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Abstract. In this paper, we consider the Ulam–Hyers stability of the func-
tional equations

f(ux− vy, uy − vx) = f(x, y)f(u, v),

f(ux+ vy, uy − vx) = f(x, y)f(u, v),

f(ux+ vy, uy + vx) = f(x, y)f(u, v),

f(ux− vy, uy + vx) = f(x, y)f(u, v)

for all x, y, u, v ∈ R, where f : R2 → R, which arise from number theory and
are connected with the characterizations of the determinant and permanent of
two-by-two matrices.

1. Introduction

Throughout this article, we denote by R,R+,C,Q,Rn the set of real num-
bers, nonnegative real numbers, complex numbers, rational numbers, and the
n-dimensional Euclidean space (resp., R0 = R \ {0}, R2

0 = R2 \ {(0, 0)}, f, g :
R2 → R, and φ : R2 → R+). A function M : R → R is called a multiplicative
function provided that M(xy) = M(x)M(y) for all x, y ∈ R, and E : R → R is
called an exponential function provided that E(x+y) = E(x)E(y) for all x, y ∈ R.
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In the problems column of the Newsletter of the European Mathematical Soci-
ety, Sahoo in [11] posed the problem of how to determine the general solutions
f : R2 → R of the functional equations

g(ux− vy, uy − vx) = g(x, y) + g(u, v) + g(x, y)g(u, v), (1.1)

g(ux+ vy, uy − vx) = g(x, y) + g(u, v) + g(x, y)g(u, v) (1.2)

for all x, y, u, v ∈ R. Houston and Sahoo in [8] showed that the general solutions
of equations (1.1) and (1.2) are given by

g(x, y) = M(x2 − y2)− 1,

and

g(x, y) = M(x2 + y2)− 1

for all x, y ∈ R, respectively, where M : R → R is a multiplicative function.
Replacing g(x, y) by f(x, y) − 1 in (1.1) and (1.2), equations (1.1) and (1.2) are
reduced to

f(ux− vy, uy − vx) = f(x, y)f(u, v), (1.3)

f(ux+ vy, uy − vx) = f(x, y)f(u, v) (1.4)

for all x, y, u, v ∈ R. In 2002, the functional equation

f(ux+ vy, uy + vx) = f(x, y)f(u, v) (1.5)

for all x, y, u, v ∈ R was studied by Chung and Sahoo in [6]. The functional
equations (1.3), (1.4), and (1.5) are connected with the characterizations of the
determinant and permanent of two-by-two matrices. Furthermore, equation (1.4)
arises from number theory (see [9] or [5]). In addition to the last three functional
equations, we also introduce one more similar functional equation

f(ux− vy, uy + vx) = f(x, y)f(u, v) (1.6)

for all x, y, u, v ∈ R, and it will be shown that all nonconstant solutions of (1.6)
are given by

f(x, y) = M(x2 + y2)E
(
tan−1(y/x)

)
for all x, y ∈ R with (x, y) 6= (0, 0) and f(0, 0) = 0, where M : R → R is
a multiplicative function and E : R → R is an exponential function satisfying
E(x+ rπ) = E(x) for all x ∈ R, r ∈ Q.

In the present article, we consider the Ulam–Hyers stability of functional equa-
tions (1.3)–(1.6); that is, we investigate both bounded functions and unbounded
functions satisfying the functional inequalities∣∣f(ux− vy, uy − vx)− f(x, y)f(u, v)

∣∣ ≤ φ(x, y) or φ(u, v), (1.7)∣∣f(ux+ vy, uy − vx)− f(x, y)f(u, v)
∣∣ ≤ φ(x, y) or φ(u, v), (1.8)∣∣f(ux+ vy, uy + vx)− f(x, y)f(u, v)
∣∣ ≤ φ(x, y) or φ(u, v), (1.9)∣∣f(ux− vy, uy + vx)− f(x, y)f(u, v)
∣∣ ≤ φ(x, y) or φ(u, v) (1.10)

for all x, y, u, v ∈ R. In particular, we give a refined description of bounded
functions satisfying the inequalities (see Albert and Baker [1] and Chung [4] for a
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refined result for bounded solutions of exponential functional equations; for some
related results, see [2], [3], [7], [10], and [12])

2. General solutions of the equations

In this section, we present the general solutions of the equations (1.3)–(1.6).
The following result can be found in [8, Theorem 1].

