μ). Suppose that there exists β > 0, and, for any f ∈ C , a constant cf

such that:

∀t, Varμ(Ptf ) ≤ cf e−βt .

Then

∀f ∈ L2(μ),∀t, Varμ(Ptf ) ≤ e−βt Varμ(f ).

Our claim (H5) implies (H6) immediately follows with η = CS . In order to prove Lemma 2.14, assuming that∫
f dμ = 0 which is not a restriction, it is enough to look at

t �→ log‖Ptf ‖L2(μ) + (βt/2),

which is convex, according to Lemma 2.13, and bounded since Varμ(Ptf ) ≤ cf e−βt . But a bounded convex function
on R+ is necessarily non-increasing. Hence

‖Ptf ‖L2(μ) ≤ e−βt/2‖P0f ‖L2(μ)

for all f ∈ C , the result follows using the density of C .
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(H3) ⇒ (H5). This is shown in [3], Theorem 2.1, and we may choose the constant C in (H5) equal to 8C
∫

W dμ

where C is the constant in (H3), and η = β .
(H1) ⇒ (H3). This is the key result in [20] (also see [19]), unfortunately with an essentially non-explicit control of

the constants.
Combining all these results we get the first statement of the theorem, in particular we already know that (H1)

implies (H4).
A direct and short proof of (H1) ⇒ (H4) is given in [2] for L = �−∇V ·∇ which is the natural symmetric operator

associated with μ. Let us give a slightly modified proof, yielding a better control on the constants and extending it to
more general operators.

The key is the following (f being smooth)
∫ −LW

W
f 2 dμ ≤

∫
Γ (f,f )dμ, (2.15)

which is a consequence of

∫ −LW

W
f 2 dμ =

∫
Γ

(
f 2

W
,W

)
dμ

= 2
∫

f

W
Γ (f,W)dμ −

∫
f 2

W 2
Γ (W,W)dμ

= −
∫ ∣∣∣∣ f

W
σ∇W − σ∇f

∣∣∣∣
2

dμ +
∫

Γ (f,f )dμ.

Next for r > 0 introduce Ur = {x;d(x,U) < r} for the (Euclidean or Riemannian) distance d . Let 0 ≤ χ ≤ 1 be a C∞
function such that χ = 1 on U and χ = 0 on Uc

r . Then
∫

f 2 dμ =
∫ (

f (1 − χ) + f χ
)2 dμ

≤ 2
∫

f 2(1 − χ)2 dμ + 2
∫

f 2χ2 dμ

≤ 2

λ

∫ −LW

W
f 2(1 − χ)2 dμ + 2

∫
Ur

f 2 dμ

≤ 2

λ

∫
Γ

(
f (1 − χ),f (1 − χ)

)
dμ + 2

∫
Ur

f 2 dμ

by (2.15). Since Γ (fg,fg) ≤ 2(f 2Γ (g,g) + g2Γ (f,f )), we get:
∫

f 2 dμ ≤ 4

λ

∫
Γ (f,f )dμ + 4

λ

∫
f 2Γ (χ,χ)dμ + 2

∫
Ur

f 2 dμ

≤ 4

λ

∫
Γ (f,f )dμ +

(
4‖Γ (χ,χ)‖∞

λ
+ 2

)∫
Ur

f 2 dμ.

Now, if μ satisfies a Poincaré inequality in restriction to Ur , i.e.
∫

Ur

f 2 dμ ≤ CP (U, r)

∫
Ur

Γ (f,f )dμ if
∫

Ur

f dμ = 0,

we may apply the previous inequality with g = f − 1
μ(Ur )

∫
Ur

f dμ, yielding, since σ∇f = σ∇g,

Varμ(f ) ≤
∫

g2 dμ ≤
(

4

λ
+

(
4‖Γ (χ,χ)‖∞

λ
+ 2

)
CP (U, r)

)∫
Γ (f,f )dμ, (2.16)
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i.e. the Poincaré inequality (H4). Note that we may always replace U by a larger Euclidean ball, i.e. we may assume
that U is an Euclidean ball. According to the discussion in [3], pp. 744–745, if L is strongly hypoelliptic, μ satisfies
the Poincaré inequality in restriction to any Euclidean ball, so that we have shown that (H1) ⇒ (H4) in this case.

We now turn to the part of the results involving the stochastic process.
(H1) ⇒ (H2). This is a simple application of Ito’s formula applied to (t, x) �→ eatW(x) (notice that (H1) implies

that the diffusion process is non-explosive or conservative). Indeed let x ∈ Uc , and a ≤ λ. Define TUR as the first
hitting time of U ∪ {|y| > R}. For R > |x| we thus have

Ex

(
ea(t∧TUR)

) ≤ Ex

(
ea(t∧TUR)W(Xt∧TUR

)
)

≤ W(x) + Ex

(∫ t∧TUR

0
(aW + LW)(Xs)e

as ds

)

≤ W(x) + Ex

(∫ t∧TUR

0
(a − λ)W(Xs)e

as ds

)

≤ W(x),

so that letting first R then t go to infinity we obtain (H2) for θ = λ, thanks to Lebesgue’s monotone convergence
theorem.

The same proof shows that (H2μ) holds since we know that W ∈ L1(μ).
Conversely, assume (H2) and the strong hypoellipticity of L. Again we may assume that U is an Euclidean ball

so that for any R > 0, the boundary of the Euclidean shell UR − U is non-characteristic for L. We may then use
the results in e.g. [10], Theorem 5.14 (local boundedness in (H2) ensures that hypothesis (HC) in [10] is satisfied),
showing that

x �→ WR(x) = Ex

(
e
θ(TU ∧TUc

R
))

is smooth and solves the Dirichlet problem

LWR + θWR = 0 in UR − U, WR = 1 on ∂(UR − U).

Using (H2) again it then follows that

x �→ W(x) = Ex

(
eθTU

)
is well defined, solves the Dirichlet problem with R = +∞ in the sense of Schwartz distributions, hence is smooth
thanks to hypoellipticity. W is then a Lyapunov function in (H1). If (H2μ) is satisfied, then an argument below will
show that (H2) is satisfied.

