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Abstract. We study the statistics of the largest eigenvalues of real symmetric and sample covariance matrices when the entries are
heavy tailed. Extending the result obtained by Soshnikov in (Electron. Commun. Probab. 9 (2004) 82–91), we prove that, in the
absence of the fourth moment, the asymptotic behavior of the top eigenvalues is determined by the behavior of the largest entries
of the matrix.

Résumé. On étudie la loi des plus grandes valeurs propres de matrices aléatoires symétriques réelles et de covariance empirique
quand les coefficients des matrices sont à queue lourde. On étend le résultat obtenu par Soshnikov dans (Electron. Commun.
Probab. 9 (2004) 82–91) et on montre que le comportement asymptotique des plus grandes valeurs propres est déterminé par les
plus grandes entrées de la matrice.
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1. Introduction and notation

We study the statistics of the largest eigenvalues of symmetric and sample covariance matrices when the entries are
heavy tailed. Extending the result obtained by Soshnikov in [16], we prove that in the absence of a finite fourth
moment, the asymptotic behavior of the top eigenvalues is determined by the behavior of the largest entries of the
matrix, i.e. that the point process of the largest eigenvalues (properly normalized) converges to a Poisson Point Process,
as in the usual extreme value theory for i.i.d. random variables. This result was predicted in the physics literature by
Biroli, Bouchaud and Potters [7].

We first consider the case of random real symmetric matrices with independent and heavy tailed entries. Let (aij ),
1 ≤ i ≤ n,1 ≤ j ≤ n be i.i.d. random variables such that:

1 − F(x) = F̄ (x) = P
(|aij | > x

) = L(x)x−α, (1)

where α > 0 and L is a slowly varying function, i.e., for all t > 0

lim
x→∞

L(tx)

L(x)
= 1.
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Consider the n×n real symmetric random matrix An whose entries above the diagonal are the (aij ),1 ≤ i ≤ j ≤ n.
Hypothesis (1) would be natural in the theory of extreme values for i.i.d. random variables. It simply asserts that
the distribution of the entries is in the max-domain of attraction of the Fréchet distribution with exponent α (see
[12], p. 54). Thus, for any α > 0 the point process of extreme values of the entries of An (properly normalized) is
asymptotically Poissonian. More precisely, let

bn = inf

{
x: 1 − F(x) ≤ 2

n(n + 1)

}
, (2)

then the Point Process

P̂n =
∑

1≤i≤j≤n

δ
b−1
n |aij |

converges to a Poisson Point Process with intensity

ρ(x) = α

x1+α
.

It is also classical that there exists another slowly varying function Lo such that

bn ∼ Lo(n)n2/α. (3)

When L ≡ 1, then bn = (
n(n+1)

2 )1/α .
We denote by λ1 ≥ · · · ≥ λn the n (real) eigenvalues of An and we consider the point process on (0,∞) of (nor-

malized) positive eigenvalues of An:

Pn =
∑

δ
b−1
n λi

1λi>0.

Theorem 1. We assume (1) with 0 < α < 4. For 2 ≤ α < 4 we also assume that the entries are centered, i.e. E(aij ) =
0. The random point process Pn converges in distribution to the Poisson Point Process P defined on (0,∞) with
intensity ρ(x) = α

x1+α .

This result thus shows that the largest eigenvalues of An behave as the largest entries of the matrix An when 0 <

α < 4. It was proved in the range 0 < α < 2 by Soshnikov [16]. It implies for instance that the maximum eigenvalue
has a Fréchet limit distribution:

Corollary 1.

lim
n→∞ P

(
1

bn

λ1 ≤ x

)
= exp

(−x−α
)
. (4)

One word of comment is in order here. When the entries have light tails, it is well known that the random field
of largest eigenvalues is not Poissonian but determinantal, and that the fluctuations of the top eigenvalue are asymp-
totically distributed as in the GOE, i.e. have a Tracy–Widom distribution [14]. We actually believe that the universal
Tracy–Widom picture holds as soon as α > 4, see [7] for a discussion and simulation. Some steps in this direction have
been achieved by Ruzmaikina [13], who proves that the Tracy–Widom limit holds for α large enough. (She claimed
that α > 18 is enough, we believe that the arguments of [13] only work if α > 36, see Remark 3.)

Let us first consider the case α > 2. It is well known that, if

μn = 1

n

∑
δλi/

√
n (5)

denotes the spectral measure of An√
n

, μn converges weakly almost surely to a non-random limit, the semi-circle law,

ν(x) =
{

1
2πσ 2

√
4σ 2 − x2 if |x| ≤ 2σ ,

0 otherwise,
(6)
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which depends only on the variance σ 2 of the entries. In the case where α > 4, Bai and Yin [1] have proved that the
top eigenvalue sticks to the bulk, i.e. that for all ε > 0,

P

(∣∣∣∣ 1√
n
λ1 − 2σ

∣∣∣∣ ≤ ε

)
→ 1, n → ∞.

This shows that for α > 4, b−1
n λ1 → ∞ so that our result in Corollary 1 ceases to be true. Our result shows that 1√

n
λ1

is, roughly speaking, of order n2/α−1/2 and thus diverges. This is in agreement with and sharpens Bai and Yin’s result,
who have shown that a finite fourth moment is necessary to have the convergence to the edge of the bulk.

The case α = 4 with infinite fourth moment seems very interesting and still open. It might exhibit an interesting
transition between the Tracy–Widom regime and the Poissonian one.

Coming back now to the case α < 2, the situation is different. The bulk itself is not a semi-circle. It was recently
proved by Ben Arous and Guionnet [4] that the spectral measure

μ̂n = n−1
∑

δλi/cn ,

where

cn = inf

{
x: 1 − F(x) ≤ 1

n

}

converges to a limiting distribution μα . This limit probability distribution μα is not compactly supported and has a
polynomial tail of type Cα

x1+α dx for some constant Cα . In this case (α < 2), this is perfectly compatible with the present
result: the extreme values of i.i.d. random variables with that distribution μα would have exactly the behavior we have
given.

We also study in this paper the behavior of the top of the spectrum for another very important family of random
matrices, i.e. the ensemble of large random sample covariance matrices.

In this setting, we consider An a n × p random matrix with i.i.d. centered entries (aij ),1 ≤ i ≤ n,1 ≤ j ≤ p and
we define as usual the sample covariance matrix Xn = 1

p
AnA

t
n. The asymptotic behavior of the bulk of Xn is also well

known by the classical result of Marchenko and Pastur [10], in the case where we assume a finite second moment.
The case where 0 < α < 2 is treated in [3].

Similarly to (2), let

bnp = inf

{
x: 1 − F(x) ≤ 1

np

}
.

If λ1 ≥ · · · ≥ λn are the ordered eigenvalues of AnA
t
n and limn→∞ p

n
= γ for some positive constant γ ≥ 1 defining

Pn =
∑

i

δ
b−2
np λi

we have the following:

Theorem 2. We assume (1) with 0 < α < 4. For 2 ≤ α < 4, we also assume that the entries are centered, i.e.,
E(aij ) = 0. The random point process Pn converges in distribution, as p goes to infinity, to the Poisson Point Process
P defined on (0,∞) with intensity ρ(x) = α

2x1+α/2 .

