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Abstract. In this paper, we establish the existence of three possibly non-
trivial solutions for a Dirichlet problem on the real line without assuming on
the nonlinearity asymptotic conditions at infinity. As a particular case, when
the nonlinearity is superlinear at zero and sublinear at infinity, the existence
of two nontrivial solutions is obtained. This approach is based on variational
methods and, more precisely, a critical points theorem, which assumes a more
general condition than the classical Palais–Smale condition, is exploited.

1. Introduction

Quasilinear elliptic equations in the whole space, as well as in the special case,
on infinite intervals occur naturally in a variety of settings in physics and engineer-
ing, as in, for example, the study of non-Newtonian fluid flows, nonlinear mechan-
ics, the theory of plasma, and electrical potential theory (see [2], [3], [8], and [12]).
In particular, it highlights that they occur in dissipative quantum mechanics (see
[7]), in condensed matter theory (see [11]), and in the theory of Heisenberg ferro-
magnets (see [13]). It is well known that the study of such equations presents great
difficulties because of the lack of compactness of the involved operators. Indeed, in
such cases the operators which solve the problem are not regular enough in com-
parison to operators which arise in problems on bounded domains. To be more
precise, if we use operator theory and fixed point methods, then standard results
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such as the Ascoli–Arzelà theorem or the Rellich–Kondrachov theorem cannot
be applied directly. An appropriate diagonalization process is usually needed, or,
alternatively, one attempts to use fixed point results for monotone operators (see
the monograph [1] for an overview on different approaches). On the other hand,
if we use operator theory and variational methods, then the usual results such
as the direct methods theorem or the classical mountain pass theorem cannot be
directly applied due to lack of regularity of the operator. Other tools, such as the
concentration compactness principle or the Nash–Moser-type implicit function
theorem or the generalized linking theorem, are usually applied (see [3], [12], and
[15, Chapter 6]). It is worth noticing that in this latest case, in particular, the
Palais–Smale condition for the energy operator fails. Moreover, we also observe
that in the study of such nonlinear equations in the whole space an appropri-
ate behavior at infinity of the nonlinearity is usually assumed (see, for example,
[6], [9], [10], [15], [16], and the references therein), and none of the previous cited
results guarantees the multiplicity of solutions. Here, we obtain solutions for non-
linear elliptic equations in the whole one-dimensional space by showing that the
corresponding operator satisfies a weaker Palais–Smale condition than the classi-
cal one. We apply a suitable version of the mountain pass theorem to establish the
existence of multiple solutions possibly without asymptotic conditions at infinity.
More precisely, we consider the following problem.

Find u ∈ W 1,p(R) with p ∈ ]1,+∞[ satisfying

−
(∣∣u′(x)

∣∣p−2
u′(x)

)′
+B

∣∣u(x)∣∣p−2
u(x) = λα(x)g

(
u(x)

)
a.e. in R, (Pλ)

where λ is a real positive parameter, B is a real positive number, α, g : R → R
are two functions such that α ∈ L1(R), α(x) ≥ 0 a.e. x ∈ R, α 6≡ 0, and g is
continuous and nonnegative.

Therefore, the main aim of this article is to obtain the existence of three dis-
tinct solutions for problem (Pλ) without assuming an asymptotic condition, at
infinity or at zero, of the nonlinearity g. Precisely, under suitable assumptions
on the behavior of g, we prove the existence of three distinct possibly nontriv-
ial solutions for problem (Pλ) in W 1,p(R) (see Theorem 3.1 and Example 3.3).
Indeed, in order to obtain three distinct solutions, we require, roughly speaking,
a rapid growth of g in an interval [c1, d] (see (j) in Theorem 3.1) and a less rapid
growth in a subsequent interval [d, c2] (see (jj) in Theorem 3.1) with g having
arbitrary behavior after c2 (see Example 3.3). Moreover, as a consequence, the
existence of two nontrivial solutions is obtained if g is (p− 1)-superlinear at zero
and (p − 1)-sublinear at infinity (see Corollary 3.4). Our main tool is a recent
critical points result proved in [4] (see Theorem 2.6). We stress again that the
application of such a theorem, which uses a nonstandard Palais–Smale condition
(see Definition 2.2), allows us to study in an innovative way differential problems
in unbounded domains, which, as it is well known, are characterized by the lack
of compactness of the operator. Now we present as an example a special case of
our main result.