To conclude the proof of the theorem it remains to show that the Poincaré inequality (H4) implies (H2). Let U be
an open bounded set. The idea is that, if TU is large, the process stays for a long time in Uc, and spends no time at all
in U . However, the ergodic properties given by the Poincaré inequality tell us that, for large times, the fraction of the
time spent in U should be proportional to μ(U); therefore TU cannot be too large.

To be more precise,

{TU > t} ⊆
{

1

t

∫ t

0
1U(Xs)ds = 0

}
. (2.17)

Hence

Pν(TU > t) ≤ Pν

(
1

t

∫ t

0
1U(Xs)ds = 0

)

≤ Pν

(
−1

t

∫ t

0
1U(Xs)ds + μ(U) ≥ μ(U)

)

≤
∥∥∥∥ dν

dμ

∥∥∥∥
L2(μ)

· exp

(
− tμ(U)

8CP (1 − μ(U))

)
, (2.18)
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provided μ(U) ≤ 1/2. The latter is a consequence of Proposition 1.4 and Remark 1.6 in [13].
From there, we get exponential moments, using the elementary lemma:

Lemma 2.19. For any positive random variable,

E
[
eθT

] = 1 +
∫ ∞

0
θeθtP[T > t]dt.

If for some s0, θU and for t > s0, P[T > t] ≤ C exp(−(t − s0)θU ), then

∀θ < θU , E
[
eθT

] ≤ eθs0

(
1 + C

θ

θU − θ

)
.

For s0 = 0, θU = μ(U)/8CP , and ν = μ, using (2.18) and this lemma, we get Eμ(eθTU ) < +∞, for any θ < θU .
This entails that Ex[eθTU ] is itself finite, for μ-almost any x.

If we assume the uniform strong hypoellipticity the marginal law at time t of Px has an everywhere positive smooth
density r(t, x, ·) w.r.t. μ, and symmetry combined with the Chapman–Kolmogorov relation yield

∫
r2(t, x, y)μ(dy) = r(2t, x, x) < ∞,

showing that the Px law of X1 has a density r(1, x, ·) ∈ L2(μ). We may thus apply the previous result with ν =
r(1, x, ·)μ.

Notice that this argument also shows that TU has an exponential moment of order θ/2 for Px as soon as it has an
exponential moment of order θ for Pμ, i.e. (H2μ) implies (H2).

Remark 2.20. The proof shows that (H4) implies (H2), i.e. the hitting times have finite exponential moments, but do
not give explicit bounds on the value of these moments (depending on x). Such explicit bounds will be given in the next
section.

3. Some consequences

We rephrase here the implication (H4) ⇒ (H2) of the main theorem, and add explicit computations of the constants,
and the dependence on x of the moments, in special cases.

Proposition 3.1. Assume that the Poincaré inequality holds with constant CP .
Then for all open set U with μ(U) ≤ 1/2, Ex(eθTU ) < +∞ for

θ < μ(U)/8CP

(
1 − μ(U)

) := θ(U).

If μ(U) ≥ 1/2 we may take θ(U) = μ2(U)/2CP .
If the boundedness assumption (2.5) holds, there exists C such that:

∀x,∀θ < θU , Ex

[
eθTU

] ≤ C

(
1 + eV (x)/2 θ

θU − θ

)
. (3.2)

If, in addition, we are in the elliptic case L = � − ∇V · ∇ , (3.2) holds with C replaced by eθs0 , where s0 = 1
2πe2Cm/n.

Proof. The first statement has already been proved.
If we assume the additional boundedness hypothesis (Eq. (2.5)), we can use stochastic calculus to get good bounds:

the idea is that the density of the law of Xt with respect to μ is computable, and its L2 norm can be bounded.
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First of all recall that L = ∑
X2

j + Y . Since μ is symmetric

Y =
∑
j

divXjXj −
∑
j

XjV Xj .

If we denote by Qx the law of the diffusion process starting from x with generator

L′ =
∑
j

X2
j +

∑
j

divXjXj

we have a Girsanov type representation

Gt := dPx

dQx

∣∣∣∣
Ft

= exp

(
−1

2

∫ t

0

〈
XjV (ωs),dωs

〉 − 1

4

∫ t

0
Γ (V,V )(ωs)ds

)

= exp

(
1

2
V (ω0) − 1

2
V (ωt ) − 1

2

∫ t

0

(
1

2
Γ (V,V ) − L′V

)
(ωs)ds

)
,

the latter (Feynman–Kac representation) being obtained by integrating by parts the stochastic integral. We can now
follow an argument we already used in previous works. We write the details for the sake of completeness.

Thanks to the uniform strong hypoellypticity we know that the marginal law at time t of Qx has an everywhere
positive smooth density q(t, x, ·) w.r.t. Lebesgue measure satisfying for some M (see e.g. [9], Theorem 1.5)

∣∣q(t, x, y)
∣∣ ≤ C(1 ∧ t)−M for all x, y ∈ Rn.

Hence

Ex

[
f (Xt )

] = EQx
[
f (ωt )E

Qx [G|ωt ]
]

=
∫

f (y)EQx [G|ωt = y]q(t, x, y)dy

=
∫

f (y)EQx [G|ωt = y]q(t, x, y)eV (y)μ(dy).

In other words, the law of Xt has a density with respect to μ given by

r(t, x, y) = EQx [G|ωt = y]q(t, x, y)eV (y).

Hence
∫ +∞

0
r2(t, x, y)μ(dy) =

∫ (
EQx [G|ωt = y]q(t, x, y)eV (y)

)2e−V (y) dy

= EQx
[
q(t, x,ωt )e

V (ωt )
(
EQx [G|ωt ]

)2]
≤ EQx

[
q(t, x,ωt )e

V (ωt )EQx
[
G2|ωt

]]
≤ eV (x)EQx

[
q(t, x,ωt )e

− ∫ t
0 ((1/2)Γ (V,V )−L′V )(ωs)ds

]
≤ C(1 ∧ t)−MeV (x)eCmt .

Hence the law at time 1 of X· has a density belonging to L2(μ). Using the result in [13] we have recalled and the
Markov property we thus have for t > 1

Px(TU > t) ≤ DeV (x)/2e−(t−1)μ(U)/(8CP (1−μ(U)))

hence the result by Lemma 2.19.
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Finally, if L = � − ∇V · ∇ , we can be even more precise.
Indeed q(t, x, y) ≤ (2πt)−n/2 so that for t > s > 0, using (2.18) we obtain

Px(TU > t) ≤ (2πs)−n/4eCms/2eV (x)/2e−(t−s)θ(U).