Again, as a simple corollary, we obtain the behavior of the maximal eigenvalue:

Corollary 2.

lim
n→∞ P

(
1

b2
np

λ1 ≤ x

)
= exp

(−x−α/2). (7)
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The rest of the paper is organized as follows. First, in Section 2 we recall briefly the main results contained in [16],
i.e., the proof of Theorem 1 in the case 0 < α < 2. We then prove Theorem 2 in the case 0 < α < 2 in Section 3.
We then study in Sections 4 and 5 the case where 2 ≤ α < 4 for the Wigner and the sample covariance matrix cases
respectively. This is a bit different in nature since we now have to perform a more subtle separation of scales. This is
done through an estimate of traces of high powers of our random matrices properly truncated. This combinatorial part
of the proof draws on the work of Soshnikov [14] and on the recent work by Péché and Soshnikov [11].

2. Wigner matrices when 0 < α < 2

In this section, we will recall the results in the paper of Soshnikov [16] (see also [15] for precise statement of
Lemma 3).

Let An be n × n random (real) symmetric matrix with i.i.d. entries satisfying (1) with 0 < α < 2. Also let λ1 ≥
λ2 ≥ λ3 ≥ · · · ≥ λn be its eigenvalues and ailjl

its l-th largest entry in absolute value.
In order to prove Theorem 1 in this case, Soshnikov [16] proceeds as follows. The basic idea is to show that for

each finite k, and for each given ε > 0,

P

(∣∣∣∣ λk

|aikjk
| − 1

∣∣∣∣ > ε

)
→ 0 as n → ∞. (8)

We first consider the case where k = 1, which implies Corollary 1. The following crucial lemma is purely proba-
bilistic. It describes how the largest entries are placed in the matrix. This lemma will be adapted in all other sections.

Lemma 3. (a) With probability going to one, there are no diagonal entries greater in absolute value than b
11/20
n .

(b) With probability going to one, there is no pair (i, j) such that |aij | > b
99/100
n and |aii | + |ajj | > b

1/10
n .

(c) For any positive δ > 0 with probability going to one there is no row that has at least two entries greater in
absolute value than b

3/4
n + δ.

(d) With probability going to one, there is no row such that its maximum and the sum of the absolute value of the
remaining elements in the row are both greater than b

3/4+α/8
n .

Once one has proved the previous lemma, the next step is to relate the entries of the matrix with its maximum
eigenvalue λ1. This can be done in two steps.

First, one can bound from below the top eigenvalue using the Rayleigh–Ritz representation of λ1:

λ1 = sup
v:|v|=1

〈Anv, v〉. (9)

Considering a well-chosen vector v in terms of the position of the largest entry of An, (9) will provide the inequality

λ1 ≥ ai1j1

(
1 + o(1)

)
.

Secondly, one studies the following norm of the matrix An, that is the norm of An as a linear operator from l∞ to
l∞:

‖An‖∞ ≡ max
i

n∑
j=1

|aij |. (10)

Since An is symmetric, we can show that ‖An‖∞ is an upper bound for λ1. Lemma 3 then relates ‖An‖∞ to the
maximum entry of the matrix An. In fact, Soshnikov showed that, given ε > 0, there exists θ > 0 such that for n

sufficiently large, one has:

P

(∣∣∣∣ ‖An‖∞
maxij |aij | − 1

∣∣∣∣ > ε

)
≤ n exp

(−nθ
)
.
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This proves (8) when k = 1.
Now, for any finite k, using Lemma 3, it is possible to find some well-chosen unit vectors vk , such that,

Anvk = |aikjk
|vk + rk and ‖rk‖ = o(1).

This fact together with a standard result in perturbation theory of symmetric matrices (see for instance [5], p. 77)
imply that An has eigenvalues |ailjl

|(1 + o(1)),1 ≤ l ≤ k, for any finite k.
To finally get Theorem 1 we use induction on k in (8), supported by Corollary 1 and the following very classical

result about symmetric matrices, that can be found for instance in [5], p. 59.

Proposition 4 (Cauchy interlacing theorem). Let An be an n × n Symmetric matrix and λ1 ≥ λ2 ≥ · · · ≥ λn its
ordered (real) eigenvalues. If one considers the restriction B of An to any subspace of co-dimension 1 and denotes by
μ1 ≥ μ2 ≥ · · · ≥ μn−1 the eigenvalues of B then

λ1 ≥ μ1 ≥ λ2 ≥ μ2 ≥ · · · ≥ μn−1 ≥ λn.

We briefly explain how to use the last statement in this setting. For simplicity, instead of describing the general
step of the induction, we describe only the step k = 2. First, one considers the submatrix obtained by removing the
i1-th row and the j1-th column from An. Clearly, this submatrix has ai2j2 as largest entry in absolute value, and by the
interlacing property its largest eigenvalue will be greater than λ2. Thus, one can apply Corollary 1 to finally get (8)
for k = 2.

To get Theorem 1 as stated, i.e., to prove tightness and the convergence of Pn to P , it suffices to prove, see [9]
Theorem 16.16, that for all intervals (a, b), where 0 < a < b one has that the random variable Pn(a, b) converges in
distribution to P (a, b). This can be verified as follows.

Since

P
(

Pn(a,∞) > k
) = P

(
λk+1

bn

> a

)
,

it is easy to see that (8) proves the convergence in distribution of Pn when restricted to an interval (a,∞), a > 0, i.e.
the random variable Pn(a,∞) converges in distribution to P (a,∞) which is a Poisson Process with parameter a−α .

To derive the result for a general interval, we first note that since

P
(

P
({b}) > 0

) = 0,

we can consider intervals (a, b] which can be written as the difference of Ia = (a,∞) and Ib = (b,∞). Now,

P
(

Pn(a, b] = l
) =

∞∑
k=l

P
(

Pn(a,∞) = k, Pn(b,∞) = k − l
)
. (11)

Each term inside the sum converges to P(P (a,∞) = k, P (b,∞) = k− l) and is also bounded by P(Pn(a,∞) = k).
Since the sum

∞∑
k=l

P
(

Pn(a,∞) = k
)

is finite, an application of Fatou’s lemma shows that (11) converges to

P
(

P (a, b] = l
) =

∞∑
k=l

P
(

P (a,∞) = k, P (b,∞) = k − l
)
.

The details omitted here will be considered in the next sections, specially the next one, where we follow the same
strategy in the case of Sample Covariance matrices with 0 < α < 2.
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3. Sample covariance matrices when 0 < α < 2

The proof of Theorem 2 in this case is based on the following lemma, which is almost identical to Lemma 3 given in
last section.

Lemma 5. Let An be a n × p random matrix with i.i.d. entries aij , 1 ≤ i ≤ n, 1 ≤ j ≤ p, satisfying (1). Also assume
that limn→∞ p

n
= γ for some constant γ ≥ 1. Then:

(a) If Bδ
np is the event ‘There is a row with 2 entries greater than bδ

np in absolute value’ then

∀δ > 3/4 lim
p→∞P

(
Bδ

np

) = 0.

(b) Also,

lim
n→∞ P

(
∃i,1 ≤ i ≤ n, max

1≤j≤p
|aij | > b

3/4+α/8
np and

p∑
j=1

|aij | − max
1≤j≤p

|aij | > b
3/4+α/8
np

)
= 0.

(c) Similarly,

lim
n→∞ P

(
∃j,1 ≤ j ≤ p, max

1≤i≤n
|aij | > b

3/4+α/8
np and

n∑
i=1

|aij | − max
1≤i≤n

|aij | > b
3/4+α/8
np

)
= 0.