Theorem 2.1. Let f : R2 → R satisfy (1.3). Then f has the form

f(x, y) = M(x2 − y2) (2.1)

for all x, y ∈ R, where M : R → R is a multiplicative function.

The following result can be found in [5, Theorem 1] and [8, Theorem 2], which
is a revised version of [9].

Theorem 2.2. Let f : R2 → R satisfy (1.4). Then f has the form

f(x, y) = M(x2 + y2) (2.2)

for all x, y ∈ R, where M : R → R is a multiplicative function.

The following theorem was established in [6, Theorem 1].

Theorem 2.3. Let f : R2 → R satisfy (1.5). Then f has the form

f(x, y) = M1(x+ y)M2(x− y) (2.3)

for all x, y ∈ R, where M1,M2 : R → R are multiplicative functions.

Now, we determine general solutions of equation (1.6).

Theorem 2.4. Let f : R2 → R satisfy (1.6). Then f = 1 or it has the form

f(x, y) = M(x2 + y2)E
(
tan−1(y/x)

)
(2.4)

for all x, y ∈ R, where M : [0,∞) → R is a multiplicative function and E : R → R
is an exponential function satisfying E(x+ rπ) = E(x) for all x ∈ R, r ∈ Q.

Proof. Define m : C → R by m(x+ iy) = f(x, y). Then functional equation (1.6)
is reduced to

m(zw) = m(z)m(w) (2.5)

for all z, w ∈ C. If m(0) 6= 0, then, by putting w = 0 in (2.5), we have m(z) = 1
for all z ∈ C, and hence f(x, y) = 1 for all x, y ∈ R. Assume that m(0) = 0. For
each complex number z = x+ iy 6= 0, using polar form z = reiθ, r > 0, 0 ≤ θ ∈ R,
we define β : R0 × R → R by

β(r, θ) = m(reiθ) (2.6)

for all r > 0, θ ∈ R. Then, from (2.5) and (2.6), we have

β(r1, θ1)β(r2, θ2) = β(r1r2, θ1 + θ2), β(r, θ) = β(r, θ + 2π) (2.7)

for all r1, r2 > 0, θ1, θ2 ∈ R. Let M(r) = β(
√
r, 0),M(0) = 0, E(θ) = β(1, θ) for all

r > 0, θ ∈ R. Then, since E is a nonzero exponential function, we have E(0) = 1,
and from (2.7) we have E(2π) = E(0) = 1. Thus we have E(rπ) = E(2π)r/2 = 1
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for all r ∈ Q. Now, we can write

f(x, y) = m(x+ iy) = β(r, θ) = β(r, 0)β(1, θ) = M(r2)E(θ)

= M(x2 + y2)E
(
arg(x+ iy)

)
= M(x2 + y2)E

(
tan−1(y/x)

)
(2.8)

for all x, y ∈ R with (x, y) 6= (0, 0). Since f(0, 0) = m(0) = 0 and M(0) = 0,
the equality (2.8) holds for all (x, y) ∈ R2. Thus, from (2.8), we get (2.4). This
completes the proof. �

Remark 2.5. It is possible to find a nonconstant exponential function E : R → R
satisfying E(θ+ rπ) = E(θ) for all θ ∈ R, r ∈ Q. Indeed, let H be a basis (Hamel
basis) of the vector space R over the field Q of rational numbers such that π ∈ H.
Let E0 : H → R be a nonconstant function such that E0(π) = 1. Then there exists
a unique extension E : R → R of E0 such that E(θ1 + θ2) = E(θ1)E(θ2) for all
θ1, θ2 ∈ R. Since E(π) = 1, we have E(rπ) = E(π)r = 1 for all r ∈ Q, and hence
E(θ + rπ) = E(θ)E(rπ) = E(θ) for all θ ∈ R.

Remark 2.6. Let F be a field. Using the same methods as in [8], we obtain that all
solutions f : F2 → R of the equations (1.3) and (1.5) have the same forms as (2.1)
and (2.3), respectively. However, the solutions of the equations (1.4) and (1.6) are
not known when f is defined on F2 and taking values on R. It can be verified that
the solutions of (1.4) are of the same form as (2.2) if F is algebraically closed or,
more generally, if {(x2 − y2, 2xy) : x, y ∈ F} = F2.