Choosing s0 = 1
2π

e2Cm/n we get for t > s0,

Px(TU > t) ≤ eV (x)/2e−(t−s0)θ(U),

so that for θ < θ(U), using Lemma 2.19, we get

Ex

(
eθTU

) ≤ eθs0

(
1 + θ

θ(U) − θ
eV (x)/2

)
.

If μ satisfies a Poincaré inequality with constant CP , so does μ⊗k for any k ∈ N∗. It thus follows as before that for
x = (x1, . . . , xk) and θ < θ(U),

Px(TU > t) ≤ (2πs)−nk/4ekCms/2e
∑

i V (xi )/2e−(t−s)θ(U),

so that for the same s0,

Ex

(
eθTU

) ≤ eθs0

(
1 + e

∑
i V (xi )/2

θ(U) − θ

)
. �

Remark 3.3. In the same way, when L = � − ∇V · ∇ , one can improve upon the constant if we assume in addition
that

U has a smooth boundary and ∂W
∂n

≤ 0 on ∂U where n denotes the inward normal to the boundary. (3.4)

Indeed in this case we can directly integrate by parts in Uc using the Green Rieman formula. This yields
∫

Uc

f 2 dμ ≤ 1

λ

∫
Uc

f 2 −LW

W
e−V dx

≤ 1

λ

∫
Uc

f 2

W
(−�W + ∇V · ∇W)e−V dx

≤ 1

λ

∫
Uc

(
∇

(
f 2e−V

W

)
· ∇WeV + f 2

W
∇V · ∇W

)
e−V dx

+ 1

λ

∫
∂U

(
f 2e−V

W

)
∂W

∂n
dm∂U

≤ 1

λ

∫
Uc

∇
(

f 2

W

)
· ∇We−V dx

≤ 1

λ

∫
Uc

(
|∇f |2 −

∣∣∣∣∇f − f

W
∇W

∣∣∣∣
2)

dμ

≤ 1

λ

∫
Uc

|∇f |2 dμ.

Therefore we obtain in this case

CP ≤ 1

λ
+ CP (U), (3.5)

which is of course much better than any other bound we gave.
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Remark 3.6. Since we are collecting some quantitative bounds here, let us recall what happens when we replace the
mean by something else (but well suited) in the Poincaré inequality. Recall that if mμ(f ) denotes a μ median of f ,
one has

Varμ(f ) ≤ Eμ

[(
f − mμ(f )

)2] ≤ 2 Varμ(f ), (3.7)

so that one may replace the variance by the squared distance to any median in Poincaré inequality up to some universal
constants. Similar inequalities can be shown if we relace the median by any quantile.

We may also replace the mean of f by local means. Indeed let U be a subset such that 0 < μ(U) < 1. If
∫
U

f dμ = 0
we may write

∫
f 2 dμ ≤ CP

∫
|∇f |2 dμ +

(∫
f dμ

)2

≤ CP

∫
|∇f |2 dμ +

(∫
Uc

f dμ

)2

≤ CP

∫
|∇f |2 dμ + (

1 − μ(U)
)(∫

f 2 dμ

)

so that∫
f 2 dμ ≤ CP

μ(U)

∫
|∇f |2 dμ.

4. Probability measures on the line

In this section we shall look at the case n = 1, μ(dx) = Z−1e−V (x) dx where Z is a normalization constant. Since the
Poincaré constant is unchanged by translating the measure we may also assume that

∫
x dμ = 0.

General bounds for the Poincaré constant are well known using Hardy–Muckenhoupt weighted inequalities (see
e.g. [1]). Another approach was recently proposed in [24] where bounds for both the Poincaré constant and the
exponential moment for hitting times are obtained, through the rate function and speed measure. Notice that the
results of Section 2 seem to be less precise in the one-dimensional situation but cover all possible dimensions.

4.1. Super-linear and log-concave one dimensional distributions

Our interest here is to describe the Poincaré constant for particular μ including the log-concave situation. The log-
concave situation indeed deserved a lot of interest due to the belief that, in the multidimensional isotropic case (namely
the covariance matrix is the identity), it is close to the independent one. It is therefore particularly relevant to get
bounds on functional inequalities in terms of the variance. For log-concave measures μ on the line Bobkov [5] proved
that

Varμ(x) ≤ CP (μ) ≤ 12 Varμ(x), (4.1)

where x denotes the identity function. One can also look at another approach in [21].
In our previous work [2] we have shown how to use the Lyapunov function method to recover the general result of

Bobkov saying that any log-concave probability measure (in any dimension) satisfies a Poincaré inequality. Here we
shall be more precise for the one dimensional case and we shall recover a bad version of Bobkov’s result (4.1), i.e.
with a worse constant larger than 12 but for more general measures. We start with some definitions.

Definition 4.2. Let μ(dx) = Z−1e−V (x) dx be a probability measure on the line. We assume that there exists Vmin >

−∞ such that Vmin ≤ V ≤ +∞ and that there exists a ∈ R such that V (a) = Vmin.
For β > 0 we denote by R+(β) any positive number such that V (a + u) − V (a) ≤ β for all 0 ≤ u ≤ R+(β) and

similarly R−(β) on the left-hand side of a. Finally R(β) = R+(β) ∨ R−(β).
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We shall say that V is β-superlinear if for t ≥ R+(β) (resp. t ≥ R−(β)) one has

V (a + t) − V (a) ≥ cβ

R(β)
t − hβ

(
resp. V (a − t) − V (a) ≥ cβ

R(β)
t − hβ

)

for some non-negative constant cβ and some hβ .

Remark 4.3. Let μ(dx) = Z−1e−V (x) dx be a probability measure on the line, with V of class C1. We assume that
minV = 0 = V (a) and that there exist β > 0 and θ > 0 such that sign(x − a)V ′(x) ≥ θ outside some subset Nβ of
the level set {V ≤ β}. Remark that this type of condition already appears in [3] as a sufficient condition for Poincaré
inequality as it implies some Lyapunov condition. Constants there were however far from efficient concerning isotropic
normalization.