3.1. Proof of Lemma 5

Proof of (a). First, a basic fact from slowly varying functions that will be used repeatedly in this paper (see for
instance [6], Chapter I). Given any δ > 0, one has that

x−δ � L(x) � xδ as x → ∞. (12)

We recall that f (x) � g(x) means that the ratio f (x)
g(x)

tends to 0 as x tends to infinity. Hence, using (12) and choosing

δ = 3
4 + ε,

P
(
Bδ

np

) = P
(∃i ≤ n,∃j, k, j �= k, s.t. |aij | ≥ b

3/4+ε
np and |aik| ≥ b

3/4+ε
np

)
≤ p2n

(
1 − F

(
b

3/4+ε
np

))2

≤ p2nL
(
b

3/4+ε
np

)2 1

b
3α/2+2εα
np

= o
(
n−4ε+θ

)
for a small enough θ , since for any ε > 0, b

3α/2+2εα
np � n3 by the definition of bnp . �

Proof of (b). We split the proof in two cases. The idea in both cases is the same and the computation almost identical.
We start by assuming that 1 < α < 2.
Let T ∈ N be such that 1/(2T + 1) < 1/4 − α/8.

Proposition 6. Assume that 1 < α < 2. There exists θ > 0 such that, for n sufficiently large,

P

( ∑
j :|aij |<b

(T +1)/(2T +1)
np

|aij | ≤ 1

2
b

3/4+α/8
np

)
≥ 1 − n exp

(−nθ
)
.



Poisson convergence for the largest eigenvalues 595

Proof. In order to prove the last proposition we introduce Y 0
i = p, and for k > 1:

Y k
i ≡ #

(
1 ≤ j ≤ p: |aij | ≥ b

k/(2T +1)
np

)
,

so that

∑
1{j :|aij |<b

(T +1)/(2T +1)
np }|aij | ≤

T∑
k=0

Y k
i b

(k+1)/(2T +1)
np . (13)

Lemma 7. Let k ≤ T . There exists θ > 0 such that P(Y k
i ≥ 2EY k

i ) ≤ exp(−pθ).

Proof. By definition of Y k
i , and setting by convention b

0/(2T +1)
np = 0, for all 1 ≤ i ≤ n and 0 ≤ k ≤ T , k ∈ N we have

EY k
i = pF̄

(
b

k/(2T +1)
np

)
.

Also, using Chernoff’s inequality, we have that

P
(
Y k

i ≥ 2EY k
i

) ≤ exp

(
−1

4
EY k

i

)
. (14)

Thus, we can argue as follows:
First, replace the value EY k

i in (14) and use the expression for F̄ (x) given in (1). Hence, by (12) there exists ε

sufficiently small such that

P
(
Y k

i ≥ 2EY k
i

) ≤ exp

(
−1

4
pF̄

(
b

k/(2T +1)
np

)) ≤ exp

(
−1

4
pF̄

(
b

T/(2T +1)
np

))

≤ exp
(−1

4
pL

(
b

T/(2T +1)
np

)
/b

T α/(2T +1)
np

) ≤ exp
(−p/4b

T α/(2T +1)
np b

T ε/(2T +1)
np

)
≤ exp

(−p/4(np)T/(2T +1)(α+ε)/α
) ≤ exp

(−pθ
)
,

where the last inequality is justified by the hypothesis limn→∞ p
n

= γ . �

Lemma 8. Assume that 1 < α < 2. Then,

T∑
k=0

EY k
i b

(k+1)/(2T +1)
np ≤ 1

4
b

3/4+α/8
np . (15)

Proof. One has that

E

( ∑
j :|aij |<b

(T +1)/(2T +1)
np

|aij |
)

≤
T∑

k=0

EY k
i b

(k+1)/(2T +1)
np ≤

T∑
k=0

2pF̄
(
b

k/(2T +1)
np

)
b

(k+1)/(2T +1)
np

≤ 2p

T∑
k=0

L
(
b

k/(2T +1)
np

)
b

(k+1)/(2T +1)
np b

−kα/(2T +1)
np

≤ 2pb
1/(2T +1)
np

T∑
k=0

b
k(1+δ−α)/(2T +1)
np ,
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where δ > 0 can be chosen such that 1 + δ − α < 0. Therefore,

E

( ∑
j :|aij |<b

(T +1)/(2T +1)
np

|aij |
)

≤ 2pb
1/(2T +1)
np

∞∑
k=0

b
k(1+δ−α)/(2T +1)
np ≤ pb

1/4−α/8
np

≤ b
1/4−α/8+α/2
np ≤ 1

4
b

3/4+α/8
np . � (16)

Combining the last two lemmas with (13), we get Proposition 6. �

Now we turn back to the sum of all terms which have absolute value between b
(T +1)/(2T +1)
np and b

3/4+α/16
np . This

sum is easier to handle since we have fewer entries. To simplify a little bit the notation below, put μ = T +1
2T +1 .

Proposition 9. There exists κ > 0 such that

P

(
∃i,

∑
1{j :bμ

np<|aij |<b
3/4+α/16
np }|aij | ≥ 1

2
b

3/4+α/8
np

)
≤ exp

(−nκ
)
.

Proof.

P

(
∃i,

∑
1{j :bμ

np<|aij |<b
3/4+α/16
np }|aij | ≥ 1

2
b

3/4+α/8
np

)

≤ nP

(
#
{
j : bμ

np < |aij |
} ≥ 1

2
b

α/16
np

)

≤ nn1/2b
α/16
np F̄

(
bμ
np

)1/2b
α/16
np

≤ n

(
nL(b

μ
np)

b
μα
np

)1/2b
α/16
np

≤ exp
(−nκ

)
, (17)

for some sufficiently small κ > 0 since μ > 1/2. �

Let us finish the proof of statement (b) when 1 < α < 2. By part (a) we know that, with probability going to 1 as
p goes to infinity, there is at most one term in each line that exceeds b

3/4+α/16
np in absolute value. So it is enough to

consider the sum of all entries less than or equal to b
3/4+α/16
np and prove that in fact the probability that this sum is less

than b
3/4+α/8
np goes to one as p tends to infinity. We proved this statement in two parts, analyzed in Proposition 6 and

Proposition 9 respectively.
Case 0 < α ≤ 1:
We repeat the same argument and computation used in the other case. We begin by proving the counterpart of

Proposition 6 in this case.

Proposition 10. There exists θ > 0 such that for n large enough

P

(∑
j

1{j :|aij |<b
(T +1)/(2T +1)
np }|aij | ≤ 1

2
b

3/4+α/8
np ,∀i

)
≥ 1 − n exp

(−nθ
)
.

Proof. Lemma 7 is valid when 0 < α < 2 so that it is enough to prove
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Lemma 11. Let 0 < α ≤ 1 and T such that 1
2T +1 < α

8 . Then,

T∑
k=0

EY k
i b

(k+1)/(2T +1)
np ≤ 1

2
b

3/4+α/8
np . (18)

Proof. One has that

T∑
k=0

EY k
i b

(k+1)/(2T +1)
np ≤

T∑
k=0

2pF̄
(
b

k/(2T +1)
np

)
b

(k+1)/(2T +1)
np ≤ 2p

T∑
k=0

L
(
b

k/(2T +1)
np

)
b

(k+1)/(2T +1)
np b

−kα/(2T +1)
np

≤ 2pb
1/(2T +1)
np

T∑
k=0

b
k(1+δ−α)/(2T +1)
np ≤ b

1/2+α/4
np ≤ 1

2
b

3/4+α/8
np .

�

Using Proposition 10 and Proposition 9 as before it is easy to prove statement (b) of Lemma 5. �
�

Proof of (c). As one can easily see, the proof of item (c) of the lemma is identical to the proof of part (b) up to a
permutation of p’s and n’s. �

Remark 1. Recalling definition (10), statement (b) of Lemma 5, Proposition 6 and Proposition 10 show that for every
ε > 0 there exists no(ε) and θ > 0 such that for all n > no one has

P

(∣∣∣∣ ‖An‖∞
maxij |aij | − 1

∣∣∣∣ > ε

)
≤ n exp

(−nθ
)
.