Theorem 1.1. Let α, g : R → R be two nonnegative continuous functions with
α ∈ L1(R), α 6≡ 0, and g(0) 6= 0. Assume that there exist two positive constants
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c and d with c < d such that∫ c

0
g(ξ) dξ

c2
<

(2
7

∫ 1

−1
α(x) dx∫ +∞

−∞ α(x) dx

)∫ d

0
g(ξ) dξ

d2

and

lim
ξ→+∞

g(ξ)

ξ
= 0.

Then, for each λ ∈ ] 1∫ 1
−1 α(x) dx

7
2

d2∫ d
0 g(ξ) dξ

, 1∫+∞
−∞ α(x) dx

c2∫ c
0 g(ξ) dξ

[, the problem{
−u′′ + u = λα(x)g(u) x ∈ R,
u(−∞) = u(+∞) = 0

admits at least three distinct nontrivial classical solutions.

This article is organized as follows. In Section 2, we recall some preliminary
results. In particular, we recall a critical points theorem proved in [4] that we will
use to prove the main result of the paper. In Section 3, we present our main result
(Theorems 3.1), and we point out a special case (Corollary 3.4). Furthermore, we
give some examples to illustrate Theorem 3.1 and Corollary 3.4 (Examples 3.3
and 3.5).

2. Preliminaries

In this section, we introduce the notation and terminology, and we collect some
well-known facts that we will use in the sequel.

Let (X, ‖ · ‖) be a real Banach space, and let X∗ be the dual space of X.
A function I : X → R is Gâteaux differentiable at u ∈ X if there is a I ′(u) ∈ X∗

such that

lim
t→0+

I(u+ tv)− I(u)

t
= I ′(u)(v)

for each v ∈ X. The function I is continuously Gâteaux differentiable if it is
Gâteaux differentiable for any u ∈ X and the function u → I ′(u) is a continuous
map from X to its dual X∗.

Let Φ,Ψ : X → R be two continuously Gâteaux differentiable functions, let λ
be a real positive parameter, and let Iλ = Φ− λΨ. Fix r ∈ ]−∞,+∞].

Definition 2.1. The function Iλ satisfies the Palais–Smale condition (in short, the
(PS)-condition) if any sequence {un} such that

(i) Iλ(un) is bounded,
(ii) limn→+∞ ‖I ′λ(un)‖X∗ = 0

has a convergent subsequence.

Definition 2.2. The function Iλ satisfies the Palais–Smale condition cutoff upper
at r (in short, the (PS)[r]-condition) if any sequence {un} that satisfies (i), (ii),
and

(iii) Φ(un) < r

has a convergent subsequence.
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Definition 2.3. An element u ∈ X is a critical point of Iλ if I ′λ(u) = 0X∗ ; that is,
I ′λ(u)(v) = 0 for each v ∈ X.

Let | · | and | · |t be the usual norms on R and Lt(R) where t ∈ [1,+∞],
respectively. Here, we denote by W 1,p

0 (R) the closure of C∞
0 (R) in W 1,p(R) with

respect to the norm

‖u‖1,p :=
(
|u′|pp + |u|pp

) 1
p ,

and we consider W 1,p(R) endowed with the norm

‖u‖ =
(∫

R

(∣∣u′(x)
∣∣p +B

∣∣u(x)∣∣p) dx) 1
p
.

We note that W 1,p(R) ≡ W 1,p
0 (R) and W 1,p(R) is embedded in Lt(R) for any

t ∈ [p,+∞]. Let G : R → R be the function defined by

G(t) =

∫ t

0

g(ξ) dξ for all t ∈ R.