Since sign(x − a)V ′(x) ≥ θ outside Nβ it is easily seen that Nβ is necessarily a closed interval. We thus choose
R+(β) and R−(β) such that Nβ = [a − R−(β), a + R+(β)]. We may assume that R+(β) ≥ R−(β).

For x ≥ a + R+(β), our assumptions furnish

V (x) ≥ V (x) − V
(
a + R+(β)

)
≥ θ

(
x − a − R+(β)

)

≥ cβ

R+(β)
(x − a) − hβ,

where cβ = θR+(β) = hβ .
For x ≤ a − R−(β) we have the same result of course, still with cβ = θR+(β) a priori with h = θR−(β) which is

smaller than hβ , so that the result still holds with hβ .
Hence V is β-superlinear. Actually it is β ′-superlinear for any β ′ ≥ β .
Our definition looks thus unnecessarily intricate. However, we shall see that it is well appropriate for the isotropic

normalization.

The next lemma allows us to compare the variance and the β level set values,

Lemma 4.4. Assume that V is β-superlinear and that
∫

x dμ = 0, then

R2+(β) ∨ R2−(β) ≤ 12 Varμ(x)eβ

(
1 + 2ehβ

cβ

)

and

R2+(β) ∨ R2−(β) ≥ 1

2
Varμ(x)e−β

(
1

3
+ ehβ

cβ

(
1 + 2

cβ

+ 2

c2
β

))−1

.

Proof. We may and will assume that V (a) = 0 (just modify Z). We fix once for all β and thus skip the dependence
in β for notational convenience. Let R = R+ + R− and denote by σ 2 the variance of μ.

Since V is β-superlinear we have

R(β)e−β ≤
∫ a+R+

a−R−
e−β dx ≤

∫ a+R+

a−R−
e−V (x) dx ≤ Z

≤
∫ a+R+

a−R−
dx + eh

(∫ +∞

a+R+
e−(c/R(β))(x−a) dx +

∫ a−R−

−∞
e−(c/R(β))(a−x) dx

)

≤ R(β)

(
1 + 2

eh

c

)
,
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i.e.

R(β)e−β ≤ Z ≤ R(β)

(
1 + 2eh

c

)
.

By symmetry we may also assume that R+ ≥ R− so that it is enough to get an upper bound for R+. But

e−β

3

(
(a + R+)3 − a3) =

∫ a+R+

a

e−βx2 dx ≤
∫ a+R+

a

x2e−V (x) dx ≤ Zσ 2.

Using R(β) = R+ we thus obtain

R2+ + 3aR+ + 3a2 ≤ 3σ 2eβ

(
1 + 2eh

c

)
. (4.5)

If a > 0 we immediately obtain R2+ ≤ 3σ 2(1 + 2eh

c
). If a ≤ 0 the minimal value of the left hand side in (4.5) (consid-

ered as a polynomial in a) is obtained for a = −R+/2 and is equal to R2+/4 so that we obtain in all cases

R2+ ≤ 12σ 2eβ

(
1 + 2eh

c

)
. (4.6)

In the same way we see that if a > 0 then a2 ≤ 2σ 2eβ(1 + 2eh

c
). If a ≤ 0 the minimal value of the left-hand side

in (4.5) (considered as a polynomial in R+) is obtained for R+ = − 3
2a and is equal to 3a2/4 so that we obtain in all

cases

a2 ≤ 4σ 2eβ

(
1 + 2eh

c

)
. (4.7)

We turn to the second bound. Again we assume that R+ ≥ R−. Recall that σ 2 ≤ ∫
(x − a)2 dμ. Similarly to the

first bound we can thus write

Zσ 2 ≤
∫

(x − a)2e−V (x) dx

≤
∫ a+R+

a−R−
(x − a)2 dx + eh

(∫ +∞

a+R+
(x − a)2e−(c/R(β))(x−a) dx +

∫ a−R−

−∞
(x − a)2e−(c/R(β))(a−x) dx

)

≤ 1

3

(
R3+ + R3−

) + eh R3+ + R3−
c

(
1 + 2

c
+ 2

c2

)

≤ 2R3+
(

1

3
+ eh

c

(
1 + 2

c
+ 2

c2

))
.

Using Z ≥ R+e−β we thus obtain

R2+ ≥ 1

2
σ 2e−β

(
1

3
+ eh

c

(
1 + 2

c
+ 2

c2

))−1

. �

We turn to the study of the Poincaré constant.

Remark 4.8. If m = ∫
x dμ the measure e−V (x+m) dx is centered and share the same Poincaré constant as μ. Replac-

ing a by a + m we may and will assume that m = 0.
Similarly if we consider the probability measure μu = ue−V (ux) dx, we have u2 Varμu(x) = Varμ(x) and an easy

change of variables shows that u2CP (μu) = CP (μ). So we can assume that Varμ(x) = 1.
If V is β-superlinear, it is easy to see that Vu (defined by Vu(x) = V (ux)) is still β-superlinear, with the same

constants cβ and hβ , but replacing Rβ by Ru(β) = Rβ/u.
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Proposition 4.9. Let μ(dx) = Z−1e−V (x) dx be a probability measure on the line, with V of class C1. We assume
that minV = 0 = V (a) and that there exist β0 > 0 and θ > 0 such that sign(x − a)V ′(x) ≥ θ outside some subset
Nβ0 of the level set {V ≤ β0}.

Then there exists a constant C(β0, θ) such that the Poincaré constant CP (μ) satisfies

CP (μ) ≤ C(β0, θ)Varμ(x).

Proof. As we already remarked we can assume that μ is centered, and V being of C1 class, we have Lg = g′′ −V ′g′.
We know that V is β-superlinear for any β ≥ β0. We denote by Nβ = [a − R−(β), a + R+(β)]. We shall modify

μ introducing

μβ(dx) = Z−1
β

(
e−V (x)1x /∈Nβ + e−β1x∈Nβ

)
dx. (4.10)

Note that, according to Lemma 4.4

1 ≤ Z

Zβ

≤ eβ

(
1 + 2ehβ

cβ

)
.

It follows that

e−β ≤ dμβ

dμ
≤ e2β

(
1 + 2ehβ

cβ

)
. (4.11)

Accordingly we know that

CP (μ) ≤ e3β

(
1 + 2ehβ

cβ

)
CP (μβ). (4.12)

It remains to find an estimate for the Poincaré constant of μβ .
We have to face a small problem since the potential Vβ of μβ is no more of class C1, but we still have a drift, i.e.