By part (c) of Lemma 5, the same is valid if one replaces ‖An‖∞ above by ‖An‖1 ≡ supj

∑p

i=1 |aij |.

Remark 2. From now on, if Xn and Yn are two sequences of random variables defined on the same probability space,
we will use the notation Xn = Yn(1 + o(1)) to indicate that for all ε > 0, the probability P(|Xn

Yn
− 1| > ε) goes to 0

as n goes to infinity, i.e. the ratio Xn

Yn
converges in probability to 1.

3.2. Proof of Theorem 2

Proof of Corollary 2. We begin by the proof of Corollary 2. The main thing to show is that

λ1

a2
i1j1

−→ 1, (19)

in probability as n tends to infinity (we recall that |ai1j1 | = max |aij |). In fact, if we assume (19), extreme value theory
for i.i.d. random variables tell us that

lim
n→∞ P

(
a2
i1j1

b2
np

≤ x

)
= exp

(−x−α/2), (20)

so (19) and (20) will imply Corollary 2. Thus, our task is to prove (19) and the idea is as follows: Given ε > 0, we
want to show that for n sufficiently large we have

λ1 ≥ a2
i1j1

(
1 + o(1)

)
, (21)

λ1 ≤ a2
i1j1

(
1 + o(1)

)
, (22)
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with probability greater than 1 − ε. The main tool used to prove both equations will be Lemma 5, and we will start
with the easiest inequality (21).

Since for all unit vectors v we have the bound 〈Xnv, v〉 ≤ λ1, our task is the following: we must find a suitable
vector that gives us (21). Therefore, let (i1, j1) be the position of ai1j1 in An as the notation suggests. If one takes
v = (0, . . . ,0,1,0, . . . ,0) where the sole non-zero entry of v is in the position i1, the vector v will do the job. In fact,

〈Xnv, v〉 =
p∑

j=1

a2
i1j

= a2
i1j1

+
p∑

j=1,j �=j1

a2
i1j

= a2
i1j1

(
1 + o(1)

)
,

by part (b) of Lemma 5 and the fact that ai1j1 is the maximum of np i.i.d. random variables. This proves (21).
To obtain (22) we first recall the definition of

‖Xn‖∞ ≡ sup
i

n∑
j=1

|Xij |.

The eigenvector equation for λ1

n∑
j=1

Xijvj = λ1vi

implies that

λ1|vi | ≤
n∑

j=1

|Xij ||vj | ≤ sup
l

|vl |
n∑

j=1

|Xij |

so,

λ1 sup
i

|vi | ≤
(

sup
l

|vl |
)

sup
i

n∑
j=1

|Xij |.

Therefore, ‖Xn‖∞ is an upper bound for λ1.
Hence, with probability going to one,

λ1 ≤ ‖Xn‖∞ ≤ sup
i

{
n∑

j=1

p∑
k=1

|aik||ajk|
}

≤ sup
i

{
p∑

k=1

|aik|
n∑

j=1

|ajk|
}

≤ sup
i

{
p∑

k=1

|aik|
}

sup
l

{
n∑

j=1

|ajl |
}

≤ ‖An‖∞‖An‖1→1

≤ a2
i1j1

(
1 + o(1)

)
,

where the last inequality comes from Remark 1. �

Proof of Theorem 2. It is enough to show that for any finite k we have for all 1 ≤ l ≤ k

lim
p→∞ P

(
1

b2
np

λl ≤ x

)
= lim

p→∞ P

(
1

b2
np

a2
iljl

≤ x

)
, (23)

where ailjl
is the l-th term of the sequence |aij | in the decreasing order.
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Let e1, . . . , ep be the standard orthonormal basis of R
p . If we compute Xn.eil we get:

Xneil =
n∑

i=1

Xiil ei = Xilil eil + rl, (24)

for some vector rl in R
n.

Also, since Xn is symmetric, one can find an orthogonal matrix U and a diagonal matrix D such that Xn =
UDU−1. Now, suppose that Xilil is not an eigenvalue of D. Then D − Xilil I is invertible and one can use Eq. (24) to
get:

1 = ‖eil‖ = ∥∥U(D − Xilil I )−1U−1rl
∥∥ ≤ ‖U‖∥∥U−1

∥∥∥∥(D − Xilil I )−1
∥∥‖rl‖, (25)

which implies

min
i

|λi − Xilil | ≤ ‖rl‖, (26)

so there exists an eigenvalue λ of Xn such that

|λ − Xilil | ≤ ‖rl‖. (27)

If Xilil is an eigenvalue of D − Xilil I , (27) is clearly satisfied.
We now know, by Lemma 5, that Xilil = a2

iljl
(1 + o(1)). Therefore, if we manage to prove that rl has a norm that

is negligible with respect to a2
iljl

, we will be able to say that Xn has eigenvalues a2
iljl

(1 + o(1)), 1 ≤ l ≤ k for any
finite k.

Bounding the norm of rl , one gets

‖r‖ =
(

n∑
i=1,i �=il

X2
iil

)1/2

≤
n∑

i=1,i �=il

|Xiil |

≤
n∑

i=1,i �=il

p∑
k=1

|aik||ailk|

=
p∑

k=1

|ailk|
n∑

i=1,i �=il

|aik| ≡ S1.

We cannot estimate S1 directly as we did in part (a) but if we define

S2 =
p∑

k=1,k �=jl

|ailk|
n∑

i=1,i �=il

|aik|, (28)

then

S2 ≤
(

sup
k

n∑
i=1,i �=il

|aik|
)

p∑
k=1,k �=jl

|ailk|, (29)

which tells us that S2 is negligible with respect to a2
iljl

, again by Lemma 5. Now,

S1 − S2 = |ailjl
|

n∑
k=1,k �=il

|ailk|, (30)
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which is also negligible with respect to a2
iljl

since
∑n

k=1,k �=il
|ailk| is negligible by a direct application of part (b) of

Lemma 5. Hence, S1 is also negligible with respect to a2
iljl

.

We now know that a2
iljl

(1 + o(1)), 1 ≤ l ≤ k, are eigenvalues of Xn. However, this does not imply that they are
exactly the k top eigenvalues. At the moment this is true only for the maximum, by Corollary 2, and we need to check
it for 1 < l ≤ k. In other words, what we get from the last statement is that for all 1 < l ≤ k, for p large enough:

λl ≥ a2
iljl

(
1 + o(1)

)
, (31)

and we need to prove the reverse inequality. To achieve our goal, we consider the compression of the matrix Xn step
by step, i.e., we cut from An the row i1 and from At

n the column i1 and then we compute their product. By part

(a) of Lemma 5, the entry ai2j2 is still in the matrix and the product X
(2)
n is just the matrix Xn without the row and

column i1. Now we know by the Cauchy Interlacing Theorem, see [5], Corollary 3.1.5, that if κ1 ≥ · · · ≥ κp−1 are the

eigenvalues of X
(2)
n , we have:

λ1 ≥ κ1 ≥ λ2 ≥ κ2 ≥ · · · ≥ κp−1 ≥ λp. (32)

Combining (32) with Corollary 2 applied for the matrix X
(2)
n , we get the desired inequality for λ2. Repeating the

same argument for all 1 ≤ l ≤ k, the proof is complete. �

4. Wigner matrices when 2 ≤ α < 4

Now we consider the symmetric random matrix (aij )
n
i,j=1 where the entries of An are centered i.i.d. and satisfy (1)

with 2 ≤ α < 4. We treat separately the case where α = 2.