We note that the hypotheses on g guarantee that G ∈ C1(R) and G′(t) =
g(t) ≥ 0 for all t ∈ R, and so the function G is nondecreasing.

Now, let us denote by Φ,Ψ : W 1,p(R) → R the functions defined by

Φ(u) =
1

p
‖u‖p and Ψ(u) =

∫
R
α(x)G

(
u(x)

)
dx (2.1)

for all u ∈ W 1,p(R). Moreover, by Iλ : W 1,p(R) → R, we denote the energy
function related to the problem (Pλ). Then, for each u ∈ W 1,p(R), Iλ is defined
by

Iλ(u) = Φ(u)− λΨ(u)

with Φ and Ψ given by (2.1).
We recall that it is well known that Φ and Ψ are continuously Gâteaux differ-

entiable. Furthermore, if u is a critical point of Iλ, then I ′λ(u) ≡ 0; that is,∫
R

(∣∣u′(x)
∣∣p−2

u′(x)v′(x) +B
∣∣u(x)∣∣p−2

u(x)v(x)− λα(x)g
(
u(x)

)
v(x)

)
dx = 0

for all v ∈ W 1,p(R), and hence u is a weak solution to (Pλ). Clearly, if in addition
α ∈ C(R), then u is a classical solution to (Pλ).

We conclude this section with some results proved in [5] and [4] which we will
need to prove the existence of three solutions to the problem (Pλ).

Proposition 2.4 ([5], Proposition 2.2). One has

|u|∞ ≤ cB‖u‖
for all u ∈ W 1,p(R), where

cB = 2
p−2
p

(p− 1

p

) p−1
p
( 1

B

) p−1

p2

.

Lemma 2.5 ([5], Lemma 2.8). Let Φ and Ψ be as defined in (2.1), and fix λ > 0.
Then Iλ = Φ− λΨ satisfies the (PS)[r]-condition for any r > 0.



252 G. BONANNO, D. O’REGAN, and F. VETRO

Finally, we state in a convenient form a three critical points theorem proved
in [4].

Theorem 2.6 ([4], Theorem 7.3). Let X be a real Banach space, and let Φ,Ψ :
X → R be two continuously Gâteaux differentiable functions with Φ bounded from
below and convex such that

inf
X

Φ = Φ(0) = Ψ(0) = 0.

Assume that there exist two positive constants r1, r2 and ū ∈ X with 2r1 < Φ(ū) <
r2
2
such that

(i)
supu∈Φ−1(]−∞,r1[)

Ψ(u)

r1
< 2

3
Ψ(ū)
Φ(ū)

,

(ii)
supu∈Φ−1(]−∞,r2[)

Ψ(u)

r2
< 1

3
Ψ(ū)
Φ(ū)

.

Assume also that, for each

λ ∈ Λ =
]3
2

Φ(ū)

Ψ(ū)
,min

{ r1
supu∈Φ−1(]−∞,r1[) Ψ(u)

,
r2

2 supu∈Φ−1(]−∞,r2[) Ψ(u)

}[
,

the functional Iλ satisfies the (PS)[r2]-condition and

inf
t∈[0,1]

Ψ
(
tu1 + (1− t)u2

)
≥ 0

for each u1, u2 ∈ X, which are local minima for the functional Iλ with Ψ(u1) ≥ 0
and Ψ(u2) ≥ 0.

Then, for each λ ∈ Λ, the functional Iλ admits at least three critical points
which lie in Φ−1(]−∞, r2[).

We recall that a first version of a three critical points theorem for differentiable
functionals depending on a real parameter was given by Ricceri in [14]. In that
case, contrary to Theorem 2.6, regularity properties of the functional with respect
to the weak topology are requested.

3. Main result

In this section we state and prove the main result of the paper. We also point
out a special case of our main result, and we give some illustrative examples.