V ′(x)1x /∈Nβ , and an easy approximation procedure allows us to extend Theorem 2.3 in this situation.
We denote by Lβ the associated generator i.e. Lβf (x) = f ′′(x) − V ′(x)1x /∈Nβ f ′(x).
We shall now introduce a well chosen Lyapunov function. We define

u(x) = |x|1|x|>1 +
(

3

8
+ 3

4
x2 − 1

8
x4

)
1|x|≤1.

It is easily seen that u is of class C2.
Now for aβ = a + R+(β)−R−(β)

2 (which is the center of Lβ ), and R = R+(β) + R−(β) we define

Wβ(x) = eγ u(x−aβ).

An easy calculation shows that

LβWβ ≤ γ (γ − θ)Wβ if |x − a| ≥ R.

Choosing γ = θ/2, it follows that Wβ is a Lyapunov function i.e. satisfies (H1) with

λ = 1

2
θ2 = 1

2

c2
β

R2
= v(β)

Varμ(x)
,

according to Lemma 4.4.
It is thus enough to apply (2.16) with some care. First we replace U by Nβ , then Ur by N2β . We may thus choose

some χ such that Γ (χ,χ) is of order (R2β − Rβ)−2 i.e. such that Γ (χ,χ)/λ only depends on β (and not explicitly
on Varμ(x)).
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Since μβ is uniform on Nβ , it is known that its Poincaré constant (in restriction to Nβ ) is equal to R2/π2, and
again thanks to Lemma 4.4 it is bounded independently of V by some constant that only depends on β and λ.

The proof is completed, and the reader easily sees why we did not give an explicit value for the constant
C(β,λ,Varμ(x)). �

Remark 4.13. The previous proposition is not surprising. It tells us that once the exponential concentration (which
is a consequence of the Poincaré inequality) rate at infinity is known, and the bound of the density is given (at finite
horizon), the Poincaré constant has to be controlled up to the natural scaling in the variance. We have given a proof
of this natural conjecture under a strong form of concentration result. This result entails in particular double-well
potentials. Note that no bound on the second derivative is needed (except that the first derivative has to stay greater
than λ), so that the previous result contains much more general situations than the log-concave situation. We may
even build examples with a Bakry–Emery curvature equal to −∞.

We turn to the log-concave situation. Since our method covers more general situations, it is certainly not sharp. So
it is an illusion to hope to recover the constant 12 in Bobkov’s result. Hence we shall even not try to give an explicit
constant.

Theorem 4.14. There exists a universal constant C such that for all log-concave probability measure μ on the real
line,

CP (μ) ≤ C Varμ(x).

Proof. According to Remark 4.8 the result will follow if we prove the existence of the universal constant C for any
log-concave measure with Varμ(x) = 1.

First we assume that μ(dx) = Z−1e−V (x) dx is a log-concave probability measure on the line, with V a C1 function.
We assume that minV = 0 = V (a) and Varμ(x) = 1.

Since V is convex it is easily seen that for any β > 0, Nβ is necessarily a closed interval denoted again [a −
R−(β), a + R+(β)].

In particular if x ≥ a + R+(2β), the convexity of V yields

V (x) ≥ V (x) − V
(
a + R+(β)

)

≥ β

R+(2β) − R+(β)

(
x − a − R+(β)

)

≥ β

R+(2β)

(
x − a − R+(β)

) = c+
2β

R+(2β)
(x − a) − h2β,

where c+
2β = β and 0 ≤ h2β ≤ β .

For x ≤ a − R−(2β) we have a similar result replacing R+ by R− hence with c−(2β) = β again. Since R+ and
R− are both smaller than (or equal to) R(β), V is 2β-superlinear and Lemma 4.4 yields

R2(2β) ≤ 12eβ

(
1 + 2e2β

β

)
.

In addition for x ≥ a + R+(2β) convexity yields

V ′(x) ≥ β

R+(2β)
≥ β

R(2β)
≥ β3/2e−β/2

2
√

3(β + 2eβ)1/2
,

and the same result is true for x ≤ a − R−(2β). Proposition 4.9 yields a bound for each β (β = 1 for example). We
should optimize in β but as we said we shall never attain the optimal bound 12.

In the general case (V convex with values in ]−∞,+∞]) we first approximate V by everywhere finite convex
functions, and then approximate such a function by a smooth one convoluing it for instance with Gaussian kernels
with small variance. �
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4.2. Hardy type inequalities

In the spirit of Remark 3.3 we can state another particular result of Hardy type, which is known to hold (with a better
constant) if b below is a median of μ

Theorem 4.15. Let dμ = e−V (x) dx be a probability measure on the real line satisfying a Poincaré inequality with
constant CP . We assume that there exist a sequence Vn of C1 functions such that e−Vn converges to e−V weakly in
σ(L1,L∞). Then for all b ∈ R the following inequality holds for all bounded smooth f ,

∫ (
f (x) − f (b)

)2
μ(dx) ≤ 8CP

μ(]−∞, b]) ∧ μ([b,+∞[)
∫ (

f ′)2
(x)μ(dx). (4.16)

Proof. Assume first that V is of class C1. If Xt is the diffusion process with generator Lf = f ′′ − V ′f ′ (which is
conservative since Poincaré inequality, hence (H1) holds), Proposition 3.1 tells us that for any θ < μ(]−∞, b]/8CP

the hitting time of ]−∞, b] has an exponential moment of order θ . Hence one can find a Lyapunov function satisfying
LW = −θW on [b,+∞[, namely W(x) = Ex(eθTb ). It follows that for a smooth f and A ≥ b,

∫ A

b

(
f (x) − f (b)

)2
μ(dx) = −1

θ

∫ A

b

LW

W
(x)

(
f (x) − f (b)

)2
μ(dx)

≤ 1

θ

(∫ A

b

(
f ′(x)

)2
μ(dx) −

((
f (A) − f (b)

)2 W ′(A)

W(A)
e−V (A)

))

the latter being obtained as in Remark 3.3 using integration by parts, since f (x)−f (b) = 0 for x = b. But W is clearly
non-decreasing in x so that the last term into braces is non-negative, yielding the bound we claimed on [b,+∞[ by
letting A go to +∞. The same holds on the left hand side of b.