4.1. Truncation

The main difference between the proof of this section to the previous one is that here we should care about the
contribution given by the bulk of the spectra, that is we should control in some way the smaller entries of the matrix
An and then proceed as before. Thus, to investigate the behavior of the largest eigenvalue λ1, we split the above
random matrix as follows. Let β be such that

1

α
< β <

2(8 − α)

α(10 − α)
, (33)

and we define

A1 = (Aij 1|aij |≤nβ )ni,j=1, A2 = An − A1. (34)

Since β < 2
α

, it is also clear that with probability going to 1, the largest entry of An is the largest entry of A2. The
condition that β > 1/α is assumed to guarantee that we can study the asymptotic behavior of the eigenvalues of A2 in
a similar way of the previous section. On the other hand, the condition that β <

2(8−α)
α(10−α)

is assumed to guarantee that
the spectrum of A1, properly normalized, remains bounded.

4.2. Bounding the spectrum of A1

We first investigate the behavior of the largest eigenvalue of A1 referring the reader to the results of [2] and [1]. These
papers deal with the case of random Wigner matrices with the presence of a finite fourth moment and they prove
boundedness of the spectra. Fix some ε > 0 such that

ε < min

{
1

α
− 1

4
,

1

α
− β

2
,

1

16

(
8

α
− 1 − β

(
5 − α

2

))}
.

Here, we will prove that the largest eigenvalue and the smallest eigenvalue of 1
n2/α−ε A1 are bounded on a set of

probability arbitrarily close to 1. In this direction, our main result in this subsection will be:
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Proposition 12. Let sn be some sequence going to infinity in such a way that logn � sn � nγ where 0 < γ ≤
min{ 1

8 ( 8
α

− 1 − β(5 − α
2 )), 1

2α
− β

4 }. Then there exists a constant C > 0 such that E(Tr( A1
n2/α−ε )

2sn) < C(2σ)2sn n

s
3/2
n

.

Before giving the proof, we indicate how to use Proposition 12 to deduce the desired result, that is the boundedness
of the largest eigenvalue of 1

n2/α−ε A1. We have

P

(
λ1

(
1

n2/α−ε
A1

)
≥ 4σ

)
≤ E(λ1(1/(n2/α−ε)A1)

2sn)

(4σ)2sn
≤ E(Tr(A1/(n

2/α−ε))2sn)

(4σ)2sn

≤ exp(−ηsn)

for some constant η > 0, proving that λ1(
1

n2/α−ε A1) is bounded in probability. By symmetry, one gets the same result
for the smallest eigenvalue.

Proof of Proposition 12. To estimate E(Tr( A1
n2/α−ε )

2sn), we use the moment method. Developing the expectation, we
have that

E
(
Tr(A1)

2sn
) =

∑
P

Eâi0i1 âi1i2 âi2i3 âi3i4 âi4i5 · · · âi2sn−2i2sn−1 âi2sn−1i0, (35)

where âij = aij 1{|aij |≤nβ } and P denotes the set of all closed paths P = {i0, i1, . . . , i2sn−1, i0} with a distinguished
origin, in the set {1,2, . . . , n}.

The following two lemmas are a direct consequence of [8], Chapter VIII.9, Theorem 2.23.

Lemma 13. Let Cn = E(âij ) = E(aij 1|aij |≤nβ ). Then for n large enough, |Cn| ≤ L(nβ)nβ(1−α) where L is defined
in (1).

Lemma 14. For any k ≥ 2, let D2k
n = E(â2k

ij ) = E(a2k
ij 1|aij |≤nβ ). Then for n large enough, there exists a slowly varying

function l0 such that D2k
n ≤ l0(n

β)nβ(2k−α).

Thus it follows that∣∣λ1(A1 − EA1) − λ1(A1)
∣∣ ≤ |Cn|n ≤ L

(
nβ

)
nβ(1−α)+1, (36)

so one can write

λ1

(
1

bn

An

)
≤ λ1

(
1

bn

(A1 − EA1)

)
+ λ1

(
1

bn

(A2)

)
+ 1

bn

∣∣λ1(A1 − EA1) − λ1(A1)
∣∣, (37)

where the last term tends to zero as n tends to infinity since β(1 − α) + 1 − 2
α

< 0. Thus, we may assume that A1 is
also centered, i.e., the truncated variables âij are centered.

Now we move back to Eq. (35), to compute the expected value of the trace of
A

2sn
1

n(4/α−2ε)sn
. The first step after the

centering is to consider the contribution of even paths, i.e. paths such that each edge occurs an even number of times.
We refer to the paper of Soshnikov [17] for most of the details and further notation. To each path P = io →

i1 → i2 → ·· · → i2sn−1 → i0, we first associate a set of sn “marked instants” as follows. We read the edges of P

successively. The instant at which an edge i → j is read is then said to be marked if up to that moment (inclusive)
the edge (i, j) was read an odd number of times. Other instants are said to be unmarked. Now, the number of possible
arrangements of marked/unmarked instants in a path of length 2sn is equal to the number of Dick paths, i.e., the
number of simple random walks of length 2sn, starting and ending at 0, and conditioned to remain in the positive
quadrant. The number of Dyck paths is known to be the Catalan number: (2sn)!

sn!(sn+1)! .
We say that a vertex is marked if it occurs at a marked instant. For any 0 ≤ k ≤ sn, we then define Nk to be the

subset of vertices in {1, . . . , n} occurring k times as a marked vertex. Any vertex belonging to Nk is said to be a vertex
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of self-intersection of type k. For any 0 ≤ k ≤ sn, we denote by nk the cardinality of Nk and call (no, n1, . . . , nsn) the
type of P. Note that all the vertices that appear in P belong to Nk, k ≥ 1, except possibly the origin io.

Then, it is easy to see that {1, . . . , n} splits as the disjoint union of the sets No,N1, . . . ,Nsn . From these definitions,
one can see that

sn∑
k=0

nk = n and
sn∑

k=0

knk = sn. (38)

To estimate the number of possible paths and their contribution to the expectation, we proceed as follows. We
first determine the set of marked instants and the type of the path. Then, we assign labels chosen in {1, . . . , n} to
each marked instant and to the origin of the path. Finally, we assign labels to each unmarked instant and consider the
expectation of the corresponding path.

Given the set of marked instants and the type of the path (no, n1, . . . , nsn), one has exactly sn!∏sn
k=2(k!)nk

ways to

distribute the marked instants into the possible classes of self-intersection. The number of ways to distribute the
vertices of {1, . . . , n} into the set of possible classes No,N1, . . . ,Nsn and determine the origin of the path is at most

n!
n0!n1!···nsn !n. This is because the origin is in general a non-marked vertex. There now remains to give an upper bound
on the number of ways to determine vertices at unmarked instants, that is fill in the blanks of the path. It was proved
in [17] that the number of ways to assign labels at unmarked instants is not greater than

∏sn
k=2(2k)knk . Indeed, the

number of possible ways to determine the right endpoint of an edge starting from a vertex of type k at an unmarked
instant is at most 2k.

To consider the expectation of a path P of type (no, n1, . . . , nsn), we will need the following lemma.

Lemma 15. Consider an even path of type (n0, n1, . . . , nsn). One has

E(âi0i1 âi1i2 âi2i3 âi3i4 âi4i5 · · · âi2sn−2i2sn−1 âi2sn−1i0) ≤ σ 2sn
∏
i≥2

(
lo

(
nβ

)i
nβ(2i−(α/2−1))

)ni . (39)

Proof. Assume that a non-oriented edge (ij) is seen 2l(ij) times. We denote by l(i; ij) (resp. l(j ; ij)) the num-
ber of times i (resp. j ) is a marked vertex in (ij). We also set L(ij) = max{l(i; ij), l(j ; ij)} and L′(ij) =
min{l(i; ij), l(j ; ij)}.