3. Ulam–Hyers stability of the equations

In this section, we investigate bounded functions and unbounded functions
satisfying each of the functional inequalities (1.7)–(1.10). We first present a pre-
liminary lemma which will be useful to describe bounded functions f satisfying
(1.7)–(1.10). In the following lemma, let G be a group, and let τ : G × G → G
and φ : G × G → R+ be given. We denote by S1 the set of all x ∈ G such that
τ(x, ·) : G → G is surjective, and we denote by S2 the set of all y ∈ G such that
τ(·, y) : G → G is surjective, and B = {x ∈ G : φ(x) < 1/4}.

Lemma 3.1. Let f : G → R be a bounded function satisfying∣∣f ◦ τ(x, y)− f(x)f(y)
∣∣ ≤ φ(x)

(
resp., φ(y)

)
(3.1)

for all x, y ∈ G. Then f satisfies∣∣f(x)∣∣ ≤ 1

2

(
1 +

√
1 + 4φ(x)

)
(3.2)

for all x ∈ G. In particular, if S1 ∩ B 6= ∅ (resp., S2 ∩ B 6= ∅), then f satisfies
either

1

2

(
1 +

√
1− 4φ(x)

)
≤

∣∣f(x)∣∣ ≤ 1

2

(
1 +

√
1 + 4φ(x)

)
(3.3)

for all x ∈ S1 ∩B (resp., S2 ∩B) or∣∣f(x)∣∣ ≤ 1

2

(
1−

√
1− 4φ(x)

)
(3.4)

for all x ∈ S1 ∩B (resp., S2 ∩B).
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Proof. Let Mf = supx∈G |f(x)|. Using the triangle inequality with (3.1), we have∣∣f(x)f(y)∣∣ ≤ ∣∣f ◦ τ(x, y)
∣∣+ φ(y) ≤ Mf + φ(y) (3.5)

for all x, y ∈ G. Taking the supremum of the left-hand side of (3.5) with respect
to x ∈ G, we get Mf |f(y)| ≤ Mf + φ(y) for all y ∈ G. Thus we have

Mf

(∣∣f(y)∣∣− 1
)
≤ φ(y) (3.6)

for all y ∈ G, which implies that∣∣f(x)∣∣(∣∣f(x)∣∣− 1
)
≤ φ(x) (3.7)

for all x ∈ G, and (3.2) follows. For every y ∈ S2, z ∈ G, there exists x = λ(y, z)
such that τ(λ(y, z), y) = z. Putting x = λ(y, z) in (3.1) and using the triangle
inequality, we have∣∣f(z)∣∣ ≤ ∣∣f(λ(y, z))f(y)∣∣+ φ(y) ≤ Mf

∣∣f(y)∣∣+ φ(y) (3.8)

for all y ∈ S2, z ∈ G. Taking the supremum of the left-hand side of (3.8) with
respect to z ∈ G, we get Mf ≤ Mf |f(y)|+ φ(y) for all y ∈ G. Thus we have

Mf

(
1−

∣∣f(y)∣∣) ≤ φ(y) (3.9)

for all y ∈ S2, which implies that∣∣f(x)∣∣(1− ∣∣f(x)∣∣) ≤ φ(x) (3.10)

for all x ∈ S2. For each fixed x ∈ S2 ∩B, solving the inequalities (3.7) and (3.10)
simultaneously, we have

1

2

(
1 +

√
1− 4φ(x)

)
≤

∣∣f(x)∣∣ ≤ 1

2

(
1 +

√
1 + 4φ(x)

)
(3.11)

or ∣∣f(x)∣∣ ≤ 1

2

(
1−

√
1− 4φ(x)

)
. (3.12)

Now, assume that there exist x1, x2 ∈ S2 ∩B such that∣∣f(x1)
∣∣ ≤ 1

2

(
1−

√
1− 4φ(x1)

)
and

∣∣f(x2)
∣∣ ≥ 1

2

(
1 +

√
1− 4φ(x2)

)
. (3.13)

Then from (3.9) we have∣∣f(x2)
∣∣(1− ∣∣f(x1)