Hence the Hardy–Poincaré–Sobolev inequality (4.16) holds for any constant larger than

8CP

μ(]−∞, b]) ∧ μ([b,+∞[)
hence with this value by taking the infimum, and then for a non-necessarily smooth V using an approximation proce-
dure. �

As it is clear in the previous proof we may replace the full R by any interval containing b without any change in
the constant. Since the Variance of f in restriction to an interval minimizes the square distance to any value, we thus
obtain as a corollary

Corollary 4.17. Let dμ = e−V (x) dx a probability measure on the real line satisfying a Poincaré inequality with
constant CP . Then for all interval (a, b) ⊆ R the following inequality holds for μ(a,b) the restriction of μ to (a, b)

and for all bounded smooth f ,

Varμ(a,b)
(f ) ≤ 8CP

supu∈(a,b){μ(]−∞, u]) ∧ μ([u,+∞[)}
∫ (

f ′)2
(x)μ(a,b)(dx). (4.18)

In particular if a ≤ mμ ≤ b then μ(a,b) satisfies a Poincaré inequality with a constant not bigger than 16CP .

This bound can certainly be attained and improved by looking carefully at Muckenhoupt type constants, at least
when the median belongs to the interval.
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4.3. L1 inequalities

It is well known that one obtains a stronger inequality replacing the L2 norm by a Lp norm for 1 ≤ p ≤ 2 (see e.g. [7],
Chapter 2). The L1 Poincaré inequality (sometimes called Cheeger inequality) is of particular interest since it yields
controls for the isoperimetric constant (see e.g. [5,6]). Due to the standard

1

2

∫ ∣∣f − μ(f )
∣∣dμ ≤

∫ ∣∣f − mμ(f )
∣∣dμ ≤

∫ ∣∣f − μ(f )
∣∣dμ, (4.19)

where μ(f ) and mμ(f ) denote respectively the mean and a μ median of f , such an inequality can be written indif-
ferently∫ ∣∣f − μ(f )

∣∣dμ ≤ CC

∫
|∇f |dμ or

∫ ∣∣f − mμ(f )
∣∣dμ ≤ C′

C

∫
|∇f |dμ. (4.20)

Equation (4.20) is true for any log-concave distribution and actually CC and CP differ by an universal multiplicative
constant (see [23]). For one dimensional log-concave distribution CC is universally bounded (see [6]). In our previous
paper [2] we have shown that the existence of a Lyapunov function W as in (H1) implies a Cheeger type inequality,
provided ∇W/W is bounded.

We shall here derive such an inequality, with the correct normalization factor μ(|x − μ(x)|) which immediately
follows by a linear change of variables in (4.20).

Theorem 4.21. Under the hypotheses of Proposition 4.9 there exists a constant C(β,λ,μ(|x − μ(x)|)) such that the
Cheeger constant CC(μ) satisfies

CC(μ) ≤ C
(
β,λ,μ

(∣∣x − μ(x)
∣∣)).

In particular if μ is a log-concave probability measure on the line, there exists an universal constant C such that
CC(μ) ≤ Cμ(|x − μ(x)|).

Proof. We follow the proof of Proposition 4.9 (see the notations therein) proving a Cheeger inequality for the measure
μβ . Recall that Wβ satisfies LβWβ ≤ −λ2/4Wβ + b(R,β,λ)1Nβ .

The first thing to do is to show that R+ ∨ R− is controlled, from above and from below by a quantity depending
only on β , λ and μ(|x − μ(x)|) i.e. to prove the analogue of Lemma 4.4. Denote by s the quantity μ(|x − μ(x)|).
Then mimiking the proof of Lemma 4.4 we can prove

R+ ∨ R− ≤ 2

(
1 + 2eh

c

)
s

and

R+ ∨ R− ≥ 1

2
se−βC(h, c)

for some C(h, c) > 0.
Now we may assume that s = 1. The second thing to do is to recall the reasoning in [2] i.e. if f is smooth and

g = f − m for some constant m we have
∫

|g|μβ(dx) ≤ 4

λ2

∫
|g|

(
−LβWβ

Wβ

)
μβ(dx) + 4b(β,λ)eβ

λ2Zβ

∫
Nβ

|g|dx

≤ 4

λ2

∫ (∣∣g′∣∣( |W ′
β |

Wβ

)
− |g|

( |W ′
β |2

W 2
β

))
μβ(dx) + 4b(β,λ)eβ

λ2Zβ

R

π

∫
Nβ

∣∣g′∣∣dx

if we choose m = ∫
Nβ

f (x)dx. The first term is obtained after integrating by parts, the second one is using the standard

Cheeger inequality for the uniform measure on an interval.
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Now remark that |W ′
β |/Wβ is bounded by some constant depending only on β and λ. Finally we have obtained (if

μ(|x − μ(x)|) = 1),∫ ∣∣f − μβ(f )
∣∣dμβ ≤ 2

∫ ∣∣f − mμβ (f )
∣∣dμβ ≤ 2

∫
|g|dμβ ≤ K(β,λ)

∫ ∣∣f ′∣∣dμβ,

hence the result for μβ and then for μ as in Proposition 4.9.
The log-concave case is then similar to Theorem 4.14. �

As we already said the previous Theorem contains Proposition 4.9 thanks to Cheeger’s inequality CP ≤ 4C2
C .

Actually our proof yields so bad constants in both cases that it is really tedious to check when the previous relation
gives a better bound than Proposition 4.9. We also insist on the proof of both properties using Lyapunov function. As
we have seen, the proof of a L1 inequality requires the boundedness of W ′/W . In particular if we choose for W the
Laplace transform of hitting times Ex(eθTb ), this latter property is not ensured. So we cannot obtain similar results as
in Section 4.2.

5. φ moments and Poincaré like inequalities

Since the status of the existence of exponential moments for hitting times is now characterized through the results
of Section 2, it is certainly interesting to look at more general φ moments. The first result is a direct consequence of
(2.15):

Proposition 5.1. Assume that L is uniformly strongly hypoelliptic. If U is an open connected set with μ(U) < 1, then

sup
{
λ, such that Eμ

(
eλTU

)
< +∞}

< +∞.