First, using Lemma 14, we deduce that∏
(ij):l(ij)>1

Eâ
2l(ij)
ij ≤

∏
(ij):l(ij)>1

lo
(
nβ

)
nβ(2l(ij)−α)

≤
∏

(ij):l(ij)>1

lo
(
nβ

)
nβ(2L(ij)+(2−α)/2+2L′(ij)−2+(2−α)/2). (40)

Second, we change the product in (40) over all edges to a product over all vertices. In fact, one can associate to
each edge occurring 4 times at least one marked occurrence of a vertex of self-intersection. To deal with vertices
where L′(ij) = L(ij) = 1, we say that L′(ij) is associated to the vertex which has the smallest multiplicity in the
path. Using the fact that the number of marked occurrences of any vertex in edges seen at least 4 times cannot exceed
the type of the vertex and (38), we get:∏

(ij):l(ij)>1

Eâ
2l(ij)
ij ≤

∏
(ij):l(ij)>1

lo
(
nβ

)
nβ(2l(ij)−α)

≤ n
β

∑
(ij):l(ij )>1(2L(ij)+(2−α)/2)+β

∑
(ij):l(ij )>2(2L′(ij)−2+(2−α)/2)

∏
k≥2

lo
(
nβ

)knk

≤
∏
i≥2

(
lo

(
nβ

)i
nβ(2i−(α−2)/2)

)ni . (41)

�
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Remark 3. Lemma 15 plays the role of formula 4.7 in [13] to bound the contribution of a single path of type
(n0, n1, . . . , nsn). Here is where we cannot understand the arguments of [13]. Indeed, with the notation of [13], we
believe that formula 4.7,

(
E

2sn−1∏
u=0

ξiuiu+1

∣∣∣Ω1−εn

)
Wn ≤ 1

4sn
4r

p/2∏
k=3

(2kC)knk

sn∏
k=p/2

(
2kΛ2

n

)knk ,

should be written as(
E

2sn−1∏
u=0

ξiuiu+1

∣∣∣Ω1−εn

)
Wn ≤ 1

4sn
4r

p/4∏
k=3

(2kC)knk

sn∏
k=p/4

(
2kΛ4

n

)knk ,

since, as argued in Lemma 15, an edge seen p times implies the occurrence of a marked vertex of type at least p/4 but
not necessarily of type p/2. Mutatis mutandis, the other arguments of Ruzmaikina carry out to show that the universal
Tracy–Widom limit holds if α > 36.

We now call Ze the contribution of all even paths of type (no, n1, . . . , nsn) to the expectation E Tr( A1
n2/α−ε )

2sn .

Writing

E Tr

(
A1

n2/α−ε

)2sn

= E Tr

(
A1√

n

)2sn
(

1

n2/α−1/2−ε

)2sn

,

we deduce that Ze is bounded by:

Ze ≤ 1

nsn(4/α−2ε)

n!
n0!n1! · · ·nsn !

n
(2sn)!

sn!(sn + 1)!
sn!∏sn

k=2(k!)nk

sn∏
k=2

(2k)knk

× σ 2sn

sn∏
k=2

(
lkonβ(2k−(α/2−1))

)nk

≤ 1

n(4/α−1−2ε)
∑

i≥1 ini

n · · · (n0 + 1)

nsn
n

(2sn)!
sn!(sn + 1)!

1∏sn
k=2 nk!

s
sn−n1
n∏sn

k=2(k!)nk

sn∏
k=2

(2k)knk

× σ 2sn

sn∏
k=2

(
lkonβ(2k−(α/2−1))

)nk

≤ 1

n(4/α−2ε−1)
∑

i≥1 ini

(2sn)!
sn!(sn + 1)!n

1∏sn
k=2 nk!

s
sn−n1
n

nsn+n0−n

1∏sn
k=2(ke−1)knk

sn∏
k=2

(2k)knk

× σ 2sn

sn∏
k=2

(
lkonβ(2k−(α/2−1))

)nk

≤ (2sn)!
sn!(sn + 1)!nσ 2sn

sn∏
k=2

1

nk!
[
lkosk

nnβ(2k−(α/2−1))

n4k/α−2kε−1

]nk 1

nn1(4/α−2ε−1)
. (42)

First, we consider the contribution of simple paths, that is paths of type (no, n1,0, . . . ,0). We denote Ze,s this contri-
bution. Then

Ze,s ≤ (2sn)!
sn!(sn + 1)!nσ 2sn

1

nsn(4/α−1−2ε)
.
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This follows from the fact that in simple even paths, any edge is seen twice and the choice of the origin and marked
vertices determines the path.

We next turn to the contribution of paths with self-intersections, which we denote by Ze,i . Now, if we take the sum
over all non-negative integers n2, n3, . . . , nsn such that

sn∑
k=2

nk > 0, (43)

we have that:

Ze,i ≤ (2sn)!
sn!(sn + 1)!nσ 2sn

∑
n2,...,nsn

sn∏
k=2

1

nk!
[
lkosk

nnβ(2k−(α/2−1))

n4k/α−2kε−1

]nk

. (44)

Now as ε < 2/α − β and snn
2β � n4/α , we deduce that

(44) ≤ (2sn)!
sn!(sn + 1)!nσ 2sn

∑
M>0

1

M!
[
Cs2

nnβ(4−(α/2−1))

n8/α−4ε−1

]M

≤ C
(2sn)!

sn!(sn + 1)!nσ 2sn
l2
os

2
nnβ(5−α/2))

n8/α−4ε−1

≤ C
(2sn)!

sn!(sn + 1)!nσ 2sn l2
os2

nnβ(5−α/2)+1−8/α+4ε

= o(1)
(2sn)!

sn!(sn + 1)!nσ 2sn . (45)

In the last line, we have used the fact that sn � n(8/α−1−β(5−α/2))/8.

Now, we will see that this is also true for a path such that an edge occurs an odd number of times, proving
Proposition 12. The necessary tools are the gluing and the insertion procedures developed in [11]. We refer to this
article for details and notation.

In [11], one can prove that given a path P of length 2sn with 2l non-returned edges, it is possible to construct a
sequence (P0,P1,P2, . . . ,PJ ), 1 ≤ J ≤ 2l, of subpaths of P such that the concatenated path W = ⋃J

i=0 Pi , i.e. the
path defined as if we read Pi in order, has length 2sn − 2l and belongs to one of the following classes:

A W is a closed even path.
B W is a sequence of I ≤ 2 closed even paths where each origin is a marked vertex of P .
C W is a sequence of I ≤ 2 paths where each origin is a marked vertex of P and the union of these paths has only

even edges.

The surgery in P consists only to remove the last occurrence of odd edges and reorder the remaining subpaths with
the possibility of choosing the direction in which each subpath is read. To estimate the contribution of odd paths, one
can reverse the above procedure, defining an onto map from paths of classes A, B, C to the set of odd paths. This was
done in [11] and we concisely describe the method.

In case A, the simplest one, given a closed path W of length 2sn − 2l one needs only to choose J vertices to
split W , choose the order and direction of each subpath and how to assign and insert the 2l unreturned edges. Also,
since âij are bounded by nβ , adding these 2l repetitions we multiply the contribution of the original path at most by
n2lβ . Briefly, the contribution of paths with 2l odd edges such that W(P) ∈ A can be bounded by:

C1
(2sn − 2l)!