∣∣) ≤ Mf

(
1−

∣∣f(x1)
∣∣) ≤ φ(x1). (3.14)

On the other hand, from (3.13) we have∣∣f(x2)
∣∣(1− ∣∣f(x1)

∣∣) ≥ 1

2

(
1 +

√
1− 4φ(x2)

)(
1− 1

2

(
1−

√
1− 4φ(x1)

))
>

1

2

(
1−

√
1− 4φ(x1)

)(
1− 1

2

(
1−

√
1− 4φ(x1)

))
= φ(x1),

which contradicts (3.14). Thus f satisfies either (3.3) for all x ∈ S2∩B or satisfies
(3.4) for all x ∈ S2 ∩B. Since the left-hand side of (3.1) is symmetric in x and y,
then the proof is complete. �
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Theorem 3.2. Let f : R2 → R satisfy (1.7). If f is bounded, then we have∣∣f(x, y)∣∣ ≤ 1

2

(
1 +

√
1 + 4φ(x, y)

)
(3.15)

for all x, y ∈ R. Furthermore, let K = {(x, y) ∈ R2 : x2 6= y2, φ(x, y) < 1
4
}. Then

f satisfies either

1

2

(
1 +

√
1− 4φ(x, y)

)
≤

∣∣f(x, y)∣∣ ≤ 1

2

(
1 +

√
1 + 4φ(x, y)

)
(3.16)

for all (x, y) ∈ K or ∣∣f(x, y)∣∣ ≤ 1

2

(
1−

√
1− 4φ(x, y)

)
(3.17)

for all (x, y) ∈ K. If f is unbounded, then there exists a multiplicative function
M : R → R such that

f(x, y) = M(x2 − y2) (3.18)

for all x, y ∈ R.

Proof. If f is bounded, applying Lemma 3.1, since S2 = S1 = {(x, y) ∈ R2 :
x2 6= y2}, we get (3.15), (3.16), and (3.17). Assume that f is unbounded. We first
consider the case when f satisfies∣∣f(ux− vy, uy − vx)− f(x, y)f(u, v)

∣∣ ≤ φ(u, v) (3.19)

for all x, y, u, v ∈ R. Choose a sequence (pn, qn) ∈ R2, n = 1, 2, 3, . . . , such that
|f(pn, qn)| → ∞ as n → ∞. Replacing (x, y) by (pn, qn) in (3.19) and dividing
the result by |f(pn, qn)|, we have∣∣∣f(u, v)− f(upn − vqn, uqn − vpn)

f(pn, qn)

∣∣∣ ≤ φ(u, v)

|f(pn, qn)|
. (3.20)

Letting n → ∞ in (3.20), we have

f(u, v) = lim
n→∞

f(upn − vqn, uqn − vpn)

f(pn, qn)
(3.21)

for all u, v ∈ R. Multiplying both sides of (3.21) by f(x, y) and using (3.19) and
(3.21), we have

f(u, v)f(x, y) = lim
n→∞

f(upn − vqn, uqn − vpn)f(x, y)

f(pn, qn)

= lim
n→∞

f((ux+ vy)pn − (uy + vx)qn, (ux+ vy)qn − (uy + vx)pn)

f(pn, qn)

= f(ux+ vy, uy + vx) (3.22)

for all x, y, u, v ∈ R. Replacing v by −v in (3.22), we have

f(u,−v)f(x, y) = f(ux− vy, uy − vx) (3.23)

for all u, v, x, y ∈ R. From (3.19) and (3.23) we have∣∣f(x, y)∣∣∣∣f(u, v)− f(u,−v)
∣∣ ≤ φ(u, v) (3.24)
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for all x, y, u, v ∈ R. Since f is unbounded, we have

f(u, v) = f(u,−v) (3.25)

for all u, v ∈ R. Thus, from (3.23) and (3.25), we get the equation

f(ux− vy, uy − vx) = f(x, y)f(u, v) (3.26)

for all x, y, u, v ∈ R. Second, we consider the case when f satisfies∣∣f(ux− vy, uy − vx)− f(x, y)f(u, v)
∣∣ ≤ φ(x, y) (3.27)