In particular if φ growths faster, at infinity, than any exponential Eμ(φ(TU )) = +∞.

Proof. We already saw that, in the uniform strong hypoelliptic situation, Ex(eλTU ) < +∞ for all x as soon as
Eμ(e2λTU ) < +∞. According to the proof of Theorem 2.3, we thus know that there exists a Lyapunov function
satisfying (H1). Equation (2.15) implies that

∫
f 2 dμ ≤ 1

λ

∫
Γ (f,f )dμ

for all smooth f with support in Ū c. This cannot hold for all λ since μ(U) < 1, just looking at λ → +∞. �

Remark 5.2. Actually the hypoellipticity assumption is not needed. Indeed, if Eμ(e2λTU ) < +∞, W(x) = Ex(eλTU )

(which is defined μ almost everywhere, or even better quasi-everywhere) belongs to the domain of L. One can then
use the contents of Remark 2.4.

This result is in accordance with the fact that one cannot improve on the exponential convergence in L2 (or in
total variation distance) even for very strong repelling forces. In order to discriminate diffusions satisfying a Poincaré
inequality, one has to introduce new inequalities (e.g. F -Sobolev inequalities or super-Poincaré inequalities) or con-
traction properties of the semi-group (see e.g. [4,16]). Another connected possibility is to look at exponential decay
to equilibrium for weaker norms than Lp norms (see e.g. [14]). The certainly best known case is the one when a
logarithmic Sobolev inequality holds or equivalently the semi-group is hypercontractive or equivalently exponential
convergence holds in entropy (or in L logL Orlicz norm) (see e.g. [1] for an elementary introduction to all these
notions).

The use of Lyapunov functions for studying such stronger inequalities is detailed in [16]. It should be very in-
teresting to understand these phenomena in terms of hitting times. We strongly suspect that what is important is the
behavior of W(x) = Ex(eλTU ) as x goes to infinity. For instance if W is bounded, we suspect that the semi-group is
ultracontractive (or more properly ultrabounded). Some hints in this direction are contained in [11], Theorem 7.3, at
least for diffusion processes on the real line. Let us state a result in this direction:
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Proposition 5.3. Assume that L = �−∇V · ∇ , where V is smooth, is defined on R. μ(dx) = e−V (x) dx (supposed to
be a probability measure) is then symmetric for L. Assume in addition that |∇V |2 −�V ≥ −C for some non-negative
constant C.

Then there is an equivalence between

(1) the associated semi-group Pt is ultrabounded (i.e. Pt maps continuously L1(μ) in L∞(μ) for all t > 0), and
there exists an open interval U such that for all x ∈ R, Px(TU < +∞) = 1,

(2) there exists a bounded Lyapunov function W ,
(3) there exists an open interval U and λ > 0 such that

sup
x

Ex

(
eλTU

)
< +∞.

Proof. The equivalence between (2) and (3) follows from the proof of Theorem 2.3, since L is uniformly elliptic.
If (1) holds, it follows from the arguments in Appendix B of [17], that there exists an unique quasi limiting dis-

tribution for the process (starting from the right of U ) killed when hitting any interior point of U . For all definitions
connected with quasi-stationary measures and quasi-limiting distributions we refer to [11,17]. The same holds for the
process coming from the left of U . According to [11], Theorem 7.3, this implies that the killed process “comes down
from infinity” i.e. satisfies (3).

Conversely, [11], Theorem 7.3, tells us that (3) implies the condition (called (H5) therein)

∫ +∞

a

e−V (y)

∫ y

a

eV (z) dz dy < +∞

for a = supU . Define, for x > a, u(x) = μ([x,+∞[) and

F(z) = z

(∫ u−1(1/z)

a

eV (y) dy

)−1

.

z �→ F(z)/z is thus non-increasing and we have

u(x)F

(
1

u(x)

)∫ x

a

eV (y) dy = 1. (5.4)

According to results in [4] (see Remark 3.3 in [14]), μ satisfies a F̃ -Sobolev inequality for a slight modification of F .
Condition (H5) of [11] recalled above implies that

∫ +∞ 1

uF(u)
du < +∞.

The same holds with F̃ in place of F . According to a result of [28] explained p. 135 of [14], this implies that the
semi-group is ultrabounded. �

5.1. Weak Poincaré inequalities and polynomials moments

In this section we shall look at the existence of φ-moments for functions φ growing slower at infinity than an ex-
ponential, and actually we shall mainly focus on power functions. In all the discussion below we shall assume, for
simplicity, that L is uniformly strongly hypoelliptic and our symmetry assumption.

First of all recall that under our assumptions, defining for q ∈ N,

vq(x) = Ex

(
T

q
U

)
(5.5)

and provided vq is well defined for all x, vq is smooth and satisfies for q ≥ 1

Lvq(x) = −qvq−1(x) for all x ∈ Uc, (5.6)
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as a simple application of the Markov property. We thus have some “nested” Lyapunov functions.
Henceforth we assume that U is bounded (which is clearly not a restriction). Then, since vq(x) > 0 when d(x,

U) ≥ 1, the Markov property together with the continuity of vq and the compactness of {d(x,U) = 1}, show that
there exists κ > 0 such that for all x with d(x,U) ≥ 1, vq(x) ≥ κ and vq−1(x) ≥ κ . Remark that equality (5.6) is still
true for all x such that d(x,U) ≥ 1. We then obtain the following consequences

Proposition 5.7. (1) Weak Poincaré like inequalities: Assume that a local Poincaré inequality holds. Suppose that
vq(x) is finite for all x. Then for all positive s < 1, there exists a positive function β such that for all bounded f

Varμ(f ) ≤ β(s)

∫
Γ (f,f )dμ + s Osc(f )2 (5.8)

and β(s) = C(inf{u;μ(
vq−1
1+vq

< u) > s})−1 for some explicit constant C.
(2) Assume that L = � − ∇V · ∇ , where V is smooth, is defined on R. Then, if v1 is bounded, the associated

semi-group Pt is ultrabounded (hence for some λ > 0, supx Ex(eλTU ) < +∞).
(3) If there exists C such that vq(x) ≤ Cvq−1(x) for all x with d(x,U) ≥ 1, then μ satisfies a Poincaré inequality

(and consequently TU has some exponential moment for all Px ).