(sn − l)!(sn − l + 1)!nσ 2(sn−l)

2l∑
J=1

(
2sn − 2l

J

)
J !2J

(
2l

J

)
(2sn − 2l)!

(2sn − 4l + J )!
(

nβ

n2/α−ε

)2l

, (46)
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which can be bounded by:

C2
(2sn − 2l)!

(sn − l)!(sn − l + 1)!nσ 2(sn−l)(C3sn)
2l

(
nβ

n2/α−ε

)2l

. (47)

This is less than or equal to:

C2
(2sn − 2l)!

(sn − l)!(sn − l + 1)!nσ 2sn

(
C3snn

β

n2/α−ε

)2l

. (48)

The summation over l of the above gives a contribution which is negligible with respect to (2σ)2snns
−3/2
n since

s2
n � n

2
α
−ε−β .

Also, [11] gives us the following estimate for the contribution of odd paths coming from the class B:

sn−1∑
l=1

2l∑
J=1

C2l4J J !
(

2l

J

)(
2sn − 2l

J

)
(2sn − 2l)!

(sn − l)!(sn − l + 1)!nσ 2(sn−l)

(
nβ

n2/α−ε

)2l

. (49)

Again, proceeding as before there is a constant K > 0 such that (49) divided by the contribution of even paths can
be bounded by

sn−1∑
l=1

(
Ksnn

β−2/α+ε
)2l

, (50)

which tends to 0 as n goes to infinity. As shown in [11], with a little bit of effort, the counting in case C can be reduced
to the one in case A or B, which finishes the proof of the proposition.

Remark 4 (Case α = 2). When α = 2, we do not use Proposition 12 as it is written to bound the largest eigenvalue of
the truncated matrix. In fact, since one knows that, see [8],

f (x) = E
(
a2
ij 1{|aij |<x}

)
is a slowly varying function, we can show that for any 0 < δ < ε

P

(
λ1

(
A1

n2/α−ε+δ

)
≥ 4

)
→ 0 (n → ∞).

�

4.3. The largest eigenvalue of A2

In this subsection we will prove that the largest eigenvalue of A2 is actually asymptotically given by its largest entry
in absolute value. For short, we denote by Âij , i, j = 1, . . . , n, the entries of the matrix A2 and by Âi1j1 the largest
one in absolute value. The aim of this subsection is to prove:

Proposition 16. One has that for any ε > 0

P

(∣∣∣∣λ1(A2)

|Âi1j1 |
− 1

∣∣∣∣ > ε

)
→ 0 as n → ∞.

Proposition 16 will be enough to end the proof of the Corollary 1 as we will explain now. First, we point that
since the matrices that we are dealing are symmetric, ‖A‖ = max{|λ1(A)|, |λn(A)|} is exactly the operator norm of
the matrix. Then triangular inequality implies:

λmax

(
1

bn

A2

)
+ λmin

(
1

bn

A1

)
≤ λ1

(
1

bn

An

)
≤ λmax

(
1

bn

A1

)
+ λmax

(
1

bn

A2

)
. (51)
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Now, since n2/α−ε

bn
goes to 0 as n goes to infinity, the boundedness in probability of the largest eigenvalue of

1
n2/α−ε A1 as proved in the last subsection implies that λmax(

1
bn

A1) and λmin(
1
bn

A1) go to 0 in probability. Then, by
Proposition 16, we have that the largest eigenvalue of An behave just as the largest eigenvalue of A2, i.e.,

lim
n→∞ P

(
λmax

(
1

bn

An

)
≤ x

)
= lim

n→∞ P

(
λmax

(
1

bn

A2

)
≤ x

)
= lim

n→∞ P

(
ai1j1

bn

≤ x

)
= exp

(−x−α
)
. (52)

Proof of Proposition 16. The proof of Proposition 16 relies on the two following lemmas, repeating the arguments
of Lemma 5.

Lemma 17. Let ε > 0 be fixed. With probability going to one, one has that

(a) There are no diagonal entry Âii greater in absolute value than b
1/2+ε
n .

(b) There is no pair (i, j) such that |Âij | ≥ b
99/100
n and |Âii | + |Âjj | ≥ b

1/10
n .

(c) For any δ > 0, there is no row that has two entries greater than b
3/4+δ
n .

Proof. (a) follows from basics results about extremes of n independent variables. For (b), one recalls (12) to compute

P
(∃(i, j)‖Âij | ≥ b

99/100
n and |Âii | + |Âjj | ≥ b

1/10
n

) ≤ 2

(
n

2

)
F̄

(
b

99/100
n

)
F̄

(
b

1/10
n

)
≤ n2L

(
b

99/100
n

)
L

(
b

1/10
n

)(
b

−109α/100
n

)
= o

(
n−18/100+θ

)
for some θ > 0 small enough.

Similarly, another application of (12) yields

P
(∃i ≤ n,∃j, k ≤ n, j �= k, s.t. |Âij | ≥ b

3/4+δ
n and |Âik| ≥ b

3/4+δ
n

)
≤ n3F̄

(
b

3/4+δ
n

)
F̄

(
b

3/4+δ
n

)
≤ n3L

(
b

3/4+δ
n

)2 1

b
3α/2+2δα
n

= o
(
n−4δ+θ

)
for some θ > 0 small enough. In the last line we have used that for any δ > 0, b

3α/2+2δα
n � n3. �

We now show that the largest entry Âi1j1 determines the largest eigenvalue of A2. The idea is similar to the first
part with minor changes. Introduce the vector

v1 = 1√
2
(ei1 ± ej1),

where the sign ± is determined by the following rule: ±ej1 = +ej1 if Âi1j1 ≥ 0 and −ej1 otherwise. Then, with
probability going to one,

〈A2v1, v1〉 = 1

2
Âi1i1 + 1

2
Âj1j1 + |Âi1j1 | = |Âi1j1 |

(
1 + o(1)

)
,

in view of item (b) of the preceding lemma and the fact that Âj1j1 is the largest entry of the matrix A2. Thus, again
with probability going to one,

λmax(A2) ≥ |Âi1j1 |
(
1 + o(1)

)
.
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We now turn to the upper bound which follows from the following lemma.

Lemma 18. One has that

lim
n→∞ P

(
∃i,1 ≤ i ≤ n, max

1≤j≤n
|Âij | > b

3/4+α/16
n and

n∑
j=1

|Âij | − max
1≤j≤n

|Âij | > b
3/4+α/16
n

)
= 0.

Proof. Recall that by (33) we have αβ > 1.
Now, a trivial union bound gives us that

P

(
∃i,

∑
j :nβ<|Âij |<b

3/4+α/32
n

|Âij | ≥ 1

2
b

3/4+α/16
n

)
≤ nP

(
#
{
j : nβ < |Âij | < b

3/4+α/32
n

} ≥ b
α/32
n

2

)

≤ n1+b
α/32
n F̄

(
nβ

)b
α/32
n

≤ n1+b
α/32
n (1−αβ) ≤ exp

(−nκ
)

(53)

for some sufficiently small κ > 0. Thus, (53) together with part (c) of Lemma 17 yields Lemma 18. �

Now, combining Lemma 18 with (c) of Lemma 17 and repeating the same argument done in last section to prove
part (b) in Lemma 5, Proposition 16 holds. �

Proof of Theorem 1 when 2 < α < 4. By Proposition 12, with probability going to 1, we know that the spectrum of
1√

n2/α−ε
A1 is bounded. Also, let Ailjl

be the l-th largest entry in absolute value of A2. If one sets

vl = eil ± ejl
,

where eil ± ejl
= eil + ejl

if Ailjl
≥ 0 and eil − ejl

otherwise, then

A2vl =
n∑

i=1

(Aiil ± Aijl
)ei = |Ailjl

|vl + r,

where

r = Ailil eil ± Ajljl
ejl

+
n∑

i=1,i �=il ,jl

(Aiil ± Aijl
)ei .