for all x, y, u, v ∈ R. Putting (x, y) = (1, 0) in (3.27), we have∣∣f(u,−v)− f(1, 0)f(u, v)
∣∣ ≤ φ(1, 0) (3.28)

for all u, v ∈ R. Choose a sequence (pn, qn) ∈ R2, n = 1, 2, 3, . . . , such that
|f(pn, qn)| → ∞ as n → ∞. Replacing (u, v) by (pn, qn) in (3.27), dividing the
result by |f(pn, qn)|, and letting n → ∞, we have

f(x, y) = lim
n→∞

f(pnx− qny, pny − qnx)

f(pn, qn)
(3.29)

for all x, y ∈ R. Multiplying both sides of (3.29) by f(u, v) and using (3.27),
(3.28), and (3.29), we have

f(u, v)f(x, y)

= lim
n→∞

f(u, v)f(pnx− qny, pny − qnx)

f(pn, qn)

= lim
n→∞

f(pn(ux− vy)− qn(uy − vx), pn(vx− uy)− qn(vy − ux))

f(pn, qn)

= lim
n→∞

f(1, 0)f(pn(ux− vy)− qn(uy − vx), pn(uy − vx)− qn(ux− vy))

f(pn, qn)

= f(1, 0)f(ux− vy, uy − vx) (3.30)

for all x, y, u, v ∈ R. Putting (x, y) = (1, 0) in (3.30), we have

f(u, v) = f(u,−v) (3.31)

for all u, v ∈ R. From (3.28) and (3.31), we have∣∣f(u, v)∣∣∣∣1− f(1, 0)
∣∣ ≤ φ(1, 0) (3.32)

for all u, v ∈ R. Since f is unbounded, from (3.32) we have f(1, 0) = 1. Thus
from (3.30), we get

f(ux− vy, uy − vx) = f(x, y)f(u, v) (3.33)

for all x, y, u, v ∈ R. By Theorem 2.1, we get (3.18). This completes the proof. �

As a direct consequence of Theorem 3.2, we have the following.
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Corollary 3.3. Let 0 ≤ ε < 1
4
. Assume that f : R2 → R is a bounded function

satisfying ∣∣f(ux− vy, uy − vx)− f(x, y)f(u, v)
∣∣ ≤ ε (3.34)

for all x, y, u, v ∈ R. Then f satisfies∣∣f(x, y)∣∣ ≤ 1

2
(1 +

√
1 + 4ε) (3.35)

for all x, y ∈ R. If we let K = {(x, y) ∈ R2 : x2 6= y2}, then f also satisfies either

1

2
(1 +

√
1− 4ε) ≤

∣∣f(x, y)∣∣ ≤ 1

2
(1 +

√
1 + 4ε) (3.36)

for all (x, y) ∈ K or f satisfies∣∣f(x, y)∣∣ ≤ 1

2
(1−

√
1− 4ε) (3.37)

for all (x, y) ∈ K.

Remark 3.4. The inequalities (3.36) and (3.37) imply that sup(x,y)∈K |f(x, y)| is
close to 1 or 0 provided that ε is small. However, it is not true in general that
sup(x,y)∈R2 |f(x, y)| is close to 1 or 0. Indeed, choose a function f such that

sup
(x,y)∈R2\K

∣∣f(x, y)∣∣ ≈ 0, sup
(x,y)∈K

∣∣f(x, y)− 1
∣∣ ≈ 0.

If (x, y) ∈ R2 \K or (u, v) ∈ R2 \K, then we have (ux− vy, uy − vx) ∈ R2 \K.
Thus it follows that f(ux− vy, uy − vx) ≈ 0, f(x, y)f(u, v) ≈ 0 and that∣∣f(ux− vy, uy − vx)− f(x, y)f(u, v)

∣∣ ≈ 0. (3.38)

If (x, y) ∈ K and (u, v) ∈ K, then we have (ux−vy, uy−vx) ∈ K. Thus it follows
that f(ux− vy, uy − vx) ≈ 1, f(x, y) ≈ 1, f(u, v) ≈ 1 and that∣∣f(ux− vy, uy − vx)− f(x, y)f(u, v)

∣∣ ≈ 0. (3.39)

From (3.38) and (3.39), f satisfies (3.34) for all x, y, u, v ∈ R, but f(x, y) satisfies
(3.36) for all (x, y) ∈ K and satisfies (3.37) for all (x, y) ∈ R2 \K.