The first part of the theorem gives that in the reversible setting, finiteness of moments of return times implies a weak
Poincaré like inequality, a result that we are not aware of in discrete times. It is however very difficult to get precise
estimates of β as we need concentration properties of μ and sharp control of vq and vq−1. Using that vq−1 ≤ v

(q−1)/q
q

we may get a lower bound for β using only vq .
Note that the second part of the Proposition is not so surprising and corresponds to the similar discrete situation of

birth and death processes on the half line (see Proposition 7.10 in [11]). The third part is only expressing that vq is a
Lyapunov function.

Proof of Proposition 5.7. The first part of the theorem, inspired by [12] and the proof of the main theorem, may be
proved in two steps that we sketch here.

First, using the Lyapunov conditions (5.6) (and L1 = 0) and the same line of reasoning than (H1) implies (H4) in
our main theorem, we get some weighted Poincaré inequality: for some constant C, we have

inf
a

∫
vq−1

1 + vq

(f − a)2 dμ ≤ C

∫
Γ (f,f ).

Indeed, remark first that vq−1 ≤ 1 + vq so that (5.6) may be rewritten for some constant b > 0

L(1 + vq) ≤ −q
vq−1

1 + vq

(1 + vq) + b1U ,

and one has for all a∫
vq−1

1 + vq

(f − a)2 dμ ≤ 1

q

∫
−L(1 + vq)

1 + vq

(f − a)2 dμ + b

q

∫
U

(f − a)2 dμ.

Choose now a = ∫
U

f dμ and use the local Poincaré inequality and inequality (2.15) to conclude.
Then, with af = μ(f

vq−1
1+vq

)/μ(
vq−1
1+vq

), for all bounded f and for all u > 0

Varμ(f ) ≤
∫

(f − af )2 dμ

=
∫

(vq−1)/(1+vq)≥u

(f − af )2 dμ +
∫

(vq−1)/(1+vq)<u

(f − af )2 dμ

≤ u−1 inf
a

∫
vq−1

1 + vq

(f − a)2 dμ + μ

(
vq−1

1 + vq

< u

)
Osc(f )2



116 P. Cattiaux, A. Guillin and P. A. Zitt

which gives the result.
For the second part just remark that

Lv1(x) ≤ − v1(x)

supv1
for x ∈ Ū c.

Hence v1/κ is a bounded Lyapunov function satisfying (H1) (with Ū c replaced by {d(x,U) > 1}) and we may apply
Proposition 5.3.

For the third part we similarly have

Lvq(x) ≤ −q
vq−1(x)

vq(x)
vq(x) for x such that d(x,U) ≥ 1.

Hence vq/κ is a Lyapunov function satisfying (H1) (with Ū c replaced by {d(x,U) > 1}), and we may apply Theo-
rem 2.3. �

An immediate generalization of (3) in the previous proposition is the following assumption: there exists an increas-
ing function ϕ growing to infinity and R > 0, such that

ϕ
(
vq(x)

) ≤ qvq−1(x) for |x| ≥ R. (5.9)

Indeed if (5.9) holds, we have

Lvq(x) ≤ −ϕ
(
vq(x)

)
for |x| large enough, and vq is thus a ϕ-Lyapunov function in the terminology of [12] and [19] (see Definition 2.2 in
the first reference).

Conversely, is it possible to get the existence of φ-moments starting from a functional inequality? The first answer
to this question was given in [25] where some Nash type inequalities are shown to imply the existence of moments.
The proof uses the fact that the Laplace transform of TU , hU

t (x) = Ex(e−tTU ) satisfies Lh − th = 0 for all t > 0.
Using the results in Section 3 of [13] again we can derive similar (actually stronger) results. Recall that

Pμ(TU > t) ≤ Pμ

(
−1

t

∫ t

0
1U(Xs)ds + μ(U) ≥ μ(U)

)
.

According to Proposition 3.5 in [13] we thus have for t large enough,

Pμ(TU > t) ≤ C(k)t−k
(
μ(U)

)−2k

provided the process is α-mixing with a mixing rate α(u) ≤ C(1 + u)−k for some integer k ≥ 1.
The mixing rate is connected to the rate of convergence to equilibrium of the semi group, as explained in [13]. This

rate of convergence can be bounded using either a Weak Poincaré Inequality (see [27]) or a ϕ-Lyapunov function (see
[3,19]). Let us collect these results in the next (and final) theorem

Theorem 5.10. Assume that L is uniformly strongly hypoelliptic. Let U be a bounded connected open set. Assume in
addition one of the following conditions,

(1) μ satisfies a weak Poincaré inequality, i.e. there exists a non-increasing function β such that for all s > 0 and
all bounded and smooth f ,

Varμ(f ) ≤ β(s)

∫
Γ (f,f )dμ + s Osc2(f ),

where Osc(f ) denotes the oscillation of f ; in which case the process is α-mixing with a mixing rate

α(t) ≤ (
inf

{
s > 0;β(s) log(1/s) ≤ t/2

})2
,
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(2) there exists a ϕ-Lyapunov function W for some smooth increasing concave function ϕ with ϕ′ → 0 at infinity;
in which case the process is α-mixing with a mixing rate

α(t) ≤ C

(∫
W dμ

)
1

ϕ ◦ H−1
ϕ (t)

,

where Hϕ(t) = ∫ t

1 (1/ϕ(s))ds and we assume that
∫

W dμ < +∞.

If in addition α(t) ≤ C(1 + t)−k for some positive integer k, then

Pμ(TU > t) ≤ C(k)t−k
(
μ(U)

)−2k

for some constant C(k).
In particular for all j < k, Eμ(T

j
U ) < +∞. The same holds for μ almost all x, and for all x, and j < k/2,

Ex(T
j
U ) < +∞.

The interested reader will find in [3,12] in particular many examples (including the so called κ-concave measures)
of measures satisfying one (or both) of the previous conditions. As a flavour of the examples presented in these ref-
erences, one usually considers Cauchy type measures dμ = Z−1(1 + |x|)1+α dx associated with the usual symmetric
generator which satisfies a weak Poincaré type inequality with β(s) = cs−2/α and for which α(t) ≤ c(1 + t)−k for all
k ≤ α/2.
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