By the same arguments that we used in Theorem 2, one can show that ‖r‖
bn

tends to 0 as n tends to infinity. This implies
an existence of an eigenvalue λ of A2 such that λ = |Ailjl

|(1 + o(1)). An application of Cauchy Interlacing theorem
just as before shows that in fact λ = λl(A2), where λl(A2) represents the l-th eigenvalue of A2 in descending order.
Since by Weyl’s inequalities, one has for all l ,1 ≤ l ≤ n,

λl(A2) + λn(A1) ≤ λl(A1 + A2) ≤ λl(A2) + λ1(A1). (54)

Dividing Eq. (54) by b2
n and taking the limit one gets

lim
n→∞ P

(
λl(A1 + A2) ≤ bnx

) = lim
n→∞ P

(
λl(A2) ≤ bnx

) = lim
n→∞ P(ailjl

≤ bnx),

which ends the proof of (b). �
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5. Sample covariance matrices when 2 ≤ α < 4

This section heavily uses the previous ones. We repeat the arguments of Section 3 using the results of Section 4. As
before, the first step is to truncate our matrix.

Define

A1 = (Âij 1|Âij |≤nβ )i,j , A2 = An − A1, (55)

and also

X1 = A1A
t
1, X2 = Xn − X1. (56)

It is clear that X2 = A1A
t
2 + A2A

t
1 + A2A

t
2 and that the largest entries of An belong to A2. We are going to study the

eigenvalues of X2. The following lemma follows directly from the proof of Lemma 5 and Lemma 18.

Lemma 19. Let A2 be defined as above. Also assume that p = �γ n� for some constant γ ≥ 1. Then:

(a) If Bδ
n is the event ‘There is a row with 2 entries greater than bδ

np in absolute value’ then

∀δ > 3/4 lim
p→∞P

(
Bδ

n

) = 0.

(b) One has that

lim
p→∞ P

(
∃i,1 ≤ i ≤ n, max

1≤j≤p
|aij | > b

3/4+α/16
np and

p∑
j=1

|aij | − max
1≤j≤p

|aij | > b
3/4+α/16
np

)
= 0.

(c) One has that

lim
p→∞ P

(
∃j,1 ≤ j ≤ p, max

1≤i≤n
|aij | > b

3/4+α/16
np and

p∑
j=1

|aij | − max
1≤j≤p

|aij | > b
3/4+α/16
np

)
= 0.

If one takes v = (0, . . . ,0,1,0, . . . ,0) where the only non-zero entry of v is in the position i1, 〈X2v, v〉 will give
us the following bound:

λmax(X2) ≥ a2
i1j1

(
1 + o(1)

)
. (57)

This inequality is justified by the preceding lemma, just as in Theorem 2, and by the fact that the diagonal of
A1A

t
2 + A2A

t
1 has only zeros. More than that, as in Section 3, we can also infer from Lemma 19 that

λmax
(
A2A

t
2

) = a2
i1j1

(
1 + o(1)

)
. (58)

Now, using Rayleigh–Ritz representation and linearity of the scalar product, we have that

λmax(Xn) = max
v:|v|=1

〈Xnv, v〉 = max
v:|v|=1

〈
(A1 + A2)(A1 + A2)

t v, v
〉

= max
v:|v|=1

(〈X1v, v〉 + 〈
A2A

t
2v, v

〉 + 〈
A1A

t
2v, v

〉 + 〈
A2A

t
1v, v

〉)
which, by Cauchy–Schwarz, yields

λmax(Xn) ≤ max
v:|v|=1

〈X1v, v〉 + max
v:|v|=1

〈
A2A

t
2v, v

〉 + 2 max
v:|v|=1

∥∥At
1v

∥∥ max
v:|v|=1

∥∥At
2v

∥∥
≤ λmax(X1) + λmax

(
A2A

t
2

) + 2
(
λmax(X1)λmax

(
A2A

t
2

))1/2
. (59)
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In view of (57)–(59) and Weyl’s inequality for Xn = X1 + X2, namely,

λmax(X2) + λmin(X1) ≤ λmax(Xn),

it remains to show that the largest eigenvalue of X1 is negligible with respect to a2
i1j1

to conclude that

λmax(Xn) = a2
i1j1

(
1 + o(1)

)
and, therefore, finish the proof of Corollary 2.

Thus, we turn back our attention to the truncated matrix X1 = A1A
t
1. As we did before, we will show that its largest

eigenvalue properly normalized remains bounded on a set of probability arbitrarily close to 1. Again, we study the
asymptotics of some expectations of X1.

By the results of the last section, we just need to control the expected value of some traces of the matrix X1.
Let sn be as in Section 4.2. One can write

E
(
TrXsn

1

) =
∑
P

Eai1i0ai1i2ai3i2ai3i4 · · ·ai2sn−1i2sn−2ai2sn−1i0, (60)

where P denotes the set of all closed paths P = {i0, i1, . . . , i2sn−1, i0} with a distinguished origin, in the set
{1,2, . . . , p} with the restriction it ∈ {1,2, . . . , n} for odd t . Now, since aij �= aji orientation of an edge plays a
role.

We say that a path is odd if the number of passages in the direction i → j plus the number of passages in the
direction j → i is odd for some i and j . P is even if it is not odd. Since we can center the random variables aij 1|aij |≤nβ

just as in Section 4, odd paths with a non-zero contribution have at least 3 passages in one direction of an odd edge.
We will prove that the contribution of odd paths to the sum (60) is negligible and that contribution of even paths can
be easily bounded by the results on the Wigner case. To do so, one can proceed as follows.

Construct a p×p random symmetric matrix M = (yij )1≤i,j≤p such that yij are independent identically distributed
random variables with the same distribution as a11. Hence, if we denote E(P ) as the contribution of the path,∑

P∈P ,P even

E(P ) ≤ E
(
TrM2sn

)
. (61)

In fact, one has a 1–1 relation between paths in the LHS and paths that give a non-zero contribution to the sum in
the RHS. Furthermore, if an edge (i, j) is read r times from left to right and s times in the opposite direction, then
p + s = 2q for some integer q and we can use the inequality

Ear
ijEas

ji ≤ E|aij |rE|aji |s ≤ Ey
2q
ij , (62)

leading to (61).
Therefore, proceeding as in Section 4, Eq. (61) implies:

Proposition 20. There exists a constant C > 0 such that E(Tr( X1
n4/α−2ε )

2sn)) < (2σ)4sn Cn

s
3/2
n

. Moreover,

P
(
λmax(X1) ≥ 8σ 2n4/α−2ε

) ≤ E(Tr(X1/n
4/(α−2ε))2sn)

(8σ 2)2sn
≤ exp(−ηsn),

for some constant η > 0.

To prove that the contribution of odd paths is negligible with respect to (2σ)4sn Cn

s
3/2
n

, we can still bound the contri-

bution of each path using the inequality (62). Since to an odd path P , there corresponds an odd path in the expansion
of E(TrM2sn), we analyze their contribution as in Section 4.

∑
P∈P ,P odd

E(P ) � (2σ)4sn
Cn

s
3/2
n

. (63)
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This ends the proof Corollary 2 in the case of 2 ≤ α < 4. The proof of Theorem 2 in this case is identical to the
proof of the case 0 < α < 2.
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