The stability theorems of (1.8) are considered in [5, Theorem 3.6] and [9]. Here,
we state the result from [5].

Theorem 3.5. Let f : R2 → R satisfy (1.8). If f is bounded, then f satisfies∣∣f(x, y)∣∣ ≤ 1

2

(
1 +

√
1 + 4φ(x, y)

)
(3.40)

for all x, y ∈ R. Let K = {(x, y) ∈ R2 : (x, y) 6= (0, 0), φ(x, y) < 1
4
}. Then f

satisfies

1

2

(
1 +

√
1− 4φ(x, y)

)
≤

∣∣f(x, y)∣∣ ≤ 1

2

(
1 +

√
1 + 4φ(x, y)

)
(3.41)

for all (x, y) ∈ K or ∣∣f(x, y)∣∣ ≤ 1

2

(
1−

√
1− 4φ(x, y)

)
(3.42)
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for all (x, y) ∈ K. If f is unbounded, then there exists a multiplicative function
M : R → R such that

f(x, y) = M(x2 + y2) (3.43)

for all x, y ∈ R.

Now, we consider the functional inequality (1.9), which is symmetric with
respect to (x, y) and (u, v); thus it suffices to consider∣∣f(ux+ vy, uy + vx)− f(x, y)f(u, v)

∣∣ ≤ φ(u, v) (3.44)

for all x, y, u, v ∈ R.

Theorem 3.6. Let f : R2 → R satisfy (3.44). If f is bounded, then f satisfies
(3.40) for all x, y ∈ R. Let K := {(x, y) ∈ R2 : x2 6= y2, φ(x, y) < 1

4
}. Then f

either satisfies (3.41) for all (x, y) ∈ K or satisfies (3.42) for all (x, y) ∈ K. If f
is unbounded, then there exist multiplicative functions M1,M2 : R → R such that

f(x, y) = M1(x+ y)M2(x− y) (3.45)

for all x, y ∈ R.

Proof. If f is bounded, then the result follows immediately from Lemma 3.1 since
S2 = {(x, y) ∈ R2 : x2 6= y2}. Assume that f is unbounded. Choose a sequence
(pn, qn) ∈ R2, n = 1, 2, 3, . . . , such that |f(pn, qn)| → ∞ as n → ∞. Replacing
(x, y) by (pn, qn) in (3.44), dividing the result by |f(pn, qn)|, and letting n → ∞,
we have

f(u, v) = lim
n→∞

f(upn + vqn, uqn + vpn)

f(pn, qn)
(3.46)

for all u, v ∈ R. Multiplying both sides of (3.46) by f(x, y) and using (3.44) and
(3.46), we have

f(u, v)f(x, y) = lim
n→∞

f(upn + vqn, uqn + vpn)f(x, y)

f(pn, qn)

= lim
n→∞

f((ux+ vy)pn + (uy + vx)qn, (ux+ vy)qn + (uy + vx)pn)

f(pn, qn)

= f(ux+ vy, uy + vx) (3.47)

for all u, v, x, y ∈ R. By Theorem 2.3 we get (3.45). This completes the proof. �

Finally, we consider the inequality (1.10), which is also symmetric with respect
to (x, y) and (u, v). Thus it suffices to consider∣∣f(ux− vy, uy + vx)− f(x, y)f(u, v)

∣∣ ≤ φ(u, v) (3.48)

for all x, y, u, v ∈ R.

Theorem 3.7. Let f : R2 → R satisfy (3.48). If f is bounded, then f satisfies
(3.40) for all x, y ∈ R. Let K := {(x, y) ∈ R2 : (x, y) 6= (0, 0), φ(x, y) < 1

4
}. Then

f either satisfies (3.41) for all (x, y) ∈ K or satisfies (3.42) for all (x, y) ∈ K. If
f is unbounded, then f has the form

f(x, y) = M(x2 + y2)E
(
tan−1(y/x)

)
(3.49)



338 C.-K. CHOI ET AL.

for all x, y ∈ R, where M is a multiplicative function and E : R → R is an
exponential function satisfying E(x+ rπ) = E(x) for all x ∈ R, r ∈ Q.