In the sequel, Φ and Ψ are the functions defined in (2.1), and we put

k =
1

3cpB(1 +B + B
p+1

)

α0

|α|1
,

where α0 =
∫ 1

−1
α(x) dx and cB is given in Proposition 2.4.

Theorem 3.1. Assume that there exist three positive constants c1, c2, d with 2c1 <
d < c2 such that

(j) G(c1)
cp1

< kG(d)
dp

,

(jj) G(c2)
cp2

< k
2
G(d)
dp

.



TRIPLE SOLUTIONS FOR QUASILINEAR 253

Then, for each

λ ∈ Λ̄ =
] 1

pcpB|α|1
1

k

dp

G(d)
,

1

pcpB|α|1
min

{ cp1
G(c1)

,
cp2

2G(c2)

}[
,

the problem (Pλ) has at least three distinct weak solutions ui ∈ W 1,p(R) such that
|ui|∞ < c2, i = 1, 2, 3.

Proof. We will apply Theorem 2.6. Fix three positive constants c1, c2, and d as in
the statement. Then put r1 =

1
p
( c1
cB
)p, r2 =

1
p
( c2
cB
)p, and

ū(x) =


0 if x ∈ R\ ]−2, 2[,

d if x ∈ [−1, 1],

d(2− |x|) if x ∈ [−2,−1[∪]1, 2].

We notice that the regularity assumptions of Theorem 2.6 on Φ and Ψ are
satisfied, and we have

Φ(ū) =
1

p
‖ū‖p = 1

p

∫ 2

−2

∣∣ū(x)′∣∣p dx+
B

p

∫ 2

−2

∣∣ū(x)∣∣p dx
=

2

p

∫ 2

1

dp dx+
2B

p

[∫ 1

0

dp dx+

∫ 2

1

dp(2− x)p dx
]

=
2

p
dp
(
1 +B +

B

p+ 1

)
and

Ψ(ū) =

∫
R
α(x)G

(
ū(x)

)
dx

≥
∫ 1

−1

α(x)G(d) dx

= α0G(d).

Now, taking into account that( 1

B

) p−1

p2
(
1 +B +

B

p+ 1

) 1
p
=

(( 1

B

) p−1
p

+
p+ 2

p+ 1
B

1
p

) 1
p

≥
(( p+ 2

p2 − 1

) p−1
p

+
p+ 2

p+ 1

(p2 − 1

p+ 2

) 1
p
) 1

p
,

one has

cB

(
1 +B +

B

p+ 1

) 1
p ≥ L(p),

where

L(p) = 2
p−2
p

(p− 1

p

) p−1
p
(( p+ 2

p2 − 1

) p−1
p

+
p+ 2

p+ 1

(p2 − 1

p+ 2

) 1
p
) 1

p
.
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Since L(p) > 1
2
for all p > 1, one has

cB

(
1 +B +

B

p+ 1

) 1
p
>

1

2
,

and then from 2c1 < d we obtain

1

cB(1 +B + B
p+1

)
1
p

c1 < d.

Thus it follows that

2
1

p

cp1
cpB

<
2

p

(
1 +B +

B

p+ 1

)
dp;

that is, 2r1 < Φ(ū). Moreover, from (jj) taking into account that G(d) ≤ G(c2),
one has

1

cp2
<

k

2

G(d)

G(c2)

1

dp
≤ 1

6cpB(1 +B + B
p+1

)

α0

|α|1
1

dp
<

1

4cpB(1 +B + B
p+1

)

1

dp
.

Therefore, one has 2
p
(1 + B + B

p+1
)dp < 1

2
(1
p

cp2
cpB
); that is, Φ(ū) < r2

2
. Hence one

has

2r1 < Φ(ū) <
r2
2
.