Proof. If f is bounded, then the result follows immediately from Lemma 3.1
since S2 = {(x, y) ∈ R2 : (x, y) 6= (0, 0)}. Assume that f is unbounded. Choose
a sequence (pn, qn) ∈ R2, n = 1, 2, 3, . . . , such that |f(pn, qn)| → ∞ as n → ∞.
Replacing (x, y) by (pn, qn) in (3.48), dividing the result by |f(pn, qn)|, and letting
n → ∞, we have

f(u, v) = lim
n→∞

f(upn − vqn, uqn + vpn)

f(pn, qn)
(3.50)

for all u, v ∈ R. Multiplying both sides of (3.50) by f(x, y) and using (3.48) and
(3.50), we have

f(u, v)f(x, y) = lim
n→∞

f(upn − vqn, uqn + vpn)f(x, y)

f(pn, qn)

= lim
n→∞

f((ux− vy)pn − (uy + vx)qn, (ux− vy)qn + (uy + vx)pn)

f(pn, qn)

= f(ux− vy, uy + vx) (3.51)

for all u, v, x, y ∈ R. By Theorem 2.4 we get (3.49). This completes the proof. �

In particular, if φ(x, y) = ε < 1
4
for all x, y ∈ R, then we can give a refined

description of bounded solutions of (1.10).

Corollary 3.8. Let 0 ≤ ε < 1
4
. Assume that f : R2 → R is a bounded function

satisfying ∣∣f(ux− vy, uy + vx)− f(x, y)f(u, v)
∣∣ ≤ ε (3.52)

for all x, y, u, v ∈ R. Then f either satisfies

1

2
(1 +

√
1− 4ε) ≤ f(x, y) ≤ 1

2
(1 +

√
1 + 4ε) (3.53)

for all (x, y) ∈ R2
0 or f satisfies

− ε ≤ f(x, y) ≤ 1

2
(1−

√
1− 4ε) (3.54)

for all (x, y) ∈ R2
0.

Proof. Since ε < 1
4
, we have K = R2

0. Thus, by Theorem 3.7, we have

1

2
(1 +

√
1− 4ε) ≤

∣∣f(x, y)∣∣ ≤ 1

2
(1 +

√
1 + 4ε) (3.55)

for all (x, y) ∈ R2
0 or ∣∣f(x, y)∣∣ ≤ 1

2
(1−

√
1− 4ε) (3.56)

for all (x, y) ∈ R2
0. Replacing (u, v) by (x, y) in (3.52) and using the triangle

inequality, we have

f(x2 − y2, 2xy) ≥ f(x, y)2 − ε ≥ −ε (3.57)
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for all (x, y) ∈ R2. Since {(x2 − y2, 2xy) : x, y ∈ R} = R2, it follows that

f(x, y) ≥ −ε (3.58)

for all (x, y) ∈ R2. Since ε < 1
4
, we have ε < 1

2
(1−

√
1− 4ε). Thus the inequality

(3.53) follows from (3.55) and (3.58), and the inequality (3.54) follows from (3.56)
and (3.58). This completes the proof. �

Remark 3.9. The inequalities (3.53) and (3.54) imply that sup(x,y)∈R2
0
|f(x, y)−1|

is close to 0 or sup(x,y)∈R2
0
|f(x, y)| is close to 0 provided that ε is small. However,

the value f(0, 0) may not be close to f(R2
0). Indeed, choose a function f such that

f(0, 0) ≈ 0, sup(x,y)∈R2
0
|f(x, y) − 1| ≈ 0. If (x, y) = (0, 0) or (u, v) = (0, 0), then

we have ∣∣f(0, 0)− f(x, y)f(0, 0)
∣∣ ≈ 0. (3.59)

If (x, y) 6= (0, 0) and (u, v) 6= (0, 0), then (ux − vy, uy + vx) 6= (0, 0). Therefore,
it follows that f(ux− vy, uy − vx) ≈ 1, f(x, y) ≈ 1, f(u, v) ≈ 1 and that∣∣f(ux− vy, uy + vx)− f(x, y)f(u, v)

∣∣ ≈ 0. (3.60)

From (3.59) and (3.60), f satisfies (3.52), but |f(x, y)−f(0, 0)| ≈ 1 for all (x, y) ∈
R2

0.
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