Now, we notice that if u ∈ W 1,p(R) is such that Φ(u) < ri, then from

Φ(u) =
1

p
‖u‖p < ri =

1

p

( ci
cB

)p

we obtain that cB‖u‖ < ci, and hence, by Proposition 2.4, we also obtain that
|u|∞ < ci. Taking this into account, from (j) we have

1

r1
sup

Φ(u)<r1

Ψ(u) =
1

r1
sup

Φ(u)<r1

∫
R
α(x)G

(
u(x)

)
dx

≤ 1

r1

∫
R
α(x) max

|t|≤c1
G(t) dx

= pcpB|α|1
G(c1)

cp1

< |α|1pcpB
α0

3cpB|α|1(1 +B + B
p+1

)

G(d)

dp

≤ 2

3

Ψ(ū)

Φ(ū)
.

Analogously, from (jj) we get

1

r2
sup

Φ(u)<r2

Ψ(u) ≤ 1

r2

∫
R
α(x) max

|t|≤c2
G(t) dx

= pcpB|α|1
G(c2)

cp2



TRIPLE SOLUTIONS FOR QUASILINEAR 255

<
1

2
|α|1pcpB

α0

3cpB|α|1(1 +B + B
p+1

)

G(d)

dp

≤ 1

3

Ψ(ū)

Φ(ū)
.

Therefore, conditions (i) and (ii) of Theorem 2.6 are satisfied. In addition, we
observe that

Λ̄ =
] 1

pcpB|α|1
1

k

dp

G(d)
,

1

pcpB|α|1
min

{ cp1
G(c1)

,
cp2

2G(c2)

}[
⊂ Λ,

and, furthermore, by Lemma 2.5, the functional Iλ satisfies the (PS)[r2]-condition
for each λ ∈ Λ̄.

Now, let u be a local minima of Iλ. We notice that u(x) ≥ 0 for each x. In fact,
since u is a critical point of Iλ, we have that∫
R

(∣∣u′(x)
∣∣p−2

u′(x)v′(x) +B
∣∣u(x)∣∣p−2

u(x)v(x)
)
dx−

∫
R
λα(x)g

(
u(x)

)
v(x) dx = 0

for all v ∈ W 1,p(R). Then, if we choose v(x) = max{−u(x), 0}, we have

0 =

∫
R
λα(x)g

(
u(x)

)
v(x) dx−

∫
R

(∣∣u′(x)
∣∣p−2

u′(x)v′(x) +B
∣∣u(x)∣∣p−2

u(x)v(x)
)
dx

=

∫
R
λα(x)g

(
u(x)

)
v(x) dx−

∫
R

(
−
∣∣v′(x)∣∣p−2(

v′(x)
)2 −B

∣∣v(x)∣∣p−2(
v(x)

)2)
dx

=

∫
R
λα(x)g

(
u(x)

)
v(x) dx+

∫
R

(∣∣v′(x)∣∣p +B
∣∣v(x)∣∣p) dx

=

∫
R
λα(x)g

(
u(x)

)
v(x) dx+ ‖v‖p

≥ ‖v‖p.

From the previous inequality it follows that v(x) = 0 for each x and, conse-
quently, u(x) ≥ 0 for each x.

Finally, let u1, u2 ∈ W 1,p(R) be two local minima of the functional Iλ with
Ψ(u1) ≥ 0 and Ψ(u2) ≥ 0. Since u1, u2, as seen before, are nonnegative, we get

min
t∈[0,1]

Ψ
(
tu1 + (1− t)u2

)
≥ 0.

Then we can apply Theorem 2.6. Thus, for each λ ∈ Λ̄, the functional Iλ admits
at least three critical points ui which lie in Φ−1(]−∞, r2[), and hence problem (Pλ)
has three weak solutions ui such that |ui|∞ < c2, i = 1, 2, 3. �

Remark 3.2. If p ≥ 2, then in Theorem 3.1 it is enough to assume that there
exist three positive constants c1, d, c2, with c1 < d < c2 such that (j) and (jj) hold
true. Indeed, a simple computation shows that L(p) > 1 for all p ≥ 2, and from
the same proof in Theorem 3.1 our assertion is proved.

We now give an example to illustrate Theorem 3.1.
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Example 3.3. Let α, g : R → R be the functions defined as follows:

α(x) =

{
1 if x ∈ [−1, 1],
1
x2 otherwise

and

g(t) =


1 if t ∈ ]−∞, 1],

t7 if t ∈ ]1, 2],

27 if t ∈ ]2, 300],

ḡ(t) if t ∈ ]300,+∞[,

where ḡ(t) : ]300,+∞[→ R is an arbitrary function. Therefore, Theorem 3.1
ensures that the problem{

−u′′ + u = λα(x)g(u) x ∈ R,
u(−∞) = u(+∞) = 0

admits at least three distinct nontrivial classical solutions whose norms in C0(R)
are less than 300 for each λ ∈ ] 56

263
, 1
4
[. In fact, it is sufficient to choose p = 2, c1 =

1, d = 2, and c2 = 300 in order to apply Theorem 3.1 (see also Remark 3.2), and
so we obtain the conclusion.

Next, we present a consequence of Theorem 3.1.

Corollary 3.4. Assume that α0 6= 0 and g 6≡ 0. Moreover, assume that

lim
ξ→0+

g(ξ)

ξp−1
= 0 and lim

ξ→+∞

g(ξ)

ξp−1
= 0.

Then, for each λ ∈ ] 1
pcpB |α|1

1
k
infd>0

dp∫ d
0 g(ξ) dξ

,+∞[, problem (Pλ) admits at least

two distinct nontrivial weak solutions.

Proof. First observe that 1
pcpB |α|1

1
k
infd>0

dp

G(d)
< +∞ since α0 6= 0 and g 6≡ 0. Then

fix λ > 1
pcpB |α|1

1
k
infd>0

dp

G(d)
. Now, let d be a positive constant such that

λ >
1

pcpB|α|1
1

k

dp

G(d)
. (3.1)

Therefore, from limξ→0+ pcpB|α|1
G(ξ)
ξp

= 0 < 1
λ
, there exists c1 > 0 with c1 <

1
2
d

such that

pcpB|α|1
G(c1)

cp1
<

1

λ
. (3.2)

Moreover, from limξ→+∞ pcpB|α|1
2G(ξ)
ξp

= 0 < 1
λ
, there exists c2 > d such that

pcpB|α|1
2G(c2)

cp2
<

1

λ
. (3.3)

Hence, taking (3.1), (3.2), and (3.3) into account, from Theorem 3.1 we have
the result. �
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Example 3.5. The problem{
−(|u′|u′)′ + |u|u = 15 e−uu3

1+x2 x ∈ R,
u(−∞) = u(+∞) = 0

admits at least two nontrivial classical solutions. It is enough to apply Corol-
lary 3.4 by choosing p = 3, g(u) = e−uu3, α(x) = 1

1+x2 and by observing that

G(u) = 6− e−u(u3 + 3u2 + 6u+ 6) and 15 > 1
pcpB |α|1

1
k

1p

G(1)
= 9

2π
e

6e−16
.

Remark 3.6. Theorem 1.1 in the Introduction is a consequence of Theorem 3.1.
Indeed, it is enough to choose p = 2, taking Remark 3.2 into account, and to
argue as in the proof of Corollary 3.4 to prove (jj). Therefore, Theorem 3.1 ensures
the existence of three weak solutions which, since g(0) 6= 0 and α ∈ C(R), are
nontrivial classical solutions.

Remark 3.7. We recall that existence of at least one nontrivial nonnegative solu-
tion for problem (Pλ) without requiring any asymptotic condition on g either at
zero or at infinity was established in [5]. In that case the requested condition is of
an opposite type with respect to (j) of Theorem 3.1. Also, in [5], under a suitable
condition at infinity on g, the authors guaranteed the existence of two nontrivial
solutions for problem (Pλ).
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